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Abstract

We state and prove a quantitative version of the bounded difference inequality for geo-
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1 Introduction

The purpose of this note is to establish a quantitative version of McDiarmid’s in-
equality for geometrically ergodic Markov chains. Let X0, . . . , Xn−1 denote independent
random variables taking values in a measurable space (X,X ) and c = (c0, . . . , cn−1)

denote a vector of non-negative real numbers. A function f : Xn → R satisfies the
bounded difference inequality if for all x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) ∈ Xn, we
have

|f(x)− f(y)| 6
n−1∑
i=0

ci1{xi 6=yi} . (1.1)

The bounded difference inequality, first established in [6], shows that for all t > 0,

P
(
f(X0, . . . , Xn−1)− E[f(X0, . . . , Xn−1)] > t

)
6 e−2t

2/‖c‖2 ,

where ‖c‖2 =
∑n−1
i=0 c

2
i . Several attempts have been made to extend this result to Markov

chains. In [1], the concentration of particular functionals of the form f(x0, . . . , xn−1) =

supg∈F

∑n−1
i=0 g(xi), for centered functions g in a class F is established. The concen-

tration of general functionals (satisfying (1.1)) of geometrically ergodic Markov chains
was established in [2], where it is also proved that geometric ergodicity is a necessary
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McDiarmid’s inequality for Markov chains

assumption. However, the result in [2] is not quantitative. It states that for all geometri-
cally recurrent set C, there exists a constant β, depending on C such that for all x ∈ C
and t > 0,

Px
(
f(X0, . . . , Xn−1)− Ex[f(X0, . . . , Xn−1)] > t

)
6 e−βt

2/‖c‖2 , (1.2)

where for any x ∈X , Px is the distribution of the Markov chain {Xk}∞k=0 starting from x

(see the precise definition below). In many applications, it is necessary to get the explicit
dependence of the constant β as a function of the set C. In particular, this problem arises
when establishing posterior concentration rates of Bayesian non-parametric estimators;
see for example [9, 4] for recent accounts on this theory. To extend these results to
Markovian settings, the result of [2] cannot be applied directly and a quantitative version
of (1.2) is required, where the dependence of β on constants characterizing the mixing
of the Markov chain is needed; see for example [10, 5].

A quantitative version of McDiarmid’s inequality for Markov chains was established
in [7], where the constant β depends here explicitly on the mixing time of the chain.
The existence of finite mixing times requires uniform ergodicity of the chain, see for
example [8, Section 3.3], an assumption that typically fails when the chain takes value in
general state spaces. In this note, we prove an extension of McDiarmid’s inequality to
geometrically ergodic Markov chains. Our proof is based on [2], but avoids the use of
[2, Lemma 6] which requires the construction of an exact coupling. Exact coupling can
actually be built in the strongly aperiodic case but there is a gap in the general aperiodic
case.

The remaining of the paper is decomposed as follows, Section 2 introduces formally
the notations and the assumptions of the main result, which is stated and proved in
Section 3.

2 Notations and assumptions

Let (X,X ) be a measurable space. We denote by dTV the total variation distance
between probability measures. For any sequence x = {xn, n ∈ N} and any non-negative
integers a and b, with a 6 b, let xba = (xa, xa+1, . . . , xb). For any n > 0 and any vector
c = cn−10 ∈ Rn, let ‖c‖ denote the Euclidean norm of c and ‖c‖∞ = max06i6n−1 |ci| denote
its sup-norm.

We denote by (XZ+ ,X ⊗Z+ , (Fk)k>0) the canonical filtered space, {Xn}∞n=0 the canon-
ical process and θ : XZ+ → XZ+ the shift operator on the canonical space defined, for
any x = (xn)n>0 ∈ XZ+ by θ(x) ∈ XZ+ , where, for any n > 0, θ(x)n = xn+1. Set θ1 = θ

and for n ∈ N∗, define inductively, θn = θn−1 ◦ θ. We also need to define θ∞. To this aim,
fix an arbitrary x∗ ∈ X, we define θ∞ : XN → XN such that for z = {zk, k ∈ N} ∈ XN,
θ∞z ∈ XN is the constant sequence (θ∞z)k = x∗ for all k ∈ N.

