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R∗: A Robust MCMC Convergence Diagnostic
with Uncertainty Using Decision Tree Classifiers

Ben Lambert∗ and Aki Vehtari†

Abstract. Markov chain Monte Carlo (MCMC) has transformed Bayesian model
inference over the past three decades: mainly because of this, Bayesian inference
is now a workhorse of applied scientists. Under general conditions, MCMC sam-
pling converges asymptotically to the posterior distribution, but this provides no
guarantees about its performance in finite time. The predominant method for
monitoring convergence is to run multiple chains and monitor individual chains’
characteristics and compare these to the population as a whole: if within-chain and
between-chain summaries are comparable, then this is taken to indicate that the
chains have converged to a common stationary distribution. Here, we introduce
a new method for diagnosing convergence based on how well a machine learning
classifier model can successfully discriminate the individual chains. We call this
convergence measure R∗. In contrast to the predominant R̂, R∗ is a single statistic
across all parameters that indicates lack of mixing, although individual variables’
importance for this metric can also be determined. Additionally, R∗ is not based
on any single characteristic of the sampling distribution; instead it uses all the
information in the chain, including that given by the joint sampling distribution,
which is currently largely overlooked by existing approaches. We recommend cal-
culating R∗ using two different machine learning classifiers — gradient-boosted
regression trees and random forests — which each work well in models of different
dimensions. Because each of these methods outputs a classification probability, as
a byproduct, we obtain uncertainty in R∗. The method is straightforward to im-
plement and could be a complementary additional check on MCMC convergence
for applied analyses.

1 Introduction

Markov chain Monte Carlo (MCMC) is the class of exact-approximate methods that has
contributed most to applied Bayesian inference in recent years. In particular, MCMC
has made Bayesian inference widely available to a diverse community of practitioners
through the many software packages that use it as an internal inference engine: from
Gibbs sampling (Geman and Geman, 1984), which underpins the popular BUGS (Lunn
et al., 2000) and JAGS (Plummer et al., 2003) libraries, to more recent algorithms: for
example, Hamiltonian Monte Carlo (HMC) (Neal et al., 2011), the No U-Turn Sam-
pler (NUTS) (Hoffman and Gelman, 2014), and a dynamic HMC variant (Betancourt,
2017), which Stan (Carpenter et al., 2017), PyMC3 (Salvatier et al., 2016), Turing (Ge
et al., 2018), TensorFlow Probability (Dillon et al., 2017) and Pyro (Bingham et al.,
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2019) implement. MCMC methods are currently the most effective tools for sampling
from many classes of posterior distributions encountered in applied work, and it seems
unlikely that this trend will change soon.

Its importance in applied scientists’ toolkits means it is essential that MCMC is
used properly and with adequate care. A cost of automated inference software is that
it is increasingly easy to regard MCMC as oracular: giving uncompromised views onto
the posterior. Because of this, software packages (Stan (Carpenter et al., 2017), for
example), go to great lengths to communicate to users any issues with sampling.

The most important determination of whether MCMC has worked is how closely
the sampling distribution has converged to the posterior (Brooks et al., 2011). MCMC
methods are thus created because of an asymptotic property: that given an infinite
number of draws, their sampling distribution approaches the posterior (under general
conditions). Although the guarantees are asymptotic, MCMC estimates can have neg-
ligible bias with only a relatively small number of draws.

The one diagnostic method for determining whether practical convergence has oc-
curred relies on the fact that the posterior distribution is the unique stationary distri-
bution for an MCMC sampler. Therefore, it would appear that, if an MCMC sampling
distribution stops changing, then convergence has occurred. Unfortunately, anyone who
uses MCMC knows that it is full of false dawns: chains can easily become stuck in areas
of parameter space, and observation over short intervals mean the sampling distribution
appears converged (Gelman and Rubin, 1992b). Like furious bees trapped in a room of
a house (Lambert, 2018b), MCMC samplers may fail to move due to the narrow gaps
that join neighbouring areas. With MCMC, absence of evidence of new areas of high
posterior density is, time and again, not evidence of their absence.

To combat this curse of hindsight, running multiple, independent chains, which have
been initialised at diverse areas of parameter space is recommended (Gelman and Ru-
bin, 1992a). If the chains appear not to “mix” – a term essentially meaning that it is
difficult to resolve an individual chain’s path from the mass of paths overlaid on top of
one another – they are yet to converge. This approach makes it less likely that faux-
convergence will occur due to chains becoming stuck in an area of parameter space,
and running multiple chains is standard practice in applied inference (Lambert, 2018a).
The predominant approach to quantitatively measuring this mixing is to compare each
chain’s sampling distribution to that of the population of chains as a whole: specifi-
cally, R̂ – the main convergence statistic used – compares within-chain variance to that
between-chains (Gelman and Rubin, 1992a). If these variances are similar, R̂ ≈ 1, and
chains are deemed to have mixed. Recently, Stan has adopted more advanced variations
on the original R̂ formula: for example, splitting individual chains in two to combat poor
intra-chain mixing (Gelman et al., 2013); and using ranks of parameter draws rather

than the raw values themselves to calculate R̂ (Vehtari et al., 2020). Additionally, there
has been more focus on ensuring that the effective sample size (ESS), a measure of
sample quality (see, for example, Lambert (2018a)), is sufficient, and accordingly, new
measures of this quantity have been proposed (Vehtari et al., 2020) and adopted (Car-
penter et al., 2017). Collectively, these statistics help alert users of MCMC to issues
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with sampling (that typically echo issues with the model) meaning that all is not hunky
dory.

Here, we introduce R∗, a new convergence diagnostic metric. This statistic is built
on the intuition that, if chains are mixed, it should not be possible to discern from
a draw’s value the chain that generated it. Rephrased, it should not be possible to
predict which draws come from which chain. In this vein, we use machine learning (ML)
classifiers to measure convergence. Specifically, we train classifiers to predict the chain
that generated each observation. By evaluating the performance of classifiers on a held-
out test set, this provides a new convergence metric. To maximise predictive accuracy,
our chosen classifiers naturally exploit differences in the full joint distributions between
chains, which means they are sensitive to variations across the joint distribution of
target model dimensions unlike most existent convergence diagnostics. Our statistic,
unlike its R̂ cousins, is scalar-valued for multivariate distributions: one model provides
a single R∗, whereas R̂ has separate values for each univariate marginal distribution.
However, the ML classifiers we use can straightforwardly be interrogated to estimate
which parameters were most important for generating predictive accuracy.

