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1 Introduction

Let E be a measurable space and (Pn, n ∈ Z+) be a positive semigroup of operators
on the space L∞(ψ1) to itself, where ψ1 : E → (0,+∞) is measurable and L∞(ψ1) is
the set of measurable f : E → R such that |f |/ψ1 is bounded, endowed with the norm
‖f‖ψ1

= ‖|f |/ψ1‖∞. We define the dual action of (Pn, n ∈ Z+) on non-negative measures
µ on E such that µ(ψ1) < +∞ as

µPnf =

∫
E

Pnf(x)µ(dx). (1.1)

Our aim is to provide sufficient conditions for the existence of θ0 > 0 such that
(θ−n0 Pn)n∈N converges geometrically toward a non-trivial limit.

In this setting, given c such that P1ψ1 ≤ cψ1, the operators Qn = Pn(·ψ1)
cnψ1

defines a sub-
Markov semigroup corresponding to a stochastic process with killing. The asymptotic
behavior of such semigroups is the subject of the theory of quasi-stationary distributions
based on various tools, including the theory ofR-recurrent Markov chains [31, 29, 28, 17],
spectral theoretic results (e.g. Krein-Rutman theorem [13], spectral theory of symetric
operators [8, 24], or other general criteria of convergence of normalized semigroups
such as the work of Birkhoff [7] and its extensions) and Doeblin’s conditions and Foster-
Lyapunov criteria [9, 10]. In this note, we apply the results of [10] to the semigroup
(Qn, n ∈ Z+) to give a necessary and sufficient condition for the existence of a non-
negative eigenfunction η of P1 with eigenvalue θ0 and the geometric convergence of
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R-positive recurrence of unbounded semigroups

θ−n0 Pn. We also extend these results to continuous-time semigroups. In particular,
our results provide practical criteria for the general theory of R-positive recurrence
of unbounded semigroups as developed in [29, Section 6.2] and [28]. The notion of
R-positive recurrence has strong implications for the study of penalized Markov pro-
cesses [14, 15], of the long time behaviour of Markov branching processes (see for
instance [20, 21, 22, 6, 23, 11, 5, 3, 4]), of non-conservative PDEs (see e.g. [1, 2] and ref-
erences therein) and of measure-valued Pólya processes and reinforced processes [25].

The recent article [2] proposes similar criteria for R-positive recurrence of continous-
time semigroups with nice applications to growth-fragmentation equations. The extent
of our results and approaches sensibly differ. Concerning the results, our criteria apply
to a larger class of semigroups including non-irreducible ones (see Remark 2.5 below).
Concerning the approaches, the authors of [2] make use of tools developed in the proofs
of [10] adapted to the semigroup setting. We show here how these R-positivity criteria
can be directly derived as corollaries of the results of [10], applied to the sub-Markov
semigroup (Qn, n ∈ Z+). This approach also has the advantage to allow one to deduce
with little extra effort sufficient criteria for the convergence of unbounded semigroups
from the abundant theory of sub-Markov processes (cf. e.g. [13, 12, 32, 18, 24, 19]).
Note that a similar approach has been used in [5] to describe the asymptotic behaviour
of the growth-fragmentation equation using Krein-Rutman theorem and other criteria
for R-positivity. Finally, the authors of [2] also establish a counterpart assuming the
existence of a positive eigenfunction of the semigroup and using the approach of [9]. In
Theorem 2.3, we extend this counterpart by allowing the eigenfunction to vanish and
exhibit the link with the classical theory of V -ergodicity [27, 16].

Section 2 is devoted to the statement and the proof of our main results. In Section 3,
we provide two applications of these general results to penalized semigroups associated
to perturbed (discrete-time) dynamical systems (Subsection 3.1) and diffusion processes
(Subsection 3.2).

2 Main result

We first introduce the assumptions on which our results are based. We state them
following the same structure as Assumption (E) in [10] to emphasize their similarity.

