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Error Control of the Numerical Posterior with
Bayes Factors in Bayesian Uncertainty

Quantification

Marcos A. Capistrán∗, J. Andrés Christen∗,‖, Maŕıa L. Daza-Torres∗,
Hugo Flores-Arguedas∗, and J. Cricelio Montesinos-López∗

Abstract. In this paper, we address the numerical posterior error control prob-
lem for the Bayesian approach to inverse problems or recently known as Bayesian
Uncertainty Quantification (UQ). We generalize the results of Capistrán et al.
(2016) to (a priori) expected Bayes factors (BF) and in a more general, infinite-
dimensional setting. In this inverse problem, the unavoidable numerical approx-
imation of the Forward Map (FM, i.e., the regressor function), arising from the
numerical solution of a system of differential equations, demands error estimates
of the corresponding approximate numerical posterior distribution. Our approach
is to make such comparisons in the setting of Bayesian model selection and BFs.
The main result of this paper is a bound on the absolute global error tolerated by
the numerical solver of the FM in order to keep the BF of the numerical versus the
theoretical posterior near one. For two examples, we provide a detailed analysis of
the computation and implementation of the introduced bound. Furthermore, we
show that the resulting numerical posterior turns out to be nearly identical from
the theoretical posterior, given the control of the BF near one.

MSC2020 subject classifications: Primary 62F15, 62F35; secondary 62F07.

Keywords: inverse problems, uncertainty quantification, Bayesian inference,
Bayesian model comparison, numerical analysis of ODE’s and PDE’s, total
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1 Introduction

Bayesian Uncertainty Quantification (UQ) is a recently coined term and has received
considerable attention in the last ten years, by several researchers in many fields, as
an alternative solution to some classical inverse problems (see Kaipio and Somersalo,
2005; Fox et al., 2013; Dashti and Stuart, 2016, for some reviews on the subject).
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Many applications are found in image processing (Giovannelli and Idier, 2015; Zhu
et al., 2011; Cai et al., 2011; Chama et al., 2012; Nissinen et al., 2011; Kozawa et al.,
2012, for example), but there are great variety of applications in many fields as in
geothermal prospection (Cui et al., 2011, 2019), network analysis (Hazelton, 2010; Sun
et al., 2015), heat transfer (Kaipio and Fox, 2011), pollution and ecology (Keats et al.,
2010; Hutchinson et al., 2017), fusion physics (Osthus et al., 2019), tumor growth (Collis
et al., 2017; Kahle et al., 2019), to mention a few. As with most terms, “UQ” has a level
of arbitrariness: indeed, all of statistics is partly concerned with quantifying uncertainty.
However, in the inverse problems community UQmostly refers to the theory and practice
of probabilistic propagation of uncertainty and probabilistic (Bayesian) inference in the
context of complex regressors involving systems of differential equations. The subject is
indeed relevant to the statistical, and especially, to the Bayesian community. We address
in this work what we believe is an important issue of Bayesian UQ.

In more concrete words, Bayesian UQ is Bayesian inference on a possibly infinite-
dimensional parameter θ with data y, e.g.

y = H(F(θ)) + ε; ε ∼ Nm(0, σ2I);

where the regressor F(θ) or Forward Map (FM) is commonly a complex non-linear
map, with input parameters θ, defined by an initial/boundary value problem for a
system of ODEs or PDEs. Consequently, to evaluate F(θ) at a single θ value we must
solve the corresponding system of ODEs or PDEs (H is an observation functional or
link function, formal details will be given in Section 2). However, the analytical solution
of such problem is seldom available and we must work with a numerical approximation
Fα(n)(θ), in the classic numerical analysis sense (Quarteroni and Valli, 2008; Iserles,
2009). Here α(n) represents a discretization used to approximate the FM and as n
increases the discretization becomes finer and the approximation error becomes smaller.
This commonly involves the use of serious numerical methods and large computing
power to evaluate Fα(n)(θ).

Bayesian UQ refers to the solution of the above problem in terms of inference on
the unknown parameter θ, by stating a prior π(θ) and seeking its posterior distribution
(via MCMC or any other standard or tailor-made method).

In this paper, we are concerned with the numerical error induced in the numerical
posterior with respect to the theoretical posterior, when considering the approximate
FM Fα(n)(θ) instead of the exact, theoretical, FM F(θ). We are mostly interested in
establishing guidelines for choosing a discretization level α(n) for the FM: a critical first
problem to be considered when working with numerical FMs, or any other computer
model.

Controlling the numerical error induced in the posterior distribution is an impor-
tant issue in Bayesian UQ (Cotter et al., 2010; Yan and Guo, 2015; Lie et al., 2018;
Dashti and Stuart, 2011). Capistrán et al. (2016) (CA in the following) present an ap-
proach to address the problem in the finite-dimensional case using Bayes Factors (BF)
of the numerical model vs. the theoretical model. In an ODE framework, these odds
are guaranteed to converge to one in the same order as the numerical solver used. For
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high order solvers Capistrán et al. (2016) illustrate, by reducing the step size in the
numerical solver, that there should exist a point at which the BF is nearly one, but for
a fixed discretization threshold, α(n) (step size) greater than zero. This threshold, in
turn, depends on the numerical FM error compared to the data noise σ, the sample size,
and other factors. This is the main point made by CA: it could be possible to calculate a
threshold in the numerical error of the FM such that the numerical posterior is basically
equal to the theoretical posterior so, although we are using an approximate FM, the
resulting posterior is nearly numerical error-free. CA show, with some examples, that
such optimal solver discretization leads to negligible differences in the numerical and
the theoretical posterior since the BF is close to one, potentially saving CPU time by
choosing a coarser solver.

