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Abstract

In [7] it was proved that, given a distribution µ with zero mean and finite second
moment, there exists a simply connected domain Ω such that if Zt is a standard planar
Brownian motion, then Re(ZτΩ) has the distribution µ, where τΩ denotes the exit time
of Zt from Ω. In this note, we extend this method to prove that if µ has a finite p-th
moment then the first exit time τΩ from Ω has a finite moment of order p

2
. We also

prove a uniqueness principle for this construction, and use it to give several examples.
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1 Introduction and statement of results

In what follows, Zt is a standard planar Brownian motion starting at 0, and for any
plane domain Ω containing 0 we let τΩ denote the first exit time of Zt from Ω. In the
elegant recent paper [7] the following theorem was proved.

Theorem 1. Given a probability distribution µ on R with zero mean and finite nonzero
second moment, we can find a simply connected domain Ω such that Re(ZτΩ) has the
distribution µ. Furthermore we have E[τΩ] <∞.

We will prove several new results related to Gross’ construction. Our first result is
the following generalization.

Theorem 2. Given a probability distribution µ on R with zero mean and finite nonzero
p-th moment (with 1 < p < ∞), we can find a simply connected domain Ω such that
Re(ZτΩ) has the distribution µ. Furthermore we have E[(τΩ)p/2] <∞.

The proof of this result depends on a number of known properties of the Hilbert
transform and of the exit time τΩ, and is rather short. However the results needed
are scattered through a number of different subfields of probability and analysis, and
in an attempt to make the paper self-contained we have included a certain amount of
exposition on these topics. We will prove the theorem in the next section.

There are several reasons why we feel that our extension is worth noting. The
moments of τΩ have special importance in two dimensions, as they carry a great deal
of analytic and geometric information about the domain Ω. The first major work in this
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Remarks on a conformal Skorohod embedding

direction seems to have been by Burkholder in [2], where it was proved among other
things that finiteness of the p-th Hardy norm of Ω is equivalent to finiteness of the p

2 -th
moment of τΩ. To be precise, for any simply connected domain Ω let

H(Ω) = sup{p > 0 : E[(τΩ)p] <∞};

note that H(Ω) is proved in [2, p. 183] to be exactly equal to half of the Hardy number of
Ω, as defined in [8], which is

H̃(Ω) = sup{q > 0 : lim
r↗1

∫ 2π

0

|f(reiθ)|qdθ <∞},

where f is a conformal map from the unit disk onto Ω. This equivalence was used in
[2, p. 183] to show for instance that H(Wα) = π

2α , where Wα = {0 < Arg(z) < α} is an
infinite angular wedge with angle α. In fact, coupled with the purely analytic result [8,
Thm 4.1] this can be used to determine H(Ω) for any starlike domain Ω. If we assume
that V is starlike with respect to 0, then we may define

Ar,Ω = max{m(E) : E is a subarc of Ω ∩ {|z| = r}}, (1.1)

and this quantity is non-increasing in r (here m denotes angular Lebesgue measure on
the circle). We may therefore let AΩ = limr↗∞Ar,Ω, and then combining the results in
[8] and [2] (see also [12]) we have H(Ω) = π

2AΩ
. In this sense, the quantity H(Ω) provides

us with some sort of measure of the aperture of the domain at∞. Also in [12], a version
of the Phragmén-Lindelöf principle was proved that makes use of the quantity H(Ω).
Furthermore, the quantity E[(τΩ)p] provides us with an estimate for the tail probability
P (τΩ > δ): by Markov’s inequality, P (τΩ > δ) ≤ E[(τΩ)p]

δp .

For these reasons, we would argue that Theorem 2 gives a partial answer to the
following intriguing question posed by Gross in [7]: given a probability distribution µ and
a corresponding Ω such that Re(ZτΩ) has distribution µ, in what sense are properties
of µ reflected in the geometric properties of Ω? We will have more comments on this
question in the final section.

Our next result is influenced by Gross’ observation that the domain corresponding to
a given measure µ is not unique. Without further conditions this is correct, however we
have found that natural conditions can be imposed on the domain so that a uniqueness
principle holds. Before stating the result, let us make some definitions. A domain U is
symmetric if z̄ ∈ U whenever z ∈ U . We will call a domain U ∆-convex if, whenever
z1, z2 ∈ U with Re(z1) = Re(z2) then the vertical line segment connecting z1 and
z2 lies entirely within U . It is straightforward to verify that any ∆-convex domain
is automatically simply connected. Furthermore any domain constructed by Gross’
technique is both symmetric and ∆-convex (see Section 2), and we have the following
result.