Condition (G). There exist positive real constants θ1, θ2, c1, c2, c3, an integer n1 ≥ 1, two
functions ψ1 : E → (0,+∞), ψ2 : E → R+ and a probability measure ν on a measurable
subset K of E such that

(G1) (Local Dobrushin coefficient). ∀x ∈ K and all measurable A ⊂ K,

Pn1(ψ11A)(x) ≥ c1ν(A)ψ1(x).

(G2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈K

ψ2(x)/ψ1(x) > 0, sup
x∈E

ψ2(x)/ψ1(x) ≤ 1,

P1ψ1(x) ≤ θ1ψ1(x) + c21K(x)ψ1(x), ∀x ∈ E,
P1ψ2(x) ≥ θ2ψ2(x), ∀x ∈ E.

(G3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Pnψ1(y)/ψ1(y)

infy∈K Pnψ1(y)/ψ1(y)
≤ c3.

(G4) (Aperiodicity). For all x ∈ K, there exists n4(x) such that for all n ≥ n4(x),

Pn(1Kψ1) > 0.
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R-positive recurrence of unbounded semigroups

Theorem 2.1. Assume that Condition (G) holds true. Then there exist a positive measure
νP on E such that νP (ψ1) = 1 and νP (ψ2) > 0, and two constants C < +∞ and α ∈ (0, 1)

such that, for all measurable functions f : E → R satisfying |f | ≤ ψ1 and all positive
measures µ on E such that µ(ψ1) < +∞ and µ(ψ2) > 0,∣∣∣∣ µPnfµPnψ1

− νP (f)

∣∣∣∣ ≤ Cαnµ(ψ1)

µ(ψ2)
, ∀n ∈ Z+. (2.1)

In addition, there exist θ0 > 0 such that νPPn = θn0 νP and a function η : E → R+ such
that θ−n0 Pnψ1 converges uniformly and geometrically toward η in L∞(ψ1) and such that
P1η = θ0η and νP (η) = νP (ψ1) = 1. Moreover, there exist two constants C ′ > 0 and
β ∈ (0, 1) such that, for all measurable functions f : E → R satisfying |f | ≤ ψ1 and all
positive measures µ on E such that µ(ψ1) < +∞,∣∣θ−n0 µPnf − µ(η)νP (f)

∣∣ ≤ C ′βnµ(ψ1). (2.2)

Remark 2.2. Note that (G2) implies that Pnψ1 ≤ cPnψ2 on K for all n ≥ 0 and some
constant c > 0 (see [10, Lemma 9.6]). Hence we have, for all x ∈ K,

Pnψ1(x)/ψ1(x) ≤ c Pnψ2(x)/ψ1(x) ≤ c Pnψ2(x)/ψ2(x)

and

Pnψ2(x)/ψ2(x) ≤ Pnψ1(x)/ψ2(x) ≤ sup
K

ψ1

ψ2
Pnψ1(x)/ψ1(x).

Therefore, replacing ψ1 by ψ2 in (G1) and/or (G3) give equivalent versions of Condi-
tion (G).

Proof. Assumption (G2) implies that P1ψ1 ≤ (θ1 + c2)ψ1, so that Q1f := P1(fψ1)
(θ1+c2)ψ1

defines

a submarkovian kernel generating the semigroup (Qn)n∈N defined by

Qn(f) =
Pn(f ψ1)

(θ1 + c2)nψ1
, ∀n ≥ 0, ‖f‖∞ ≤ 1.

It is straightforward to check that this semigroup satisfies conditions (E1–E4) in [10]
with ϕ1 = 1 and ϕ2 = ψ2/ψ1, using θ1/(θ1 + c2) in place of θ1, θ2/(θ1 + c2) in place of θ2

and c1/(θ1 + c2)n1 in place of c1. Using Theorem 2.1 in this reference applied to Qn, we
deduce that there exist constants C > 0, α ∈ (0, 1) and a probability measure νQSD on E
such that, for all bounded measurable functions g : E → R and all probability measures
υ such that υ(ϕ2) > 0, ∣∣∣∣υQngυQn1

− νQSD(g)

∣∣∣∣ ≤ Cαn ‖g‖∞υ(ϕ2)
.