However, the approach from CA still has some shortcomings. Firstly, it depends
crucially on estimating the normalizing constants from Monte Carlo samples of the un-
normalized posterior, for a range of discretizations α(n). This is a complex problem,
and the subject of current research, since it is difficult to reliably estimate these nor-
malizing constants in high dimensional problems (Moral et al., 2017; de Valpine, 2008).
Secondly, CA’s approach is as yet incomplete since one would need to decrease α(n)
systematically, calculating the normalization constant of the corresponding numerical
posterior to eventually estimate the normalization constant of the theoretical posterior
(see figure 2 in CA), which in turn will pinpoint a discretization at which both models
are nearly identical. The main difficulty here is that only after calculating the posterior
for some small step sizes, we estimate that a larger step size was sufficient, with an
estimated BF close to one. That is, one has already made the CPU effort of calculating
the posterior distribution for a grid of small step sizes, and therefore it renders useless
the selection of the optimal step size.

To improve on CA, the idea of this paper is to consider the expected value of the BFs,
before data is observed. We will try to bound this expected BF to find general guidelines
to establish error bounds on the numerical solver, depending on the specific problem at
hand and the sample design used, but not on particular data. These guidelines will be
solely regarding the FM and, although perhaps conservative, they may represent useful
bounds to be used in practice. Moreover, we generalize CA to an infinite-dimensional
setting.

To fix ideas, we present an example. Imagine we have a metal rod subject along
its length x to a heat profile described with the function f(x) = sin (πx) (its forcing),
and where its edges are kept at a reference temperature value (e.g. zero). The thermal
conductivity of the rod a(x) along its length is unknown. The forcing is applied, and the
system is left to reach equilibrium, at which point temperature measurements are taken
at fixed points along the rod. This system is commonly described as the stationary heat
equation in 1D

− d

dx

(
a (x)

du (x)

dx

)
=f(x), x ∈ (0, 1) , (1)

subject to Dirichlet boundary conditions u (0) = u (1) = 0, with forcing term f (x) =
sin (πx) and thermal conductivity a(x) > 0. The Forward Map in this case is: given
a(x), solve the above differential equation to find u, namely F [a] = u.
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Given fixed measurements locations x1, x2, . . . , xm, the observation functional is
H(u) = (u(x1), u(x2), . . . , u(xm))′. Under additive Gaussian noise, the data y = (y1, y2,
. . . , ym)′ satisfies

y = H(F [a]) + ε; ε ∼ Nm(0, σ2I).

Bayesian inference is required for the unknown parameter a, the thermal conductivity.
A Finite Element numerical solution (see Brenner and Scott, 2008; Reddy, 2006, for
example) is required to find a numerical approximation Fα(n)[a] to the theoretical FM
F [a]. If prior information tells us that the rod is homogeneous then we may set a(x) =
θ ∈ R+ and the problem is parametric inference of dimension one. In other circumstances
prior information might lead us to think that the thermal conductivity is increasing
linearly with length, that is a(x) = θ0 + θ1x etc. On the other hand, little may be
known about a(x) and the whole function may be needed to be inferred, in which
case the parameter is infinite dimensional belonging to a functional space. A particular
representation may be chosen, for example a(x) = θ =

∑∞
j=1 βjφj(x) with a finite

dimensional version θk =
∑k

j=1 βjφj(x) and their corresponding priors π and πk.

There are several results published recently proving that the numerical versions of
the posterior tend to the theoretical posterior (see Section 2.2 for details). That is,
under some regularity conditions, as n increases, the numerical posterior becomes a
better approximation to the theoretical posterior, where the limit has been adequately
defined using the Hellinger or Total Variation measure norms. That is, we already know
how and in what sense the approximations are consistent. However, in applications, we
will still need to choose a particular (finite) n.

Accordingly, the problem we try to address in this paper is: How can we control the
numerical error in the posterior distribution? Specifically, how can we choose a suitable
discretization n to control such numerical error properly?

The basic idea is to establish the relative merit of the numerical posterior vs. the
theoretical posterior using Bayesian model selection as a function of n, to keep both
models with a Bayes Factor of nearly one. We prove how this is possible, for finite n,
resulting in a posterior distribution with negligible numerical error w.r.t the theoretical
posterior. Indeed, this depends on how significant the numerical error in the FM is in
comparison to the data error σ, the sample size, etc. We do not discuss here the use of
an approximate prior πk, only a brief comment is given on this respect in Section 3.1.

After explaining our formal setting and notation in Section 2, we prove our main
result in Section 3 for Banach spaces and considering any location-scale family for the
distribution of the data. In Section 4 we present two examples to illustrate our approach,
and in Section 5, a discussion of the paper is given.