Theorem 3. For any distribution µ satisfying the conditions of Theorem 2, there is a
unique domain Ω such that Re(ZτΩ) ∼ µ and which is symmetric, ∆-convex, and satisfies
E[(τΩ)p/2] <∞.

The importance of this result for our purposes is that it allows us to give certain
solutions to the inverse problem of the one solved by Gross. That is, we can give a
number of examples of domains generated by Gross’ method. To be precise, if Ω is a
domain which is symmetric, ∆-convex, and satisfies E[(τΩ)p/2] <∞, then it must be the
domain generated by Gross’ method corresponding to the distribution of Re(ZτΩ). We
will exploit this fact in Section 4.
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2 Preliminaries and proof of Theorem 2

The proof of Theorem 2 is mainly based on the Hilbert transform theory for periodic
functions, and we give here a brief summary of this. For further details about the topic,
we refer the reader to [3].

The Hilbert transform of a 2π- periodic function f is defined by

Hf (x) := PV

{
1

2π

∫ π

−π
f(x− t) cot(

t

2
)dt

}
= lim
η→0

1

2π

∫
η≤|t|≤π

f(x− t) cot(
t

2
)dt,

where PV denotes the Cauchy principal value, which is required here as the trigonomet-
ric function t 7−→ cot(·) has a simple pole at kπ with k ∈ Z. Note that the more standard
Hilbert transform is defined for functions f on the real line by

PV

{
1

2π

∫ +∞

−∞

f(x− t)
t

dt

}
.

However, replacing 1
t by cot( t2 ) in the integrand is natural because cot( t2 ) is the

function which results by “wrapping” 1
t around the circle; to be precise, cot(·) satisfies

the following identity ([14, p. 321]):

cot(z) =
1

z
+ 2z

+∞∑
n=1

1

z2 − n2
=
π

z
+ π

+∞∑
n=1

(
1

z + πn
+

1

z − πn

)
.

In this sense, cot( t2 ) can be seen as the periodic version of the function 1
t . Let us

now sketch the ideas for Gross’ proof, so that we may see where the Hilbert transform
comes in. We assume for now that µ has finite second moment. Let F be the c.d.f of µ
and consider the pseudo-inverse function of F defined by

G(u) := inf{x ∈ R|F (x) ≥ u}.

Note that G is defined for u ∈ [0, 1]. It is well known that G(Uni(0,1)) has µ as
distribution. Now consider the 2π-periodic function ϕ whose restriction to (−π, π) is
G( |θ|π ). The map ϕ is even, increasing on (0, π) and belongs to L2, where Lp here and
elsewhere in the paper denotes Lp([−π, π]). Thus its Fourier series is well defined and
converges to ϕ in L2. We obtain hence

ϕ(θ) =

+∞∑
n=1

ϕ̂(n) cos(nθ) ,

where the n-th Fourier coefficient ϕ̂(n) is defined for all non negative integers n by
ϕ̂(n) = 1

2π

∫ 2π

0
f(t) cos(nt)dt. It is clear that this is the real part of the power series

generated by the Fourier coefficients ϕ̃(z) :=
∑+∞
n=1 ϕ̂(n)zn evaluated at z = eiθ; that is

Re(ϕ̃(eiθ)) = ϕ(θ). (2.1)

Note that Im(ϕ̃(eiθ)) is given by ϕ(θ) =
∑+∞
n=1 ϕ̂(n) sin(nθ), and this is the Hilbert

transform of ϕ. A crucial property of ϕ̃, as is shown in [7], is that it is univalent. The
image domain Ω := ϕ̃(D) is therefore simply connected, and it is also symmetric over
the x-axis as ϕ̃(z) = ϕ̃(z). Using the conformal invariance of Zt, and the fact that ZτD
is uniformly distributed on the boundary of ∂D, we conclude by (2.1) that Re(ϕ̃(ZτD))

has distribution µ. Furthermore, Parseval’s identity and martingale theory implies that
E[τΩ] = 1

2

∑∞
n=1 |ϕ̂(n)|2 (see [1]), and this sum is finite since ϕ ∈ L2.