Setting νP (dx) = 1
ψ1(x)νQSD(dx), µ(dx) = 1

ψ1(x)υ(dx) and f = g ψ1, one obtains (2.1).
Similarly, Theorem 2.5 of [10] for Qn states that there exist θQ > 0 such that νQSDQn =

θnQνQSD and a function ηQ : E → R+ such that θ−nQ Qn1 converges uniformly and geometri-
cally toward ηQ in L∞ and such that Q1ηQ = θQηQ. Setting η = ηQψ1 and θ0 = θQ(θ1 + c2)

gives the result on geometric convergence of θ−n0 Pnψ1 to η in L∞(ψ1).
It remains to prove (2.2). Note that it is sufficient to prove it for any µ = δx. If η(x) = 0,

this is implied by the above geometric convergence. If η(x) > 0, then ηQ(x) > 0 and the
convergence of [10, Theorem 2.7] applied to Qn implies that there exists C ′ < +∞ and
α̃ ∈ (0, 1) such that, for all measurable g : E → R satisfying |g| ≤ 1/ηQ,∣∣∣∣θ−nQ Qn(gηQ)(x)

ηQ(x)
− νQSD(gηQ)

∣∣∣∣ ≤ C ′α̃n 1

ηQ(x)
.

Multiplying both sides by ηQ(x)ψ1(x) and setting f = gηQψ1 ends the proof of (2.2).
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Whether Assumption (G) is necessary for (2.1) is still an open problem up to our knowl-
dge. However, if one assumes that there exists a positive eigenfunction η such that (2.2)
holds true, then one recovers easily Assumption (G) by applying the classical counter-
part of Forster-Lyapunov criteria for conservative semigroups. Here, the conservative

semigroup is the one associated to the h-tranform of Pn defined by Rnf :=
θ−n
0

η Pn(ηf)

(which is called Q-process in the sub-Markovian case, cf. e.g. [26]). The only difficulty in
the proof of the following theorem is that η may vanish on some subset of E.

Theorem 2.3. Assume that there exist a positive function ψ : E → (0,+∞) and a
non-negative eigenfunction η ∈ L∞(ψ) of P1 for the eigenvalue θ0 > 0, such that∣∣θ−n0 Pnf(x)− η(x)νP (f)

∣∣ ≤ ζnψ(x) (2.3)

is satisfied for all x ∈ E and all measurable functions f : E → R such that |f | ≤ ψ, where
(ζn)n≥0 is some positive sequence converging to 0. Then Assumption (G) is satisfied with
ψ2 = η and with some function ψ1 ∈ L∞(ψ) such that ψ ∈ L∞(ψ1).

Proof. We define E′ = {x ∈ E, η(x) > 0} and introduce the conservative semigroup R

on functions g : E′ → R such that |g(x)| ≤ ψ(x)/η(x) defined by

Rng(x) =
θ−n0

η(x)
Pn(ηg)(x), ∀x ∈ E′ and n ≥ 0.

Applying (2.3) to f = gη and setting νR(dx) = η(x)νP (dx), we deduce that, for all x ∈ E′
and all measurable function g : E′ → R such that |g| ≤ ψ/η

|Rng(x)− νR(g)| ≤ ζn
ψ(x)

η(x)
.