Let P be a Markov kernel on X×X . For any probability measure ξ on (X,X ), denote
by Pξ the unique probability under which (Xn)n>0 is a Markov chain with Markov kernel
P and initial distribution ξ and let Eξ denote the expectation under the distribution Pξ.
Recall that Fn denotes the σ-algebra generated by X0, . . . , Xn. For any x ∈ X, let δx
denote the Dirac mass at point x. With some abuse of notation, we also denote Px (resp.
Ex) instead of Pδx (resp. Eδx).

For any B ∈X and any integer i > 0, let

τ iB = inf{n > i : Xn ∈ B} = i+ τ0B ◦ θi and σB = τ1B = 1 + τ0B ◦ θ .

For c = cn−10 ∈ Rn+, we denote by BD(Xn, c) the set of measurable functions f : Xn → R

such that for all x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1), |f(x)−f(y)| 6
∑n−1
i=0 ci1{xi 6=yi}

The main result is established under the following conditions.
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H1 The Markov kernel P is irreducible and aperiodic, with unique invariant probability
π.

H2 There exist a non-empty set C ∈ X and two real numbers u > 1 and M > 0 such
that

sup
x∈C

Ex[uσC ] 6M .

H3 There exist r ∈ (0, 1) and L > 1 such that, for any x in the set C of H2 and any
n > 0,

dTV(δxP
n, π) 6 Lrn ,

where π is the unique invariant measure granted in H1.

When the Markov kernel P is uniformly ergodic, then H2 and H3 holds with C = X. But,
as seen below, the assumptions H2 and H3 hold under much more general assumptions:
these assumptions are indeed equivalent to V -uniform geometric ergodicity. Let V :

X → [1,∞) be a measurable function. The Markov kernel P is said to be V -uniformly
geometrically ergodic if P admits an invariant probability measure π such that π(V ) <∞
there exist constants 1 ≤ ς <∞ and 0 < ρ < 1 such that, for all n ∈ N and x ∈ X,

dV (Pn(x, ·), π) ≤ ςρnV (x) , (2.1)

where

dV (ξ, ξ′) =
1

2
sup

{
ξ(f)− ξ′(f) : sup

(x,x′)∈X×X

|f(x)− f(x′)|
V (x) + V (x′)

≤ 1

}
.

Proposition 2.1. Assume that H1 holds.

(i) Let V : X → [1,∞) be a measurable function. Assume that P is V -uniformly
geometrically ergodic, i.e. there exists a probability π such that πP = π, π(V ) <∞
and (2.1) is satisfied. Set

m = inf
{
k ≥ 1 : ςρk < 1

}
, λ = ςρm, d = λ−(m−1)/mπ(V ){(1−λ1/m)/2}−1 (2.2)

and C = {V ≤ d}, where ς and ρ are defined in (2.1). Then H2 and H3 are satisfied
with

u = {(1 + λ1/m)/2}−1 , L = ςd , r = ρ (2.3)

M =
ς − 1

1− ς−1/m
d+

{
1− λ−1

1− λ−1/m
+ 2(1 + λ1/m)−1λ−(m−1)/m

}
π(V ) . (2.4)

(ii) Conversely, assume that H2 and H3 hold. Then the Markov kernel P is V -
geometrically ergodic with V (x) = Ex[uτC ], where τC = inf {k ≥ 0 : Xk ∈ C} is
the hitting time of the set C.

Proof. It follows from (2.1) that for all k ∈ N and x ∈ X, P kV (x) ≤ ςρkV (x) + π(V ).
Hence PmV (x) ≤ λV (x) + π(V ) where by construction λ < 1. Set

V0(x) =

m−1∑
`=0

λ−`/mP `V (x) . (2.5)

By construction, we get

PV0(x) =

m−1∑
`=0

λ−`/mP `+1V (x) ≤
m−1∑
`=1

λ−(`−1)/mP `V (x) + λ−(m−1)/m{λV (x) + π(V )} ,

≤ λ1/mV0(x) + λ−(m−1)/mπ(V ) . (2.6)
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Note that, for all x ∈ X, the following bound holds