Let us now see how we can extend this argument to prove Theorem 2. We will assume
now that µ has a finite p-th moment, where p > 1. It follows as above that ϕ ∈ Lp. The
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Fourier series
∑+∞
n=1 ϕ̂(n) cos(nθ) is still well defined and converges to ϕ in Lp ([6, Thm.

3.5.7]). Parseval’s identity is no longer available to us, but the following result allows us
to conclude that the Hilbert transform

∑+∞
n=1 ϕ̂(n) sin(nθ) of ϕ is also in Lp:

Theorem 4. [3] If f is in Lp then its periodic Hilbert transform Hf does exist almost
everywhere and we have

||Hf ||Lp ≤ λp||f ||Lp , (2.2)

for some positive constant λp.

We remark that there are good estimates for the constant λp; see [10, Sec. 4.20,
Vol. 1]. From this result we see that, as its real and imaginary parts are in Lp, the
analytic function ϕ̃(z) =

∑+∞
n=1 ϕ̂(n)zn lies in the Hardy space Hp, which is the space of

all holomorphic maps on the disk with finite Hardy p-norm, defined as

||f ||Hq :=

{
lim
r↗1

1

2π

∫ 2π

0

|f(reit)|qdt
} 1
q

.

ϕ̃(z) is also injective, by the same argument as was used in [7, Prop. 2.2], and
therefore Ω = ϕ̃(D) is simply connected. By Burkholder’s result [2, p. 198] we have that
if f is a conformal function on the unit disk then the following equivalence holds:

τf(D) ∈ L
p
2 ⇐⇒ ||f ||Hp <∞. (2.3)

We see therefore that E[(τΩ)p/2] <∞, and the theorem is proved.

3 Proof of Theorem 3

In this section we prove Theorem 3, that the domain Ω generated by Gross’ technique
is the unique symmetric, ∆-convex domain with E[(τΩ)p/2] < ∞ such that such that
Re(ZτΩ) has the distribution µ. Before going through the proof, we need the following
lemma related to the Riemann mapping theorem.

Lemma 3.1. If U ( C is a symmetric simply connected domain containing 0 then there
exists a conformal map from D to U such that f(0) = 0 and f((−1, 1)) ⊆ R.

Proof. The existence of a conformal map, say f , from the unit disc to U and sending
zero to itself is guaranteed by the Riemann mapping theorem. It remains to add the
constraint that f((−1, 1)) ⊆ R. Consideration of the power series shows that the map
f(z) is analytic, and as D and U are symmetric it is a conformal map from D to U .
Therefore it is related to f via a rotation acting on the unit disc, that is

f(z) = f(eiθz),

for some θ ∈ [0, 2π). The map f̃ : z 7−→ f(ei
θ
2 z) satisfies the requirement of the lemma

since

f̃(z) = f(ei
θ
2 z)

= f(e−i
θ
2 z)

= f(eiθe−i
θ
2 z)

= f(ei
θ
2 z)

= f̃(z).

In particular, if z is real then f̃(z) is as well, which ends the proof.
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We proceed now to prove Theorem 3. Suppose U and V are two domains satisfying the
conditions of the theorem. Let f : D −→ U and g : D −→ V be two conformal maps fixing
0 and sending reals to reals. As f and g are injective, they are monotone on the real line,
and we may assume then that they are increasing (if not, consider f(−z) and/or g(−z)
instead). The power series f(z) =

∑+∞
n=1 anz

n and g(z) =
∑+∞
n=1 bnz

n have real coefficients

since an = f(n)(0)
n! ∈ R and bn = g(n)(0)

n! ∈ R. The fact that E[(τU )p/2], E[(τV )p/2] < ∞
implies that ||f ||Hp , ||g||Hp < ∞ (again, see [2]), and therefore the functions f and g

have radial limits defined a.e. on {|z| = 1}. That is, f(eiθ) := limr↗1 f(reiθ) exists for
Lebesque almost every θ on [−π, π] (see [15, Thm 17.12] or [3]). We will compare the
radial limits of f and g and show that they coincide a.e., but first we need another lemma.