There are, of course, a huge variety of possible ML classifiers. For a method to be
useful and widely adopted, however, it needs to satisfy a number of criteria: first, across
a range of examples, it should consistently be able to detect poor MCMC convergence;
second, the ML classifier should be trainable in a reasonable amount of time; lastly,
the methods should be tuned (via their hyperparameters) so as to be standardised, so
that R∗ computed by one analyst is comparable to that computed by another. Here, we
perform comparisons across some of the most popular methods in the ML literature and
recommend two tree-based ML classifiers: gradient-boosted regression trees (Friedman,
2001; Greenwell et al., 2019) (“GBM”) and random forest classifiers (Breiman, 2001)
(“RF”). Both of these methods performed consistently well across our range of examples,
and the models were relatively efficient to train. We recommend calculating R∗ using
both of these methods: GBMs tend to perform best for low dimensional cases; in moder-
ate dimensional cases upwards, RF dominates. This difference in performance is partly
due to hyperparameter tuning: echoing previous results in the literature (Boehmke and
Greenwell, 2019, Chapters 11&12), our results show that GBMs, in general, are more
sensitive to hyperparameter choice than are RFs. For a GBM classifier to perform well in
higher dimensions, more rounds of boosting are required, which substantially increases
training time; instead, we fix the hyperparameters of GBMs to specific values to ensure
practical usefulness. For RF classifiers, empirical studies have demonstrated reliable
heuristics for selecting robust hyperparameters (Bernard et al., 2009), and, in any case,
across our set of test cases, these classifiers are relatively insensitive to hyperparameter
choice.

For the types of problem we tested, R∗ calculation is of a speed comparable to some
of the newer R̂ measures calculated (typically O (seconds) to calculate), although for
models with 10,000s of parameters and many iterations, the time taken is longer. In
addition, since ML classifiers can output predicted class probabilities, we obtain uncer-
tainty measures for R∗, which we find provides a useful summary of MCMC convergence.
R∗ can straightforwardly be incorporated into existing software libraries to provide a
complementary convergence metric alongside more established measures.
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The structure of this paper is as follows: in §2, we describe in detail the method for
calculating R∗ and its uncertainty; in §3, we examine the performance of R∗ across a
range of scenarios. Code for reproducing the analyses is provided at https://github.
com/ben18785/ml-mcmc-convergence.

2 Method

If Markov chains have not mixed, it is possible to guess (with more accuracy than
chance) to which chain a draw belongs from its value. This is possible if there are
differences in the sampling distribution for any dimension in the target distribution
(Figure 1): in this case, if the marginal distributions differ between chains, this informa-
tion can be used to predict which chain a draw belongs to. It is also possible to predict
the chain that generated a given draw if there are differences in the joint distribution of
two (or more) dimensions of the target, even if the marginal distributions are the same
(Figure 2).

Figure 1: Chain prediction based on the marginal distribution of a single
parameter. A shows the path of two chains that have mixed (with marginal distribution
to the right of panel); B shows two chains that have not mixed.

These two cases, whilst simple, illustrate the basis of our approach. To determine if
a set of Markov chains has converged to the same distribution, we train a supervised
ML model to classify the chain to which each draw belongs. By evaluating its perfor-
mance on a separate test set, we delineate whether chains have mixed based on whether
classification accuracy is above the “null” case, where accuracy is 1/N , and N is the
number of chains. By taking the ratio of classification accuracy to this null accuracy,
we obtain a statistic that is interpretable in a similar way to R̂ (Vehtari et al., 2020).
In a nod to this established statistic, we call our statistic R∗, and, by design, R∗ ≈ 1
signifies convergence. Algorithm 1 gives a recipe for calculating R∗.

To identify promising candidate ML methods, we run a series of experiments using
a number of popular classifiers (see §S7.1). Two methods performed consistently well
across our examples: gradient-boosted regression trees (also known as a type of gradient-
boosted machine or GBM, introduced in Friedman, 2001) and random forest classifiers
(Breiman, 2001) (“RF”). Both of these approaches are based on decision trees: GBMs
use an iterative approach known as “boosting”, where each subsequent decision tree aims

https://github.com/ben18785/ml-mcmc-convergence
https://github.com/ben18785/ml-mcmc-convergence
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Figure 2: Chain prediction based on the joint distribution of two parameters
where each chain’s marginals are the same. A shows the path of two chains that
have mixed resulting in similar sampling distributions (to the right and above each
panel); B shows two chains that have not mixed.

to predict the residuals from the previous one; RFs use an approach known as “bagging”
which trains decision trees on many bootstrapped copies of the training data, yielding a
collection of independently trained trees whose individual decisions, when aggregated,
yield a class. For the implementations of these classifiers, we use those available in R’s
“Caret” package (Kuhn et al., 2008), which, in turn, uses the “gbm” (Greenwell et al.,
2019) and “randomForest” (Liaw and Wiener, 2002) packages.

The data for each chain have dimensions: X ∈ R
S × R

K , where S is the number of
draws taken (here assumed the same for each chain, but this is not a binding constraint),
and K is the number of parameters. We split each chain’s draws into randomly divided
training and testing sets: here, we use 70% of draws for training and 30% for testing.
Both approaches typically took O (seconds) on a desktop computer to execute training
then prediction on a testing set for most models we consider in §3.

Since different posteriors present different challenges to MCMC samplers, the nature
of classification boundaries is problem-specific. Because of this, there is no unique opti-
mal classifier across all problems, and the performance of the algorithms we investigate
depends on their hyperparameters (see §S7.2). GBM models have a number of hyper-
parameters and have previously been demonstrated to be hard to tune (Boehmke and
Greenwell, 2019, Chapter 12). To ensure practical run time for this method, we suggest
running it using a default hyperparameter set: an interaction depth of 3, a shrinkage pa-
rameter of 0.1, 10 observations being the minimum required for each node, and that 50
trees be grown. This choice of hyperparameters was chosen to present a balance between
training cost and classification accuracy, producing an R∗ that was a stringent measure
of convergence — in general, more stringent than R̂. RFs are generally less sensitive
to variation in their single hyperparameter: mtry, the size of the subset of all features
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Algorithm 1 R∗ calculation

Given chain-wise draws from the target, {X{1}, X{2}, . . . , X{N}} and a test set length,
Stest:
for m = 1 to N do

Create train and test sets by random-sampling (w/o replacement), X{m} →
{X{m}

train, X
{m}
test }

end for
Stack Xtrain = (X

{1}
train, X

{2}
train, . . . , X

{N}
train)

T

Stack Xtest = (X
{1}
test, X

{2}
test, . . . , X

{N}
test )

T

Train ML model to classify chain id from any draw, x: ML(x|Xtrain) → c
for s = 1 to Stest do

Obtain test draw, x{s} = Xtest(s) ∈ R
K

Predict chain id, c{s} = ML(x{s}|Xtrain)
Compare with actual id, cs: a{s} = 1(c{s} = cs)

end for
Calculate predictive accuracy, ā = 1

Stest

∑Stest

s=1 a{s}

Calculate ratio to null model accuracy, R∗ = ā/(1/N) = Nā
return R∗

over which to search for an optimal split (Boehmke and Greenwell, 2019, Chapter 11).
Our experiments replicate these results (see §S7.2), and we suggest running RFs using
the heuristic mtry =

√
K, which has previously been shown to be a choice resulting in

robust classification performance (Bernard et al., 2009; Boehmke and Greenwell, 2019).
Unless otherwise stated, in the examples explored in §3, the hyperparameters for these
two classifiers were set at these defaults.