V0(x) ≤

{
m−1∑
`=0

λ−`/mςρ`

}
V (x) + π(V )

m−1∑
`=0

λ−`/m

= ς
1− ρmλ−1

1− ρλ−1/m
V (x) +

1− λ−1

1− λ−1/m
π(V ) . (2.7)

It follows from (2.6) that

PV0(x) ≤
{

1 + λ1/m

2

}
V0(x)−

{
1− λ1/m

2

}
V (x) + λ−(m−1)/mπ(V ) ,

where we have used that V (x) ≤ V0(x) for all x ∈ X. Using the definition of d in (2.2), we
finally get that

PV0(x) ≤
{

1 + λ1/m

2

}
V0(x) + λ−(m−1)/mπ(V )1{V≤d} . (2.8)

Setting C = {V ≤ d} and using [3, Proposition 4.3.3], we get for all x ∈ X,

Ex[uσC ] ≤ V0(x) + u−1λ−(m−1)/mπ(V ) .

where u is defined in (2.3). Noting that

sup
x∈C

V0(x) ≤ ς 1− ρmλ−1

1− ρλ−1/m
d+

1− λ−1

1− λ−1/m
π(V ) ,

we get H2. H3 follows immediately from (2.1) using that supx∈C V (x) = d.
Conversely, assume H2 and set V (x) = Ex[uτC ]. By [3, Proposition 4.3.3], we get that

PV ≤ u−1V +M1C . (2.9)

Note that supx∈C Ex[uτC ] = 1. On the other hand, for any x, x′ ∈ C, under H3,

dTV(δxP
n, δx′P

n) ≤ dTV(δxP
n, π) + dTV(δx′P

n, π) ≤ 2Lrn.

Set ε ∈ (0, 1) and choose m large enough so that 2Lrm ≤ 1− ε. The set C is therefore a
(m, ε)-Doeblin set (see [3, Definition 18.2.6]. By [3, Lemma 18.2.7], since P is irreducible
and aperiodic under H1, the set C is small. It follows from (2.9) that

PV + (1− u−1)/2V ≤ (1 + u−1)/2V +M1C . (2.10)

By [3, Proposition 14.1.2], we get that, setting λ̃ = (1 + u−1)/2 and κ = (1− u−1)/2,

Ex

[
σC−1∑
k=0

λ̃−kV (Xk)

]
≤ κ−1

{
sup
C
V +Mλ̃−1

}
1C(x) + κ−1V (x)1Cc(x)

≤
{
κ−1

{
sup
C
V +Mλ̃−1

}
+ κ−1

}
ςV (x) .

We conclude by [3, Theorem 15.2.4] that P is V -uniformly geometrically ergodic.

We have established in Theorem 2.1 that, under H1, assumptions H2 and H3 are
equivalent to V -uniformly geometric chains. Recall that if the Markov kernel P is
irreducible and aperiodic, then P is V -uniformly geometrically ergodic if and only if it
satisfies a Foster-Lyapunov drift condition, i.e. there exist a small set C and constants
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b <∞ and λ ∈ [0, 1) such that PV ≤ λV + b1C ; see [3, Theorem 15.2.4]. It is possible to
relate the constants in assumptions H2 and H3 with the constants appearing in the drift
condition. Note first that H2 is satisfied with u = λ−1 and M = supx∈C V (x) + bλ−1 (see
[3, Proposition 4.3.3-(ii)]) On the other hand, by [3, Corollary 14.1.6], for all d > 0, the
sets {V ≤ d} are small and there exists d0 <∞ such that {V ≤ d0} is accessible (since
the set {V <∞} is full and absorbing). Take d ≥ d0 satisfying λ+2b/(1+d) < 1. Then the
set {V ≤ d} is an accessible (m, ε)-small set and by [3, Theorem 18.4.3] H3 is satisfied
with r = ρ1/m and M = ρ−1β−1(1+ ε){π(V )+d} for all β ∈

(
0, ε(bm + λm − 1)−1 ∧ 1

)
with

ρ = γ1(β, bm, λ
m, ε) ∨ γ2(β, bm, λ

m) < 1 , (2.11)

bm = b(1− λm)(1− λ)−1 , (2.12)

and γ1 and γ2 given by

γ1(β, b, λ, ε) = 1− ε+ β(b+ λ− 1) , (2.13)

γ2(β, b, λ) = 1− β (1− λ)(1 + d)− 2b

2(1− β) + β(1 + d)
. (2.14)

3 Main result

The main result of this paper is the following quantitative version of McDiarmid’s
inequality for geometrically ergodic Markov chains.

