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Colombian Women’s Life Patterns:
A Multivariate Density Regression Approach

Sara Wade∗, Raffaella Piccarreta†, Andrea Cremaschi‡, and
Isadora Antoniano-Villalobos§

Abstract. Women in Colombia face difficulties related to the patriarchal traits
of their societies and well-known conflict afflicting the country since 1948. In
this critical context, our aim is to study the relationship between baseline socio-
demographic factors and variables associated to fertility, partnership patterns, and
work activity. To best exploit the explanatory structure, we propose a Bayesian
multivariate density regression model, which can accommodate mixed responses
with censored, constrained, and binary traits. The flexible nature of the mod-
els allows for nonlinear regression functions and non-standard features in the er-
rors, such as asymmetry or multi-modality. The model has interpretable covariate-
dependent weights constructed through normalization, allowing for combinations
of categorical and continuous covariates. Computational difficulties for inference
are overcome through an adaptive truncation algorithm combining adaptive Me-
tropolis-Hastings and sequential Monte Carlo to create a sequence of automatically
truncated posterior mixtures. For our study on Colombian women’s life patterns,
a variety of quantities are visualised and described, and in particular, our find-
ings highlight the detrimental impact of family violence on women’s choices and
behaviors.

MSC2020 subject classifications: Primary 62G07, 62G08; secondary 62N01,
62P25.

Keywords: Bayesian nonparametrics, adaptive truncation, sequential Monte
Carlo, time-to-event, non-informative censoring.

1 Introduction

Colombian women face difficulties that are quite typical in Latin American countries,
particularly related to the patriarchal traits of their society. Nonetheless, the welfare of
Colombian women is possibly more critical due to the conflict between state military
forces, paramilitaries, and guerrilla groups that has afflicted the country since 1948.
As underlined by Gimenez Duarte et al., dramatic subnational inequalities exist in
every indicator, especially within low-income, low-education, and rural populations.
Reinforcing constraints, such as “limited and gender-unequal economic opportunities,
exclusion from quality endowments among marginalized populations, and social norms
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and gender roles that relegate unpaid care work to women and tolerate violence against
them (emotional, physical and sexual), affect young women’s choices and actions with
respect to life plans and fertility decisions” (Gimenez Duarte et al., 2015, p. 5). In
particular, despite significant progress since 2000, teenage pregnancy rates in Colombia
are still very high. The majority of teenage pregnancies remain unplanned, signaling a
lack of opportunity and agency for young girls. Different studies discuss the detrimental
effects of teenage pregnancy (see e.g., Gimenez Duarte et al., 2015; Azevedo et al., 2012)
and its socio-demographic drivers, such as poverty, low levels of education, and living in
rural areas. In such a critical context, we are interested in studying women’s life events,
focusing on the interplay between sexual initiation (debut), fertility, partnership, and
participation in the labor market. Thus, rather than focusing on a specific life event,
as in previous relevant studies (e.g. Gimenez Duarte et al., 2015; Azevedo et al., 2012;
Restrepo Mart́ınez et al., 2017), we adopt a broader perspective, considering a collection
of events describing transition to adulthood and their relation with a set of structural
baseline characteristics of the women’s environment and family. Besides some of the well
known relevant factors, such as cohort, region, and area (urban or rural) of residence, we
also study whether a violent family context contributes to shape transition to adulthood
and possibly impairs women’s agency.

To this purpose, we analyze data arising from the survey conducted in Colombia
in 2010 as a part of the Demographic and Health Survey Program (DHS, https://
www.dhsprogram.com). The data are cross-sectional, thus, no follow-up information on
the life events of interest is recorded. Specifically, information is available on the age
when the considered focal events (sexual debut, marriage or cohabitation, motherhood)
were experienced for the first time, whereas work information concerns only the em-
ployment status of the woman (working or not) at the moment of the interview. Thus,
we jointly analyze response variables with different levels of measurements (times at
event and binary variables). Additionally, the focal events may not have been experi-
enced (right-censoring) and are subject to constraints, e.g. motherhood can only occur
after sexual debut. Furthermore, the available set of baseline explanatory variables is
limited, so that heterogeneity may be present which would not be properly captured
by a parametric model. This encourages the use of a flexible model to best exploit the
explanatory structure without imposing possibly penalizing constraints. Additionally,
such a model can encompass competing sociological theories which may be relevant in
different subpopulations.

The data present various features that challenge existing parametric and semipara-
metric models (e.g. Korsgaard et al., 2003; Jara et al., 2010; Hanson and Johnson, 2004;
Kottas and Gelfand, 2001). First, some women postpone the events to relatively late
in life, which induces right-skewed distributions. Also, the joint relationships between
the age-at-event variables show different patterns, with gaps of various lengths between
events. Moreover, these behaviors change depending on the covariates. Modeling such
dependence structure is an ambitious task, requiring a model that allows for i) non-
linear response curves, ii) non-normal distributions whose features may change with the
covariates, iii) multivariate response and covariates of mixed nature, and iv) censor-
ing and constraints of the responses. To the best of our knowledge, a model that can
simultaneously deal with these issues does not exist.

https://www.dhsprogram.com
https://www.dhsprogram.com
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We propose a Bayesian multivariate density regression model that extends the uni-
variate model of Antoniano-Villalobos et al. (2014) to the case of multiple mixed-type
responses with censoring and constraints. This approach is promising for our data,
due to its ability to capture their peculiar features. Our infinite mixture model has
interpretable covariate-dependent weights constructed through normalization, allowing
for combinations of categorical and numerical covariates. In addition, the multivariate
approach permits us to study the joint relationship between the response variables,
for example by considering one response conditioned on the others. With data on over
10,000 women and a multivariate response and covariate, the Markov chain Monte Carlo
(MCMC) algorithm originally proposed for the univariate model becomes unsuitable.
We therefore propose an algorithm for posterior inference that extends the adaptive
truncation scheme of Griffin (2016).

The paper is structured as follows. Section 2 describes the data. The model and pos-
terior simulation algorithm are presented in Sections 3 and 4, respectively. The results
for the data on Colombian women are analyzed in Section 5. Section 6 summarizes and
concludes. In addition, the Supplementary Material (SM) (Wade et al., 2021) includes
derivations and details for predictive inference, as well as additional results for both the
simulated data example and the case study.

2 The data

The DHS Program collects and disseminates data on random samples of households
selected from random clusters from a national sampling frame.1 The 2010 survey in
Colombia was conducted by the Profamilia association, and we refer to the final report
for a detailed description of its features (Ojeda et al., 2011). Since all women of child-
bearing potential (i.e. aged 13–49) in the same household were interviewed, we randomly
select at most one case from each household to avoid unwanted dependencies.