Lemma 3.2. ZτU and ZτV agree in distribution with f(X) and g(X) respectively, where
X is a r.v. uniformly distributed on {|z| = 1}.

Proof. Note that in applying f and g to X, we are making use of the radial limits defined
above. We will prove the statement for f . Let rn be any sequence in (0, 1) which increases
to 1 as n→∞, and let τn = inf{t > 0 : |Zt| = rn}. By standard martingale theory (see for
instance [16, Ch. 14]), since f(Zτn) is a martingale bounded in Lp we are guaranteed
the existence of a limiting r.v. M∞ such that E[|f(Zτn)−M∞|p]→ 0. Therefore f(Zτn)

converges to M∞ in distribution. On the other hand, f(Zτn) is equal in distribution to
f(Xn), where Xn is any r.v. uniformly distributed on {|z| = rn}. Let us choose Xn and X
as follows. Let the probability space in question be the interval [0, 2π), with probability
measure given by Lebesgue measure divided by 2π. For ω in the probability space, let
Xn(ω) = rne

iω, and similarly X(ω) = eiω. By [15, Thm 17.12], we have

lim
n→∞

∫ 2π

0

|f(rne
iθ)− f(eiθ)|dθ → 0. (3.1)

Thus, E[|f(Xn) − f(X)|] → 0, which implies that f(Xn) converges to f(X) in dis-
tribution. However, f(Xn) and f(Zτn) have the same distribution, and therefore M∞
and f(X) agree in distribution. Now, f(Zt) is a time-changed Brownian motion, and
therefore f(Zτn) = Ẑσ(τn), where σ denotes the time-change and Ẑ is a Brownian motion.

By monotone convergence, σ(τn)↗ τU , and thus f(Zτn) converges a.s. to ẐτU . It follows
that ẐτU is equal in distribution to f(X).

∆-convexity and symmetry imply thatRe(f(eiθ)) andRe(g(eiθ)) are a.e. even functions
on [−π, π] and non-increasing on [0, π]. Since P (U ∈ {eiθ : −θ0 < θ < θ0}) = θ0

π for
θ0 ∈ (0, π], it follows that for a.e. θ we must have Re(f(eiθ)) = r, where r is such that
µ[r,+∞) = θ

π , and the same must hold for Re(g(eiθ)). We see that Re(f) and Re(g) agree
a.e. on {|z| = 1}, and since Im(f), Im(g) are obtained from these by the periodic Hilbert
transform (see Section 2) we see that f and g agree a.e. on {|z| = 1}. f(z) and g(z) for
z ∈ D can be obtained from their boundary values via the Poisson integral formula ([15,
Cor. 17.12]), and thus f and g agree. Theorem 3 is proved.

None of the three conditions in the theorem can be omitted. For example, suppose
that U = C\{|Re(z)| ≤ 1, |Im(z)| ≥ 1}. U is symmetric and ∆-convex, but E[(τΩ)p/2] =∞
for p ≥ 1. Since Re(ZτΩ) is a measure of bounded support, it will generate by Gross’
method a domain Ω such that E[(τΩ)p/2] < ∞ for all p, and this can therefore not be
equal to U . An example which is symmetric and has finite p-th moment for all p but
which lacks ∆-convexity is displayed in Figure 2 of [7], and it is pointed out there that
uniqueness fails. Finally, as will be shown below in the examples, the parabola and
horizontal strip both lead to the same distribution µ. Both domains are ∆-convex and
satisfy E[(τΩ)p/2] <∞ for all p > 0, but the parabola is not symmetric. This shows that
the condition of symmetry cannot be omitted. On the other hand, it is interesting to note
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that both of these domains are convex, and that therefore convexity does not seem to be
the correct condition for uniqueness.

4 Examples

In this section, we consider a series of domains and the corresponding distributions
of Re(Zτ ). In all cases that we consider the boundary of the domain will be well behaved
and we will be able to find a p.d.f. of the distribution of Zτ on the boundary. By this
we mean that we can find a function, ρZτa (z), defined for z on ∂U such that for any
interval I on the boundary of U , we have Pa(Zt ∈ I) =

∫ c
b
ρZτa (z(s))ds, where z(s) is a

parameterization of ∂U with |z′(s)| = 1 and z((b, c)) = I. We will use analytic functions
and the conformal invariance of Brownian motion as our primary tool; finding exit
distributions in this manner has previously been considered in [13], and following the
convention there we will use the notation ρZτa (z)ds to denote this density, with the ds to
indicate that the curve z(s) is parameterized by arclength.