Theorem 3.1. Assume H1, H2, H3. Let n > 1, c ∈ Rn and f ∈ BD(Xn, c). Then, for all
x ∈ C and t > 0,

Px
(
f(Xn−1

0 )− Ex[f(Xn−1
0 )] > t

)
6 exp

(
− βt2

‖c‖2

)
,

where β is given by

β =
(1− r ∨ u−1/4)2

16L

(
5

log u
+ 4ML

)−1
.

Before proceeding to the proof of our main Theorem, we establish the following
Lemma which replaces [2, Lemma 6]. It is instrumental in the sequel.

Lemma 3.2. For any probability measures ξ and ξ′ on (X,X ), any n > 1, any c ∈ Rn+
and any h ∈ BD(Xn, c),

|Eξ[h(Xn−1
0 )]− Eξ′ [h(Xn−1

0 )]| 6 2
n−1∑
i=0

cidTV(ξP i, ξ′P i) .

Remark 3.3. It is possible to avoid the factor 2 in (3.2) under additional technical
conditions, for example, when there exists a maximal coupling for (Pξ,Pξ′), see [3,
Lemma 23.2.1].

Proof. Fix an arbitrary x∗ ∈ X. For i ∈ {1, . . . , n−1}, we set h̄i(x
n−1
i ) = h(x∗, . . . , x∗, xn−1i ).

By convention, we set h̄n the constant function h̄n = h(x∗, . . . , x∗) and h̄0 = h. With these
notations, we have the decomposition

h(xn−10 ) =

n−1∑
i=0

{h̄i(xn−1i )− h̄i+1(xn−1i+1 )}+ h̄n .

ECP 25 (2020), paper 15.
Page 5/11

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP286
http://www.imstat.org/ecp/


McDiarmid’s inequality for Markov chains

For all i ∈ {0, . . . , n− 1} and all xi ∈ X, let

w̄i(xi) =

∫ {
h̄i(x

n−1
i )− h̄i+1(xn−1i+1 )

} n−1∏
`=i+1

P (x`−1,dx`) ,

=

∫ {
h(x∗, . . . , x∗, xn−1i )− h(x∗, . . . , x∗, xn−1i+1 )

} n−1∏
`=i+1

P (x`−1,dx`) . (3.1)

It is easily seen that E
[
{h̄i(Xn−1

i )− h̄i+1(Xn−1
i+1 )}

∣∣Fi

]
= w̄i(Xi), Pξ−a.s., which implies

that

Eξ
[
h(Xn−1

0 )
]

=

n−1∑
i=0

ξP iw̄i + h̄n .

Since h ∈ BD(Xn, c), (3.1) shows that |w̄i|∞ ≤ ci. Therefore,

|Eξ
[
h(Xn−1)

]
− Eξ′

[
h(Xn−1)

]
| ≤

n−1∑
i=0

|ξP iw̄i − ξ′P iw̄i| ≤ 2

n−1∑
i=0

cidTV(ξP i, ξ′P i) .

Proof of Theorem 3.1. Fix c ∈ Rn, x ∈ X and f ∈ BD(Xn, c). Following [2], we decom-
pose f(Xn−1

0 )−Ex[f(Xn−1
0 )] into martingale increments by conditioning to the stopping

times τ iC, i = 0, . . . , n− 1. For any integer i ∈ [0, n− 1], define

Gi = Ex
[
f(Xn−1

0 )|Fτ iC

]
.

