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Abstract

We consider a one-parameter family of Grushin-type singularities on surfaces, and
discuss the possible diffusions that extend Brownian motion to the singularity. This
gives a quick proof and clear intuition for the fact that heat can only cross the
singularity for an intermediate range of the parameter. When crossing is possible
and the singularity consists of one point, we give a complete description of these
diffusions, and we describe a “best” extension, which respects the isometry group
of the surface and also realizes the unique symmetric one-point extension of the
Brownian motion, in the sense of Chen-Fukushima. This extension, however, does not
correspond to the bridging extension, which was introduced by Boscain-Prandi, when
they previously considered self-adjoint extensions of the Laplace-Beltrami operator on
the Riemannian part for these surfaces. We clarify that several of the extensions they
considered induce diffusions that are carried by the Martin compactification at the
singularity, which is much larger than the (one-point) metric completion. In the case
when the singularity is more than one-point, a complete classification of diffusions
extending Brownian motion would be unwieldy. Nonetheless, we again describe a
“best” extension which respects the isometry group, and in this case, this diffusion
corresponds to the bridging extension. A prominent role is played by Bessel processes
(of every real dimension) and the classical theory of one-dimensional diffusions and
their boundary conditions.
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1 Introduction

Consider the (open) Riemannian manifold (M, g) where M = (R \ {0})×T (here T is
the one-dimensional torus), and

g = dx2 + |x|−2αdθ2, that is, in matrix notation g =

(
1 0

0 |x|−2α
)
. (1.1)
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Brownian motion and singularities

Here x ∈ R \ {0}, θ ∈ T and α ∈ R is a parameter. An orthonormal frame for the metric
(1.1) is given by the pair of vector fields

X =

(
1

0

)
, Y =

(
0

|x|α
)
.

Define

Mcylinder = R×T, Mcone = Mcylinder/ ∼,

where (x1, θ1) ∼ (x2, θ2) if and only if x1 = x2 = 0.

When α ≥ 0, extending the vector fields X and Y to Mcylinder, the natural control-
theoretic notion of the length of a curve shows that there are paths of finite length
between M+ = {x > 0}×T and M− = {x < 0}×T (which are the Riemannian geodesics
for x 6= 0 and which are tangent to X when x = 0), and, as explained in [5], this extended
distance makes Mcylinder into a metric space (and a length space) in a way that induces on
Mcylinder its original topology. Similarly, when α < 0 the distance induced by the metric
(1.1) extend naturally to Mcone. Said differently, Mcylinder (for α ≥ 0) and Mcone (for α < 0)
give the metric compactifications of M with respect to this distance (at the singularity).
We denote these metric spaces by Mα (Mα = Mcylinder if α ≥ 0 and Mα = Mcone if α < 0)
and note that M is the Riemannian subset, while we let Z = Mα \M = {x = 0} be the
singular set (terminology which will be further justified in a moment).

This construction gives a one-parameter family of natural singularity models relevant
to rank-varying sub-Riemannian/almost-Riemannian geometry that includes the well-
known Grushin cylinder (the obvious quotient of the Grushin plane), when α = 1.
Moreover, the case α ≥ 1 corresponds to an almost-Riemannian structure in the sense of
[2, 4] and of [1, Chapter 9].

However, even though the metric (and length minimizing curves) extends across the
singularity, the Riemannian metric g (except for α = 0, which gives a standard cylinder)
is singular on Z, and this is also the case for the Riemannian volume ω and for the
Laplace-Beltrami operator, that take the form

ω =
√

det g dx dθ = |x|−αdx dθ, and

∆ =
1√

det g

2∑
j,k=1

∂j

(√
det g gjk∂k

)
= ∂2x + |x|2α∂2θu−

α

x
∂x.

Thus, if one wishes to consider the heat equation or Schrödinger equation on M , or
to consider Brownian motion, one must consider the behavior at the boundary. From the
perspective of functional analysis, this means considering self-adjoint extensions of the
Laplacian on M . Indeed, in [5], the following two basic results were proven.

Theorem 1.1 ([5]). The operator ∆|C∞c (M) is essentially self-adjoint in L2(M,ω) if and
only if α ∈ (−∞,−3] ∪ [1,∞).

An immediate consequence of Theorem 1.1 is that for α ∈ (−∞,−3] ∪ [1,∞) the only
self-adjoint extension of ∆ is the Friedrich extension ∆F .

If α /∈ (−∞,−3] ∪ [1,∞) the next theorem gives some additional information.

Theorem 1.2 ([5]). Let ∆̂ be the Fourier transform of ∆ in the variable θ. We have the
following

• if α ∈ (−3,−1], only the first Fourier component of ∆̂ is not essentially self-adjoint.