If we have found the p.d.f of Zτ on ∂U , then we can deduce the p.d.f’s of Xτ and Yτ
provided that the boundary of the domain is smooth enough in the sense that, locally
around z = x+ yi, we have

y = ϕz(x), (4.1)

for some differentiable bijective function ϕz. To see how, let x be an element of
{Re(z)| z ∈ ∂D}. Since a positive infinitesimal element dz ∈ ∂D is expressed as
dz =

√
dx2 + dy2, then

ρXτRe(a)(x)dx =
∑

Re(z)=x

ρZτa (z)dz

=
∑

Re(z)=x

ρZτa (x+ yi)
√
dx2 + dy2

=
∑

Re(z)=x

ρZτa (x+ ϕz(x)i)
√

1 + ϕ′z(x)2dx.

(4.2)

Finally we get

ρXτRe(a)(x) =
∑

Re(z)=x

ρZτa (x+ ϕz(x)i)

√
1 +

{
dϕz
dx (x)

}2

ρYτIm(a)(y) =
∑

Im(z)=y

ρZτa (ϕ−1
z (y) + yi)

√
1 +

{
dϕ−1

z

dy (y)
}2

.

(4.3)

Notice that that both sets {z|Re(z) = x} and {z|Im(z) = y} are countable due to (4.1),
which justifies the sum symbols in (4.2). This proves the formula for the distribution of
Xτ , and Yτ can of course be obtained similarly. The following diagram, which should be
viewed at the infinitesimal level, provides the intuitive justification for the formulas.

ρZτa (z)dz
ρYτIm(a)

(y)dy

ρXτRe(a)
(x)dx

Before going through examples, we recall a lemma from [13] which we will use to
find the exit distribution of Brownian motion from various domains. Let γ be any smooth
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curve parameterized by arclength, Bt a Brownian motion starting at a, and τ a stopping
time such that Bτ ∈ γ a.s. ρaτ (w)ds will denote the density of Bτ on γ, when it exists,
with ds denoting the arclength element. The lemma we require is as follows.

Lemma 4.1. [13, Th. 2] Let U be a domain, and suppose f is a function analytic on U .
Let Bt be a Brownian motion starting at a, and τ a stopping time such that the set of
Brownian paths {Bt : 0 ≤ t ≤ τ} lie within U a.s. Suppose that γ is a smooth curve in U
such that Bτ ∈ γ a.s. Then for any a ∈ U and w ∈ f(γ) we have

ρ
f(a)
τ̂ (w)ds =

∑
z∈f−1(w)∩γ

ρaτ (z)

|f ′(z)|
ds. (4.4)

In each case below, the stopping time τ will be the exit time of a domain; note that this
does not conflict with the requirement that γ ⊆ U , since the analytic function f in our
examples will always be a function which is analytic on a domain strictly containing the
closure of U , and the theorem can be applied in this larger domain. We will proceed by
applying this lemma to find the exit distribution of various domains, and then projecting
these onto the real line using (4.3).

4.1 Unit disc

If Zt starts at zero at stopped at τD then due to the rotational invariance of the
Brownian motion ZτD is uniformly distributed on the circle, i.e

ρ
ZτD
0 (eθi) =

1

2π
.

Using the unit circle equation x2 + y2 = 1, we extract the distributions of XτD and YτD on
(−1, 1):

ρ
XτD
0 (x)

(4.2)
=

∑
z∈{x±i

√
1−x2}

ρZτa (z)

=
1

2π

√
1 + ( x

1−x2 )2 +
1

2π

√
1 + (− x

1−x2 )2

=
1

π
√

1− x2
.

