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Scalable Approximate Bayesian Computation
for Growing Network Models via Extrapolated

and Sampled Summaries

Louis Raynal∗,§, Sixing Chen∗,§, Antonietta Mira†,‡, and Jukka-Pekka Onnela∗,¶

Abstract. Approximate Bayesian computation (ABC) is a simulation-based like-
lihood-free method applicable to both model selection and parameter estimation.
ABC parameter estimation requires the ability to forward simulate datasets from
a candidate model, but because the sizes of the observed and simulated datasets
usually need to match, this can be computationally expensive. Additionally, since
ABC inference is based on comparisons of summary statistics computed on the
observed and simulated data, using computationally expensive summary statis-
tics can lead to further losses in efficiency. ABC has recently been applied to the
family of mechanistic network models, an area that has traditionally lacked tools
for inference and model choice. Mechanistic models of network growth repeatedly
add nodes to a network until it reaches the size of the observed network, which
may be of the order of millions of nodes. With ABC, this process can quickly be-
come computationally prohibitive due to the resource intensive nature of network
simulations and evaluation of summary statistics. We propose two methodological
developments to enable the use of ABC for inference in models for large growing
networks. First, to save time needed for forward simulating model realizations, we
propose a procedure to extrapolate (via both least squares and Gaussian processes)
summary statistics from small to large networks. Second, to reduce computation
time for evaluating summary statistics, we use sample-based rather than census-
based summary statistics. We show that the ABC posterior obtained through
this approach, which adds two additional layers of approximation to the standard
ABC, is similar to a classic ABC posterior. Although we deal with growing net-
work models, both extrapolated summaries and sampled summaries are expected
to be relevant in other ABC settings where the data are generated incrementally.

Keywords: mechanistic models, network models, Gaussian process.

1 Introduction

Networks are used to study systems where individual agents or elements do not operate
in isolation but instead have complicated structural or functional connections with other
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elements in the system. There are currently at least two paradigms to model network
structure. Statistical network models directly model the observed network data. Their
likelihood functions are usually available in closed form (possibly up to a normalizing
constant), and inference and model selection tools are generally available. Perhaps the
best known example of this model class is the family of exponential random graph
models (ERGM) (Lusher et al., 2013). In contrast, mechanistic network models are
algorithmic descriptions of network formation, and they are defined by a small num-
ber of domain-specific rules that are informed by our scientific understanding of the
problem. Their likelihood functions are generally not analytically tractable, and thus
inference and model selection tools have traditionally not been developed for them. In
network science, the origins of which are primarily in physics, there are easily hun-
dreds of models like this. In fact, for a long time mechanistic models were essentially
the only type of models that were formulated and studied, using both mathematical
methods and computer simulation. Well-known examples of this model class include
the Price model (Price, 1965), the Barabási-Albert model (Barabási and Albert, 1999),
the Watts-Strogatz model (Watts and Strogatz, 1998), and many others (Solé et al.,
2002; Vázquez et al., 2003; Klemm and Eguiluz, 2002; Kumpula et al., 2007).

In many settings, mechanistic models, when contrasted with statistical models of
network data, can better address questions of scientific interest as they allow the inclu-
sion of a small number of known mechanisms. Performing model selection and parameter
inference on mechanistic network models can therefore help us select among competing
sets of hypotheses (sets of mechanisms) and assess how adequate the given mechanisms
are for explaining the observed networks. Mechanistic models may of course be wrong
just as our scientific understanding of a phenomenon may be wrong, but mechanistic
models allow one to test the merit of different hypotheses with the goal of discarding
those that are not in agreement with data. For example, one hypothesis might be to
assess whether some form of preferential attachment, a commonly postulated mecha-
nism of network growth, is needed to explain the structure of the observed network
(Barabási and Albert, 1999). The engagement of mechanistic models with real-world
data has traditionally been shallow due to a lack of statistically sound inferential and
model selection tools. To address some of the gaps in methodology for mechanistic
models, we previously introduced a general approximate Bayesian computation-based
framework for inference and model selection (Onnela and Mira, In progress), a flexible
model selection framework for mechanistic network models (Chen et al., 2019), a boot-
strap method for goodness of fit and model selection with a single observed network
(Chen and Onnela, 2019), a framework for converting mechanistic network models to
probabilistic models (Goyal and Onnela, 2020), a Bayesian inference scheme for spread-
ing processes on networks (Dutta et al., 2018), and have used standard machine learning
methods for feature-based classification of networks (Barnett et al., 2019). To this end,
we have developed a user-friendly, extensible, and parallel library for ABC in Python
(Dutta et al., 2017).