This is the classical V -uniform ergodicity condition (with V = ψ/η), for which necessary
and sufficient conditions are well-known. First, it implies V -uniform geometric ergodicity,
i.e. one can replace ζn by C βn for some C > 0, β ∈ (0, 1) in the above equation
(see for instance Proposition 15.2.3 in [16]). Second, we deduce using for example
Theorem 15.2.4(b) in [16] that, for any integer m such that C1/mβ < 1 and any λ, ρ such
that C1/mβ ≤ λ < ρ < 1, there exist d,CR < +∞ such that

R1V0(x) ≤ ρV0(x) + CR1K(x), ∀x ∈ E′, (2.4)

with

V0 =

m−1∑
k=0

λ−kRk

(
ψ

η

)
and K := {ψ/η ≤ d} ∩ E′ is an accessible small set for R. This last property means that
there exists a probability measure νR on E′ and a constant cR > 0 such that, for all
A ⊂ K measurable,

Rn′11A(x) ≥ cRνR(A), ∀x ∈ K,

for some constant integer n′1 ≥ 1. Since K is accessible, there exists n′′1 ≥ 0 such that
a := νRRn′′1 1K > 0. Setting n1 = n′1 + n′′1 , it then follows that

Pn1(ψ1A)(x) ≥ cRθn1
0 η(x) νRRn′′1

(
1K1A

ψ

η

)
, ∀x ∈ K.

Due to the definition of K, we deduce that (G1) holds true with c1 = acRθ
n1
0 /d and the

probability measure ν(dx) = ψ(x)
aη(x)1K(x)(νRRn′′1 )(dx).
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Defining ψ1 = ηV0, we also deduce from (2.4) that,

P1ψ1(x) ≤ θ0ρψ1(x) + CR1K(x)η(x) ≤ θ0ρψ1(x) +
CR

supE |η|/ψ1
1K(x)ψ1(x), ∀x ∈ E′.

In view of the definition of V0(x) for all x ∈ E′, we have

ψ1(x) =

m−1∑
k=0

(λθ0)−kPkψ(x),

which also makes sense for x ∈ E \ E′. For such an x, we deduce from (2.3) that
Pnψ(x) ≤ ζnθ

n
0ψ(x). Without loss of generality, increasing m, λ and ρ if necessary, we

can assume that ζ1/m
m ≤ λ < ρ < 1. Then,

P1ψ1(x) = λθ0ψ1(x)− λθ0ψ(x) + (λθ0)1−mPmψ ≤ λθ0ψ1(x), ∀x ∈ E \ E′.

Hence, we have checked that P1ψ1 ≤ θ0ρψ1 + c21Kψ1 on E for some constants ρ < 1 and
c2 < +∞. Since P1η = θ0η, the proof of (G2) is completed. Note also that ψ ≤ ψ1 and
the fact that ψ1 ∈ L∞(ψ) follows from the inequality Pnψ1 ≤ Anψ1 for some constant An,
which is an immediate consequence of (2.3) and the fact that η ∈ L∞(ψ1).

Thanks to Remark 2.2, it is sufficient to check (G3) with ψ2 = η instead of ψ1. Since η
is an eigenfunction of P1, (G3) is trivial.

Since K ⊂ E′, it follows from (2.3) that, for all x ∈ K, θ−n0 Pn(1Kψ1)(x) converges as
n→ +∞ to η(x)νP (1Kψ1) > 0. Hence (G4) is clear.

For continuous time semigroups (Pt)t∈[0,+∞), the conclusions of Theorem 2.1 can be
easily deduced from properties on the discrete skeleton (Pnt0)n∈N (similar properties
where already observed in Theorem 5 of [31] and in [10]). In the following result, the
function η and the positive measure νP are the one of Theorem 2.1 applied to the discrete
skeleton (Pnt0)n∈N.