As τ0C = 0 Px-a.s., it holds Ex[f(Xn−1
0 )] = Ex[f(Xn−1

0 )|Fτ0
C
] = G0. Moreover, as τn−1C >

n − 1, it also holds Gn−1 = Ex[f(Xn−1
0 )|Fτn−1

C
] = f(Xn−1

0 ). Therefore, the difference

f(Xn−1
0 )−Ex[f(Xn−1

0 )] is decomposed into a sum of the martingale increments Gi+1−Gi
as follows

f(Xn−1
0 )− Ex[f(Xn−1

0 )] = Gn−1 −G0 =

n−2∑
i=0

(Gi+1 −Gi) . (3.2)

The proof is now decomposed into three facts that aim at bounding the Laplace transform
of f(Xn−1

0 )− Ex[f(Xn−1
0 )].

Fact 1. For any i ∈ {1, . . . , n− 1},

Gi −Gi−1 = (Gi −Gi−1)1{τ i−1
C =i−1} . (3.3)

Proof of Fact 1. By definition τ i−1C > i − 1 and τ i−1C > i − 1 if and only if τ i−1C = τ iC.
Therefore,

Gi −Gi−1 = (Gi −Gi−1)
(
1{τ i−1

C =i−1} + 1{τ i−1
C =τ iC}

)
.

To prove that (Gi −Gi−1)1{τ i−1
C =τ iC}

= 0, we decompose according to the values of τ iC:

(Gi −Gi−1)1{τ i−1
C =τ iC}

=
∑
j>i

(Gi −Gi−1)1{τ i−1
C =τ iC=j}

.

Now, remark that, for any i > 0,

Gi1{τ iC=j} =

{
Ex
[
f(Xn−1

0 )|Fj

]
if j 6 n− 2 ,

f(Xn−1
0 ) if j > n− 1 .

(3.4)

Then, for any j > i,

Gi1{τ iC=j}1{τ i−1
C =τ iC}

= Gi−11{τ i−1
C =j}1{τ i−1

C =τ iC}
= Gi−11{τ iC=j}1{τ i−1

C =τ iC}
.

This proves Fact 1.

ECP 25 (2020), paper 15.
Page 6/11

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP286
http://www.imstat.org/ecp/


McDiarmid’s inequality for Markov chains

Fact 2 bounds the increments Gi − Gi−1. The proof relies on the following lemma
which is a consequence of the coupling result Lemma 3.2. Define gn−1 = gn−1,π = f and,
for any i ∈ [0, n− 2], let gi and gi,π denote the functions defined for any xi0 ∈ Xi+1 by

gi(x
i
0) = Exi [f(xi0, X

n−1−i
1 )], gi,π(xi0) = Eπ[f(xi0, X

n−1−i
1 )] . (3.5)

Lemma 3.4. Assume H1, H2, H3. For any i ∈ {0, . . . , n− 1} and (xi−10 , xi) in Xi × C,

|gi(xi0)− gi,π(xi0)| 6 2L

n−1∑
j=i+1

cjr
j−i . (3.6)

Proof. Fix i ∈ {0, . . . , n− 1} and xi0 ∈ Xi+1. As f ∈ BD(Xn, c), the function f̃i : yn−1−i1 ∈
Xn−1−i 7→ f(xi0, y

n−1−i
1 ) ∈ R satisfies

|f̃i(yn−1−i1 )− f̃i(zn−1−i1 )| 6
n−1−i∑
k=1

ci+k1{yk 6=zk} .

Hence, f̃i ∈ BD(Xn−1−i, ci+1:n−1). Applying Lemma 3.2 to the function h = f̃i yields

|gi(xi0)− gi,π(xi0)| = |Exi [f(xi0, X
n−1−i
1 )]− Eπ[f(xi0, X

n−1−i
1 )]|

= |Exi [f̃i(Xn−1−i
1 )]− Eπ[f̃i(X

n−1−i
1 )]| 6 2

n−1∑
j=i+1

cjdTV(δxiP
j , π) .

Inequality (3.6) follows from H3.

Fact 2. Let ρ such that r 6 ρ < 1 and i ∈ {1, . . . , n− 1}. Then,

|Gi −Gi−1| 6 C1‖c‖∞1{τ i−1
C =i−1}σC ◦ θ

i−1 , (3.7)

|Gi −Gi−1|2 6 C21{τ i−1
C =i−1}

1

ρ2σC◦θi−1

n−1∑
k=i

c2kρ
k−i . (3.8)

where, C1 = 5L/(1− r) and C2 = 16L2/(1− ρ).