Approximate Bayesian computation (ABC) is a simulation-based and likelihood-free
method with wide applicability to settings with intractable likelihoods for both parame-
ter estimation and model selection (Marin et al., 2012; Sunn̊aker et al., 2013; Lintusaari
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et al., 2016). Many of the approaches mentioned above make use of ABC since mech-
anistic network models typically have intractable likelihood functions. The application
of ABC for parameter estimation requires the ability to forward simulate synthetic
datasets from candidate models. A key feature of ABC is that inference is based on
comparisons of summary statistics computed on the observed and simulated data, and
therefore efficient evaluation of summary statistics is another important practical re-
quirement for ABC. A characteristic of many mechanistic network models is that they
grow the network starting from a small seed network, often one node at a time, until
a predetermined network size (number of nodes) is reached, at which point the process
terminates. These types of models, a subset of all mechanistic network models, are often
called growing network models. Because many of the studied networks are large, from
thousands to millions of nodes, the use of ABC for growing network models introduces
two potential computational bottlenecks: the cost of simulating networks and the cost of
computing summary statistics. Using n to denote the number of nodes in the network,
let O(nα) denote the computational complexity of network simulation and O(nβ) denote
the complexity of summary statistic computation. Network simulation is relatively fast
for most mechanistic models, and it appears that typically α ≤ 2. Summary statistic
computation, in contrast, is greatly dependent on the specific summary. For example, it
is possible to evaluate the so-called betweenness centrality, a global measure of network
connectivity, in O(n(m + n)), where m denotes the number of edges in the network
(Newman, 2010). A more complex example is that of triangle enumeration, which is
trivially solvable in O(n3), whereas the best-known algorithm takes time O(n2.373) on
sparse power-law graphs using fast matrix multiplication (Latapy, 2008). Even more
complex summaries, such as identification of network community structure (Brandes
et al., 2006; Fortunato, 2010; Traag et al., 2011), can be NP-hard problems, in practice
requiring the use of heuristics for their evaluation.

Methods to alleviate the computational bottleneck from forward-simulation in ABC
have been previously explored outside of the network setting. Methods by Gutmann
and Corander (2016) and Wilkinson (2014) approximate the log-likelihood function of
the summary statistics, while Moores et al. (2015) uses a binding function to create a
map between parameters of the intractable likelihood function of the summary statistics
and parameters of a tractable likelihood function of an alternative model in order to
approximate the former likelihood with the latter. These approaches try to save compu-
tation by using forward-simulation (from a limited set of parameter samples from the
prior) to build an approximation to the likelihood function, with which one can compute
the posterior distribution from a larger parameter sample without the need for further
forward-simulation. Methods by Conti and O’Hagan (2010) and Carbajal et al. (2017)
directly approximate the summary statistics output of a complex simulator with a com-
putationally efficient Gaussian process-based emulator. In either case, these previous
methods connect the summary statistics to the parameter values at a fixed size of the
dataset, but do not consider summary statistics for growing datasets. The notion of a
growing dataset is an important albeit not unique feature of the network setting, and
forms the basis of our approach.

We propose two methodological developments to make ABC feasible for modeling
large empirical networks with growing mechanistic models. First, to save time needed to
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simulate model realizations, we propose a procedure to extrapolate summary statistics
from small to large networks. Rather than growing the network to no nodes as in the
observed graph, we propose to stop at some ns � no and extrapolate the summary from
ns to no. Second, to save time needed evaluating summary statistics, we propose using
sample-based rather than census-based summary statistics. For example, rather than
counting all triangles in a network, we count the number of triangles within a subset
of n∗ nodes, where n∗ � no. To illustrate the implications of the former, consider a
situation where α = 2; if we can stop simulation early at ns = no/10, the time required
to simulate a small network of ns nodes is only 1% of the time required to simulate one
large network of no nodes. To depict the latter, in the best case scenario it might be
possible to fix the size of the subsample; for example, if one were to use average degree
as a summary, full enumeration would scale as O(n) whereas computing the degree
only for a subsample of fixed size (say, 10,000 nodes) leads to O(1) complexity. These
considerations suggest that the combination of summary statistic extrapolation and use
of sample-based summaries could result in significant computational savings. We note
that although our problem deals with mechanistic models of growing networks, both
extrapolated summaries and sampled summaries are expected to be applicable in other
ABC settings as well. Moreover, our approach can be used to study any mechanistic
network model; these methods are not limited to the models presented in this paper, as
the only requirement is our ability to forward-simulate networks given some parameter
values.