Corollary 2.4. Let (Pt)t∈[0,+∞) be a continuous time semigroup. Assume that there

exists t0 > 0 such that (Pnt0)n∈N satisfies Assumption (G),
(
Ptψ1

ψ1

)
t∈[0,t0]

is upper bounded

by a constant c̄ > 0 and
(
Ptψ2

ψ2

)
t∈[0,t0]

is lower bounded by a constant c > 0. Then there

exist some constants C ′′ > 0 and γ > 0 such that, for all measurable functions f : E → R

satisfying |f | ≤ ψ1 and all positive measure µ on E such that µ(ψ1) < +∞ and µ(ψ2) > 0,∣∣∣∣ µPtfµPtψ1
− νP (f)

∣∣∣∣ ≤ C ′′e−γtµ(ψ1)

µ(ψ2)
, ∀t ∈ [0,+∞), (2.5)

In addition, there exists λ0 ∈ R such that νPPt = eλ0tνP for all t ≥ 0, and e−λ0tPtψ1

converges uniformly and exponentially toward η in L∞(ψ1) when t → +∞. Moreover,
there exist some constants C ′′′ > 0 and γ′ > 0 such that, for all measurable functions
f : E → R satisfying |f | ≤ ψ1 and all positive measures µ on E such that µ(ψ1) < +∞,∣∣e−λ0tµPtf − µ(η)νP (f)

∣∣ ≤ C ′′′e−γ′tµ(ψ1), ∀t ∈ [0,+∞). (2.6)

Remark 2.5. In [2], a similar result is obtained, but with the additional assumptions
that ψ2 > 0 on E and n1 = 1. In this restricted case, one can check using Remark 2.2
that their assumptions are equivalent to ours. The fact that ψ2 can vanish allows to deal
with non-irreducible semigroups (see [10, Section 6]).

Remark 2.6. The adaptation of the counterpart of Theorem 2.3 to the countinuous-time
setting is straightforward. A similar result was proven in [2], where the authors assume
in addition that ζn is geometrically decreasing and that η is positive.
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Proof. Assuming without loss of generality that t0 = 1 and applying (2.1) to µPt, where
t ∈ [0, 1], and f such that µ(ψ1) < +∞ and |f | ≤ ψ1, one deduces that∣∣∣∣ µPt+nfµPt+nψ1

− νP (f)

∣∣∣∣ ≤ CαnµPtψ1

µPtψ2
≤ Cc̄

αc
αn+tµ(ψ1)

µ(ψ2)
,

which implies (2.5). Then, applying this inequality to µ = νP and letting n go to
infinity shows that νPPtf/νPPtψ1 = νP f for all t ≥ 0. Choosing f = Psψ1 entails
νPPt+sψ1 = νPPtψ1 νPPsψ1 for all s, t ≥ 0, and hence νPPtψ1 = eλ0tνPψ1 for all t ≥ 0 for
some constant λ0 ∈ R (note that θ0 = eλ0).

Similarly, inequality (2.2) applied to µ = δxPt and f = ψ1 on the one hand and to
µ = δx and f = Ptψ1 on the other hand implies that Ptη(x) = η(x)νP (Ptψ1) = eλ0tη(x) for
all t ≥ 0. Applying again (2.2) to µ = δxPt entails that∣∣θ−n0 Pt+nf(x)− Ptη(x)νP (f)

∣∣ ≤ C ′βnPtψ1(x) ≤ C ′c̄

β
βn+tψ1(x).

In particular, for all t ≥ 0,∣∣e−λ0tPtf(x)− η(x)νP (f)
∣∣ ≤ C ′c̄

β
βtψ1(x)

and e−λ0tPtψ1 converges geometrically to η in L∞(ψ1). This concludes the proof of
Corollary 2.4

3 Some applications

Given a positive semigroup P acting on measurable functions on E, one can try to
directly check Assumption (G) by finding appropriate functions ψ1 and ψ2. Another
natural and equivalent strategy is to find a function ψ such that the semigroup defined
by Qnf = Pn(ψf)

cnψ is sub-Markovian and check that it satisfies Assumption (E) of [10]. The
main advantage of this last approach is that Q has a probabilistic interpretation as the
semigroup of a sub-Markov process. As such, one can apply all the criteria developed in
the above mentioned reference and, more generally, use the intuitions and toolboxes of
the theory of stochastic processes. Since both approaches are equivalent, this is rather
a question of taste.