2 Setting and preliminary lemmas

For completeness and to establish the theoretical setting needed for our main theorems
in Section 3, we discuss here the existence and consistency of the posterior distribution in
general Banach spaces. Note that in other contexts beyond the standard UQ literature,
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the foundation of Bayesian theory in abstract spaces is very well known (here we outline
a particular version of this general Bayesian theory see, for example, Schervish, 1997;
Ghosal and van der Vaart, 2017). Here we adhere to the standard Bayesian approach in
which, among many other details, the aim is to define a joint measure of both observables
and unknowns, from which a posterior measure is obtained. As opposed, commonly in
the UQ literature, the posterior measure is postulated as a Radon-Nikodym derivative
w.r.t the prior and equal to the likelihood (e.g. Stuart, 2010; Dashti and Stuart, 2016;
Bui-Thanh and Ghattas, 2014), and then proved to exist and be well defined, as opposed
to standard Bayesian theory in which such Radon-Nikodym derivative w.r.t the prior is
a consequence of the existence and regularity of the posterior measure (see, for example,
section 1.3 and eq. (1.1) of Ghosal and van der Vaart, 2017).

In the case when θ is a function, we need to establish a proper setting for this
Bayesian inference problem in which the parameter θ belongs to a general Banach
space. The same setting also applies to the finite-dimensional case since Rd is also a
Banach space. A general enough and convenient setting is as follows.

Let Y ∈ Y ⊂ Rm be the data at hand and {Pθ : θ ∈ Θ} be a family of probability
models for Y . We assume that for each θ ∈ Θ the observable Y has a density fθ(y) w.r.t
a σ-finite measure λ, namely a product of the Lebesgue and/or counting measures in
Rm to accommodate, possibly, continuous and/or discrete observations. That is

Pθ(Y ∈ A) =

∫
A

Pθ(dy) =

∫
A

fθ(y)λ(dy),

for all measurable A. For example, Y is a product space of subsets of R or Z, leading
to continuous and/or discrete data. This is the usual setting in parametric inference.

In any case, with the usual topological considerations, we assume Y is a Polish
space. Polish spaces include complete metric spaces that have a countable dense subset.
Y should be viewed as a Polish space with the standard metric in R and the discrete
metric in Z, and λ then results in a Borel σ-finite measure on Y . Pθ is then a Radon
measure for all θ ∈ Θ, since any Borel probability measure on a Polish space is Radon.

Until now, the parameter space Θ is arbitrary. In order to define a probability
measure π on Θ (namely, a prior distribution) we need to define a measurable space
(Θ,@). So far fθ(y) cannot be considered a conditional distribution. fθ(y) is already
λ measurable and we assume also that is not only measurable in θ, but for fixed y,
continuous in θ. More precisely, assume that Θ is a separable Banach space, @ its
Borel σ-algebra, and θ �→ f(y|θ) is continuous for all y ∈ Y . Therefore, since Y is
a Polish space, the posterior measure is well defined (see, for example, Christen and
Pérez-Garmendia, 2020, and references therein). Namely, for any π-measurable g we
have that the posterior measure Qy[π] is defined by∫

g(θ)Qy[π](dθ) :=

∫
g(θ)f(y|θ)π(dθ)∫
f(y|θ)π(dθ) ,

where now we use the more common notation f(y|θ) = fθ(y). Or equivalently, the
Radon-Nikodim derivative of the posterior measure w.r.t the prior is proportional to
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the likelihood, i.e.
∂Qy

∂π ∝ f(y|θ), for all y ∈ Y ; see for example Schervish (1997), p. 16,
Ghosal and van der Vaart (2017), p. 6 or Christen and Pérez-Garmendia (2020). We
also let

Z(y) =

∫
f(y|θ)π(dθ),

the normalization constant for fixed y or the prior predictive density w.r.t λ, as a
function of y.

To make the dependency on the prior explicit, we adopted above the notation Qy[π]
for the posterior measure. When substituting the likelihood with a numerical approxi-
mation fn(y|θ), we denote the corresponding posterior as Qn

y [π] with Zn(y) its normal-
ization constant.

2.1 The inverse problems setting

We follow the general Bayesian UQ setting, as explained in, for example, Scheichl et al.
(2017); Dashti and Stuart (2016). Let Θ and V be separable Banach spaces, let F :
Θ → V be the Borel measurable forward map (FM) and H : V → A ⊆ Rm+s the Borel
measurable observation operator. The composition H ◦ F defines a Borel measurable
mapping from the parameter space Θ to the data sample space in Rm, plus possibly
additional parameters. Going beyond Gaussian noise assume that fo(y|η) is a density
for data y w.r.t. λ for all η ∈ A. The parametric family of sample models, as in Section 2,
is defined with the family of λ-densities

f(y|θ) = fo(y|H(F(θ))); θ ∈ Θ.

To fix ideas, we elaborate on the usual independent Gaussian noise case, namely

fo(y|η) =
m∏
j=1

σ−1ρ

(
yj − ηj

σ

)
,

where ρ(x) = 1√
2π

e−
x2

2 , i.e. yj = Hj(F(θ)) + σεj ; εj ∼ N(0, 1) independently. If σ

is unknown, we may take s = 1 and include it as a parameter. The same holds if we
had an unknown variance-covariance matrix. We do not discuss this case further in the
main part of the paper. Some notes are added in Section 5 regarding the case when σ
is unknown.

Let Fα(n) be a discretized version of the forward map F , for some discretization
α that depends on an integer refinement n. This is the actual numerical version of
the forward map defined in our computers. Let fn(y|θ) = fo(y|H(Fα(n)(θ))) be the
resulting discretized numerical likelihood. In the rest of the paper we take the following
assumption.