Similarly for ρ
YτD
0 (y). We remark that XτD and YτD follow the scaled and centered Arc-sine

law on (−1, 1) (see [5, p. 49]). If the starting point is a = u+ vi 6= 0, then the distribution
of ZτD is given by

ρ
ZτD
a (eθi)dθ =

1− |a|2

2π|1− aeθi|2
dθ;

see [13, Ex. 1]. Using the coordinates expressions (x, y) = (cos θ, sin θ), we find the
distributions of XτD and YτD :

ρ
XτD
u (x) = 1−|a|2

2π
√

1−x2

(
1

|1−a(x+
√

1−x2i|2 + 1
|1−a(x−

√
1−x2i|2

)
and

ρ
YτD
v (y) = 1−|a|2

2π
√

1−y2

(
1

|1−a(
√

1−y2+yi|2
+ 1

|1−a(−
√

1−y2+yi|2

)
.

In particular we recover ρ
YτD
Im(a)(y) = ρ

XτD
Re(−ai).
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Figure 4.1: P has two vertical asymptotes, namely at ±π2

4.2 Catenary

The following example was brought to our attention by Hugo Panzo and Phanuel
Mariano, and is the subject of their interesting preprint [11]. The map f(z) = −i ln(1 + z)

maps the unit disc to the domain P shown in Figure 4.1.
If we set z = eθi and w = f(z) then w = x+ yi = arctan( sin θ

1+cos θ )− i
2 ln(2 + 2 cos θ). It

is not hard to check that x = θ/2, and thus

y = −1

2
ln(2 + 2 cos(2x)),

which explains the asymptotes at x = ±π2 . It is straightforward to verify that dx
dy =√

1
4e2y−1 , and using Lemma 4.1 and (4.2) we get

ρ
YτP
0 (y) =

2 | ewi |
2π

√√√√1 +

(√
1

4e2y − 1

)2

=
e−y

π

√
4e2y

4e2y − 1

=
2

π

√
1

4e2y − 1
.

Note that the factor 2 in the first equation comes from the fact that each value on
the y-axis great than − ln 2 has two preimages on the curve. Note that if we rotate P a
quarter turn to the left it is ∆-convex and symmetric, so this is (a rotation of) the domain
generated by Gross’ method for this distribution. On the other hand, this is not the case
for the real part, in fact

ρ
XτP
0 (x) =

| ewi |
2π

√
1 +

(
sin 2x

1 + cos 2x

)2

=
e−y

2π

√
1 +

(
sin 2x

1 + cos 2x

)2

=

√
2 + 2 cos 2x

2π

√
2

1 + cos 2x

=
1

π
.
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Figure 4.2: The symmetric and ∆-convex domain generated by Uni(−1, 1).

Figure 4.3: Action of z 7−→ z2 on the strip.

So XτP is uniformly distributed over (−π/2, π/2). However, this is not the domain
generated by Gross’ method for the uniform distribution, as it is not symmetric over
the real axis. An approximation of that domain is illustrated in Figure 4.2, which also
appears in [7] and [11].

Incidentally, [11] contains a great deal more information about this example, as well
as another proof that the exit distribution of this domain is uniform when projected onto
the real axis.

4.3 Parabola

Let S be the horizontal strip {z, −1 < Im(z) < 1} and P = f(S) where f : z 7−→ z2.The
map f is not conformal as it is 2 to 1, however it maps the boundary ∂S to ∂P. That is

∂P = {(u, v)|u = x2 − 1, v = ±2x, x ∈ R},

so P is the area limited by the parabola of the equation

x =
y2

4
− 1. (4.5)

The following image may help the reader visualize how the map works. Note that
the real axis is mapped to the nonnegative real axis, and each of the strips {z, −1 <

Im(z) < 0}, {z, 0 < Im(z) < 1} are “bended” into the interior of the parabola minus the
nonnegative real axis.
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The p.d.f of ZτS starting from the origin is given by

ρτS0 (z = x± i) =
sech(π2x)

4
, (4.6)

where sech(z) = 2
ez+e−z is the hyperbolic secant function. The distribution of XτΩ is

equally shared between the two horizontal lines of the boundary of the strip because of

symmetry, and therefore admits the density
sech(π2 x)

2 dx. (4.6) can be proved by conformal
invariance ([13, Ex. 4]) or as a consequence of the optional stopping theorem ([4, Prop.
2]).