From a classifier fit, predicted chain probabilities can also be obtained, which we
leverage to produce an uncertainty distribution for R∗. Algorithm 2 gives a recipe
for generating draws from this distribution, which we now elaborate on in words. For
each draw, s, in our testing set, classifiers output a simplex of chain probabilities:

p{s} = (p
{s}
1 , p

{s}
2 , . . . , p

{s}
N ), which forms a categorical distribution that can be sampled

from to yield a unique chain prediction, c{s}. By comparing this classification to the
true classification, cs, we obtain a binary measure, a{s} = 1(c{s} = cs), of whether
this prediction was correct. We repeat this process for each draw in the testing set,
generating a = (a{1}, a{2}, . . . , a{Stest}), whose average yields a single R∗{i} = Nā
estimate for iteration i. We then iterate this process, for i = 1, 2, . . . , I, producing a set
of (R∗{1}, R∗{2}, . . . , R∗{I}), which collectively represent a distribution for R∗.

3 Results

To illustrate the versatility of R∗, we use a range of examples that demonstrate how
this statistic fares across a range of scenarios. Table 1 summarises the examples and
provides a rationale for their inclusion. The experiments not detailed in the main text
are briefly described in §3.5 and more fully in the relevant sections given in Table 1.
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Algorithm 2 Procedure to generate I draws of R∗

Given test data Xtest, number of chains N , number of iterations I, and fitted
model, ML(x|Xtrain) → (p1, p2, . . . , pN ):
for i = 1 to I do

for s = 1 to Stest do
Obtain test draw, x{s} = Xtest(s) ∈ R

K

Predict chain id probabilities, (p
{s}
1 , p

{s}
2 , . . . , p

{s}
N ) = ML(x{s}|Xtrain)

Draw a chain id, c{s} ∼ categorical(p
{s}
1 , p

{s}
2 , . . . , p

{s}
N )

Compare with actual id, cs: a{s} = 1(c{s} = cs)
end for
Calculate predictive accuracy, ā = 1

Stest

∑Stest

s=1 a{s}

Calculate ratio to null model accuracy, R∗{i} = ā/(1/N) = Nā
end for
return (R∗{1}, R∗{2}, . . . , R∗{I})

In all cases where R̂ was calculated, unless otherwise stated, we followed the approach
in Vehtari et al. (2020) by calculating it as the maximum of rank-normalised split-R̂

and rank-normalised folded split-R̂: for simplicity, we refer to this as rank-normalised
split-R̂.

3.1 Heterogeneity in chain variance: autoregressive example

In this section, we use a simple example to illustrate how R∗ works. Specifically, we show
how R∗ can detect heterogeneous variance across Markov chains. This example aims to
illustrate the basic mechanics behind how R∗ works, so we use only the GBM classi-
fier here. This section also investigates the sensitivity of this measure: across different
training and testing sets (§3.1.2) and different draws from the ML model-predicted prob-
ability simplex (§3.1.3); and to differing numbers of chains (§3.1.4). The experiments we
use to study these issues are all of similar form to the following data generating process:
four Markov chains are generated, where each samples from an autoregressive order 1
(AR(1)) process of the form,

Xt = ρXt−1 + εt, (3.1)

where εt
i.i.d.∼ normal(0, σ), ρ = 0.3 and t = 1, 2, . . . , 2000. Three of the chains share

the same σ = 1, whereas the other chain has σ = 1/3, so that it has 1/3 of the
(unconditional) standard deviation of the others.

3.1.1 Performance of R∗

To illustrate the consistency of R∗, we performed 1000 replicates where, in each case,
we generated four {Xt} series as described (i.e. where one chain has a lower variance).
We then fit a GBM to a labelled training set. The fitted model is then used to classify
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Example Relevance Section
Autoregressive Examining R∗ and sensitivities to its calculation 3.1

Detecting heterogeneous chain variance using R∗ 3.1.1
Stochasticity in R∗ 3.1.2
Generating R∗ uncertainty measure 3.1.3
Sensitivity of R∗ to number of chains 3.1.4

Multivariate normals Detecting convergence in joint distributions 3.2
Unconverged joint distribution in bivariate normal 3.2.1
High correlations between dims in 250D normal 3.2.2
Measuring contributions of variables to poor convergence 3.2.3

Cauchy Detecting convergence for long-tailed distributions 3.3
Comparing R∗ and existing measures to 3.3.1
objective convergence

Eight schools model Hierarchical Bayesian model slow convergence 3.4
Wide multivariate normal Detecting convergence when # draws ∼ # dims S3
Non-stationary marginals Detecting time-varying sampling distributions S4

Trends in mean across all chains S4.1
Trends in mean in a single dimension S4.2
Trends in covariance S4.3
Sensitivity of R∗ to chain persistence S4.4

Ovarian and prostate models Bayesian models with many parameters S5
and multimodal posteriors

Discrete Markov model Evaluating R∗ on discrete parameter models S6
Small state-space S6.1
Large state-space S6.2

Various Sensitivity of R∗ to ML model S7
Comparing different ML classifiers S7.1
Sensitivity of R∗ to GBM and RF hyperparameters S7.2

Multivariate normal &
Student-t dists.

Comparing GBM and RF classifiers S8

Detecting convergence in joint distributions S8.1
Tail convergence S8.2

Table 1: Summarising the example problems and reasons for their inclusion.

draws in an independent test set according to the chain which generated them. For each
replicate, we then calculated R∗ as described in Algorithm 1.

In Figure 3A, we show how a GBM fitted to one such replicate dataset classifies
observations according to a draw’s value. Unsurprisingly, since the fourth chain has a
smaller variance, observations close to zero are likely to be classified as being generated
by this chain.

In Figure 3B, we show that R∗ > 1 for all replicates, indicating that the chains
had not converged in all cases. In Figure 3C, we show rank-normalised split-R̂ for each
replicate; as for R∗, this metric indicates the chains had not converged in all replicates
because R̂ > 1.01.

3.1.2 Stochasticity in R∗

Unlike R̂, R∗ is a stochastic convergence measure due to randomness in creating train-
ing and testing sets (essentially a form of sampling variation) and randomness in the
methods used to train the ML model. This means that even if the same sample is used,
R∗ will return a different value each time it is calculated if the pseudorandom seed is
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Figure 3: Autoregressive example. A shows how the GBM’s classifications vary ac-
cording to the draw’s value for an example model fit; B shows R∗ values generated
by Algorithm 1 across 1000 replicate datasets; C shows corresponding rank-normalised
split-R̂ values for each of the 1000 replicates; and D shows 1000 R∗ samples as generated
by Algorithm 2 for two series: the “unmixed” dataset being the same as used for figures
A-C; the “mixed” dataset where all chains have the same distribution as described in
§3.1. Note that, in D, only a single series of each series type is used to generate distri-
bution. All examples used a GBM for classification using the default hyperparameter
values given in §S2.

not fixed. To probe the extent of this randomness, we generated data using the same
process as in §3.1 but now using varying sample sizes, including samples consisting of
500, 1000, 2000, 4000 and 8000 draws. For each dataset, we computed R∗ on it 100
times, allowing the pseudorandom seed to vary between calculations. We stress that,
for each sample size, we used the same dataset (so there were 5 datasets created in total
– one for each sample size), so stochasticity comes from R∗ calculation, not that from
the data generating process.