Assumption 2.1. Assume that, for all y ∈ Y the observation model fo(y|η) is uniformly
Lipschitz continuous for each η, and for y ∈ Y λ-a.s. fo(y|η) is bounded. Moreover, the
FM maps H ◦ F and H ◦ Fα(n) are continuous.
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If H ◦ F and H ◦ Fα(n) are continuous then θ �→ f(y|θ) and θ �→ fn(y|θ) are
continuous. Therefore all requirements are met for the posterior measures Qy[π] and
Qn

y [π] to be well defined (as explained in Section 2), either considering the theoretical
or the numerical likelihood, respectively (with Z(y) and Zn(y) their corresponding
normalization constants). In Dashti and Stuart (2016); Scheichl et al. (2017) it is also
assumed that H(F(θ)) is continuous.

Note that if we consider independent data with a location-scale model as

fo(y|η) =
m∏
j=1

σ−1ρ

(
yj − ηj

σ

)
, (2)

where ρ(x) is uniformly Lipschitz continuous and σ known, the first part of assump-
tion 2.1 is met and we only require to establish that H◦F and H◦Fα(n) are continuous.
Indeed the former is true if ρ(x) is Gaussian.

Assume a global error control of this numerical FM as

||H(F(θ))−H(Fα(n)(θ))||∞ < K0〈α(n)〉p, (3)

for all θ ∈ Θ and some functional 〈 · 〉. Note that (3) is a global bound, valid for all
θ ∈ Θ and includes already the observational operator H. That is, it is a global bound
but it is only a statement at the locations Hjs where each yj is observed, j = 1, . . . ,m.
That is ||H(F(θ)) − H(Fα(n)(θ))||∞ = maxj |Hj(F(θ)) − Hj(Fα(n)(θ))| < K0〈α(n)〉p
for all θ ∈ Θ.

Regarding the functional 〈·〉, if we have a discretization in space and time with Δx =
hx/n, Δt = ht/n, then α(n) = (Δx,Δt) and it could be the case that |α(n)| = Δx+Δt
depending on the numerical method used to solve F(θ). There are a great variety of
methods, but it is assumed that n represents the discretization level and |α(n)| → 0
as n → ∞. We assume that 〈α(n)〉 is properly defined so that p signifies the method’s
order.

From assumption 2.1 fo(y|η) is uniformly Lipschitz continuous for any given y. Then
since |fo(y|η)− fo(y|η′)| < L|η − η′| we have

|fn(y|θ)− f(y|θ)| = |fo(y|H(Fα(n)(θ)))− fo(y|H(F(θ)))| < K1〈α(n)〉p, (4)

for all θ ∈ Θ, which is also a global error bound, now for the numerical likelihood,
since the constant K1 = LK0 is independent of θ. This is the general setting needed to
formally state the Bayesian UQ problem.

2.2 Consistency results

Once the existence of the theoretical and numerical versions of the posterior measure
has been assured, the natural next question is that of approximations’ consistency. That
is, if and how and in what sense the numerical posterior measure Qn

y [π] tends to the
theoretical posterior measure Qy[π], as the discretization α(n) becomes finer (i.e. n
increases).
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For example, using (4), Hosseini and Nigam (2017) prove that ||Qn
y [π]−Qy[π]||H →

0, adding regularity conditions on − log f(y|θ); (see Hosseini and Nigam, 2017, and
references therein), where || · ||H is the Hellinger norm for measures. Christen and Pérez-
Garmendia (2020) prove that ||Qn

y [π] − Qy[π]||TV → 0 using (4); here || · ||TV is the
Total Variation norm (although note that the Hellinger and Total Variation norms are
equivalent, i.e. the latter implies the former and vice versa Gibbs and Su, 2002) and also
that Zn(y) → Z(y). That is, for a given problem, we may safely assume, after verifying
the regularity conditions needed, that

||Qn
y [π]−Qy[π]|| → 0 and |Zn(y)− Z(y)| → 0 (5)

as n increases (the discretization becomes finer), in a suitable measure norm || · ||.
Moreover, Christen and Pérez-Garmendia (2020); Bui-Thanh et al. (2013) discuss the
rates of convergence in some contexts, and these are proven to be the same as those for
the FM numerical solver. However, besides perhaps elementary examples, authors do
not provide means to compute ||Qn

y [π]−Qy[π]|| since convergence theorems depend on
intractable constants.

As mentioned before, we still need to fix a discretization level to compute the poste-
rior distribution. The previously mentioned results provide a sound theoretical basis for
Bayesian UQ, but as such, they do not address the latter problem, which is the primary
concern of this paper. Accordingly, next, we turn to our main result on choosing the
discretization level n using Bayesian model comparison.

3 Expected a priori error bounds and Bayes Factors

As in Capistrán et al. (2016) in order to find reasonable guidelines for choosing a dis-
cretization level n, we compare the numerical posterior Qn

y [π] with the theoretical pos-
terior Qy[π] using Bayesian model selection, namely Bayes Factors (BF). Assuming an
equal prior probability for both models, the BF is the posterior probability odds of one

model against the other, that is p
1−p where p = Zn(y)

Zn(y)+Z(y) , the posterior probability of

the numerical model. Indeed, the BF is the ratio of the normalization constants Zn(y)
Z(y)

and in our case, it is the ratio of the posterior probabilities p and 1− p.