Proof of Fact 2. For any integer i ∈ {1, . . . , n}, let

Gi,1 = Ex[f(Xn−1
0 )|Fτ i−1

C
]1{τ i−1

C =i−1}, Gi,2 = Ex[f(Xn−1
0 )|Fτ iC

]1{τ i−1
C =i−1} .

From Fact 1, Gi − Gi−1 = Gi,2 − Gi,1. By Markov’s property, for any i ∈ {0, . . . , n − 1}
and x ∈ X,

Ex[f(Xn−1
0 )|Fi] = gi(X0:i), Px − a.s. .

Now, let Ri,1 = gi−1(Xi−1
0 )1{τ i−1

C =i−1} − gi−1,π(Xi−1
0 )1{τ i−1

C =i−1}. We have

Gi,1 = Ex[f(Xn−1
0 )|Fτ i−1

C
]1{τ i−1

C =i−1} = Ex[f(Xn−1
0 )|Fi−1]1{τ i−1

C =i−1}

= gi−1(Xi−1
0 )1{τ i−1

C =i−1} = gi−1,π(Xi−1
0 )1{τ i−1

C =i−1} +Ri,1 . (3.9)

Moreover, as τ iC > i, by (3.4),

Gi,2 =
∑
j>i

Ex[f(Xn−1
0 )|Fτ iC

]1{τ i−1
C =i−1}1{τ iC=j}

=

n−2∑
j=i

gj(X
j
0)1{τ i−1

C =i−1,τ iC=j}
+ f(Xn−1

0 )1{τ i−1
C =i−1,τ iC>n−1}

. (3.10)
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Let Ri,2 =
∑n−2
j=i (gj(X

j
0)− gj,π(Xj

0))1{τ i−1
C =i−1,τ iC=j}

. From (3.9) and (3.10),

|Gi,2 −Gi,1| = |Ri,2 −Ri,1 +

n−2∑
j=i

(gj,π(Xj
0)− gi−1,π(Xi−1

0 ))1{τ i−1
C =i−1,τ iC=j}

(3.11)

+ (f(Xn−1
0 )− gi−1,π(Xi−1

0 ))1{τ i−1
C =i−1,τ iC>n−1}

| .

We bound separately all the terms in this decomposition. First, as π is invariant and
f ∈ BD(Xn, c), for any j ∈ {i+ 1, . . . , n− 1} and any xj0 ∈ Xj+1,

|gj,π(xj0)− gi−1,π(xi−10 )| = Eπ[f(xj0, X
n−1
j+1 )− f(xi−10 , Xn−1

i )] 6
j∑
k=i

ck .

Hence,

n−2∑
j=i

|(gj,π(Xj
0)− gi−1,π(Xi−1

0 ))|1{τ iC=j} 6
n−2∑
j=i

1{τ iC=j}

j∑
k=i

ck = 1{τ iC6n−2}

τ iC∑
k=i

ck ,

|f(Xn−1
0 )− gi−1,π(Xi−1

0 )|1{τ iC>n−1} 6 1{τ iC>n−1}

n−1∑
k=i

ck .

(3.12)

To bound |Ri,1| and |Ri,2| in (3.11), we use Lemma 3.4. First, (3.6) directly yields

|Ri,1| 6 21{τ i−1
C =i−1}L

n−1∑
j=i+1

cjr
j−i . (3.13)

Moreover, as {τ iC = j} ⊂ {Xj ∈ C}, (3.6) also yields

(gj(X
j
0)− gj,π(Xj

0))1{τ iC=j} 6 2L

n−1∑
k=j+1

ckr
k−j1{τ iC=j} 6 2L1{τ iC=j}

n−1∑
k=τ iC+1

ckr
k−τ iC .