• if α ∈ (−1, 1), all the Fourier components of ∆̂ are not essentially self-adjoint.
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Brownian motion and singularities

Notice that the essential self-adjointness of a Fourier component of ∆̂ means that
such an operator can be naturally and uniquely extended (by taking its closure) to a
self-adjoint operator without adding any additional boundary conditions. Moreover, one
extension that is always possible is to take the Friedrichs extensions for the operators
defined on M+ and M− and to “concatenate” them. This extension is the one which
separates the dynamics. Hence, the essential self-adjointness of a Fourier component of
∆̂ means that its unique self-adjoint extension is the one that separates the dynamics
between M+ and M−. On the contrary, if a Fourier component of ∆̂ is not essentially
self-adjoint, one can construct a self-adjoint extension which connects the boundary
conditions, and thus the dynamics, on the two sides.

We now focus on the heat equation ∂tu = ∆u on L2(M,ω). When only the first Fourier
component of ∆̂ is not essentially self-adjoint, a self-adjoint extension of ∆ permits at
most the first Fourier component of u (i.e. the average in the variable θ) to flow from M+

to M−. When all Fourier components of ∆̂ are not essentially self-adjoint, we have “full
communication” between M+ and M− in the sense that one can construct self-adjoint
extensions permitting all Fourier components of u to flow from M+ to M−. We talk
about “maximal communication” when we choose a self-adjoint extension that, on each
Fourier component, put the least possible constraints on the boundary conditions and
that connects them on the the two sides (see below for an explicit formula).

For the heat equation, a consequence of Theorem 1.2 is that

• when α ∈ (−3,−1] there are self-adjoint extensions of ∆ that permit only the aver-
age over T of u to flow through Z. However, as explained in [5], the only Markovian
extension of ∆ is ∆F , which does not permit any communication between M+ and
M−.

• when α ∈ (−1, 1) there are self-adjoint extensions of ∆ that permit full commu-
nication between M+ and M− and that are Markovian. In particular, there is a
self-adjoint extension called the bridging extension realizing the maximal commu-
nication between the two sides, the domain of which is{

H2 (Mα, ω)
∣∣∣u(0+, ·) = u(0−, ·), lim

x→0+
|x|−α∂xu(x, ·) = lim

x→0−
|x|−α∂xu(x, ·)

}
,

where H2 (Mα, ω) = {u ∈ L2(M,ω), |∇u|,∆u ∈ L2(M,ω)}.

The purpose of the present note is to consider diffusions on Mα that extend Brownian
motion on M . (By a diffusion, we mean a strong Markov process with continuous
paths.) One aspect of this is to give the path properties that correspond to many of
the above results. For example, the fact that there are Markov extensions allowing
communication between M+ and M− exactly when α ∈ (−1, 1) corresponds to the fact
that for α < −1, Brownian motion on M never hits the singularity, and thus cannot cross
it, while for α > 1, is an exit-only boundary for M (essentially in the sense of the classical
Feller classification), so the process must be absorbed at the singularity (assuming it
is conservative and cannot be killed) and thus also cannot cross it. In particular, the x-
marginal of Brownian motion on M is given by a Bessel process of dimension d = 1−α, so
both the behavior of the process at the singularity, as well as the stochastic completeness
near infinity, follow, and thus stochastic methods provide elementary proofs and intuition
for these results. From the other side, this one-parameter family of geometries provides
examples “in nature” of Bessel processes of all real dimensions (such examples also arise
in SLE, but not naturally in Riemannian geometry). This material is treated in Section
2. When considering the possible extensions for α ∈ (−1, 1), it is important to note that
the Martin compactification of M at the singularity (in what follows, we are concerned
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Brownian motion and singularities

with the behavior at the singularity, and thus all of our compactifications are done there,
ignoring what happens near infinity, since there the structure is Riemannian) is larger
than Z, that is, larger than the metric compactification (at the singularity). Various
self-adjoint extensions of ∆ mentioned above are carried by the Martin boundary (at the
singularity). For example, Neumann boundary conditions make the process undergo
instantaneous normal reflection at the singularity, back into the component of M it came
from. But such an extension clearly cannot descend to a strong Markov process on Mα.
Thus, here we treat extensions that are carried by Mα itself, so that our results differ
from, and complement, those of [5]. We also do not restrict our attention to symmetric
extensions. (In this connection, it is worth mentioning that we do not treat non-Markov
extensions, so we have no contribution to the above results for α ∈ (−3,−1].)