The use of Bayesian model selection and BF has not been absent of debate, leading
to some stylized alternatives discussed in many specific contexts (Hoeting et al., 1999;
Berger and Pericchi, 1996; Kass and Raftery, 1995; O’Hagan, 1997; Xu et al., 2019;
van der Linden and Chryst, 2017). Some of these concerns relate to prior specifications
and prior sensitivity. In the extreme case, improper priors cannot be used since they are
established up to an arbitrary constant and Z(y) is indeterminate; additional provisions
need to be taken in this context (e.g. Berger and Pericchi, 1996). Moreover, when the
models are diverse (e.g. having different number of variables), it is, in general, a com-
plicated task to specify a prior distribution that 1) conveys, in either case, the correct
prior information for each model and 2) does not bias one model over other. Even trying
to establish “diffuse” priors can be problematic since the meaning of “diffuse” might
change from model to model. Moreover, two different models might have a BF equal to
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one if they have the same predictive power, thus equal posterior probabilities for two
models do not mean that the two models are the same, etc. (see Clyde et al., 2007, for
a discussion and references therein).

Fortunately, the above mentioned common concerns in the use of Bayesian model
comparison are not present when comparing Qn

y [π] with Qy[π]. Note first that from the
convergence and error control in the FM in (3) we may conclude (with further assumed
regularity conditions) that the models converge as explained in Section 2.2, namely
||Qn

y [π]−Qy[π]|| → 0. The numerical posterior Qn
y [π] is not of some different nature but

only a numerical approximation to Qy[π] and since we are assuming Z(y) is the correct
sampling distribution, lack in the predictive power of Qn

y [π] can only be attributed to
its approximate nature (we do not discuss here model fit/model adequacy, a comment is
given in this respect in Section 5). Note also that the prior measure π is assumed proper
and Zn(y)/Z(y) → 1 as in (5). Therefore the criterion for choosing n is then sough for
the numerical approximation Qn

y [π] to have nearly the same expected predictive power
as Qy[π], being all other pieces equal and knowing that ||Qn

y [π]−Qy[π]|| → 0.

3.1 The expected Absolute BF

In terms of model equivalence an alternative expression conveying the same BF odds
Zn(y)/Z(y) is

1

2

∣∣∣∣Zn(y)

Z(y)
− 1

∣∣∣∣ , (6)

comparing Qy[π] with Qn
y [π]. We now try to control the Bayes Factor between the

discretized model and the theoretical model, Zn(y)
Z(y) , through the use of what we call the

Absolute BF (ABF) in (6). In order to do that, independently of the specific data at
hand, we try to bound the expected ABF (the EABF),

∫
1

2
|Zn(y)− Z(y)|λ(dy) =

∫
1

2

∣∣∣∣Zn(y)

Z(y)
− 1

∣∣∣∣Z(y)λ(dy),

in terms of estimates on the error in the numerical forward map, as in (3). The idea is
to keep the EABF below a small threshold (e.g. 1

20 ) so that the BF is close to one and
evidence in favor of the theoretical model over the numerical model is “not worth more
than a bare mention” (Kass and Raftery, 1995; Jeffreys, 1961).

Theorem 3.1. With assumption 2.1, the rate of convergence in (3) and φy(η) =
− log fo(y|η) ∈ C1 λ-a.s. we have

∫
1

2

∣∣∣∣Zn(y)

Z(y)
− 1

∣∣∣∣Z(y)λ(dy) =

∫
1

2
|Zn(y)− Z(y)|λ(dy) < (7)

K0|α(n)|p
2

m∑
j=1

∫ ∫ ∣∣∣∣ ∂

∂ηj
φy(H(Fα(n)(θ)))

∣∣∣∣ fo(y|H(Fα(n)(θ)))λ(dy)π(dθ).
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Proof. To bound the integral
∫

1
2 |Zn(y)− Z(y)|λ(dy), note that

|Zn(y)− Z(y)| =
∣∣∣∣
∫

f(y|θ)(Rn(θ)− 1)π(dθ)

∣∣∣∣ <
∫

f(y|θ) |Rn(θ)− 1|π(dθ)

with Rn(θ) = fn(y|θ)
f(y|θ) . For η close enough to η1, the likelihood ratio fo(y|η)

fo(y|η1)
is near 1

and ∣∣∣∣ fo(y|η)fo(y|η1)
− 1

∣∣∣∣ ∼=
∣∣∣∣log

(
fo(y|η)
fo(y|η1)

)∣∣∣∣ = |φy(η)− φy(η1)| = |φy(η1)− φy(η)|.

With the first order Taylor approximation φy(η) = φy(η1) +∇φy(η1) · (η − η1) + E we
have

|Rn(θ)− 1| = |φy(η1)− φy(η)| =
∣∣∣∇φy(H(Fα(n)(θ))) · (H(Fα(n)(θ))−H(F(θ))) + E

∣∣∣ .
Ignoring the higher order terms in the residual E we have∫

f(y|θ) |Rn(θ)− 1|π(dθ) <

∫
f(y|θ)

∣∣∣∣∣∣
m∑
j=1

∂

∂ηj
φy(H(Fα(n)(θ)))(Hj(Fα(n)(θ))−Hj(F(θ)))

∣∣∣∣∣∣π(dθ)
and using the global error bound in (3) we have∫

1

2
|Zn(y)− Z(y)|λ(dy) <

K0|α(n)|p
2

∫ ∫
fo(y|η)

m∑
j=1

∣∣∣∣ ∂

∂ηj
φy(H(Fα(n)(θ)))

∣∣∣∣π(dθ)λ(dy),
since |

∑
aj(θ)bj(θ)| < c

∑
|aj(θ)| with |bj(θ)| < c for all θ, and we obtain the result.