This paper is organized as follows. We introduce our method in Section 2, discuss
our results for summary statistic extrapolation in Section 3, and those for sample-based
summary statistics in Section 4. We demonstrate our method with an empirical dataset,
a citation network in the physical sciences, in Section 5. We conclude our investigation
with discussions in Section 6.

2 Materials and Methods

2.1 Notation

Given an empirical network Go of no nodes, our goal is inference on the parameters
θ, with prior distribution πθ, which index the mechanistic network model M = M(θ).
Network realizations G̃1, . . . , G̃B , each associated with a set of parameters drawn from
πθ, of ns � no nodes are generated from M for an ABC procedure that will be based
on the vector of summary statistics S. As each generated network realization G̃b grows
from the seed network towards a network of ns nodes, S is evaluated at various number
of nodes n1 < . . . < nt < . . . < ns. Note that {nt} need not be evenly spaced. S
computed for the bth realization at nt nodes is denoted S̃b(nt) for b = 1, . . . , B, while
that computed for the observed network Go is denoted So. The goal is to extrapolate
the value of S at no nodes for each G̃b based on the S̃b(nt) values, for all nt. The ABC
procedure is based on the reference table populated by the extrapolated quantities
{Ŝb(no)}. A single element of S is denoted s, with corresponding notations s̃b(nt) for
G̃b and so for Go.
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2.2 Evolution of Network Statistics

We consider the classic duplication-mutation-complementation (DMC) model of

Vázquez et al. (2003), which is used for studying protein-protein interaction networks.

Note however that the method presented here can be applied to any model of network

growth as the only requirement is the ability to simulate networks given some param-

eter values. The DMC model captures the effect of gene duplication, which is one of

the primary forces behind the evolution of genomes and one of the dynamical mecha-

nisms of network growth, although it is not the only mechanism. Gene duplication is

a random event at the molecular level and can occur, for example, due to an error in

DNA replication or during homologous recombination. The duplicated version of a gene

is usually under less selective pressure than its parent and is therefore free to mutate

rapidly, and could potentially take on a novel function. Since genes encode proteins, this

new function of the gene would imply that the corresponding protein in the protein-

protein interaction might acquire the ability to interact with proteins that its parent

does not interact with. Put simply, gene duplication causes changes in the structure of

the associated protein-protein interaction network.

The DMC model grows a network from a small seed network according to its genera-

tive mechanisms until the required number of nodes is reached. At the beginning of each

step of the network generation process, an existing node is chosen uniformly at random

for duplication. Edges are then added between the new node and the neighbors of the

original node. Then, for each neighbor of the original node, either the edge between the

original node and the neighbor or the edge between the new node and the neighbor is

removed with probability qm. Finally, with probability qc, an edge is added between the

new node and the original node. This process is repeated until the network has been

grown to the desired size.

As a proof of concept, we consider two network statistics, the average degree (denoted

s1) and the number of triangles (the number of triplets of nodes that are all connected to

one another, denoted s2), for networks generated from the DMC model. Figure 1 shows

the two statistics tracked for network realizations simulated from the DMC model. Both

statistics display non-linear growth in the number of nodes.

2.3 Modes of Extrapolation

The observed polynomial growth for the two investigated network statistics motivates

the functional forms used in extrapolation. We assess two modes of extrapolation: a least

squares fit of a polynomial function and a Gaussian process (Rasmussen and Williams,

2006) with a polynomial mean function. The former is a more barebones approach that

ignores variability around some “true” mean as well as the correlation of the statistics

at various network sizes, while the latter attempts to model both through the covariance

function of the Gaussian process as described in more detail below.
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Figure 1: Average degree (top) and number of triangles (bottom) computed for net-
works generated from the DMC model. Different colors correspond to different network
realizations; linear scale on the left, and log-log on the right. An initial seed network of
30 nodes is used to start the growth process.

Least Squares Fit

For each network realization G̃b, we fit, via least squares, a function of the form s̃b(n) =
abn

cb , where n is the number of nodes and ab and cb are realization-specific parameters
to be estimated, separately for each of the two statistics based on their corresponding
tracked quantities {S̃b(nt)} at {nt}. The functional form is based on the polynomial
growth observations from Figure 1, and does not possess an intercept term since both
statistics are zero at zero nodes. We elected to fit the polynomial function on the linear
scale rather than a linear function on the log-log scale, since the latter treats absolute
error equally for all values of n. This is important since we seek to extrapolate the
statistic for even larger no, and wish to minimize the absolute error at the larger network
sizes.