In Figure 4, we show the results of this study. In this figure, the horizontal axis
shows the sample size, and the vertical axis, the value of R∗ in each repetition. This
shows that as the number of samples increased, variation in R∗ declined. At a sample
size of 500, there were four cases where R∗ < 1; in larger samples, there were none.
Intuitively, the reduction in sampling variation when composing training and test sets
from larger samples results in lower variability in ML model predictions. We also expect
that larger sample sizes should lead to higher R∗ values with lower variance, since more
training data leads to ML models with lower generalisation error. We may start to see
this here, since the median R∗ = 1.25 at a sample size of 8000 was greater than for the
smaller samples.

If randomness in R∗ calculation leads to different conclusions about convergence
being drawn, this would be problematic. One potential remedy for this is to repeatedly
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Figure 4: Autoregressive example: R∗ stochasticity. The horizontal axis shows
sample size; the vertical axis shows the value of R∗ calculated as per Algorithm 1 applied
to chains split into two halves. Grey points show the value of R∗ for each replicate (jitter
was added to point positions). Black points show the median R∗ value; upper and lower
whiskers show 2.5% and 97.5% quantiles. For each sample size, a single dataset was
created and used for all R∗ calculations.

calculate R∗ on a given sample, much as we have done here, and consider the distribution
of R∗ values computed. The computational cost of doing this may, of course, be unrea-
sonable. Instead, in §3.1.3, we consider an alternative approach based on bootstrapping
a single ML model’s predictions.

3.1.3 Uncertainty distribution for R∗

GBMs return a probability simplex for each draw indicating the probability that the
draw was generated by a given chain. We can use this simplex to generate a measure
of uncertainty in R∗ as detailed in Algorithm 2. We demonstrate this idea using two
datasets: one generated as described in §3.1, where one chain (out of four) has a lower
variance than the others (we call this the “unmixed” data); and another, where all chains
sample from the same distribution (we call this the “mixed” data). In Figure 3D, we show
the R∗ distributions in each case. For the unmixed data, the distribution has its bulk of
mass away from 1 indicating lack of convergence. For the mixed data, the distribution
is centred on 1 indicating convergence. In the mixed case, there are many draws where
R∗ < 1: these indicate that, in that particular draw from the probability simplex, chain
classification is actually worse than selecting a chain identification uniformly at random.
Much like how it is possible for R̂ < 1, this is a sample property, driven by the sampling
distribution of the categorical distribution defined by the probability simplex.

It is worth emphasising that the uncertainty distribution obtained by Algorithm 2
differs from that obtained from repeatedly calculating R∗ via Algorithm 1 as was done
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in §3.1.2. In Algorithm 2, variation in R∗ comes from sampling from the probability
simplex: if predicted chain probabilities are close to uniform, there will be greater un-
certainty in R∗. Repeatedly calculating R∗ by applying Algorithm 1 to the same dataset
yields a distribution whose width derives from sampling variation when forming train-
ing and testing sets and the stochasticity in training ML models. Collectively, these
differences mean that the two measures of uncertainty will differ.

There is an additional difference, though, in the central points of each distribution:
the distribution obtained by Algorithm 2 will, in general, have a lower mean than that
obtained by repeated application of Algorithm 1. To see this, note that the darker-
shaded R∗ distribution in Figure 3D was generated via Algorithm 2 and has a mean
around 1.07; the distribution shown in Figure 3B was generated by repeatedly recom-
puting R∗ using Algorithm 1 and has a mean closer to 1.22. This difference in mean
is expected since predictive performance when assigning chain identities stochastically
when sampling from the categorical distribution of the probability simplex (as is done
in Algorithm 2) will generally result in worse prediction than when assigning each chain
identity using whichever chain has the highest class probability (as is done in Algo-
rithm 1). Of course, we would prefer it if the uncertainty distribution generated by
Algorithm 2 had a mean closer to the one obtained by repeated application of Algo-
rithm 1. Nonetheless, in practice, we have found that the mean of the R∗ distribution
generated by Algorithm 2 provides a useful cheaper diagnostic.

3.1.4 Sensitivity to number of chains

We have so far focused on the sensitivity of R∗ to chain heterogeneity with a fixed num-
ber of chains: four. Since classification may become a harder problem when there are
more categories, we now demonstrate how R∗ (as calculated by Algorithm 1) performs
across various numbers of chains. For comparison, we also illustrate how the performance
of rank-normalised split-R̂ varies with number of chains. To do so, we consider an autore-
gressive example similar to that described in §3.1: where all chains bar one have σ = 1,
and the remaining chain has σ = 1/3. We consider cases with 2, 4, 8, 16, and 32 chains.
The other hyperparameters of the data generating process remain the same as in §3.1.

In Figure 5, we show the results of these simulations with 50 replicates at each
number of chains. On the horizontal axis, we show the number of chains, and on the
vertical axis, the value of each of the two convergence measures (R∗ in the left panel;

R̂ in the right panel). In general, both measures decline with chain count. For R∗, this

may be because it is harder to classify chains when there are more of them. For R̂, this
is because between-chain variance becomes relatively lower to that within them when
there are more chains, and only one of them differs in its marginal distribution. Across
the replicates we ran, median R̂ < 1.01 for 16 or more chains; a minimum of R∗ = 1.10
was obtained for 32 chains.

The decline of both of these measures when more chains are used hints that perhaps
a moving threshold for diagnosing convergence may be pertinent to avoid neglecting
those minority of chains with differing information. Here, however, we do not make
suggestions on what such guidelines could be and leave this for later work.
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Figure 5: Autoregressive example: sensitivity to number of chains. The hori-
zontal axis shows the number of chains used in the data generating process described
in §3.1.4. The vertical axis shows the value of R∗ as calculated by Algorithm 1 (left

panel) on chains split into two halves, and rank-normalised split-R̂ (right panel). Grey
points indicate the values of both convergence measures calculated for each replicate;
horizontal jitter has been added to points. The point-ranges shown indicate the 25%,
50% and 75% quantiles across 50 replicates at each number of chains.

3.2 Diagnosing convergence in joint distributions: multivariate
normal models

In this section, we illustrate how R∗ can diagnose convergence issues in the joint target
distribution.

3.2.1 Bivariate model

First, we consider a bivariate normal density. In all four chains, we use independent
sampling to generate 2000 draws from bivariate normal densities with means of zero;
in three of these chains, the covariance matrix is an identity matrix; in one chain,
the covariance matrix also has unit diagonal terms but has off-diagonal terms of 0.9,
indicating strong covariance between the two dimensions. By construction, all chains
target the same marginal distribution in each dimension, but the fourth chain has a
different joint distribution.