In the case α ∈ (−1, 0) when Mα is a topological cone, we are able to give a complete
description of (conservative) diffusions on Mα the extend Brownian motion on M . It is
worth noting that these correspond to one-point extensions in the sense of Chen and
Fukushima (see [6, 7]), and we identify the unique symmetric extension spending zero
time at the singularity. For this extension, we see that only the average over T of a
function flows through the singularity under the corresponding semigroup (note that
in this case, the bridging extension does not correspond to a diffusion on Mα). Thus
the same phenomenon observed in [5] for non-Markov self-adjoint extensions of ∆ for
α ∈ (−3,−1] is replicated here for Markov processes that respect the topology of Mα

when α ∈ (−1, 0). This is carried out in Section 3.
In the case α ∈ [0, 1) when M is a topological cylinder, the larger singular set makes

a complete classification of extensions complicated. However, one can describe the basic
features, and we also construct the unique diffusion spending time 0 at Z and respecting
the symmetries of Mα, and show that in this case it corresponds to the bridging extension.
This comprises Section 4.

2 Bessel processes, stochastic completeness, and boundary con-
ditions

From the above description of the metric and the induced Laplacian on M , we see
that, in the (x, θ) coordinates, Brownian motion evolves by the system of SDEs

dxt = dW 1
t −

α

2x
dt

dθt = |x|α dW 2
t ,

(2.1)

at least until T0, the first hitting time of {x = 0} = Z, where W 1
t and W 2

t are independent
one-dimensional Brownian motions. (The SDE for xt should be understood as giving a
local semi-martingale on (0,∞) for general real α, but the extension until T0 is standard,
say, by squared-Bessel processes as mentioned below, or by explicit construction of
the transition density, etc.) It is the xt process that mainly interests us in this section.
Note that its evolution does not depend on θt (except possibly on the singular set), so
that the situation reduces to a one-dimensional problem. Moreover, observe that, for
xt > 0 (equivalently, on M+), the SDE satisfied by xt is just that of a Bessel process of
dimension d = 1− α (and for xt < 0, it is just −1 times such a process).

Theorem 2.1. Let (xt, θt) be a diffusion on Mα extending Brownian motion on M , with
no killing (at Z, or anywhere else). Then the diffusion a.s. does not explode in finite time
(making Mα stochastically complete). Moreover,

1. If α ≤ −1, then (xt, θt) a.s. does not hit Z if (x0, θ0) 6∈ Z, but it is possible for the
diffusion to enter M from Z. Thus (xt, θt) is uniquely determined, except when
(x0, θ0) ∈ Z, when we must specify the entrance law.
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Brownian motion and singularities

2. If α ∈ (−1, 1), then (xt, θt) a.s. hits Z in finite time, but is then able to re-enter M .
Thus (xt, θt) is determined by the choice of behavior at Z.

3. If α ≥ 1, then (xt, θt) a.s. hits Z in finite time, and is necessarily absorbed by Z.

Proof. Taking advantage of the reflection symmetry in x, consider the process zt = x2t
on [0,∞), so that Z corresponds to an included boundary point. Then zt is a squared
Bessel process of dimension 1−α, which is a true semi-martingale for any value of α and
which satisfies the SDE dzt = 2

√
zt dWt + (1− α) dt until T0. Moreover, the behavior of

(squared) Bessel processes is well-understood. In particular, the process doesn’t explode
to infinity (in finite time) for any value of α. For α ≤ −1, 0 is an entrance-only boundary
(in the standard Feller classification for one-dimensional diffusions). For α ∈ (−1, 1), 0 is
a regular boundary, and thus one needs to specify boundary conditions. For α ≥ 1, 0 is
an exit-only boundary, and thus the process must be absorbed at 0, since we don’t allow
killing. Since both T0 and any potential explosion of the process depend only on xt, the
theorem is a restatement of the above.

(Note that the phrasing of this theorem contrasts slightly with [5], since they consider
only self-adjoint extensions and thus kill the process at Z when it is an exit-only boundary,
instead of letting it be absorbed. But the real point is that the process never explodes to
infinity in finite time.) This not only recovers the stochastic completeness and difference
in (Markov) extensions of ∆ depending on whether α ∈ (−1, 1) or not from [5], but
also allows other properties of the heat flow on Mα to deduced from known properties
of Bessel processes. For example, for the Grushin cylinder (or Grushin plane), which
corresponds to α = 1, the rate at which heat is absorbed at Z is given by the transition
measure for a 0-dimensional Bessel process (see Section A.2 of [8], for example).

The above makes it clear that the only case which requires further exploration is
α ∈ (−1, 1) (apart from the entrance law when α ≤ −1 and (x0, θ0) ∈ Z which amounts
to a simpler version of the α ∈ (−1, 0) case— see Section 3.3).