Note in the last part of the above proof how the global error bound is needed for all
j as in (3), nonetheless, we could restrict this bound for θ ∈ supp{π} ⊂ Θ since we are
integrating w.r.t π(·).

We may now attempt to calculate the remaining double integral by changing the
order of integration to calculate

∫
M(H(F(θ)))πk(dθ) where

M(η) =

m∑
i=1

∫ ∣∣∣∣ ∂

∂ηi
φy(η)

∣∣∣∣ fo(y|η)λ(dy). (8)

This in general leads to no simplification, however if it happens that M(η) does not
depend on θ it can then be very useful. This is the case for any location-scale family
and we present it next.
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Theorem 3.2. With the setting of Theorem 3.1, assuming independent data arising
from a location-scale family, namely

fo(y|η) =
m∏
i=1

σ−1ρ

(
yi − ηi

σ

)

with ρ a bounded C1 symmetric Lebesgue density in R with
∫∞
−∞ x2ρ(x)dx = 1 then

∫
1

2

∣∣∣∣Zn(y)

Z(y)
− 1

∣∣∣∣Z(y)λ(dy) < ρ(0)
K0|α(n)|p

σ
m. (9)

Proof. From (8) note that∫ ∣∣∣∣ ∂

∂ηi
φy(η)

∣∣∣∣ fo(y|η)λ(dy) =
∫ ∞

−∞

∣∣∣∣σ−1V ′
(
yi − ηi

σ

)∣∣∣∣σ−1ρ

(
yi − ηi

σ

)
dyi,

where ρ(x) = eV (x). The integral on the rhs is in fact equal to 2σ−1
∫∞
0

V ′(x)ρ(x)dx =
2σ−1ρ(0) (since ρ′(x) = V ′(x)ρ(x)), and we obtain the result since the latter does not
depend on η.

Since K0〈α(n)〉p is the error in the FM (with the observation operator in (3)),

measured in the same units as the yjs, note from (9) that K0〈α(n)〉p
σ is the relative error

in the numerical FM with respect to the standard error in the observations σ. It makes
much sense to measure K0〈α(n)〉p with respect to σ, i.e. the proportion of numerical

error in the FM w.r.t the error in the observations. Note that K0〈α(n)〉p
σ is unit free. In

the usual case of independent Gaussian errors, with known variance σ2, ρ(x) = 1√
2π

e−
x2

2

and ρ(0) = 1√
2π

.

If we let the EABF ≤ b, and for example b = 1
20 = 0.05, we expect nearly no

difference in the numerical and the theoretical posterior. If we set the error in the FM
K = K0〈α(n)〉p then we require ρ(0)Kσ m < b, that is, we need the numerical error in
the FM in (3) to satisfy

K <
σ

m

b

ρ(0)
. (10)

Our suggested procedure is to run the solver, including an after-the-fact error esti-
mate (or a posteriori error estimate, we use after-the-fact given the conflict of terms
with the Bayesian jargon, see Quarteroni and Valli, 2008; Iserles, 2009, for example),
that is, after running our solver to evaluate Fα(n)(θ), an upper estimate K̂ of K is
obtained, for that particular θ value. If the error in the FM does not comply with the
bound in (10), then run the solver again with a finer discretization α(n). In passing,
we guarantee (3) for all θ ∈ Θ. Note that for ODEs, the RK45 method (Rungue-Kutta
order 5 method of Cash and Karp, 1990, for example) produces after the fact error es-
timates. More recently, the discontinuous Galerkin method for PDEs may include high
order solvers with after the fact error estimates (Di Pietro and Ern, 2011; Hesthaven
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and Warburton, 2007). In general, error estimates for PDEs are much harder to obtain,
and the usual strategy is to consider adjoint-based methods.

The numerical posterior distribution, including the approximate likelihood fn(y|θ)
and the EABF bound is therefore

π(θ|y) ∝ σ−m
m∏
j=1

ρ

(
yj −Hj(Fα(n)(θ))

σ

)
π(θ),

subject to ||H(F(θ))−H(Fα(n)(θ))|| < K = σ
m

b
ρ(0) (e.g. b = 1

20 ).

A common problem in Bayesian UQ is that we also need to approximate the prior
π with an approximate sequence of priors πk. For example, π is a theoretical infinite
dimensional prior and πk are finite dimensional approximations. To choose a specific
prior πk Theorem 3.1 may be easily extended, resulting in the same bound for the EABF
adding the term ||πk − π||TV . However, many details need to be considered before this
bound is of any theoretical or practical use, as for example, the validity of the total
variation metric, the sense in which πk tends to π etc. These problems involve many
technical details and are matters of current research (Stuart, 2010; Dashti and Stuart,
2016; Bui-Thanh and Ghattas, 2014; Hairer et al., 2014; Zhou et al., 2017; Scheichl
et al., 2017; Ghosal and van der Vaart, 2017).

4 Examples

In Sections 4.1 and 4.2 we present two examples considering Bayesian UQ problems
for 1D and 2D heat equations, respectively. Using our bound in (3), we compare the
resulting posterior distribution to illustrate our approach’s performance.