First, we use the code provided in Vehtari et al. (2020) to calculate rank-normalised

R̂ and two different ESS measures that aim to capture how well certain regions of
the posterior have been explored: these are known as bulk-ESS and tail-ESS. In all
cases, the various quantities were calculated based on chains split into halves. For both
dimensions, the two ESS measures were above 7000, and R̂ < 1.001, indicating no issues
with convergence.

Next, we estimate the R∗ distribution using Algorithm 2 using both GBM and RF
classifiers. These distributions are shown in Figure 6. The mean of the GBM-R∗ distri-
bution is 1.14, and >99% of R∗ draws are above 1; the mean of the RF-R∗ distribution
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Figure 6: Bivariate normal example. The distribution for R∗ across 1000 draws as
calculated using Algorithm 2 for both the GBM and RF classifiers.

was 1.27 and all draws were above 1. Collectively, these measures indicate that the
sampling distribution has not converged. By taking account of all the information in
the chains, R∗ is able to probe issues in joint distribution convergence which are missed
by measures that consider only marginals.

3.2.2 250-dimensional model

We next consider a more challenging problem – a 250-dimensional multivariate nor-
mal target where its precision matrix, A ∈ R

250 × R
250, is generated from a Wishart

distribution (Hoffman and Gelman, 2014). We assume that the Wishart distribution’s
degrees of freedom is 250, resulting in a distribution with high correlations between di-
mensions. We use Stan’s NUTS algorithm (Betancourt, 2017) to sample from this target
distribution and run the algorithm for two different iteration counts (each time across
4 chains): 400 and 10,000 (the latter thinned by a factor of 5). First, we used Stan to
sample from the “centered” parameterisation of this model, which is of the form,

x ∼ N (0,A−1), (3.2)

where x ∈ R
250. For each set of draws, we used Algorithm 2 with a GBM classifier to

generate an uncertainty distribution for R∗, which is shown in Figure 7A (the equivalent
plot for a RF classifier is similar and shown in Fig. S1). From the plot for the 400
iteration case, it is clear that convergence has not yet occurred since R∗ > 1 across
the bulk of this distribution. Even in the 10,000 iteration case, the R∗ distribution
remains stubbornly shifted a little rightwards of R∗ = 1 (its mean is 1.06): in this case,

R̂ < 1.01 for all parameters (Figure 7B), although 54% had bulk-ESS < 400 and 13%
of parameters had tail-ESS < 400 indicating issues with convergence (Vehtari et al.,
2020).

Rather than run the MCMC sampler for more iterations, we move to a “non-
centered” parameterisation, which introduces auxillary variables z ∈ R

250 that don’t
affect p(x) but facilitate sampling from it. This model has the form,

A−1 = LLT , x = Lz, zj ∼ normal(0, 1), for j = 1, 2, . . . , 250. (3.3)
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where L is the Cholesky decomposition of the covariance matrix, A−1. Figure 7A shows
the R∗ distribution resultant from 10,000 NUTS iterations in this case: now the dis-
tribution has mean R∗ = 1.00. Figure 7B shows the R̂ values for each x parameter in
this model, and, echoing the result for R∗, R̂ < 1.01 in all cases; further, bulk- and
tail-ESS > 400 for all parameters.

3.2.3 Variable importance

In GBMs, it is possible to calculate variable importance (see, for example, Friedman,
2001 and Greenwell et al., 2019), which allows us to determine which variables were
most informative for predictions. We now compare these with the more established
metrics R̂ and ESS. For a GBM fitted to the centered model of eq. (3.2) with 10,000
MCMC iterations (thinning by a factor of 5) for each chain, we plot in Figure 7C

variable importance (here high values mean a variable is more important) versus R̂
for all dimensions of the target distribution (including Stan’s lp quantity, shown as a
triangle). In this plot, there is a positive association between GBM’s variable importance

and R̂ (Spearman’s rank correlation: ρ = 0.17, S = 2185680, p < 0.01). In Figure 7D,
we plot variable importance versus two measures: bulk-ESS and tail-ESS, which both
exhibited a strong non-linear negative association (Spearman’s rank correlation: bulk-
ESS: ρ = −0.57, S = 4142470, p < 0.01; tail-ESS: ρ = −0.56, S = 4113709, p < 0.01).
Since none of these plots form perfect “lines” along which all the plotted points fall,
this illustrates that variable importance provides information complementary to R̂ and
ESS.

3.3 Infinite variance: Cauchy example

We next explore how R∗ can be used to determine convergence for distributions with
infinite variance. Like Vehtari et al. (2020), we first use Stan to sample from independent
standard Cauchy distributions for each element of a 50-dimensional vector x,

xj ∼ Cauchy(0, 1), for j = 1, . . . , 50. (3.4)

We call this parameterisation the “nominal” version of this model.

In addition, we also use Stan to sample from an “alternative” parameterisation of
the Cauchy, based on a scale mixture of Gaussians (Vehtari et al., 2020),

aj ∼ normal(0, 1), bj ∼ Gamma(0.5, 0.5), xj = aj/
√
bj . (3.5)

The distribution of the x vector is the same under both parameterisations, although the
thin-tailed (a, b) vectors define a higher dimensional posterior that improves sampling
efficiency.

In the top-left and top-middle panel of Figure 8, we show the R∗ distribution for
GBM and RF classifiers under both parameterisations. As shown in Vehtari et al. (2020),
the nominal parameterisation results in poor sampling efficiency due to its long tails,
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Figure 7: Multivariate normal example with 250 dimensions. A shows R∗ dis-
tributions obtained for two MCMC samples (of differing numbers of draws: 400 and
10,000) from the centered parameterisation (“cp”) and one from the non-centered ver-

sion (“ncp”; with 10,000 draws); B shows the rank-normalised split-R̂ values for all
parameters from the same MCMC runs as in A; C shows variable importance versus
R̂ for each parameter; and D shows variable importance versus bulk- and tail-ESS as
calculated by Vehtari et al. (2020). In A, 1000 R∗ draws by Algorithm 2 are shown for
each MCMC run. In plots C and D, horizontal jitter was added to the points and a
loess fit line with standard errors overlaid.

meaning that, after 1000 MCMC post-warm-up iterations (with 1000 warm-up itera-
tions discarded) across each of 4 chains, draws still contain information about chain
identity, and, accordingly, the R∗ distribution is shifted rightwards from R∗ = 1. The
alternative parameterisation fares better, and the R∗ distribution is nearer R∗ = 1,
yet its mean remains above this value. In the top-right panel of Figure 8, we show the
rank-normalised split-R̂ values across each of the 50 parameters for the same MCMC
runs. The nominal parameterisation has some parameters with R̂ > 1.01 indicating
non-convergence, whereas the alternative has R̂ < 1.01 for all parameters.