3 The case −1 < α < 0

When −1 < α < 0, Mα has a cone structure at the singularity, and the singularity
reduces to a single point. As we saw above, the singularity is a regular boundary for
the |xt| process, so that any diffusion a.s. hits the singular point in finite time, and it is
possible for the diffusion to leave the singular point. In this situation, there are many
possible diffusions extending Brownian motion on M to all of Mα, but the singularity is
simple enough that we can describe them all.

3.1 Classification of diffusions on Mα

Because the singularity is a single point, the behavior of the diffusion at the singularity
doesn’t depend on the θt process, which means that xt is a one-dimensional diffusion. As
mentioned, the theory of one-dimensional diffusions is completely understood (see, for
example, [11]). Thus we can give all possible (conservative) diffusion extending xt in this
case, and this is the first step in determining the possible diffusions on Mα. Essentially,
the possible xt-diffusions depend on two parameters, the degree of “stickiness” at 0 and
the skewness at 0. We also note that xt is a Bessel process of dimension between 1 and
2 (at least until it hits 0, at which point we don’t necessarily instantaneously reflect it),
and thus xt is a semi-martingale.

As the above suggests, here we take the perspective that x = 0 gives an interior
singular point of the diffusion. To make the connection to the approach of the previous
section clear, we note that (the law of) zt determines (the law of) xt up to the sign of
each excursion of xt away from 0, that is, away from Z.
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Brownian motion and singularities

We begin by recalling some basics of one-dimensional diffusions, in order to describe
the possible diffusions that extend xt from R \ {0} to R. In the classification scheme
of Itô and McKean [10], 0 can be a regular point, a left or right shunt, or a trap. Most
interesting for us is when 0 is a regular point, so that the process can cross 0 in either
direction. In this case, the xt-diffusion is determined by its scale function s(x) and its
speed measure m. Further, the diffusion must agree with the appropriate Bessel process
on R \ {0}. Hence the scale function is determined up to affine transformations on each
of {x < 0} and {x > 0}, subject to the additional constraint that it is continuous. We
normalize s by translation so that s(0) = 0. Starting from the “standard” scale function
s(x) = xα+1 for a Bessel process of dimension 1 − α ∈ (1, 2) (see Section 11.1 of [14],
also for the speed measure of a Bessel process which we are about to use), we see that
the most general normalized scale function for xt with s(0) = 0 is

s(x) =

{
−a(−x)1+α for x < 0

(1− a)x1+α for x ≥ 0

for 0 < a < 1. Here we see that a gives the skewness of xt at 0, in the sense that, for any
y > 0,

P (xt starting from 0 hits y before −y) = a.

Continuing, the speed measure is uniquely determined on R \ {0} by the speed
measure of a Bessel process and the above choice of scaling function (as having density
2/s′ with respect to Lebesgue measure), so that the most general speed measure for xt is

m =
2

a(1 + α)(−x)α
1{x<0} dx+ γδ0 +

2

(1− a)(1 + α)xα
1{x>0} dx

for some γ ∈ [0,∞), where dx denotes Lebesgue measure and δ0 a point mass at
x = 0. Here γ gives the degree of “stickiness” at 0, in the sense that if γ = 0, the set
{t > 0 : xt = 0} almost surely has Lebesgue measure 0, whereas if γ > 0, this set has
positive measure. Note that for γ = 0 and 0 < a < 1, xt will be a time-changed skew
Brownian motion (see the survey [12] for a detailed introduction to skew Brownian
motion).

A perhaps more appealing (and slightly more general) way to describe xt is as follows.
While 0 is a regular point for 0 < a < 1, 0 is a left shunt if a = 0, and a right shunt if
a = 1. (If γ = ∞, then 0 is a trap, viewed as an interior point of Mα rather than as a
boundary point of [0,∞) as above.)

Next, we consider the θ-process. Recall that this is an T-valued process that satisfies
the SDE dθt = |x|αdW 2

t for x 6= 0. Suppose x0 > 0, and make the change of variables
y(x) = 1

α+1x
α+1, which puts xt on its natural scale. Recall that T0 is the first hitting time

of 0 for xt (and thus the first time the process on Mα hits the singularity). Then the
process satisfies the system of SDEs

dyt = (1 + α)α/(1+α)yα/(1+α) dW 1
t

dθt = (1 + α)α/(1+α)yα/(1+α) dW 2
t ,

(3.1)

on the time interval [0, T0]. Note that (yt, θt) is a time-changed Brownian motion on
(R \ {0})×T, and that the case when x0 < 0 is given by reflection.

With these preliminaries, we can now state and prove the following classification of
diffusions on Mα (in the present case of −1 < α < 0) that extend Brownian motion on M .