In Subsection 3.1, we consider the case of a penalized perturbed dynamical system
and check Assumption (G) directly. In subsection 3.2, we consider the case of a penalized
diffusion processes and check Assumption (E).

3.1 Perturbed dynamical systems

Let F : Rd → Rd be a locally bounded measurable function and consider the perturbed
dynamical system Xn+1 = F (Xn) + ξn with (ξi)i∈Z+ i.i.d. non-degenerate Gaussian
random variables. We are interested in the asymptotic behaviour of the associated
Feynman-Kac semigroup

Pnf(x) = Ex

(
n∏
k=1

G(Xk)1Xk∈Ef(Xn)

)
,

where E is a measurable subset of Rd with positive Lebesgue measure and G : E →
(0,+∞) is a measurable function.

Proposition 3.1. Assume that 1/G is locally bounded, G(x) ≤ C exp(|x|) for all x ∈ E
and some constant C > 0 and there exists p > 1 such that |x| − p|F (x)| → +∞ when
|x| → +∞, then the semigroup (Pn)n∈N satisfies Assumption (G).
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Proof. One easily checks that ψ1(x) = exp(a|x|), where a > 0 is such that 1/a < p − 1,
satisfies

P1ψ1(x) ≤ CE
(
e(1+a)|F (x)+ξ1|

)
≤ C ′ ψ1(x) exp (−a (|x| − p|F (x)|)) , (3.1)

where C ′ = CEe(1+a)|ξ1|. Now, assume without loss of generality that B(0, 1) ∩ E has
positive Lebesgue measure and set θ2 := infx∈B(0,1)∩E P11B(0,1)∩E(x)/2, which is clearly
positive. It then follows from Markov’s property that

θ−n2 inf
x∈B(0,1)∩E

Pn1B(0,1)∩E(x) ≥ θ−n2 inf
x∈B(0,1)∩E

Ex

[
n∏
k=1

G(Xk)1B(0,1)∩E(Xk)

]
≥ 2n → +∞,

when n→ +∞. One easily deduces that, for allR ≥ 1, θ−n2 infx∈B(0,R)∩E Pn1B(0,1)∩E(x)→
+∞, and hence that θ−n2 infx∈B(0,R)∩E Pn1B(0,R)∩E(x)→ +∞ when n→ +∞.

We set θ1 = θ2/2 and fix R ≥ 1 large enough so that C ′e−a(|x|−p|F (x)|) ≤ θ1 for all
|x| ≥ R. It then follows from (3.1) that P1ψ1 ≤ θ1ψ1 + c21Kψ1, where K := B(0, R) ∩ E.
Setting ψ2(x) =

∑n0

k=0 θ
−k
2 Pk1K(x), we deduce that, for all x ∈ E,

P1ψ2(x) =

n0∑
k=0

θ−k2 Pk+11K(x) = θ2ψ2(x) + θ2

[
θ
−(n0+1)
2 Pn0+11K(x)− 1K(x)

]
≥ θ2ψ2(x)

for n0 chosen large enough. Since in addition Pk1K ≤ Pkψ1 ≤ (θ1 + c2)kψ1, ψ2 ∈ L∞(ψ1)

and, for all x ∈ K, ψ2(x) ≥ 1 ≥ e−aRψ1(x). Hence, dividing ψ2 by ‖ψ2/ψ1‖∞ ends the
proof of (G2).

In order to prove (G1), (G3) and (G4), we follow similar arguments as for [10, Prop.
7.2]. Since the adaptation of these arguments is a bit tricky because the function ψ1

needs to be taken into account appropriately, we give the details below.
The first step consists in proving that there exists a constant c > 0 such that, for all

measurable A ⊂ K, for all x ∈ E and all y ∈ K,

P1(ψ11A)(x)

ψ1(x)
≤ cP1(ψ11A)(y)

ψ1(y)
. (3.2)

This implies easily (G1) for n1 = 1 and (G4) then follows directly from (G1) (since n1 = 1).
To prove (3.2), we observe that (recall that A ⊂ K = E ∩B(0, R))

P1(ψ11A)(x)

ψ1(x)
≤ P1(ψ11A)(x) ≤ sup

|z|≤R
[G(z)ψ1(z)] P(F (x) + ξ1 ∈ E ∩A ∩B(0, R)).