To describe the characteristics of fertility and partnership patterns, we consider the
discrete variables recording the ages at Sexual Debut (Z1), at Union (first marriage or
cohabitation, Z2), and at First Child (Z3). Work Status is recorded as a binary variable
(Z4) indicating whether the respondent worked in the 12 months before the interview.
We exclude women who gave inconsistent information, namely, those who report the
birth of the first child as preceding the first sexual intercourse, and those who report
union with a partner but for whom sexual intercourse never occurred. We also filter
out women who experienced sexual violence or were forced to have sex in exchange for
money, since their union and childbearing choices may be related to the experienced
violence. By the same reasoning, we remove women who were forced to use contraceptive
methods. Thus, we attempt to focus as much as possible on life choices and plans rather
than on events imposed by circumstances, even if the latter may be unknown and
unmeasured, so that the observed events may not necessarily reflect choices.

1Note that the data arise from a complex survey design, and thus have associated weights with a
complicated structure. Moreover, additional post-stratification is carried out to adjust the weights for
various factors, such as the total number of women interviewed in each municipality, non-response, etc.
(see Ojeda et al., 2011, for full details on the survey design and weighting scheme for the Colombian
survey). A discussion on the suitability of accounting for such sampling weights is offered in the SM.
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Sexual Debut Union First Child
Age Censored Observed Censored Observed Censored Observed
15–19 1,144 1,053 1,818 379 1,837 360
20–29 238 3,475 1,358 2,355 1,323 2,390
30–39 51 2,597 378 2,270 326 2,322
40–49 55 2,127 281 1,901 216 1,966

1,488 9,252 3,835 6,905 3,702 7,038

Table 1: Cross-tabulation of age groups and censored data.

We focus on the relationship between the responses and some baseline socio-de-
mographic factors. First, we consider the woman’s Age (in years) at the moment of
interview. We focus on women aged 15 or more, as most younger women had not yet
experienced any event at the time of the survey. Next, we include the type of Area
(urban or rural) where the respondent lives, as well as her Region. Following the partition
used in the DHS dataset (as well as in the report by Ojeda et al., 2011) we consider
the five regions Atlantica, Oriental, Central, Pacifica, and Territorios Nacionales;2 the
capital Bogota, located in the Oriental region, is treated as a sixth region because of
its peculiar features in terms of social and economic development. A map of Colombia
and the considered regions is reported in the SM. Since information is only available
on the current region of residence and on the age when respondents moved there, we
limit attention to women who were raised in the current region at least from the age
of 6, to properly account for regional effects. Moreover, to assess the respondent’s well-
being in her original family, we consider whether in her childhood she was disciplined
using Physical Punishment (spanking, hitting, pushing, throwing water), and whether
she was exposed to Parental Domestic Violence and ever witnessed her father beating
her mother. All respondents missing at least one explanatory or response variable are
excluded from the dataset.

Even if the DHS dataset is very rich, including other covariates is not straight-
forward. Most of the variables refer to the moment of interview, and thus cannot be
considered as antecedents of the focal events. For example, although it would be in-
teresting to include information regarding education and wealth, only the highest level
of education attained and the wellness of the respondent’s family at the moment of
interview are available. Another relevant aspect that could be taken into account con-
cerns women’s ethnicity. However, most (about 80%) of the interviewed women do not
recognize themselves as part of an ethnic minority. Furthermore, those who do belong
to a heterogeneous variety of ethnic groups, none of which are sufficiently represented
in the sample. We therefore exclude ethnic minorities from our study.

Our final dataset consists of n = 10740 women. Table 1 reports a summary of
the number of censored cases for the first three response variables within age groups.
Figures 1 and 2 offer some insights about the distinctive features of the densities of
the ages at events and of their relationships (smoothed regressions) with the Age at
interview across different covariates values. Even if the displayed results only relate to

2The former region “Territorios Nacionales” includes the two more easterly regions, Orinoquia and
Amazonia, created in 1991.
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Figure 1: Kernel density estimates of (non-censored) ages at events conditioned to Age
(at interview, in groups) and area of residence (Urban or Rural).

non-censored cases, they emphasize the difficulties implied by modeling the dependence
structures. To achieve such an ambitious task, in the next section we propose a model
that allows for non-linear response curves (see e.g. Figure 2), non-normal distributions
whose features may change with the covariates (see e.g. Figure 1), multivariate response
and covariates of mixed nature, and censoring of the responses.3

3 Bayesian nonparametric density regression

We develop a Bayesian nonparametric mixture model that can capture the relationship
between n conditionally independent d-dimensional response vectors, Zi, and a vector x∗

i

of predictors. To simplify notation, whenever possible we drop the sub-index i indicating
individual observations. The predictors x∗ = (x1, . . . , xp, x

∗
p+1, . . . , x

∗
q∗) may be of mixed

nature. Without loss of generality, we assume that the first p are numerical while the

3Please note that we refer specifically to random (or non-informative) censoring, i.e. to the case
when each subject has a censoring time that is statistically independent of the age at a given response
event.
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Figure 2: Relation (smoothed regression) between (non-censored) ages at events and
Age.

rest are categorical. As is common in regression models, we expand the categorical
predictors with binary dummy variables and let x = (x1, . . . , xp, xp+1, . . . , xq), where

q = p+
∑q∗

k=p+1(Rk − 1) and Rk denotes the number of categories of x∗
k. The observed

responses are also of mixed nature. For example, in our application, we consider two
types of responses: three positive integer-valued variables with possible censoring and
constraints, representing the ages at events, and one binary variable indicating work
status. In this case, we refer to the density of the mixed response Z = (Z1, . . . , Zd)
with respect to the appropriate measure, e.g. Lebesgue or counting measure, for each
response type.

To frame our model within existing literature, we review some related contributions.
Bayesian nonparametric mixture models (Lo, 1984) are useful tools for density estima-
tion, due to their attractive balance between flexibility and smoothness and ability to
recover a wide range of densities (Ghosh and Ramamoorthi, 2003, Chapter 5). Further
developments for conditional density estimation, also known as density regression, can
be found in the pioneering works of Müller et al. (1996) and MacEachern (1999). Ex-
tensions of the former for categorical responses can be found in Shahbaba and Neal
(2009). We focus on the latter work of MacEachern (1999), which extends the Bayesian
nonparametric mixture model by allowing the mixing measure to depend on the covari-
ates. This yields flexible density regression, where the entire density and not only the
mean is regressed on the covariates. Several approaches exist in literature to specify the
covariate-dependent mixing measure, but it is not clear how to choose between them.
Examples include single-p dependent Dirichlet processes (MacEachern, 2000; De Iorio
et al., 2004), with covariate-dependent component parameters but single weights. Al-
ternatively, numerous proposals have been introduced for covariate-dependent weights
(Griffin and Steel, 2006; Dunson and Park, 2008; Rodriguez and Dunson, 2011, to name
a few). In terms of the support and consistency properties of the model, the distinc-
tion is irrelevant (see e.g. Barrientos et al., 2012, 2017; Pati et al., 2013). However, the



S. Wade, R. Piccarreta, A. Cremaschi, and I. Antoniano-Villalobos 411

analysis of Wade et al. (2014b) suggests that prediction issues may arise at moderate
sample sizes for single weights mixtures with linear predictors, when the true relation
between response and covariates is non-linear. Given the complex nature of the appli-
cation that we are considering and the lack of theory justifying transformations that
would simplify the shape of the relation between the variables, we have decided to con-
sider a linear predictor approach. Therefore, in this work, we build on the construction of
the covariate-dependent weights developed by Antoniano-Villalobos et al. (2014), which
allows for combinations of continuous and discrete covariates and favors interpretability.