Theorem 3.1. Let Mα be as above for −1 < α < 0, and let (xt, θt) be a (conservative)
diffusion on Mα extending Brownian motion on M , written in the standard coordinates.
Then (xt, θt) is determined by its behavior starting from Z, which is given by the following
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Brownian motion and singularities

parameters: γ ∈ [0,∞], a ∈ [0, 1], and (Borel) probability measures µ+ and µ− on T. More
concretely, x2t is a squared-Bessel process of dimension 1− α on [0,∞) with reflecting
boundary condition at 0 determined by γ (making 0 instantaneously reflecting, slowly
reflecting, or absorbing, as above), xt is recovered from x2t by assigning each excursion
away from 0 a positive sign with probability a (and thus a negative sign with probability
1− a), and on any excursion t ∈ (t1, t2) of xt away from 0, θt is given as the solution of
the SDE dθt = |xt|α dW 2

t with the initial condition θt1 distributed as µ+ if xt is positive
on (t1, t2) and µ− if xt is negative on (t1, t2). Moreover, if γ = ∞, {x = 0} is absorbing
and none of the other parameters are relevant, if γ < ∞ and a = 0, all excursions of
xt are negative and µ+ is irrelevant, and if γ < ∞ and a = 1, all excursions of xt are
positive and µ− is irrelevant, but aside from these exceptions, there is a one-to-one
correspondence between the choice of diffusion and the choice of parameters.

Proof. Let (xt, θt) be such a diffusion. Then the process is uniquely determined until
T0 (the first hitting time of the singularity), so by the strong Markov property, such
diffusions are determined by their behavior starting from the singularity.

From (3.1), we see that yt is a time-changed Brownian motion that a.s. hits 0 in finite
time, and thus it a.s. accumulates finite quadratic variation

∫ T0

0
(1 +α)2α/(1+α)y2α/(1+α) dt

over [0, T0]. Since the quadratic variation of θt on [0, T0] is equal to that of yt, it is also
a.s. finite. Further, θt is a martingale and thus a time-changed Brownian motion, and
it follows that θt a.s. has a limit as t↗ T0. (In particular, the existence of an exit angle
from M implies that the invariant sigma-algebra of this stopped process, and thus also
the Martin boundary of M , is non-trivial, even though the process converges to a single
point on Mα as t↗ T0. We discuss this further below.)

We can now consider how the process leaves the singularity. We have already seen
that xt is determined by γ and a, independent of θt (and the description in terms of
x2t and the sign of the excursions of xt is equivalent), so we need only consider θt.
Because the law of the Brownian excursion is preserved by time-reversal, it follows
from the above that yt a.s. accumulates finite quadratic variation on each excursion
from 0, and thus θt does as well. Hence, starting from the singularity, θt must have a
limit as t↘ 0, that is, the process leaves the singularity, and enters M = M \ {x = 0},
with an entrance angle. Thus, let µ+ and µ− be two probability measures on T. If an
excursion of xt has positive sign, the entrance angle of θt is distributed according to µ+,
and similarly for negative excursions and µ−. (Equivalently, a, µ+, and µ− determine
a probability measure on {−1, 1} ×T that gives the entrance behavior of the diffusion
from the singularity.) Moreover, since θt = θ0 +

∫ t
0
|xs|α dW 2

s on the excursion [0, T0], we
see that the θ-process is completely determined by this entrance behavior. Hence any
such diffusion is uniquely specified by the data described in the theorem.

Conversely, for any data as in the theorem, there is a corresponding diffusion. If
γ = ∞, this is immediate, so assume γ < ∞. Then the construction of a diffusion
matching these parameters is a straightforward variant of the argument in [3] for
Walsh’s Brownian motion (also see the Remark just before Section 3). In particular,
suppose we show that the simplified process (y′t, θ

′
t) with γ = 0 and time-changed so that

(y′t, θ
′
t) is a Brownian motion on (R \ {0}) × T is a diffusion. Then the desired process

with general γ ∈ [0,∞) can be constructed from the simplified process via time-change
by a continuous additive functional, and such time-changes preserve diffusions. Hence it
is enough to show that, for any a, µ+, and µ−, the associated simplified process (y′t, θ

′
t) is

a diffusion.