Because ξ1 is a non-degenerate gaussian random variable, it is not hard to check that
there exists a constant CR depending only on R (and not on x ∈ E and y ∈ K) such that
P(F (x) + ξ1 ∈ E ∩A ∩B(0, R)) ≤ CRP(F (y) + ξ1 ∈ E ∩A ∩B(0, R)). Therefore,

P1(ψ11A)(x)

ψ1(x)
≤ CR

sup|z|≤RG(z)ψ1(z)

inf |z|≤RG(z)
Ey [G(X1)ψ1(X1)1X1∈E∩A] ≤ cP1(ψ11A)(y)

ψ1(y)
,

where c = CRe
aR sup|z|≤RG(z)ψ1(z)/ inf |z|≤RG(z). Hence (3.2) is proved.

Next, we observe that the Markov property combined with (G2) implies that, for all
x ∈ E and all n ≥ 1,

Ex

[
n∏
k=1

G(Xk)1Xk∈E\Kψ1(Xn)

]
≤ (θ1 + c2)θn−1

1 ψ1(x). (3.3)
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We also have the property that there exists a constant c′ > 0 such that, for all y ∈ K and
all 0 ≤ k ≤ n,

Pnψ1(y)

ψ1(y)
≥ c′θk2

Pn−kψ1(y)

ψ1(y)
. (3.4)

As observed in Remark 2.2, since we already proved (G2), the last property is equivalent
to the same one with ψ2 instead of ψ1. Since P1ψ2 ≥ θ2ψ2 on K (3.4) is then clear.

The proof of (G3) can then be done by combining the last inequalities. We first
decompose Pnψ1 depending on the value of the first return time in K: for all x ∈ E,

Pnψ1(x) = Ex

[
n∏
k=1

G(Xk)1Xk∈E\Kψ1(Xn)

]

+

n∑
`=1

Ex

[
`−1∏
k=1

G(Xk)1Xk∈E\KG(X`)1X`∈KPn−`ψ1(X`)

]
≤ (θ1 + c2)θn−1

1 ψ1(x)

+

n∑
`=1

Ex

[
`−1∏
k=1

G(Xk)1Xk∈E\KEX`−1
[G(X1)1X1∈KPn−`ψ1(X1)]

]
,

where we used (3.3) and Markov’s property in the second line. We then proceed by
using (3.2) for some fixed y ∈ K first, (3.3) next, and finally (3.4) twice:

Pnψ1(x)

ψ1(x)
≤ (θ1 + c2)θn−1

1 +
c

ψ1(x)

n∑
`=1

Ex

[
`−1∏
k=1

G(Xk)1Xk∈E\Kψ1(X`−1)

]

× Ey [G(X1)1X1∈KPn−`ψ1(X1)]

ψ1(y)

≤ θ1 + c2
θ1

θn1 +
c(θ1 + c2)

θ1

n∑
`=1

θ`−1
1

Pn−`+1ψ1(y)

ψ1(y)

≤

[
θ1 + c2
c′θ1

(
θ1

θ2

)n
+
c(θ1 + c2)

c′θ1

n∑
`=1

(
θ1

θ2

)`−1
]
Pnψ1(y)

ψ1(y)
.

Since the last factor is bounded in n, this ends the proof of Proposition 3.1.