We require extending the model to multivariate responses of mixed type with possi-
ble censoring and constraints. An appealing approach for this relies on a latent Gaussian
representation, which provides a simple construction for dependence of the multivariate
mixed-type data through the full covariance matrix of the latent Gaussian variables.
Moreover, Bayesian inference can be carried out through Gibbs sampling and data aug-
mentation techniques. A Bayesian parametric model based on this idea was proposed
by Korsgaard et al. (2003) for multivariate data combining Gaussian, right-censored
Gaussian, ordinal, and binary traits. To increase model flexibility, Bayesian nonpara-
metric versions were proposed by De Yoreo et al. (2017) for mixed ordinal and nominal
data, by De Yoreo and Kottas (2018a) for multivariate ordinal regression (see De Yoreo
and Kottas, 2018b, for a dynamic extension) and by Papageorgiou et al. (2015) for
mixed-type spatial data in an epidemiological context. Due to the increased flexibility
of nonparametric mixtures, the cut-offs used to define the discrete data from the latent
Gaussian variables can be fixed and not estimated or inferred. Moreover, Canale and
Dunson (2011) show that Bayesian nonparametric mixtures for discrete data (specif-
ically counts) based on latent Gaussian variables can approximate and consistently
estimate a wider range of distributions than mixtures based on discrete distributions,
e.g. Poisson or multinomial (see also Kottas et al., 2005; Bao and Hanson, 2015 in the
context of multivariate ordinal data and Jara et al., 2007 for binary response regres-
sion). Another relevant extension is the Bayesian semiparametric model of Jara et al.
(2010) for multivariate doubly-censored data indicating time to event, based on a log
transformation linking the observed responses to the latent Gaussian variables. When
modeling time-to-event data, the log transformation is more appropriate than others, no-
tably truncation. This allows recovery of the underlying structure with fewer and more
interpretable components with possibly heavy right tails. Recently, Norets and Pele-
nis (2020) demonstrated that optimal adaptive estimation of mixed discrete-continuous
distributions can be achieved via the latent Gaussian mixture approach.

We combine some of these ideas to build a model which can deal with the challenges
presented by the data. We adopt the latent Gaussian approach, associating to each
response variable Z� a latent real-valued Y�. Specifically, an observed value z� of the
response Z� is linked to the realization y = (y1, . . . , yd) of the latent Y = (Y1, . . . , Yd),
through a function h� whose characteristics depend on the nature of the observable.
Examples of transformations for different response types include:

z� = h�(y,x) =y�, for z� ∈ R,

z� = h�(y,x) =�exp(y�)�, for z� ∈ N,
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z� = h�(y,x) =

A�−1∑
a=1

1[α�,a,∞)(y�), for z� ∈ {0, 1, 2, . . . , A� − 1},

where �·� denotes the floor function, and 1B(y) denotes the indicator function taking
the value one when y ∈ B. Note that the last case considers an ordinal response with
A� categories and fixed cutoffs of α�,1 < . . . < α�,A�−1. In these examples, the functions
h� do not depend on x or y�′ for �

′ �= �, but they may, for example when accounting for
censored or constrained responses, as for the case study described in Section 5.

The basic building block for our model is the multivariate multiple linear regression:

Y|x,β,Σ ind∼ Nd(y|xβ,Σ),

where β is a (q+1)×dmatrix of regression parameters andΣ is a d×d covariance matrix.
Slightly abusing notation, x = (1, x1, . . . , xq) denotes the vector of observed covariate
values extended by a unitary entry. As previously discussed, this parametric model
is not flexible enough to capture the complex dependence structures contained in the
data. We therefore extend the nonparametric density regression framework introduced
by Antoniano-Villalobos et al. (2014) to model the R

d-valued latent variable Y:

fPx(y|x) =
∞∑
j=1

wj(x)Nd(y|xβj ,Σj), with wj(x) =
wj g(x|ψj)

∞∑
j′=1

wj′ g(x|ψj′)
. (1)

This model results from considering a mixture

fPx(y|x) =
∫

Nd(y|xβ,Σ)dPx(θ),

where θ = (β,Σ) and a nonparametric prior is assigned to the set of covariate-dependent
mixing measures Px, which places mass one on the set of discrete probability measures:

Px =

∞∑
j=1

wj(x) δθj .

Here, δθ denotes the Dirac-delta function with unit mass at θ. For computational pur-
poses and to ensure convergence of the normalizing constant in wj(x), it is conve-
nient to adopt a stick-breaking representation for the weights, setting w1 = v1 and

wj = vj
∏

j′<j(1 − vj′), for j > 1, where vj
ind∼ Beta(ζj,1, ζj,2). The parameters of the

local linear regression components, θj , and of the covariate-dependent weights, ψj , are
assumed to be independent and identically distributed according to a base measure
P0 and independent of the weights. Together with the functions h� linking the latent
variables with the responses, this defines the likelihood structure for the observed data.

In this model, the regression parameters βj and Σj capture the local linear relation
between the latent response and covariates, with normal errors; whereas the ψj deter-
mine, through g, how the influence of each local component to the overall model changes
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across the covariate space. This deals with situations when the stochastic relation be-
tween y and x is too complicated to be captured by a single parametric model. It can
also be used when the population is assumed to be constituted by an unknown number
of (covariate-dependent) groups such that, within each group, a linear regression model
provides a good description of the data. While identifiability issues may prevent the
individuation of such groups, this intuition can help in understanding the elements of
the model.

Note that the Bayesian nonparametric model for the joint density of y and x intro-
duced by Müller et al. (1996) for density regression, taking the form

fP(y,x) =

∞∑
j=1

wj g(x|ψj)Nd(y|xβ,Σ), with P =

∞∑
j=1

wj δ(θj ,ψj), (2)

results in a conditional density coinciding with equation (1). However, an important
difference is that in the joint mixture model, posterior inference for the parameters
(wj ,θj ,ψj) is based on the joint likelihood in (2); whereas, for our model, it is based
directly on the conditional likelihood of interest. Furthermore, we emphasize that the
converse is not true: our conditional density model in (1) does not imply the joint
density model in (2). This can be easily seen by constructing a joint density model as
the product of (1) and any, say parametric, marginal density model for x. This is a valid
construction, which nonetheless recovers the joint model in (2) only when the marginal
has the form:

fP(x) =

∞∑
j=1

wj g(x|ψj).