Since the R∗ distribution indicated non-convergence for both parameterisations, we
ran each model for sixty-times as long, although thinned by a factor of 3, resulting in
10,000 post-warm-up iterations across each of 4 chains. In the bottom row of Figure 8, we
show the results for these longer runs. In these, the alternative parameterisation now has
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Figure 8: Cauchy example. Rows show convergence results for MCMC runs with 1000
(top) and 10,000 (bottom; obtained by thinning iterations by a factor of 3) post-warm-up
iterations (each with half iterations discarded as warm-up) for each of 4 chains. Columns
show the R∗ distributions from GBM (left) and RF (middle) and rank-normalised split-

R̂ values across all parameters (right). Shadings indicate different model paramerisations
as indicated in legend.

an R∗ distribution centred on R∗ = 1 for the GBM classifier, although the RF classifier
R∗ distribution remains slightly rightwards of this target indicating that convergence
is nearer but more iterations are likely still required. Despite the added iterations, the
R∗ distribution from the nominal model remains stubbornly away from 1. The R̂ values
are all below 1.01 indicating convergence in both cases.

3.3.1 Measuring convergence objectively

To illustrate that R∗ provides a reliable metric for capturing convergence, we now calcu-
late a quantitative measure that captures how closely a sampling distribution matches
the target. One measure of distributional “closeness” is the KL-divergence, which, in
this case, could be used to measure the divergence from target to sampling distribution:
if the target distribution is known, fitting a kernel density estimator (KDE) to samples
allows an approximate (typically univariate) measure of KL-divergence to be calculated
for each dimension. The trouble is, for distributions like the Cauchy with fat tails, fit-
ting a KDE to the samples provides a noisy measure of the sampling distribution in the
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tails. This means that approximate KL-divergence is unreliable for these types of model.
We decided not to use the Kolmogorov-Smirnov (KS) test, since it is most sensitive to
differences between distributions around the median, whereas, here, we are interested in
behaviour in the tails. Additionally, we found that the Anderson-Darling and Cramér-
Von Mises tests (Faraway et al., 2019), which do not suffer the same shortcomings as the
KS, behaved equally erratically and provided measures that were hard to intuit. The
Wasserstein distance was also trialled but had great uncertainty due to the long-tails
of the Cauchy. Instead, we chose a measure of distributional discrepancy based around
similarity between target quantiles and sample-estimated equivalents. Specifically, we
calculate the R2 for the linear regression of actual quantile values on sample-estimated
quantiles, where, if R2 ∼ 1, the sampling distribution recapitulates well the target
quantities. In our example, we consider all percentiles: 0.1%, 0.2%, . . . , 99.8%, 99.9%
and calculate the mean R2 across all 50 dimensions.

In Figure 9A, we plot this quantile-R2 as a function of MCMC sample size for both
parameterisations of the Cauchy model. This shows that after c.10,000 iterations, the
alternative parameterisation approaches R2 ≈ 1; at the same number of iterations,
the nominal parameterisation still provides a poor measure of tail quantiles. Next, in
Figures 9B&C, we plot two measures of R̂, each calculated from splitting the 4 orig-
inal chains into two equal halves. The first of these measures is the rank-normalised
R̂ (Vehtari et al., 2020), which provides a separate measurement for each target di-
mension; in Figure 9B, we show how the maximum of this measurement across all 50
dimensions changes with sample size. After c.500 iterations, the alternative parame-
terisation achieves R̂ < 1.01 for all target dimensions, and, after c.10,000 iterations,
the nominal model achieves the same maximum R̂ value: in both cases, these sug-
gest convergence. The second measure is multivariate R̂ (Brooks and Gelman, 1998),
which, like R∗, yields a single measurement across all dimensions; Figure 9C shows
how this metric changes with sample size for both Cauchy model parameterisations.
After c.1800 iterations, multivariate R̂ < 1.01 for the alternative parameterisation,
whilst after 25,000 iterations, multivariate R̂ > 1.07 for the nominal parameterisa-
tion indicating more draws are needed. In Figure 9D, we plot R∗ against iteration
for both parameterisations and for both GBM and RF classifiers: these indicate that,
after 25,000 iterations, for the alternative model, R∗ ≈ 1.05 for the GBM classifier,
and R∗ ≈ 1.74 for the RF classifier; for the nominal model, R∗ > 2 for the GBM
classifier R∗ > 3 for the RF classifier: all these R∗ values suggest lack of conver-
gence. Finally, in Figures 9E&F, we plot the minimum across all the dimensions of
tail- and bulk-ESS calculated as described in Vehtari et al. (2020). After c.180 itera-
tions, the alternative parameterisation surpassed a tail-ESS of 400; after c.18,700, the
nominal parameterisation did the same. Both models were quicker to pass 400 bulk-
ESSs.

Comparing our measure of convergence that requires knowing the actual target dis-
tribution (quantile-R2; in Figure 9A), with the various heuristic measures, all show a
similar pattern: as sample size increases, the various statistics tend towards convergence.
The rate at which these converge differs though, and R∗ (Figure 9D) appears at least,
qualitatively, most similar to quantile-R2.
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Figure 9: Measuring convergence for the Cauchy model. A shows a measure of
convergence, the mean quantile R2, that requires knowing the target distribution; B
shows the maximum value of split-R̂ across each of the 50 dimensions of the target;
C shows the multivariate split-R̂ value; D shows the value of split-R∗ as calculated by
Algorithm 1 for both the GBM and RF classifiers; and E and F show tail- and bulk-ESS.
Horizontal dashed lines indicate recommended thresholds for each convergence statistic.

3.4 Hierarchical model: Eight schools model

We now examine a classic example used to highlight difficulties in performing inference
for hierarchical models: referred to as the “Eight schools” model (see Section 5.5 in
Gelman et al., 2013), which aimed to determine the effects of coaching on SAT scores
in eight schools.

The model can be parameterised in two ways, as described in Vehtari et al. (2020)
(and introduced in Van Dyk and Meng, 2001). The simplest way is referred to as the
“centered” parameterisation and exactly mirrors the underlying statistical model,

θj ∼ normal(μ, τ),

yj ∼ normal(θj , σj).

The “non-centered” parameterisation (first introduced in Van Dyk and Meng, 2001)
recodes this model in a way that does not affect the joint distribution of (θ, μ, τ, σ) but
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makes it easier to sample from it, by introducing auxillary variables, θ̃j . This can be
written as,

θ̃j ∼ normal(0, 1),

θj = μ+ τ θ̃j ,

yj ∼ normal(θj , σj).

In both cases, θj are the treatment effects in the eight schools, and (μ, τ) represent
the population mean and standard deviation of the distribution of these effects. In the
centered parameterization, the θj are parameters, whereas in the non-centered param-

eterization, the θ̃j are parameters and θj is a derived quantity.

We first used Stan (Carpenter et al., 2017) to sample from the centered model
using 4 chains. Like Vehtari et al. (2020), we used settings that reduce the chance of
divergent iterations for the dynamic HMC algorithm (Betancourt, 2017) (called using
the “NUTS” option in Stan), meaning that the resultant sampling distribution is likely
to be biased. We also used the same algorithm settings to sample from the non-centered
model.

To see how R∗ performed on this example, we first split each of the (post-warm-up)
chains in two, as is done by default in Stan (Carpenter et al., 2017) and in Vehtari et al.
(2020), resulting in 500 iterations across 8 chains. Following the same approach as in
Algorithm 2, we generated R∗ distributions for both the centered and non-centered mod-
els using a GBM classifier. The resultant distributions for R∗ are shown in Figure 10A.
In this plot, the centered model is close to convergence, whereas the non-centered is
not.