But the semigroup PT for such a process (or equivalently, the transition density)
can be explicitly given in terms of well-known objects. In particular, let p0T (y0, θ0; y, θ)

be the density of (R2-) Brownian motion from (y0, θ0) killed at {y = 0} with respect
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Brownian motion and singularities

to dy dθ (which is given by the method of images), let T0,y0(t) be the distribution of T0
for Brownian motion started from (y0, θ0) (which has a density with respect to dt given
by the classical first passage time), let pTs (ϕ; θ) be the density (with respect to dθ) of
Brownian motion on T started from ϕ, let Gt(s) be the distribution of the last zero of a
1-dimensional Brownian motion starting from the origin on the time interval [0, t] (which
has density with respect to ds given by Levy’s arcsine law, see Section 7 of [13]), and
let pme

s (y) be the density (with respect to dy) of the position of a Brownian meander in
time s (again see Section 7 of [13]). We also let µ(ϕ, σ) be the measure on T1 × {−1, 1}
induced by a, µ+ and µ−, which encodes the entrance law from Z. Then for f ∈ C0(Mα),

PT f(y0, θ0) =

∫
y∈R

∫
θ∈T

p0T (y0, θ0; y, θ)f(y, θ) dθ dy+

T∫
t=0

T−t∫
s=0

∫
ϕ∈T

σ∈{−1,1}

∞∫
y=0

∫
θ∈T

pme
s (y)pTs (ϕ; θ)f(σy, θ) dθ dy dµ(ϕ, σ) dGT−t(s) dT0,y0(t).

Then it is an exercise to verify that this semigroup is Feller, so that there is a corre-
sponding strong Markov process. To see that the paths can be taken to be continuous,
we can either verify Kolmogorov’s condition holds (say, by taking advantage of the fact
that yt is a skew Brownian motion and Mα has the cone topology), or we can observe
that it follows from verifying that the process has the desired decomposition in terms of
excursions from Z. Either way, with the strong Markov property in hand, we can see
that (y′t, θ

′
t) has excursions determined by a, µ+, and µ− as desired, which completes the

construction.

Note that while we gave an efficient argument using some general process theory, we
do not attempt to develop the corresponding stochastic analysis, as has been pursued
for other generalizations of Walsh’s Brownian motion, in [9], for example.

3.2 The state space and symmetric extensions

The previous classification was restricted to diffusions on Mα. To clarify, if we start
with M , since Brownian motion on M explodes toward Z = {x = 0} in finite time, to
continue the process for all time requires enlarging the state space. In order to make
the terminology and relationship to other literature clearer, we call a compactification
of M ∩ {−1 ≤ x ≤ 1} an interior compactification of M . The idea is that we want to
compactify M at the singularity, but this doesn’t, in fact, give a compactification, since
M has two more ends, corresponding to x→ ±∞. However, we’ve seen that Brownian
motion on M never escapes out of these ends. Thus we want to restrict our attention to
a neighborhood of the singularity, and this is what looking at interior compactifications
accomplishes.

One way of enlarging the state space is to add a single point for {x = 0}, and this gives
the metric space Mα that we have been working with, based on the geodesic distance.
However, this is not the only possible extension of M . Indeed, starting, more functional
analytically, from either the Laplacian or the associated Dirichlet form on M , one can
consider extending the domain of the operator beyond smooth functions compactly
supported on M . Such extensions are naturally carried by an interior compactification of
M , but the compactification will depend on the extension and won’t necessarily coincide
with the one-point compactification that gives M . This is the approach followed in [5],
and we now briefly explain the relationship between their results and the above.

To understand (interior) compactifications of M , it is useful to observe that the
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coordinates (y, θ) on M , where

y = sign(x)
1

α+ 1
|x|α+1

and θ, of course, is the same θ from the standard coordinates, give a conformal diffeo-
morphism from M to the subset of the (Euclidean) cylinder

D = ((−∞, 0) ∪ (0,∞))× S1 ⊂ R× S1.

That these coordinates are conformal is contained in (3.1), since it shows that Brownian
motion on M is a time-change of (Euclidean) Brownian motion on D.

The maximal extension of the domain of ∆, as described in [5], corresponds to
Neumann boundary conditions at the singularity. Unsurprisingly, this corresponds to the
“maximal” (interior) compactification (from a potential-theoretic viewpoint) of M , which
is the Martin boundary ∂MM of M∩{−1 ≤ x ≤ 1}, or equivalently, of D∩{|y| ≤ 1/(α+1)}.
(Here we put Neumann boundary conditions on {x = ±1} for convenience, in order to
restrict the process to M ∩ {−1 ≤ x ≤ 1}.) More concretely, the conformal equivalence
with D shows that ∂MM can be identified with the “doubled” Euclidean boundary of D,
{y = 0}, which is the disjoint union of two copies of T. Thus ∂MM records both the exit
angle limt↗T0 θt and exit “side” limt↗T0 sign(xt) = limt↗T0 sign(yt) of the diffusion, where
T0 is the first hitting time of {y = 0} (or the first exit time of M ) for the diffusion started
from a point in M . Then the process associated with the Neumann boundary conditions
is determined by instantaneous normal reflection of (yt, θt) back into the component of
D the process started in. It’s clear how to construct this diffusion analogously to what
was done in the previous section, with Mα replaced by M ∪ ∂MM , and it’s also clear that
this process does not descend to a strong Markov process on Mα.