This is an important concept, as it highlights that the form chosen for g does not imply
a modeling of the distribution for covariates, which may indeed be fixed. The choice
and shape of this kernel, however, defines how the conditional distribution changes
as x varies (given the parameters ψ). Thus, it determines the amount of information
borrowed when making inference at unobserved points in the space of covariates. By
choosing model (1) we maintain the same natural and interpretable structure for the
weights of the joint mixture model, but exploit all the information available in the
data to learn about the relation between x and y, thus improving the quality of the
estimation for the conditional distribution (see Wade et al., 2014a), which is the main
focus of our application. Clearly, a practitioner interested also in capturing the structure
of the random covariates would require a different approach.

The covariate-dependent weight wj(x) represents the probability that an observation
with a covariate value x is allocated to the j-th regression component. Such probability
can be decomposed into the unconditional probability wj that the parametric model j
fits an individual observation, and the likelihood g(x|ψj) that an individual allocated to
the j-th component is characterized by a covariate value x. The g(·|ψ) can be defined
to accommodate different types of covariates. We adopt a factorizable structure:

g(x|ψ) =

q∏
k=1

g(xk|ψk), where g(xk|ψk) =

{
N(xk|μk, τ

−1
k ) for k = 1, . . . , p,

Bern(xk|ρk) for k = p+ 1, . . . , q,
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with ψk = (μk, τk) for k = 1, . . . , p, and ψk = ρk for k = p + 1, . . . , q. The use of dis-
tribution kernels guarantees convergence, for all x, of the denominator in equation (1).
For the unconditional probability wj , different choices of the stick-breaking parame-
ters (ζj,1, ζj,2) result in different nonparametric priors (see Ishwaran and James, 2001).
For instance, if (ζj,1, ζj,2) = (1, ζ), the prior on the weights wj corresponds to that
obtained from a Dirichlet process prior. The base measure is chosen as P0(β,Σ,ψ) =
P0(β|Σ)P0(Σ)P0(μ|τ )P0(τ )P0(ρ). We use the conjugate matrix-variate Normal-In-
verse Wishart for the regression parameters: P0(β|Σ) = MN(q+1)×d(β0,U,Σ), where
β0 is a (q + 1) × d matrix and U is a (q + 1) × (q + 1) positive definite matrix; and
P0(Σ) = IW(Σ0, ν), where Σ0 is a d×d positive definite matrix and ν > 0. Notice that
the Inverse Wishart assigns prior mass to full covariance matrices. Other prior speci-
fications can be used to allow for other types of covariance structures, e.g. a product
of Inverse Gammas for diagonal covariance matrices or a G-Wishart for sparse preci-
sion matrices. As for β, we are assuming a structured dependence, allowing for efficient
computations through Kronecker products and a reduced number of hyperparameters
compared to a full Gaussian distribution. Alternatively, a multivariate Gaussian distri-
bution could be used, assuming independence between columns. To complete the speci-
fication of the base measure, we set: P0(μ|τ ) =

∏p
k=1 N

(
μk|μ0,k, (uk · τk)−1

)
, P0(τ ) =∏p

k=1 Gamma(τk|αk, γk), and P0(ρ) =
∏q

k=p+1 Beta(ρk|�k), where �k = (�k,1, �k,2).

In the next section, we describe an adaptive truncation algorithm allowing posterior
inference for our model. The algorithm is general and only requires specific adjust-
ments depending on the h� functions linking the observed responses with their latent
counterparts.

4 Adaptive truncation algorithm

To scale appropriately with the sample size and data dimensions, we devise an algorithm
for posterior inference based on a finite truncation of the mixture, where the number
of components is allowed to increase adaptively to obtain a good approximation of the
infinite-dimensional posterior. The truncated latent model with J components is:

fPJ
x
(y|x) =

J∑
j=1

wJ
j (x)Nd(y|xβj ,Σj), (3)

where the weights follow the re-normalized stick breaking construction:

wJ
j (x) =

wjg(x|ψj)/
∑J

j=1 wj∑J
j′=1 wj′g(x|ψj′)/

∑J
j=1 wj

=
wjg(x|ψj)∑J

j′=1 wj′g(x|ψj′)
. (4)

Notice that the normalizing constant
∑J

j=1 wj in (4) cancels out. To ease notation, we
use wj(x) to denote the truncated covariate-dependent weights, dropping the super-
script J when the truncation level is clear. Due to the exponential decay of the weights,
for large enough J , the truncated model (3) provides a close approximation to the in-
finite mixture model. Alternative truncation methods could be considered, notably the
popular truncated stick breaking method (Ishwaran and James, 2001) where vJ = 1.
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However, re-normalized stick-breaking may provide a better finite-dimensional approx-
imation by evenly distributing the remaining mass across components, as opposed to
assigning all remaining mass to the last component in truncated stick-breaking.

The proposed algorithm is based on the adaptive truncation scheme developed by
Griffin (2016), extended for density regression and mixed type responses. It consists of
two main steps, namely an MCMC step for a fixed truncation level, J0, followed by
a sequential Monte Carlo (SMC) step used to increase the number of components of
the mixture. The first step produces M posterior draws (wm

1:J0
,θm

1:J0
,ψm

1:J0
,ym

1:n)
M
m=1,

which are then used as particles in the SMC step. We provide a concise summary below,
with software and full details provided through the authors’ GitHub repository4 and
accompanying documentation.

MCMC for fixed truncation Since the truncation level J0 is fixed throughout this step,
we omit it from the notation, writing w = w1:J0 , θ = θ1:J0 , and ψ = ψ1:J0 . Similarly,
the observed response is denoted by z = (z1, . . . , zn), with zi = (zi,1, . . . , zi,d), and
analogously for the covariates x and the latent y. The approximate posterior given the
sample (x, z) of size n, using the truncated likelihood (3), takes the form:

Pn
J0
(w,ψ,θ,y|z,x) ∝PJ0(w,ψ,θ)

n∏
i=1

J0∑
j=1

wj(xi|ψj)Nd(yi|xiβj ,Σj)

d∏
�=1

1{zi,�}(hi,�),

where PJ0(w,ψ,θ) indicates the restriction of the prior (as detailed in Section 3) to
the parameters in the truncated space. Dependence wj(x) = wj(x|ψj) of the weights on
the parameters has been made explicit. Moreover, the functions hi,� = h�(yi,xi) linking
the latent variables to the observed responses are tailored to the specific application in
Section 5.