The expression of ρ
ZτP
0 is

ρ
ZτP
0 (w = u+ vi) =

∑
z∈f−1{w}

ρ
ZτS
0 (z)∣∣f ′(z)∣∣

=
ρ
ZτS
0 ( v2 + i)∣∣f ′( v2 + i)

∣∣ +
ρ
ZτS
0 (−v2 + i)∣∣f ′(− v2 + i)

∣∣
= 2

ρ
ZτS
0 ( v2 + i)∣∣f ′( v2 + i)

∣∣
=

sech(π4 v)

4
√

v2

4 + 1
,

where w ∈ ∂P. Via (4.3), we get for (u, v) ∈ (−1,+∞)×R

ρ
XτP
0 (u) = ρ

ZτP
0 (u+

√
4u+ 4i)

√
1 + 4

4u+4 + ρ
ZτP
0 (u−

√
4u+ 4i)

√
1 + 4

4u+4

=
sech(π2

√
u+ 1)

2
√
u+ 1

,

and

ρ
YτP
0 (v) = ρ

ZτP
0 ( v

2

4 − 1 + vi)
√

1 + v2

4

=
sech(π4 v)

4
.

It is a surprising fact that this agrees with the density obtained from the strip
{z, −2 < Im(z) < 2}, as can be verified by applying Lemma 4.1 with the map f(z) = 2z,
which takes {z, −1 < Im(z) < 1} to {z, −2 < Im(z) < 2}. However, as mentioned in
the previous section, this does not contradict Theorem 3 since it is the distribution of
Im(ZτP ), and P is not symmetric or ∆-convex with respect to the imaginary axis.

4.4 Ellipse of the form x2

cosh2 R
+ y2

sinh2 R
= 1

This example leads to a complicated distribution, but is included because it illustrates
how our method can be applied to maps which are infinite to one. Let E be the centered
ellipse of equation x2

cosh2 R
+ y2

sinh2 R
= 1. Although not every ellipse can be expressed

in this form, it does capture every possible ratio between major and minor axes, and
therefore any ellipse can be expressed simply as a scaling of one of these, with the
corresponding µ’s being scalings of each other as well. A conformal map from the disk
onto the ellipse is known but is not simple ([9]); however, as is shown in [13, Thm. 2]
the map in question does not need to be injective as long as it maps the boundary of
its domain of definition onto the boundary of the target domain. It turns out that the
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holomorphic function f(z) = sin(z) maps the horizontal strip SR := {z, R < Im(z) < −R}
onto E. This is how it works: for z = x+Ri we have

sin(z) =
e(x+Ri)i − e−(x+Ri)i

2i

=
e−R(cosx+ i sinx)− eR(cosx− i sinx)

2i

=
(
eR+e−R

2

)
sinx+ i

(
eR−e−R

2

)
cosx

= coshR sinx+ i sinhR cosx.

So if we set sin z = u + vi then u2

cosh2 R
+ v2

sinh2 R
= 1. Thus, f maps the lines {Im(z) =

R}andIm(z) = −R} onto the curve x2

cosh2 R
+ y2

sinh2 R
= 1, and it follows that the interior of

the strip is mapped onto the interior of the ellipse. Now let w ∈ ∂Ea,b and ρE(w) be the
p.d.f of ZτE , then

ρE(w = u+ vi)dw =
∑

z∈f−1{w}

ρZτ (z)∣∣∣cos(z)
∣∣∣dw

=
∑

z∈f−1{w}

sech( πx2R )

2R
∣∣∣cos(z)

∣∣∣dw.
If we assume v ≥ 0, then since u = coshR sinx, we may take x = arcsin( u

coshR ) + 2πn (the
other possible values of x for a given u correspond to v < 0). Thus,

ρE(w = u+ vi)dw =
∑
n∈Z

sech( π
2R arcsin( u

coshR )+nπ2

R )

2R
∣∣∣cos(arcsin( u

coshR ) + 2nπ)
∣∣∣dw

= 1

2R
∣∣∣cos(arcsin( u

coshR ))
∣∣∣
∑
n∈Z

sech( π
2R arcsin( u

coshR ) + nπ2

R )dw

= coshR

2R
√

cosh2 R−u2

∑
n∈Z

sech( π
2R arcsin( u

coshR ) + nπ2

R )dw.