A second extension of ∆ considered in [5] is what they call the bridging extension.
The corresponding interior compactification is given by identifying pairs of points in
∂MM with the same θ-coordinate. Since this boundary is also the Euclidean boundary
of D, we denote it by ∂EM . The corresponding process can be constructed by starting
with the diffusion (|yt|, θt) with Neumann boundary conditions (as just discussed) but
assigning signs to the excursions of (|yt|, θt) randomly with equal probabilities. To see
this, note that the condition limx→0+ |x|−α∂xu(x, ·) = limx→0− |x|−α∂xu(x, ·) in the domain
of the Laplacian for the bridging extension becomes limy→0+ ∂yu(y, ·) = limy→0− ∂yu(y, ·)
after changing coordinates. Then if we consider functions that are even in the y (or
x) variable, we see that the boundary condition for the (|yt|, θt)-process is just that
the normal derivative vanishes, which corresponds to instantaneous normal reflection.
Thus the yt-process is independent of the θt-process, and we see that the domain of the
operator is exactly that of skew-Brownian motion in the trivial case when the skewness
vanishes; see Equation (7.6.10) of [6] and the surrounding discussion (that is, the process
is just Brownian motion, realized in a slightly non-standard way). This justifies the above
claim; alternatively, the process can be thought of as Euclidean Brownian motion on
D time-changed to spend Lebesgue measure 0 time on {y = 0} and to solve (3.1) on D.
Again, the natural state space for this process is M ∪ ∂EM , and it does not induce a
strong Markov process on M .

The third explicit extension of ∆ considered in [5] is the Friedrich extension, which
corresponds to the diffusion killed at the singularity and gives the minimal extension of
the domain of ∆. This has M plus a graveyard state for when the particle is killed as its
natural state space, which means this case is not covered by Theorem 3.1, so the interior
compactification of M is “minimal” as well, but the diffusion is not conservative. (The
case when Z is absorbing has Z as a stationary state, so it is not symmetric, and thus
not considered in [5].)
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Recall that ω is the Riemannian volume measure on M , and let ω be the extension
of ω to Mα given by assigning measure 0 to the singularity. Since Brownian motion
on a Riemannian manifold is symmetric with respect to the Riemannian volume, it is
natural to ask for a diffusion on Mα that is symmetric with respect to ω. Indeed, both
the Neumann and bridging extensions of [5] are symmetric with respect to the extension
of ω given by assigning measure 0 to ∂MM or ∂EM . On the other hand, the diffusions
of Theorem 3.1 aren’t, in general, symmetric with respect to ω. Indeed, this is also a
consequence of the following.

Theorem 3.2. Let M and ω be as above, for −1 < α < 0. Then the unique (conservative)
diffusion on Mα that extends Brownian motion on M , spends time 0 at Z, and is ω-
symmetric is given by taking a = 1/2, γ = 0, and µ+ and µ− both to be the uniform
probability measure on S1 in Theorem 3.1. This diffusion is also the unique extension of
Brownian motion that spends time 0 at Z and is invariant under the isometry group of
Mα.

Further, let Pt be the semigroup associated to this diffusion, and let f and g be
functions in L∞(Mα) such that f = g on M+ and for almost every u < 0,

∫
T
f(u, θ) dθ =∫

T
g(u, θ) dθ. Then Ptf(x) = Ptg(x) for every x > 0 and t > 0.

Proof. The interior compactification taking M into Mα gives a one-point compactification
of M ∩ {−1 ≤ x ≤ 1}, in the terminology of Chapter 7 of [6] (although what we write
as ω and ω correspond to ω0 and ω, respectively, in their notation). Thus, according to
Theorems 7.5.4 and 7.5.6 of [6], there is a unique diffusion on Mα that extends Brownian
motion on M and is symmetric with respect to ω.

Note that the isometry group of Mα is generated by reflection in x and the action of
SO(2) on θ. Then uniqueness of the ω-symmetric extension implies that such a diffusion,
when started from the singularity, must be invariant under Z/2Z × SO(2). Hence, in
Theorem 3.1, we must have that a = 1/2 and both µ+ and µ− are the uniform probability
measure on S1, simply because the action of Z/2Z× SO(2) is transitive “on the entrance
directions” of M . Further, for the process to spend 0 time at the singularity, we must
have γ = 0. This establishes the uniqueness claims.

Finally, the SO(2) invariance of µ− and the strong Markov property relative to T0
imply that Ptf(x) (for x > 0) is invariant under letting SO(2) act on M−. Hence Ptf(x) is
unchanged by replacing f with its θ-integral for each u < 0. Applying this to both f and
g gives the last result of the theorem.