Due to lack of conjugacy, we resort to a generic Metropolis-within-Gibbs scheme to
perform posterior sampling, that updates blocks of parameters adaptively. The adaptive
random walk algorithm used here, based on Algorithm 6 in Griffin and Stephens (2013),
adapts the proposal covariance matrix to achieve both a specified average acceptance
rate (a0 = 0.234) and a proposal covariance matrix equal to 2.42/p times the posterior
covariance matrix, p being the dimension of the parameter block of interest. These cri-
teria have been shown to be optimal in many settings (Roberts et al., 1997; Roberts and
Rosenthal, 2001). In more detail, suppose that we want to sample a block of parameters
φ of dimension p from a distribution with probability density function Q. In order to
utilise the adaptive random walk algorithm, we first consider a transformation t(φ) that
has full support on R

p. At each iteration m, we propose a new φ∗ such that:

t∗ ≡ t(φ∗) = t(φm−1) + ε, with ε ∼ N(0, ξm−1), (5)

where ξm−1 is the adaptive covariance matrix. We accept φm = φ∗ with probability
equal to the minimum between 1 and the ratio:

a(φ∗,φm−1) =
Q(φ∗)

Q(φm−1)

∣∣Jt(φ
m−1)

∣∣
|Jt(φ∗)| , (6)

with |Jt(φ)| denoting the determinant of the Jacobian of the transformation.

4https://github.com/sarawade/BNPDensityRegression_AdaptiveTruncation.

https://github.com/sarawade/BNPDensityRegression_AdaptiveTruncation
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Transformations of βj , μj , τj , ρj , and vj are straightforward through identity,
log, and logit functions. Instead, transformations of Σj and yi are more involved. For
each Σj , we consider a vectorization of a decomposition of the matrix, Σj = LjDjL

ᵀ
j ,

where Lj is a lower triangular matrix with unit entries on the diagonal and Dj is a
diagonal matrix with positive entries, and we take the log of the diagonal entries. In
this case, the proposed Σ∗

j can be obtained from the proposed t∗ in equation (5) by
inverting this transformation. In addition, the determinant of the Jacobian, which is
required in the acceptance ratio in (6), depends only on the diagonal elements Dj,�,�

of the matrix Dj , specifically, |Jt(Σj)| =
∏d

�=1 1/D
d+1−�
j,�,� . For each latent vector yi =

(yi,1, . . . , yi,d), the terms h�(yi,xi) = zi,� define constrained regions for the latent yi,
such that yi,� ∈ (li,�, ui,�), which are provided for the case study in Section 5. We
assume that an appropriate ordering of the responses leads to bounds (li,�, ui,�) that
may in general depend on yi,�′ for �

′ < �. This allows us to define a sequential logistic
transformation t(yi,�;yi,1:�−1) for � = 1, . . . , d, based on the bounds (li,�, ui,�). From
the proposed t∗ in equation (5), the inverse transformation can be applied to obtain
the proposed y∗

i , sequentially for � = 1, . . . , d, where the bounds may also be updated
sequentially if they depend on y∗1:(�−1), e.g. for age at first child in our application. This
ordering also guarantees that the Jacobian matrix is lower triangular, so its determinant
is simply the product of the diagonal elements, |Jt(yi)| =

∏d
�=1 Jt,�,�(yi,�;yi,1:�−1), with

Jt,�,�(yi,�;yi,1:�−1) = (ui,� − li,�)/ [(yi,� − li,�)(ui,� − yi,�)], for ui,� ∈ R, li,� ∈ R.

SMC for adaptive truncation The second stage involves the selection of the trunca-
tion level J by sequentially increasing it from the initial level J0. The addition of a new
component improves the quality of the approximation to the infinite-dimensional model
but increases the computational burden, due to the considerable number of parameters
added. Therefore, devising an algorithm that can select the level of truncation parsimo-
niously is crucial. To achieve this, possible approaches are presented in Norets (2020)
and Griffin (2016). We focus on the latter, which adaptively increases the number of
mixture components via SMC.

The MCMC draws from the previous step are used as the M initial particles in
the SMC. At each iteration of the SMC, a new component is added to the mix-
ture, by sampling the additional set of parameters (wm

J+1,ψ
m
J+1,θ

m
J+1) from a suit-

able importance distribution. We sample from the prior Beta(vmJ+1)P0(ψ
m
J+1,θ

m
J+1),

independently for m = 1, . . . ,M , making use of the recursive stick-breaking relation
wm

J+1 = vmJ+1 [(1− vmJ )/vmJ ]wm
J . The particle weights ϑ̃1:M

J+1 = (ϑ̃1
J+1, . . . , ϑ̃

M
J+1) are

then updated as follows:

ϑ̃m
J+1 = ϑ̃m

J

n∏
i=1

fPJ+1
xi

(
ym
i |wm

1:J+1,ψ
m
1:J+1,θ

m
1:J+1

)
fPJ

xi
(ym

i |wm
1:J ,ψ

m
1:J ,θ

m
1:J)

.

When the effective sample size (ESS) is lower than a threshold, indicating poor mixing,
the particle values are resampled according to such weights (Del Moral et al., 2006).
Here, we resort to systematic resampling (Kitagawa, 1996) and perform a rejuvenat-
ing step (Gilks and Berzuini, 2001), where the particles are replaced with new values
sampled through m∗ iterations of the adaptive MCMC with J0 = J + 1. The SMC
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provides weighted samples from the sequence of truncated posteriors Pn
J , converging to

the infinite posterior Pn. To decide when a sufficiently accurate approximation has been
obtained, we follow Griffin (2016) and stop at the truncation level J∗, such that the
discrepancy D(Pn

J ,P
n
J+1) = |ESSJ − ESSJ+1| is less than a specified δ > 0, for a fixed

number I of consecutive increments, J = J∗−I+1, . . . , J∗. We use the suggested values
of δ = 0.01M , I = 4, and m∗ = 3. As an alternative to the ESS, we also consider a
discrepancy based on the conditional effective sample size (CESS), which was proposed
by Zhou et al. (2016), in the context of model comparison via SMC.

Simulation study To assess the performance of the proposed procedure, we applied
our model to a simulated dataset with a known structure, mimicking the most relevant
features of our motivating data. Specifically, we considered q∗ = 3 covariates; the first,
x1, is continuous and observed at a discrete scale (resembling the age at interview in our
case study); the others, x∗

2 and x∗
3, are categorical with three and two levels, respectively.

We generate two positive integer-valued responses, Z1 and Z2, and one binary response,
Z3, related in different extents to the covariates. Z1 is a discretized noisy observation of
a nonlinear function of x1. Similarly, Z2 is a discretized noisy observation of a nonlinear
function of x1 and the realized z1. In both cases, the response curves are the same
for x∗

2 = 2, 3 and differ for other categorical combinations, while the errors are not
normal but right skewed, additionally depending on x1 and x∗

3 for the second response.
Censoring is defined before discretization, when the responses are greater than the first
covariate. Finally, Z3 was simulated from a linear probit model depending only on x1.
Complete details of the data-generating distributions are provided in the SM, together
with the specification of the prior parameters.