Therefore,

|Ri,2| 6 2L1{τ i−1
C =i−1}

n−1∑
k=τ iC+1

ckr
k−τ iC . (3.14)

Plugging (3.12), (3.13) and (3.14) in (3.11) yields

|Gi,2 −Gi,1| 62L

( n−1∑
j=i+1

cjr
j−i +

n−1∑
k=τ iC+1

ckr
k−τ iC +

1

2L

τ iC∧(n−1)∑
k=i

ck

)
1{τ i−1

C =i−1} . (3.15)

Both (3.7) and (3.8) follow from (3.15) by bounding separately the 3 terms in the right-
hand side of this inequality. Let us first establish (3.7). Since r < 1,

n−1∑
j=i+1

cjr
j−i 6

‖c‖∞r
1− r

,

n−1∑
k=τ iC+1

ckr
k−τ iC 6

‖c‖∞r
1− r

.

Moreover,

τ iC∧(n−1)∑
k=i

ck 6 ‖c‖∞[1− i+ τ iC ∧ (n− 1)] 6 ‖c‖∞[1 + τ0C ◦ θi] = ‖c‖∞σC ◦ θi−1 .
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McDiarmid’s inequality for Markov chains

As r < 1 6 σC ◦ θi−1, plugging these upper bounds in (3.15) shows

|Gi −Gi−1| = |Gi,2 −Gi,1| 6
5L‖c‖∞

1− r
σC ◦ θi−11{τ i−1

C =i−1} .

This proves (3.7). We use slightly different controls to prove (3.8) from (3.15). As
r 6 ρ < 1, ρ−σC◦θi−1

> 1, and

n−1∑
j=i+1

cjr
j−i 6

n−1∑
j=i

cjρ
j−i 6 ρ−σC◦θi−1

n−1∑
j=i

cjρ
j−i . (3.16)

Moreover,

n−1∑
k=τ iC+1

ckr
k−τ iC 6 ρi−τ

i
C

n−1∑
k=τ iC+1

ckρ
k−i .

As τ iC > i and i− τ iC = 1− σC ◦ θi−1,

n−1∑
k=τ iC+1

ckr
k−τ iC 6 ρ1−σC◦θi−1

n−1∑
j=τ iC+1

cjρ
j−i 6 ρ−σC◦θi−1

n−1∑
j=τ iC+1

cjρ
j−i . (3.17)

In addition,

τ iC∧(n−1)∑
k=i

ck 6
τ iC∧(n−1)∑
k=i

ckρ
k−τ iC =

τ iC∧(n−1)∑
k=i

ckρ
k−i−σC◦θi−1+1 6 ρ−σC◦θi−1

τ iC∧(n−1)∑
k=i

ckρ
k−i .

(3.18)

Plugging (3.16), (3.17) and (3.18) in (3.15) and applying Cauchy-Schwarz inequality
shows

|Gi −Gi−1|2 =|Gi,2 −Gi,1|2 6 16L2ρ−2σC◦θi−1

( n−1∑
k=i

ckρ
k−i
)2

1{τ i−1
C =i−1}

6
16L2

1− ρ
ρ−2σC◦θi−1

n−1∑
k=i

c2kρ
k−i1{τ i−1

C =i−1} .

This proves (3.8) and thus Fact 2.

Fact 3. Assume H1, H2, H3. For any x ∈ C,

Ex

[
ef(X

n−1
0 )−Ex[f(Xn−1

0 )]

]
6 eC3‖c‖2 . (3.19)

where C3 = 4L (5/ log u+ 4ML) /(1− r ∨ u−1/4)2.

Proof of Fact 3. For any t ∈ R, et 6 1 + t + t2e|t|. Hence, as Ex[Gi+1 − Gi|Fτ iC
] = 0, for

any i > 0, we have

Ex[eGi+1−Gi |Fτ iC
] 6 1 + Ex[(Gi+1 −Gi)2e|Gi+1−Gi||Fτ iC

] .

By Fact 2,

Ex[eGi+1−Gi |Fτ iC
] 6 1 + C2

n−1∑
k=i+1

c2kρ
k−i−11{τ iC=i}Ex[ρ−2σC◦θieC1‖c‖∞σC◦θi |Fτ iC

] .
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McDiarmid’s inequality for Markov chains

Now by Markov’s property,

1{τ iC=i}Ex[ρ−2σC◦θieC1‖c‖∞σC◦θi |Fτ iC
] = 1{τ iC=i}Ex[ρ−2σC◦θieC1‖c‖∞σC◦θi |Fi]

= 1{τ iC=i}EXi [ρ
−2σCeC1‖c‖∞σC ] .