Referring to the final result of this theorem, note that, of course, an analogous result
holds for x < 0 and u > 0. Moreover, we interpret this to mean that the diffusion loses
information, and only certain “average” features of f are communicated across Z. If
µ− or µ+ is not uniform, then a similar result holds, except that the θ-averages for each
u must be computed with respect to a non-uniform measure (depending on y). In any
case, the fact that Z is a single point means that some information must be lost when
the process crosses Z.

3.3 The case α ≤ −1

In the case when α ≤ −1, the process can enter M from Z, but then never returns
(and never hits Z if it starts from M ). Thus, if we want a diffusion starting from any
point of Mα, we need only describe how it enters M from Z (which is a single point).
One possibility is for the process to never leave Z, which one can think of as a type of
absorbing boundary condition. If the process leaves, it must do so immediately (by the
strong Markov property), and just as above, how it enters M is determined by a choice
of a ∈ [0, 1] and probability measures µ+ and µ−.
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4 The case 0 ≤ α < 1

In this case, Mα has a cylinder structure at the singularity. In particular, the sin-
gularity is now a circle, naturally parametrized by the θ-coordinate, and this would
make a complete description of all possible (conservative) diffusions extending Brownian
motion on M rather complicated. For instance, such a description is connected to the
boundary theory of multidimensional diffusions. More concretely, consider the process
(x2t , θt) = (zt, θt) on [0,∞) × T. Then zt can undergo sticky, oblique reflection at the
boundary, with the parameters determining this reflection depending on θ. Determining
a solution without assuming (much) regularity of these parameters (or potentially of the
boundary) is a longstanding topic of interest. For example, a construction of a process
on a halfspace with general Wentzell boundary conditions was given fairly recently
by Watanabe [15] by extending Itô’s excursion theory, and one can see the references
therein for other probabilistic approaches. To extend Brownian motion to Mα, one would
expect a “two-sided” version of this type of construction, where the process is potentially
sticky at the boundary (and perhaps even diffuses within the boundary) in a way that
depends on θ, and when the process re-enters M , the distribution of sign of the excursion
depends on θ as does the obliqueness of the “reflection.” Constructing such a process,
especially for low regularity of the parameters describing this behavior, is well beyond
the scope of this note, and it is also in the opposite direction from the more geometrically
natural question of determining a “good” or “best” extension.

Before doing this, motivated by the earlier emphasis on whether or not the process
can cross the singularity, we give a simple example to illustrate that the way in which
the process crosses the singularity can be unusual. Let A ⊂ T be a non-empty open
subset of Z such that Ac has non-empty interior. Let (|xt|, θt) (as a process on [0,∞)×T)
be given by instantaneous normal reflection at the boundary, and let the sign of each
excursion of xt be positive if it begins in A and negative if it begins in Ac. Then because
the process hits both A and Ac with positive probability from either side of Z, we see
that the process will (almost surely) cross Z infinitely often. However, the crossing
is “non-local,” in the sense that when the process hits the interior of A from M+, it is
distance 0 from M−, but cannot cross into M− immediately. Instead it must “go around”
A and cross at Ac, and similarly for the process hitting the interior of Ac from M−.

Returning to the question of a “best” extension, we have the following.

Theorem 4.1. For 0 ≤ α < 1, the only (conservative) diffusion on Mα extending Brow-
nian on M that spends 0 time at Z and is invariant under the isometry group of Mα is
given by letting (|xt|, θt) be the diffusion on [0,∞) × T that undergoes instantaneous
normal reflection at the boundary and letting xt be constructed from |xt| by giving each
excursion a positive or negative sign with probability 1/2. Moreover, this is the diffusion
associated to the bridging extension.

Proof. As before, the isometry group of Mα is Z/2Z× SO(2). Then we note that if the
process spends time 0 at Z and is symmetric with respect to reflection in x, (|xt|, θt)
must be a diffusion on [0,∞)×T that reflects instantaneously at the boundary, and xt
can be recovered from |xt| by giving each excursion a positive or negative sign with
probability 1/2. Additionally, if (|xt|, θt) is invariant with respect to the SO(2) action, the
reflection must be normal. Further, the conformal map described in Section 3.2 and
given by Equation (3.1) (combined with reflection in y) extends to the current case of
0 ≤ α < 1. Thus we see that the Martin boundary is the same as before, although now
it is only “twice” the singularity, since Z is ∂EM in this case. So while the Neumann
extension doesn’t give a diffusion on M , now the bridging extension does. Also, we see
that the construction of the associated diffusion in Section 3.2 (which remains valid here)
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agrees with the one we just gave under the assumption of invariance under the isometry
group.
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