We can now project this density onto the real and imaginary axes as before, using
dv
du = −u sinhR

coshR
√

cosh2 R−u2
, to get

ρ
XτH
0 (u) =

coshR

√
1+ u2 sinh2 R

cosh2 R(cosh2 R−u2)

2R
√

cosh2 R−u2

∑
n∈Z

sech( π
2R arcsin( u

coshR ) + nπ2

R )du,

ρ
YτH
0 (v) =

sinhR

√
1+ v2 cosh2 R

sinh2 R(sinh2 R−v2)

2R
√

sinh2 R−v2

∑
n∈Z

sech( π
2R arcsin( v

sinhR ) + nπ2

R )dv.

4.5 Right part of the Hyperbola x2 − y2 = 1

If R := {z|Re(z) > 1} then the p.d.f of ZτR started at a = δ + ηi ∈ R is given by [13,
Ex. 2]

ρτRa (1 + yi) =
(δ − 1)

π|1 + iy − a|2
dy.

The square function s : z 7−→ z2 maps the right part limited by the hyperbola x2 − y2 = 1,
say H, to R. Therefore for every z = x+ yi ∈ ∂H

ρτH√
a
(z)dz

z2=1+vi
= |s′(

√
1 + vi)|ρτRa (1 + vi)

= 2(δ − 1)

√
x2 + y2

π|1 + vi− a|2
dz

= 2(δ − 1)

√
x2 + y2

π|1− a+ 2xyi|2
dz.
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In particular if a is real, and by using the relation x2 − y2 = 1, we get the densities of
XτH and YτH :

ρ
XτH√
a

(x) =
2(δ − 1)

π

2x2 − 1√
x2 − 1

{
1

|2x
√
x2 − 1i+ 1− a|2

+
1

|2x
√
x2 − 1i− 1 + a|2

}
,

ρ
YτH√
a

(y) =
2(δ − 1)

π

2y2 + 1√
1 + y2|2y

√
y2 + 1i+ 1− a|2

.

We note that it is known that E[τpH ] <∞ precisely when p < 1; see [2, (4.2)]. Also by
[2, Thm. 2.1], E[τpH ] < ∞ precisely when E[(ZτH )2p] < ∞, and thus when p < 1. This
is straightforward to verify from the previous equation, as for example the formula for

ρ
YτH√
a

is asymptotic to y−3 at∞.

5 Concluding remarks

We do not know whether Theorem 2 holds for 1
2 ≤ p ≤ 1. There are many difficulties

to proving the result in this range. One is that the analogue of Theorem 4 does not hold,
even for p = 1; for a counterexample, see [10, p. 212, Vol. 2]. Furthermore Hp and
Lp are not as well behaved for p < 1; their respective norms are not true norms, for
instance, as the triangle inequality fails. In any event, regardless of the veracity of the
theorem for 1

2 ≤ p ≤ 1, one should certainly exercise extreme caution in attempting to
extend it to p < 1

2 . This is because for any simply connected domain Ω strictly smaller
than C itself we have E[(τΩ)p/2] <∞ for any p < 1

2 ; this is proved in [2]. Thus a measure
with infinite p-th moment for some p < 1

2 cannot correspond in this manner to a simply
connected domain.

The question posed by Gross in [7] on how properties of µ are reflected in the
geometry of Ω is, in our opinion, an interesting one. We emphasize in this regard that we
have now shown that every ∆-convex, symmetric domain can be obtained uniquely from
a probability distribution, so in this context we would hope that geometric conditions
will translate directly to probabilistic ones. Gross proposed finding a condition which
forced Ω to be convex; this appears difficult, especially considering that according to
Gross’ simulations the domain corresponding to a Gaussian is not convex. We would
like therefore to suggest several weaker properties that Ω might have, and propose that
finding sufficient conditions on µ for these might be interesting problems.

• Ω is starlike with respect to 0.
• supz∈Ω |Im(z)| < ∞. That is, Ω is contained in an infinite horizontal strip. Note

that this would imply that all moments of µ are finite, because all moments of the
exit time of a strip are finite, but that this is not sufficient: if Ω is the parabolic
region {x > y2 − 1}, then all moments of τΩ are finite (proof: Ω can fit inside a
rotated and translated wedge Wα with arbitrarily small aperture α, and therefore
its exit time is dominated by that of the wedge, which can have finite p-th moment
for as large p as we like) but supz∈Ω |Im(z)| =∞.

• lim sup|Re(z)|→∞,z∈Ω |Im(z)| = 0.
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