We performed a robustness analysis on the simulated dataset, comparing several
initializations, namely by setting J0 = 2, 3, 5, 10, 15, 20, 30. We found that initializing the
algorithm with a conservative number of components for moderate sample sizes provides
a good compromise between computational time, mixing, and accuracy. For large sample
sizes however, we suggest to initialize with a generous number of components because of
the computational burden implied by resampling. Specifically, for modest sample sizes,
we can save the parametric mixture likelihoods, unnormalized weights, and normalizing
constants for each observation and for every particle, with a memory complexity of
O(nJM). For large sample sizes, this becomes too costly and these terms need to be
recomputed at each block update of the MCMC rejuvenation step of the SMC. Thus,
it is convenient to minimize the need of resampling for large sample sizes, by not being
too conservative in setting J0 for the problem at hand. We also considered two different
discrepancy measures defining the stopping rule of the SMC, i.e. ESS and CESS, and
results confirmed robustness to such choice.

Finally, focusing on the model flexibility and its ability to recover the correct struc-
ture present in the data, we performed additional simulations, exploring longer chains,
increased sample size, and omitted censoring. The results, reported in the SM, are sat-
isfactory for all scenarios, indicating (as expected) improvements when a longer chain
is run or the censoring is removed.
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Overall, our model was able to recover the underlying structure present in the data.
The true conditional behavior was well recovered in areas where data is available. How-
ever, as can be expected, the model struggled when predicting at values far from the
observed data. We highlight that interpretation of the conditional dependence structure
in the latent scale as well as the latent covariance matrices of the mixture components
and its relation to the dependence structure on the observed scale is an open and in-
teresting direction of research, which would expand the work of Garćıa-Zattera et al.
(2007) in the parametric setting. We also observed improvements in comparison with a
parametric version of our model.

5 Application: life patterns of Colombian women

We employ our model to study the joint distribution of the ages at Sexual Debut (Z1),
Union (Z2), and First Child (Z3) as well as Work Status (Z4) at the moment of the
interview, conditional on the considered covariates. These are Age at interview (X1),
Region (X∗

2 ) and Area (X∗
3 ) of residence, having (P) or not (P̄) been disciplined using

Physical Punishment (X∗
4 ) during childhood, and having (B) or not (B̄) been exposed

to Parental Domestic Violence (X∗
5 ), referring to whether the respondent witnessed her

father beating her mother.

To specify our model, we define the link functions:

z� = h�(y,x) = c�(y,x)�exp(y�)�, for � = 1, 2,

z3 = h3(y,x) = c3(y,x)�exp(y1) + exp(y3)�,
z4 = h4(y4,x) = 1[0,∞)(y4),

with c�(y,x) = 1(0,x1+1)(exp(y�)), for � = 1, 2, and c3(y,x) = 1(0,x1+1)(exp(y1) +
exp(y3)). In this case, exp(y1) and exp(y2) can be interpreted as the latent continuous
ages at sexual debut and union, respectively. The constraint that age at first child must
be greater than age at sexual debut is strictly enforced through the transformation,
and we can interpret exp(y3) as the latent continuous time between sexual debut and
first child and exp(y1) + exp(y3) as the latent continuous age at first child. The bounds
required in the adaptive MCMC are obtained from inverting z� = h�(y,x); concretely,

(l�, u�) =

{
(log(x1 + 1),∞) for censored z� = 0

(log(z�), log(z� + 1)) for uncensored z� �= 0
, when � = 1, 2,

(l3, u3) =

{
(log(max[0, xi,1 + 1− exp(yi,1)]),∞) for z3 = 0

(log(max[0, zi,� − exp(yi,1)]), log(zi,� − exp(yi,1) + 1)) for z3 �= 0
,

(l4, u4) =

{
(−∞, 0) for z4 = 0

(0,∞) for z4 = 1
.

The prior parameters are specified as follows. For the linear coefficients and covari-
ance matrix of each component, they are set empirically based on a multivariate linear



S. Wade, R. Piccarreta, A. Cremaschi, and I. Antoniano-Villalobos 419

regression fit. Specifically, we set yi,� = (li,� + ui,�)/2. For � = 3, when the lower bound
is −∞, i.e. age at sexual debut is equal to age at first child, we set yi,3 = ui,3 − 1. For
censored observations, we sample yi,� from a truncated normal distribution with mean
and covariance computed from the uncensored observations. For the binary response,
y4,i = −1 for z4,i = 0 and y4,i = 1 for z4,i = 1. A multivariate linear regression fit for this

auxiliary response gives estimates β̂ of the linear coefficients and Σ̂ of the covariance
matrix. We then define

E[βj ] = β0 = β̂ and E[Σj ] =
1

ν − b− 1
Σ0 = Σ̂.

Together, U and Σj reflect the variability of βj across components, and we set the

matrix U such that min(diag(Σ̂))U = 20(XᵀX)−1. The factor 20 for this g-prior was
selected to ensure reasonable ages (i.e. mostly lower than 100) in prior simulations and to
avoid very extreme age values that can result when the constant is too big (making the
prior too vague). Indeed, we explored more uninformative and vague prior choices but
found that this could lead to quite large and unreasonable imputed ages for censored
data. We further set ν = b + 3. Other specified hyperparameters include μ0,1 = x̄1;
u1 = 1/2; α1 = 2; γ1 = u1(range(x1:n,1)/4)

2; �k = (1, 1) for k = 2, . . . , q; and the
parameters of the stick-breaking prior are ζj,1 = 1 and ζj,2 = 1.

We initialize the MCMC algorithm with a number of components, J0 = 35, large
enough to avoid a small ESS and subsequent resampling. The MCMC is run for 20,000
iterations after discarding the first 30,000 as burn-in, and one in every 10 iterations is
saved to produce 2,000 particles. For the SMC, we choose the ESS-based stopping rule,
due to the robustness observed for the simulated data sets.

5.1 Posterior predictive checks

The assessment of the goodness of fit of the proposed model is of crucial importance
when the data are of complex nature, such as the data analysed in this work. Therefore,
before presenting the main results, we report posterior predictive checks in order to val-
idate our model. Using the weighted particles produced by the algorithm in Section 4,
we first replicate the data and use the replications to check the predictive power of our
model. Figures 3 and 4 report such predictive checks for the regions Bogota and Terri-
torios Nacionales. In particular, for the discretized ages at events, the figures compare
the Kaplan-Meier curves for the data and each replicated data set. For the Work re-
sponse, the histogram of the proportion of working women across the replicated datasets
is displayed, along with the proportion in the observed data. In general, the estimates
observed in the original data match the ones computed for the replicates, within all the
considered categories, indicating good fit of the model to the data.