Hence,

Ex[eGi+1−Gi |Fτ iC
] = 1 + C2

n−1∑
k=i+1

c2kρ
k−i−11{τ iC=i}EXi [ρ

−2σCeC1‖c‖∞σC ] .

Let ρ = r ∨ u−1/4, ε = log u/(2C1) and assume first that ‖c‖∞ 6 ε. By H2,

1{τ iC=i}EXi [ρ
−2σCeC1‖c‖∞σC ] 6 1{τ iC=i} sup

x∈C
Ex[ρ−2σCeC1‖c‖∞σC ] 6 sup

x∈C
Ex[uσC ] 6M .

Hence,

Ex[eGi+1−Gi |Fτ iC
] 6 1 + C2M

n−1∑
k=i+1

c2kρ
k−i−1 6 eC2M

∑n−1
k=i+1 c

2
kρ
k−i−1

.

By recurrence, it follows that

Ex

[
ef(X

n−1
0 )−Ex[f(Xn−1

0 )]

]
6 eC2M

∑n−2
i=0

∑n−1
k=i+1 c

2
kρ
k−i−1

= eC2M
∑n−1
k=1 c

2
k

∑k−1
i=0 ρ

k−i−1

6 e
C2M
1−ρ ‖c‖

2

.

Fix x̃ in X and let f̃ : Xn → R be defined, for any x0:n−1 in Xn, by

f̃(Xn−1
0 ) = f(x01{c0≤ε} + x̃1{c0>ε}, . . . , xn−11{cn−1≤ε} + x̃1{cn−1>ε}) .

As f belongs to BD (Xn, c), f̃ belongs to BD (Xn, c̃), where

c̃ =
(
c01{c0≤ε}, . . . , cn−11{cn−1≤ε}

)
.

Since ‖c̃‖∞ < ε and ‖c̃‖ 6 ‖c‖, f̃ satisfies

Ex

[
ef̃(X

n−1
0 )−Ex[f̃(Xn−1

0 )]
]
6 e

MC2
1−ρ ‖c̃‖

2

6 e
MC2
1−ρ ‖c‖

2

. (3.20)

Furthermore, by definition of f̃ and since f is in BD(Xn, c), for any x ∈ Xn,

|f(x)− f̃(x)| =
n−1∑
i=0

ci1{ci>ε} ≤
n−1∑
i=0

ci
ci
ε
≤ ‖c‖

2

ε
. (3.21)

This implies

Ex

[
ef(X

n−1
0 )−Ex[f(Xn−1

0 )]

]
6 e

2‖c‖2
ε Ex

[
ef̃(X

n−1
0 )−Ex[f̃(Xn−1

0 )]
]
6 e

(
2
ε+

MC2
1−ρ

)
‖c‖2

.

This shows Fact 3 since

2

ε
+
MC2

1− ρ
6

4L

(1− r ∨ u−1/4)2

(
5

log u
+ 4ML

)
.
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McDiarmid’s inequality for Markov chains

Fact 3 proves that there exists a constant C = 2C3 such that, for any c ∈ Rn,
f ∈ BD(Xn, c) and x ∈ C,

Ex

[
ef(X

n−1
0 )−Ex[f(Xn−1

0 )]

]
6 eC‖c‖

2/2 . (3.22)

Let f ∈ BD(Xn, c) and x ∈ C. For any s > 0, sf ∈ BD(Xn, c). Hence, from (3.22), for any
s, t > 0,

P
(
f(Xn−1

0 )− Ex[f(Xn−1
0 )] > t

)
6 e−st+logEx

[
esf(X

n−1
0 )−Ex[sf(X

n−1
0 )]

]
6 e−st+s

2C‖c‖2/2 .

Choosing s = t/(C‖c‖2) proves Theorem 3.1 with

β =
1

2C
=

1

4C3
=

(1− r ∨ u−1/4)2

16L

(
5

log u
+ 4ML

)−1
.
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