3.2 Diffusion processes

Let (Xt)t∈[0,+∞) be solution to the SDE

dXt = dBt + b(Xt) dt, X0 ∈ (0,+∞)d, (3.5)

where B = (B(1), . . . , B(d)) is a standard d-dimensional Brownian motion and b : Rd → Rd

is locally Hölder. Let r : (0,+∞)d → R be locally bounded and consider the semigroup
(Pt)t∈[0,+∞) defined by

Ptf(x) = Ex

(
e
∫ t
0
r(Xu) du f(Xt)1Xs∈(0,+∞)d, ∀s∈[0,t]

)
. (3.6)

The term 1Xs∈(0,+∞)d, ∀s∈[0,t] above corresponds to a killing at the boundary of the domain
(0,+∞)d. Note that the solution to (3.5) may explode in finite time if b does not satisfy
the linear growth condition. However, we assume by convention that Xt 6∈ (0,+∞)d after
the explosion time, so that (3.6) makes sense. We refer to [10, Sections 4.1 and 12.1] for
the precise construction of the process.
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One motivation for the study of this semigroup comes from the Feynam-Kac formula.
Indeed, when the coefficients are smooth enough (see for instance [30, Section 1.3.3]),
this semigroup is solution to the Cauchy linear parabolic partial differential equation

rv − ∂v

∂t
+ Lv = 0, on [0,+∞)× (0,+∞)d

v(0, ·) = f, on (0,+∞)d,

where L is the differential operator of second order

Lϕ(x) =
1

2
∆ϕ(x) + b(x) · ∇ϕ(x), ∀ϕ ∈ C2(Rd),

with Dirichlet boundary conditions.

Proposition 3.2. Assume that

r(x) +

d∑
i=1

bi(x) −−−−−−−−−−−−→
|x|→∞, x∈(0,∞)d

−∞. (3.7)

Then the semigroup (Pt)t∈[0,+∞) satisfies the assumptions of Corollary 2.4.

Proof. We first observe that, setting ψ(x) = exp
(∑d

i=1 xi

)
and a := d/2+supx∈(0,∞)d r(x)+∑d

i=1 bi(x), we have, for all x ∈ (0,+∞),

Qtf(x) := e−at
Pt(fψ)(x)

ψ(x)

= Ex

(
e−

d
2 t+

∑d
i=1 B

(i)
t e

∫ t
0 (r(Xu)+

∑d
i=1 bi(Xu)−a+ d

2 ) du f(Xt)1Xs∈(0,+∞)d, ∀s∈[0,t]

)
.

Using Girsanov’s theorem, we deduce that

Qtf(x) = Ex

(
e−

∫ t
0
κ(X̄u) du f(X̄t)1X̄s∈(0,+∞)d, ∀s∈[0,t]

)
,

where κ(y) = a − r(y) − d
2 −

∑d
i=1 bi(y) ≥ 0 and X̄ = (X̄(1), . . . , X̄(d)) is solution to the

SDE dX̄
(i)
t = dB

(i)
t + (1 + bi(X̄t)) dt with X̄(i)

0 = xi.
Assumption (3.7) thus implies that the conditions of [10, Theorem 4.5] are satified1

and hence that Q satisfies Assumption (F) therein, which implies that Assumption (E)
is satisfied by the semigroup Qnt0 for some t0 > 0 and some Lyapunov functions ϕ1

and ϕ2, that
(
Qtϕ1

ϕ1

)
t∈[0,t0]

is uniformly bounded, and that there exist a positive function

ηQ ∈ L∞(ϕ1) and a constant λ0 > 0 such that QtηQ = e−λ0tηQ for all t ∈ [0,+∞).
To conclude, it remains to observe that the same procedure as the one used in

the proof of Theorem 2.1 above allows to deduce from these properties that (Pnt0)n≥0

satisfies Assumption (G) with ψ1 = ψϕ1 and ψ2 = ψηQ. Observing also that ψ2 is the
function η of Theorem 2.1, we deduce that (Pt)t∈[0,+∞) satisfies the assumptions of
Corollary 2.4.
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