4.1 A 1D heat equation inferring the thermal conductivity

Let us return to the thermal conductivity problem for the stationary heat equation in
1D, briefly mentioned in Section 1. Namely

− d

dx

(
a (x)

du (x)

dx

)
=f(x), x ∈ (0, 1) , (11)

subject to Dirichlet boundary conditions u (0) = u (1) = 0, with forcing term f (x) =
sin (πx) and thermal conductivity a(x) that varies with the space parameter x. Here, the
functions a and f are assumed to be continuous on [0, 1] and 0 < α0 ≤ a(x) ≤ α1 < ∞.

In this example, the FM is not available analytically, and a numerical FM is used.
We use an error estimation in the FM to bound the EABF.

The numerical solution of (11) is computed using the Finite Element Method (FEM),
which allows us to calculate a local error estimation in the L2 norm (see Babuška and
Rheinboldt, 1978, for more details), given by

‖uh − u‖L2(Ii)
=

(∫ xi

xi−1

(uh − u)
2
dx

)1/2

≤ h2

π2aimin

‖r‖L2(Ii)
, i = 1, . . . , n,
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where n is the number of elements, uh the numerical solution with step size h, Ii =

[xi−1, xi], r(x) = f(x) + d
dx

(
a(x)duh(x)

dx

)
is the residual and

aimin = min
x∈Ii

a(x) = a

(
xi + xi−1

2

)
(1 +O(h)) as h → 0.

Then, the error estimation K̂0 is computed by

K̂0 = max
Ii

h2

π2aimin

‖r‖L2(Ii)
, i = 1, . . . , n. (12)

The inference problem is the estimation of the function a(x) = exp(b(x)) given
observations of uj = u(xj) at fixed locations xj , j = 1, . . . ,m. Certainly, the theoretical
and the numerical FMs are continuous.

We simulate a synthetic data set with the true thermal conductivity is a (x) =
k0 − r k0

1+exp(−xa+ a
s )
, and error model yj = u (xj) + σεj , where εj ∼ N (0, 1), with the

following parameters k0 = 5, r = 0.9, a = 20, s = 2 and σ = 0.0005 (to maintain a
0.01 signal-to-noise ratio). The data are plotted in Figure 1(b). We consider m = 30
observations at locations xj regularly spaced between 0 and 1.

In order to define the parametric space, the function a is represented as a third-order
b-spline that passes through the set of points {ai}ki=0, where ai = exp(b(xi)). Therefore,
the parameter space is defined by θ = {bi}ki=0, where bi = b(xi). In this case, since the
FEM used is numerically demanding we keep the prior truncation fixed to k+1 terms;
namely the control points {ai}ki=0, at locations {xi}ki=0, for the third-order b-spline. In
this example we take k = 20.

Regarding the prior distribution for the parameters {bi}ki=0, we define their prior
using a Gaussian Markov random field (GMRF) with zero mean and sparse precision
matrix (inverse-covariance), encoding statistical assumptions regarding the value of each
element bi based on the values of its neighbors (see details in Bardsley and Kaipio,
2013). We restrict the support of −∞ < β1 ≤ b(x) ≤ β2 < ∞, this implies that
ai = exp(bi) ∈ [exp(β1), exp(β2)]. Then the parameter space is compact and there
exists a global bound for (12), complying with (3).

With the standard error and sample size used, calculating the error bound for the
Forward Map (FM) as stated in (10), we require K̂0 < 2.1× 10−6. To sample from the
posterior distribution, we use the t-walk (Christen and Fox, 2010).

Regarding the numerical solver, we begin with a relatively large step size h = 0.02
(considering n = 50 elements in the FEM) and start the MCMC. At each iteration
the FM is first computed along with its error estimation K̂0. If the solution uh does
not satisfy the estimated global bound, i.e. K̂0 > 2.1 × 10−6, we increase the number
of elements by 50 (h = 1/(n + 50)), until the bound is met. For h = 0.0066, n = 150
elements in the FEM, the bound is achieved for all iterations. For comparisons, a smaller
grid is considered with h = 0.002, n = 500 elements. The results are shown in Figure 1.
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Figure 1: (a) The true conductivity a(x) (black), the posterior mean with n = 150
elements (red) and n = 500 elements (green) in the FEM. (b) The exact solution u(x)
(black), the posterior mean with n = 150 elements (red) and n = 500 elements (green).
Shaded areas represent the uncertainty in the model fit, as draws from the posterior
distribution, using 150 elements (blue) and 500 elements (yellow). Note that, if we use
a smaller step size than that required by the bound in (10), results are basically the
same simply adding CPU time.

We took 50,000 iterations of the t-walk, the MCMC mixes quite well. With n = 150
the sampling took 3 min and with n = 500, 16 min; in a standard 2.6 GHz processor
computer. As seen in Figure 1 the conductivity is recovered and taking n = 500 elements
in the FEM results in basically the same posterior as for only n = 150, which already
comply with the EABF bound, only resulting in unnecessary CPU effort.

4.2 A 2D heat equation inferring the initial condition

In this example, we consider a more complex 2D PDE inverse problem. The FM is
available analytically, and a numerical FM is also used for comparisons. In this case,
the numerical error is directly calculated, and we infer only two parameters.

We present a 2D heat equation problem to determine the initial conditions from
observations of transient temperature measurements taken within the domain at a time
t = t1. The heat transfer PDE is given by

∂u

∂t
= αΔu, in D = (0, 1)× (0, 1) , (13)

u(x, y, t) = 0 on ∂D,

u(x, y, 0) = f (x, y) .