In addition, we compute the posterior predictive p-values (Gelman et al., 1996):

p(z) = P(T (zrep) ≥ T (z)|z) =
∫

P(T (zrep) ≥ T (z)|z, ξ)π(ξ|z)dξ,

where T (zrep) and T (z) represent the selected discrepancy computed respectively for
replicated and observed data, and ξ = (w1:J∗ ,ψ1:J∗ ,θ1:J∗) indicates the model param-
eters with posterior π(ξ|z). The integral above can be computed based on the weighted
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Figure 3: Predictive checks for the region Bogota, for women who grew up in violent
(P,B) and non-violent (P̄, B̄) families. Rows (1–3): comparison between Kaplan-Meier
curves of the discretized ages at events for the observed (black lines) and replicated
(grey lines) data. Last row: comparison between proportions of working women in the
observed (black vertical line) and replicated (grey histograms) data.

particles, by simulating a replicated dataset for each particle. In our application, the
discrepancy measures used, for � = 1, 2, 3, are:

T cens(c�) =
1

n

n∑
i=1

|1− ci,� − P(Z̃� ≥ (xi,1 + 1)|xi, ξ
m)|,

T noncens(z�) =
1

|A|
∑
i∈A

|zi,� −median(Z̃�; ξ
m)|, A = {i ∈ {1, . . . , n}|ci,� = 1},

T (z4) =
1

n

n∑
i=1

|zi,4 − P(Z4 = 1|xi, ξ
m)|.

Note that for the censored data, we only observe that the event is not experienced by
the given age, and thus the discrepancy T cens is defined as for a binary variable. On
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Figure 4: Predictive checks for the region Territorios Nacionales, in Rural or Urban
areas, for women who grew up in violent (P,B) and non-violent (P̄, B̄) families. Rows
(1–3): comparison between Kaplan-Meier estimators of the discretized ages at events for
the observed (light blue lines) and replicated (grey lines) data. Last row: comparison
between proportions of working women in the observed (light blue vertical line) and
replicated (grey histograms) data.

the other hand, for non-censored events, the discrepancy T noncens can be based on the
estimated age at event. The posterior predictive p-values for the full sample and for
subsets defined based on selected combinations of categorical covariates are reported in
Table 2. Results are encouraging and support the goodness of fit observed in Figures 3
and 4, but highlight possible issues in interpreting censoring results.

5.2 Results

In the SM, we describe various posterior and predictive quantities that can be com-
puted from the weighted particles to describe the relationship between the observed
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Full Bogota Terr. Nac.

Sample
Urban:
(P,B)

Urban:
(P̄, B̄)

Rural:
(P,B)

Urban:
(P,B)

Rural:
(P̄, B̄)

Urban:
(P̄, B̄)

Z1
ci = 0 0.148 0.032 0.885 0.792 0.989 0.697 0.826
ci = 1 1 1 1 1 1 0.878 0.994

Z2
ci = 0 0.056 0.227 0.843 0.9615 0.353 0.9945 0.725
ci = 1 1 0.991 0.658 1 1 0.966 0.931

Z3
ci = 0 0.315 0.591 0.124 0.671 0.765 0.998 0.269
ci = 1 0.939 0.986 0.611 0.982 0.3325 0.483 0.824

Z4 0.604 0.363 0.935 0.872 0.547 0.775 0.604

Table 2: Posterior predictive p-values for selected discrepancies computed for the full
sample and subsets corresponding to violent (P,B) and non-violent (P̄, B̄) families. We
report the results obtained for the regions Bogota and Territorios Nacionales.

responses and the covariates. For the sake of conciseness, here we display only a selec-
tion of predictive quantities, which offer some insights about the situation of Colombian
women. Specifically, we compare women who were raised in violent family environments
(P, B) with those who were not (P̄, B̄). Figure 5 displays the predictive medians of the
(undiscretized) ages at events and the posterior probability of working as functions
of Age. More detailed information arises from the analysis of the predictive densities,
some of which are reported in Figure 6. Notice that due to the clear asymmetry in
the densities, the predictive median allows a better representation of the center, as op-
posed to the mean. We highlight that to improve visualization we focus on predictive
quantities (medians, probability of success, densities, etc.), but the Bayesian approach
permits to also study uncertainty and report credible intervals for these quantities (e.g.
Figure 9).

The data presents heavy censoring for younger cohorts (summarized in Table 1).
This information is included by imputing, at each iteration of the algorithm, ages at
events which must be higher than Age. Indeed, above the dashed lines of Figure 6,
the density estimates are based on these imputed ages and borrowing of information
at other covariate levels. Therefore, while we can reliably estimate the mass above the
dashed line given Age, caution should be used when interpreting the shape of the right
tail in this region, as this is not identifiable from the observed data. Moreover, when
such mass exceeds 0.5, the predictive median is affected by the imputed values and
is therefore less reliable. This corresponds to median values of age at event which are
higher than Age, represented as dotted lines in the figures. Further, censored data also
arise from women who will never experience an event. This is the prevailing cause of
censoring for the older cohorts, contributing to higher medians and heavier right tails.
Accommodating censored cases is clearly useful; however, results arising from heavily
censored data should be interpreted with caution.

Starting with Figure 5, observe that the shapes of the median curves change across
combinations of the categorical covariates, which justifies the employment of a flexible
model that does not impose a single functional form. A clear difference is evident be-
tween urban and rural areas, the latter presenting lower ages at events, controlling for
other covariates. This is expected since rural areas are generally characterized by lower
levels of education and wealth indicators, both identified in the literature as factors
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Figure 5: Predictive medians of the ages at sexual debut, union and first child, and
posterior probability of working, as functions of Age, for women who grew up in violent
(P,B) and non-violent (P̄, B̄) families. Dotted lines indicate when the median exceeds
Age.

related to anticipation of sexual activity and family formation. Comparing cohorts, we
observe that younger women tend to anticipate sexual debut, a phenomenon largely
recognized as a consequence of the better knowledge and the more diffuse use of con-
traceptive methods. Instead, the curves for the ages at union and at first child appear
flatter, particularly for urban women with non-violent family environments and are even
increasing for women from violent families. At first, this may seem counter-intuitive,
because one would expect the younger generations to postpone family formation, par-
ticularly in urban areas, due to an expected prolonged education. However, an incorrect
use of contraceptive methods, particularly among very young or less educated women,
and the violent conditions linked to the armed conflict may result in early pregnancies
(Ali et al., 2003; Núñez and Flórez, 2001; Daniels, 2015). Indeed, an increase in teenage
childbearing in Colombia has been observed since 1990, mainly among women from
disadvantaged backgrounds (Batyra, 2016; Flórez and Soto, 2007, 2013).
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Figure 6: Predictive densities of the ages at union and first child as functions of Age
for women who grew up in violent (P,B) and non-violent (P̄, B̄) families. Results are
reported for urban and rural areas of the least developed region (Territorios nacionales)
and for the capital (Bogota). The region above the dashed line indicates when age at
event exceeds Age. The black line is the posterior median function.