In addition, to illustrate the power of R∗, we also repeat the analysis but, this time,
do not split the chains in two. The results are shown in Figure 10B. In this case, because
the unsplit chains do not mix with themselves, it is harder to accurately predict the
chain that generated each draw, meaning that the centered model R∗ values are shifted
leftwards. Despite this, however, the centered model distribution for R∗ still does not
strongly overlap with R∗ = 1, indicating that the model has not converged, contrasting
with the non-centered model which appears near convergence.

Fig. S2 shows the equivalent of Figure 10 except using a RF classifier. The results
are similar, although the R∗ distributions are shifted slightly rightwards: indicating, for
example, that more than 2000 draws from the non-centered model may be required for
convergence.

It is recommended that R̂, like R∗, be calculated using split chains. In Figure 10C,
we plot R̂ values obtained when using the original 4 chains (horizontal axis) versus those
when using the split chains (vertical axis) for the ten parameters in this model; we do

this for both the centered and non-centered models. These show that the values of R̂
for the centered model using the unsplit chains were below 1.01; when using the chains
split into two halves, R̂ > 1.01 for all but a single parameter. All parameters for the
non-centered models were below 1.01 indicating convergence.
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Figure 10: Eight schools example: R∗ distributions. A shows draws from the R∗

distribution when splitting chains in two (resulting in 8 chains); B shows the same but

using the 4 original chains; C shows rank-normalised R̂ for the original 4 chains versus
those for the 8 chains case for all ten parameters defined by the centered model – in
this case, we plot horizontal and vertical dashed lines to illustrate the R̂ = 1.01 cutoff
and a y = x line. The legend inset in panel C provides a key for all panels. The MCMC
samples comprised 2000 draws in all cases with 1000 used as post-warm-up iterations.
In panels A and B, the plots show 1000 R∗ draws using Algorithm 2 using a GBM
classifier for each parameterisation.

3.4.1 Understanding chain classification

To probe the predictive power of the ML classifier, we investigated how predictive
accuracy varies across parameter space. After fitting the GBM model, we group MCMC
draws in the test set into deciles and draw from the R∗ distribution for each decile.
In Figure 11, we show the results of this exercise for (A) μ and (B) τ . In the left-
hand column of this figure, we show the path of four MCMC chains (here we did not
split chains when calculating R∗ to simplify visualisations) across the quantiles of each
parameter space. To the right of each trace plot, we show the marginal distributions for
each chain. In the right-hand column, we show 40 R∗ draws for each decile, which were
generated according to Algorithm 2 using a GBM fit to all draws. In essence, the left-
hand panels explain the variation in R∗ in the right-hand panels: if chains become stuck
in regions of parameter space, this causes differences between the marginal distributions
of the chains; these differences, in turn, allow a ML model to predict the generative chain
in those same sticky regions. For example, for μ, the purple chain became stuck around
the middle quantile, forcing a difference in its marginal distribution in that region, which
resulted in R∗ > 1 for the corresponding decile. Similarly, for τ , the purple chain became
stuck in the lowest quantiles, elevating its marginal distribution there and resulting in
improved predictive accuracy.

Figure 11 also indicates a potential limitation of R∗: namely, that as chains are
progressively thinned, those regions where chains behave most idiosyncratically can be
missed resulting in a reduction in classification accuracy and falsely concluding that
convergence has occurred.
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Figure 11: Eight schools example: quantile R∗ plots. Row A shows plots for μ;
row B for τ . In each row, we show the path of the four individual chains above and 40
R∗ draws obtained using Algorithm 2 for each parameter quantile below. To the right
of each trace plot, we show the marginal distribution of each chain estimated via kernel
density estimation using Gaussian kernels. Note that, in the right-hand plots, jitter has
been added to the data points.

3.5 Further experiments

Alongside the examples included in the main text, there are a number of supplementary
text examples, which we briefly outline here (Lambert and Vehtari, 2020).

In §S3, we illustrate how R∗ can provide a reasonable measure of convergence when
the number of dimensions of a distribution is comparable to the number of draws.
Specifically, this was to test that classification didn’t become prone to overfitting in this
limit. To test this hypothesis, we investigated two scenarios using a multivariate normal
target: one with a 250-multivariate normal with high correlation between dimensions
using 250 post-warm-up iterations; and another normal with 10,000 independent di-
mensions using up to 500 post-warm-up iterations. In both cases, sampling was done
using Stan’s NUTS algorithm. In both cases, R∗ and rank-normalised split-R̂ reached
similar conclusions about convergence: namely, that more iterations were needed in all
experiments considered. Overall, these experiments show that R∗ is a conservative con-
vergence measure that will tend to diagnose unconvergence when there are insufficient
draws.

In §S4, we illustrate the importance of splitting chains before calculating R∗ to
ensure poor within-chain convergence is diagnosed. We illustrate this via four examples:
(a) sampling from a univariate normal and adding a linear trend over sampling time,
to ensure that the sampling distributions were non-stationary; (b), similar to (a) but
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across a range of target distribution dimensions where only a single dimension had a
non-stationary mean; (c), a bivariate normal with a non-stationary covariance; and (d),
an autocorrelated sampling distribution with a univariate normal target with a range
of different autocorrelations. The results of (a) echoed those presented in Vehtari et al.

(2020) for R̂ and showed that R∗ is insensitive to sampling non-convergence if it occurs
within chains; splitting chains into two halves alleviates this issue. The results of (b)
show that R∗ calculated on split chains is able to diagnose non-stationarity in mean
in a single dimension in a way that did not diminish as the numbers of dimensions
considered increased. Example (c) showed that split-R∗ opposed to split-R̂ is able to
diagnose non-stationary covariance between dimensions of a target distribution. In (d),
we show that R∗ is able to differentiate between distributions with non-stationary target
distributions and stationary ones. It also shows that R∗ still functions reasonably at
higher levels of chain persistence: yielding a conservative convergence measure when
there are insufficient draws.

In §S5, we show that R∗ performs well for two Bayesian logistic regression problems
with highly multimodal posteriors. Each of these models have 1000s of parameters,
and we found that it was slow to compute both R̂ and R∗ for them. That said, the
computational time for calculating R̂ was considerably less than was needed for R∗.

In §S6, we evaluate R∗ on univariate discrete examples: one with four states (in
§S6.1); another, with a larger state-space consisting of 20 states (in §S6.2). In these
examples, we use a discrete Markov model to generate draws from a given target. The
small and larger state-space cases show that R∗ behaves as expected: given a sufficient
sample size, it is able to detect differences in the transition probability matrix between
chains that result in differences in the target distribution.