Taking the forcing term f (x, y) = b sin (πx) sin (πy) + c sin (2πx) sin (πy) as initial con-
dition, the PDE has an analytical solution

u(x, y, t) = b exp
(
−2απ2t

)
sin (πx) sin (πy) + c exp

(
−5απ2t

)
sin (2πx) sin (πy) .
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Figure 2: Heat equation in 2D, (a) exact solution at t = t1, (b) numerical solution
using finite element method with FEniCS with mesh 40 × 40 with Δt = 0.067 and (c)
numerical solution with an additive Gaussian noise with variance σ = 0.3 and data
point locations.

A numerical solution of the boundary value problem represented in (13) is also com-
puted using the Finite Element Method (FEM) within FEniCS (Martin et al., 2015),
which allows us to calculate the error in the numerical solver using the exact solu-
tion.

The inferential problem is to estimate θ = (b, c) given measurements of u at time
t1 = 0.3. A priori we took independent truncated Gamma distributions for b and c
with parameters (2, 0.7) and (2, 0.4) respectively, both restricted to [0, 8]. Certainly, the
theoretical and the numerical FMs are continuous, and since the support is compact we
may conclude that the error bound in (3) exists for all θ.

We simulate a synthetic data set with the error model

Yi = u(xi, yi, t1) + σεi,

where εi ∼ N (0, 1), i = 1, . . . ,m, σ = 0.3 (using a signal to noise ratio of 5%), with
b = 3 and c = 5. The data are plotted in Figure 2(b). We consider m = 25 observations,
(xi, yi), i = 1, 2, . . . ,m regularly spaced on D. Since we have an analytic solution, if we
run the PDE solver we may calculate the maximum absolute error, K0, exactly. The
error bound for the FM as stated in (10) is � 0.0015. To sample from the posterior
distribution, we also use the t-walk (Christen and Fox, 2010).

Regarding the numerical solver we start with a large step size of Δx = Δy = 0.1
and Δt = 0.268, and calculate K0. If the solution does not comply with the bound, that
is, if K0 > 0.0015, a new solution is attempted by reducing the step-size in Δx, Δy and
Δt by half, until the global absolute errors are within the bound, i.e., K0 � 0.0015. The
resulting mesh is Δx = Δy = 0.025 and Δt = 0.067.

We compare the above FEM numerical FM with the exact FM, with 250,000 itera-
tions of our MCMC. The results are shown in Figure 3 and in Table 1. The differences
observed in both results may be attributed to the Monte Carlo sampling.
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Figure 3: Comparison between numerical (blue) a theoretical (magenta) posteriors for
both parameters in the initial conditions of the 2D heat equation. The prior, in this
scale, appears in green.

b c

True 3.0 5.0
PM-Exact 2.9396 5.0966
PM-FEM 2.9377 5.0969

Table 1: Comparison of the Posterior Mean for parameters b and c using the exact FM
and the FEM approximate FM..

5 Discussion

The generalization of results from Capistrán et al. (2016) to a priori statements and
Banach parameter spaces makes our posterior error control strategy more feasible, gen-
eral, and applicable. Our results lead to the error bound for the FM’s error in (10) that
is quite simple to calculate, provided after-the-fact error estimates of the FM numerical
approximation are available. Here we presented two examples. We have experimented
with several others. In all cases, using (10) the numerical error in the posterior was
controlled successfully, leading to a negligible increase in posterior numerical precision
if a more precise FM was considered. This, in turn, may result in CPU time save, as
cheaper/rougher solvers may be used.

We have not discussed the scenario when error parameters σ are not known and/or
there is correlation in the data. In this case, we may consider that a priori θ and σ are
independent, a correlation structure for y, and equivalent results should follow; this was
discussed in a previously unpublished version of this manuscript but not here (Christen
et al., 2016). We only need to prove that the new likelihood follows assumption 2.1, in
particular, that it is bounded λ-a.s.

In general, one needs to decide, sooner or later, a discretization level n. Although
there are multilevel methods that work with several discretizations simultaneously
(Cliffe et al., 2011; Katsiolides et al., 2018), even, in that case, one nevertheless needs, a
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priori, a sense of what is a large or a small FM error. Our bound in (10) is an attempt to
provide precisely that, a sense of what is a large or a small FM error in the perspective
of the Bayesian inverse problem at hand, considering the noise level in the data (σ) and
the sample size.

Since the parameter θ in many UQ applications is an unknown function, one may
use a Bayesian nonparametric approach to estimate θ (BNP, see, for example Müller
et al., 2015, chap. 4), using a prior measure on a set of regressors with the machinery
of BNP (see Giordano and Kekkonen, 2020, and references therein).

We have not discussed here the problem of model fit/model adequacy since we
assumed from the onset that the actual distribution for the data y is Z(y). The question
of model adequacy is always present in applications since, indeed “all models are wrong”
and certainly, it is a concern in inverse problems and computer experiments (Kennedy
and O’Hagan, 2001). Generalizing our results to the scenario where the actual sampling
distribution is Z∗(y), different from Z(y), is an interesting next step but is left for future
research.

Note that decreasing FM solver precision can only be done within the stable regime
of the solver used. Moreover, in real case applications, increasing the mesh size or
any mesh refinements may come at a great coding effort, for example, in a large scale
3D geothermal inversion (Cui et al., 2011). Our approach only makes sense in the
case where working with different discretizations for the FM is computationally feasi-
ble.
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