Focusing on the predictive densities for the least and the most developed regions,
Territorios Nacionales and the capital city Bogota (Figure 6), further justifies the use
of a density regression model. In fact, the observed flat median curves correspond to
rather different distributional behaviors of ages at union and child, across covariate val-
ues. Moving from the least to the most developed context (top to bottom in the figure)
entails an increase of the median curves, dispersion, and probabilities of not having
experienced the events by a given Age. An increased dispersion, with pronounced right-
skewness, is more evident for older cohorts in urban environments. This is in line with
the greater heterogeneity in urban contexts as well as with the wider range of oppor-
tunities offered, for example in terms of education. Such heterogeneity becomes more
pronounced among the older cohorts who have had time to profit from such opportu-
nities. The flexibility gained in urban contexts is offset in violent environments, thus
resulting in more concentrated distributions. While our definition of a violent environ-
ment is not formal and refers only to the adoption of physical punishment methods and
exposure to parental violence, the results signal the detrimental effect of family violence
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Figure 7: Predictive medians of the time from sexual debut to union conditional on age
at sexual debut, as a function of the latter, for women with Age = 20, 30, 40, who grew
up in violent (P,B) and non-violent families (P̄, B̄). Dotted lines indicate ages at event
higher than the Age.

on Colombian women life patterns, and provides quantitative support for psychosocial
studies (Restrepo Mart́ınez et al., 2017).

The joint modeling approach permits us to study also the conditional relation be-
tween responses. For example, Figure 7 shows the conditional predictive medians of
the time from sexual debut to union given the age at sexual debut for women with
Age = 20, 30, 40 (dotted lines indicate predicted ages at event higher than Age; the cor-
responding conditional densities are reported in the SM). Interesting differences can be
observed across regions, likely related to their socio-demographic characteristics (Ojeda
et al., 2011). We observe that women in Atlantica and Territorios Nacionales (and to
a lesser extent Oriental) compared with Pacifica and Bogota tend to experience sexual
debut and union closer in time, suggesting that sexual debut is possibly delayed un-
til union. Such tendency is more pronounced, compared to the other regions, for rural
women raised in violent families. Similar results are observed for the time from sexual
debut to child (details in the SM).
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Figure 8: Predictive probability of working as function of Age conditional on different
ages at first child, for women who grew up in violent (P,B) and non-violent (P̄, B̄)
families. Dotted lines indicate ages at event higher than Age.

Finally, the probability of working (Figure 5, bottom row) is, as expected, higher
in urban areas. Moreover, women who grew up in violent environments show a higher
propensity to work, more pronounced among younger women. These same women, as
previously observed, show a tendency to anticipate events. A possible explanation is
that young women who leave the parental house to escape violence may start cohab-
itation and decide to drop out of school, entering the labor market to contribute to
family income. This apparently contradicts studies (see e.g. Gimenez Duarte et al.,
2015) pointing to the difficulties of young women, especially those with children, to
participate in the labor market. However, this paradox is solved when analyzing the
estimated predictive probabilities of working as functions of Age, conditional on having
the first child at ages 15, 20 and 25 (Figure 8, top to bottom). Indeed, the probability
of working at each Age increases with the age at first child. In particular, we observe a
much lower probability of working for young mothers, that persists even when consider-
ing their labor market participation later in life. This suggests a scaring effect of teenage
motherhood. This effect is further supported by Figure 9, which depicts the 95% point-
wise credible intervals for the probability of working as functions of Age, comparing the
unconditional probability (top row) and the probability conditional on different ages
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Figure 9: Predictive (unconditional) probability of working as function of Age with 95%
pointwise credible intervals (top row) for women who grew up in violent (P,B) and non-
violent (P̄, B̄) families. Subsequent rows depict the probability conditional on different
ages at first child. Results are reported for urban and rural areas of the least developed
region (Territorios Nacionales) and for the capital (Bogota). Left of the dashed line
indicates when the age at first child is higher than Age.

at first child (subsequent rows). Consistent with previous results, we focus on the least
developed region (Territorios Nacionales) and on the capital (Bogota).

6 Concluding remarks

In this work, we proposed a novel Bayesian nonparametric model for density regres-
sion, allowing for mixed responses with censored, constrained, and binary traits, that
can flexibly change with combinations of the categorical and numerical covariates. We
developed a general algorithm for posterior inference, that effectively scales to large
datasets by adaptively determining the necessary truncation level to approximate the
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infinite-dimensional posterior. We customized the model and algorithm to a specific
case study, but they can be applied in other contexts through minor modifications, by
appropriate definition of the link functions. Note that our model accommodates for
non-informative (or random) censoring. Interesting extensions concern other types of
censoring. From a technical point of view, our results highlight the advantage of a flex-
ible model, accounting for a different shape, location, and dispersion of the response
distribution across the covariate levels, as well as for censoring. Additionally, a variety
of classic graphic tools and quantities of interest, such as survival curves and hazard
functions, can be derived. Importantly, the joint analysis of the responses allows for
a rich variety of conditional analyses, which can be conducted focusing on different
aspects, a very useful feature when studying complex phenomena.

For our case study, the findings suggest interesting considerations regarding life
patterns of Colombian women. In the first instance, we found a confirmation of the
differences between rural and urban areas, which evidence the need of interventions
towards a more balanced development of the country. Furthermore, our results signal
that the regions with a higher risk of early transition to adulthood are those with the
worse development and wellness indicators, thus corroborating studies on the risks re-
lated to disadvantageous conditions. One of the most interesting results is the rather
clear evidence of the impact of family violence on women’s choices and behaviors. An
anticipation of the considered events is observed for women who were physically pun-
ished during childhood and witnessed parental domestic violence, two factors we used as
proxies for a violent family environment. The relation between child abuse and neglect
and the child’s future family choices has been discussed in the literature. Nonetheless, to
our knowledge, this is the first attempt to study the possible relation between parental
family violence and the events marking the transition to adulthood. Our findings con-
firm that a violent family environment can be regarded as a key risk factor that may
nullify the positive influence of developed areas.

Overall, our case study may contribute to the planning of targeted interventions.
Even if recent governments have shown an increased attention to the conditions of
women and children, a formal statistical approach to systematically identify and quan-
tify critical situations is crucial to support such a process. For example, teenage preg-
nancy is recognized as a priority issue in Colombia by the Government (Gimenez Duarte
et al., 2015; Daniels, 2015), due to its hindering personal development and agency
(Azevedo et al., 2012); our results confirm its scaring effect and quantify the risk of
teenage pregnancy, identifying some of the most vulnerable groups. We conclude with
the hope that the present work may stimulate further reflection, research and survey
on the topic, and possibly lead to additional investigations exploiting the availability of
DHS surveys on other developing countries and the flexibility and wide applicability of
our model.
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