In §S7, we investigate how two decisions about classifiers — which classifier to use
(in §S7.1) and what hyperparameters to use for it (in §S7.2) — affect calculation of R∗.
In §S7.1, we test a range of popular classifiers: GBMs, RFs, k-nearest-neighbour models,
support vector machines and generalised linear models across examples. This indicated
that GBMs and RFs consistently had the highest classification accuracy across the ex-
amples: in higher dimensional problems, RFs tended to best GBMs. In §S7.2, we show
how these two best classifiers — GBMs and RFs — depend on their hyperparameters.
Across the examples we test, GBMs are more sensitive to hyperparameter choices than
are RFs. Additionally, GBMs require typically more rounds of boosting in higher di-
mensional problems leading to more extensive algorithm runtime. Because of this, we
suggest fixing GBM’s hyperparameters to values that result in reasonable performance
and reasonable runtime. For RFs, we suggest using a heuristic for choosing its hyper-
parameters that was derived in a previous empirical evaluation of RFs (Bernard et al.,
2009).

In §S8, we use a slew of examples to compare R∗ calculated using GBM and RF
classifiers using our suggested default hyperparameter sets (given in §S2). In §S8.1, we
compare how both methods are able to diagnose lack of convergence in a joint distri-
bution (using a multivariate normal target). In §S8.2, we compare the ability of both
approaches to diagnose differences in the tails of the marginal distributions between
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chains (using Student-t targets). In both examples, draws are generated by indepen-
dent sampling meaning that an optimal R∗ can be calculated based on the Bayes opti-
mal classifier (see, for example, (Devroye et al., 2013) and §S8 for more information).
Collectively, the results of §S8.1 and §S8.2 suggest that both GBM and RF classifiers
can detect differences in sampling distributions, should they exist, between chains. The
classification rates achieved by these two approaches exhibited similar trends to the op-
timal classifier, albeit with lower predictive accuracy. In higher dimensions, it is likely
that the difference between optimal classification rates and those from the GBM or RF
will increase: particularly, when searching for between-chain differences in tail fatness.
These results also suggest a different region of optimality for each classifier: GBMs tend
to perform best for low dimensional targets and RFs for moderate-high ones. This is a
function of the different rules used to set the hyperparameters of each classifier (see §S2
and §S7.2): for GBMs to perform well in higher dimensions, they need more rounds of
tree boosting which substantially increases training time. Because of this, we fixed the
hyperparameters of the GBM to values that yield reasonable computation time. RFs
are less sensitive to hyperparameter variation (§S7.2), and useful heuristics for adapting
these with target dimensions are known, which we follow here, as described in §S2. De-
spite this dynamic choice of hyperparameters for RFs, its runtime remained reasonable
over the range of examples we test in this paper.

4 Discussion

If an MCMC sampler has converged on the target distribution, the chains must be well-
“mixed”, that is, given a draw, it should be impossible to discern which chain generated
it. Based on this observation, we used supervised machine learning (ML) classifiers to
quantify the information about the generative chain identity contained in draws. By
taking the ratio of model predictive accuracy obtained on an independent test set to
the accuracy of a null model (which predicts a chain’s identity uniformly at random),
this defines our R∗ statistic. By extracting classifier-predicted chain probabilities from
each prediction in the test set, we can additionally generate an uncertainty distribution
for R∗. Across a range of previously published examples, R∗ was shown to be predictive
of whether chains had converged.

The predominant methods for diagnosing MCMC convergence rely heavily on look-
ing for between-chain differences in the marginal distributions along each dimension
of the target. R∗ naturally includes this information in building a model capable of
predicting the chain that generated each draw. It also naturally includes information
about the joint distribution across all dimensions of the target. Since converged chains
should have similar joint distributions (implying similar marginals), any measure of
convergence should account for both of these aspects. Indeed, in §3.2, we show that
more established measures may indicate convergence whereas R∗ shows otherwise. This
indicates the complementarity of R∗ to existing measures.

Different target distributions present different challenges to sampling. Because of
this, there is not a unique optimal ML classifier across all cases: this is just a manifes-
tation of the no free lunch theorem (Wolpert and Macready, 1997). Across a range of
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examples we tested (see §S7.1), GBM and RF classifiers performed consistently well,
and we then used these across all other illustrative examples. It is possible — indeed,
likely — that another ML model may exist or be invented that consistently outperforms
both these classifiers. We do not see this as a problem: across the examples we consid-
ered, R∗ calculated using both classifiers tended to provide a measure of convergence
as or more stringent than existing diagnostics. In that sense, it is a step in the right
direction. If a better classifier is found, the same apparatus we develop here can be used,
and this will present a harsher test of convergence.

A different question is, “When is such a measure of convergence of practical use?”.
In our examples, R∗ is able to diagnose poor convergence in the tails of marginal distri-
butions: likely of practical relevance for many applications that require tail quantiles.
R∗ is also able to diagnose lack of convergence in the joint distribution — even if the
marginals appear converged. Indeed, it is less clear how the joint distribution can be
unconverged when the marginals appear so, but we found examples where this appeared
true. A consequence of poor convergence of the joint distribution would be for predic-
tion and, by corollary, model comparison. Further work examining these consequences
further is needed, and R∗ can help to identify and monitor fruitful candidate systems.

In §S5, we fit Bayesian models with many 1000s of parameters then used R∗ to
diagnose convergence, finding that R∗ was considerably more expensive to calculate
than R̂. The time complexity of training RFs is thought to beO(mtryntreendatalog ndata)
(Louppe, 2014, chapter 5), and given the similarities with GBMs (which also builds many
decision trees), it is likely to be similar. If so, this suggests that larger statistical models
(usually needing more MCMC iterations) may currently be beyond the reach of R∗. That
said, it is possible to reduce the runtime for R∗ using thinned draws (although this risks
losing chain idiosyncracies) and using a subset of dimensions (although this risks losing
problematic dimensions). Indeed, in §3.2.2, §3.3 and §S5, we use these strategies and,
nonetheless, find that R∗ provides a stringent measure of convergence.

Many implementations of R̂ suggest splitting chains in two before calculating it. In
a number of examples, we trial this before calculating R∗ and find that this approach
leads to more accurate chain prediction. We recommend that this practice be adopted
whenever R∗ is calculated to ensure that this measure is maximised. Additionally, our
non-parametric calculation method for R∗ makes it possible to include any covariates
which may be useful features for prediction, such as an “iteration block” indicator
variable taking values 1, 2, . . . ,K in each of K blocks of contiguous iterations. If each
chain is thoroughly mixed with itself, including this additional information shouldn’t
change R∗; by contrast, if the chains are random walk-like, this information should
boost R∗.

MCMC enables inference across a wide range of models encountered across the social,
biological and physical sciences. Its ease of implementation, however, masks important
underlying fragilities in the method. Namely, that unless the chains have converged
to a truly stationary distribution, the draws generated are not faithful depictions of
the posterior. In this paper, we introduce a new metric, R∗, that is especially good
at diagnosing poor convergence in the joint sampling distribution – an area that has
received insufficient attention thus far. R∗ can straightforwardly be introduced into
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existing MCMC libraries and could provide a measure of convergence complementary
to existing metrics.

Supplementary Material

Supplementary materials: R∗ convergence diagnostic. (DOI: 10.1214/20-BA1252SUPP;
.pdf). Further experiments using R∗.
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