The motivation for fitting separate functions for each network realization, which do
not depend on their corresponding sampled value of θ, is the large amount of variability
in the networks generated by a mechanistic model, even for a given set of parameter
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Figure 2: Average degree for network realizations generated from DMC models with
parameter (qm, qc) ∈ {(0.3, 0.3), (0.3, 0.7), (0.7, 0.3), (0.7, 0.7)} from left to right and top
to bottom. Different colors correspond to different network realizations. An initial seed
network of 30 nodes is used to start the growth process.

values. Figure 2 shows the growth of average degree for network realizations tracked
for different values of n for various DMC models (qm ∈ {0.3, 0.7}, qc ∈ {0.3, 0.7}).
Note the large amount of variability for even a single set of parameter values within
each panel. If the function depends on the parameter and is fit with all the gener-
ated network realizations, the extrapolated values would no longer correspond to the
network realizations themselves but instead to a “mean” value of network realizations
simulated with particular parameter values. However, this variability is an intrinsic
part of the model and its network realizations. Should we have generated network re-
alizations fully to no nodes to populate the reference table, those realizations would
also contain this variability. Additionally, should the observed network truly be gen-
erated from the proposed model, then it would also contain this variability. Thus, we
elected to use separate functions for each network realization that do not depend on the
model parameter. Such functions follow the path the realization takes as it grows, thus
reflecting the per-realization variability in both the fitted function and extrapolated
value.
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After fitting both functions, we evaluated them at no to produce {Ŝb(no)}, which was
entered into the ABC reference table for our procedure. Then, a standardized Euclidean
distance was computed between So and each Ŝb(no). The simulated parameter values
providing the lowest distances were retained to form the samples from the ABC posterior
distributions. For the remainder of this paper, LS-ABC is used to denote results using
this least squares extrapolation approach.

Gaussian Process

A Gaussian process (Rasmussen and Williams, 2006) is a stochastic process X indexed
by some set T (typically some subset of the real line) where the finite dimensional
distribution (FDD), the joint distribution ofX at every finite subset of T , is multivariate
normal. A Gaussian process is defined by its mean and covariance functions μ and K,
where for t1, t2 ∈ T , E(X(t1)) = μ(t1) and Cov(X(t1), X(t2)) = K(t1, t2), where K is
called a kernel. We will denote such a stochastic process GP (μ,K).

In the context of extrapolating network statistics, the network statistics of G̃b are
indexed by the number of nodes in the network at {nt}. For a given summary statis-
tic s, we model {s̃b(nt)} as the FDD of some Gaussian process GP (μs

b,K
s
b ) at {nt}.

The superscript and subscript of the mean and covariance functions denote the use of
separate Gaussian processes for each network statistic of each network realization. This
reflects our decision in the previous section to extrapolate each network statistic for
each network realization separately.

The mean functions of both network statistics use the same polynomial form s̃b(n) =
abn

cb as discussed above. On the other hand, the covariance function allows us to encode
the variability of the statistics at any given n as well as the covariance between the values
of the statistics at any two different values of n. We motivate the covariance function
for the two network statistics empirically.

To investigate the covariance structure, we generated 500 network realizations with
a single set of parameters (qm = 0.5, qc = 0.25), with the two summaries tracked every
5 nodes from 35 to 500. The starting node number is 35 because the seed graph for
this example has 30 nodes, as described below. In Figure 3, the left panels display
the empirical variances of each summary, average degree (top) and number of triangles
(bottom), and the right panels show the heatmaps of the average covariances at each
pair of values of n over the 500 realizations.

For both summaries, we observe in Figure 3 that the variance increases with the
number of nodes. While the growth is about linear for the average degree, it is poly-
nomial for the number of triangles. The right panels indicate that the covariance at n1

and n2 grows as n1 and/or n2 increase. In fact, this behavior is characteristic of the
linear kernel (a.k.a. dot product, Rasmussen and Williams, 2006, p.89) that can simply
be expressed as K(n1, n2) = n1n2. Such a kernel would give the desired shape for the
prior variance of the triangle count, however it would not grow linearly for the average
degree as required. To remedy this, we pre-multiply and post-multiply the dot product
kernel by the deterministic functions f(z) = z−1/2, with z = n1 and z = n2 respectively,
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to obtain the kernel K ′(n1, n2) =
√
n1

√
n2. This gives a variance function increasing

linearly when n1 = n2.

In our experiments, to allow more flexibility to the Gaussian processes, we consider
the following covariance functions for the average degree (s1) and triangle count (s2),
evaluated at n1 and n2:

Cov(s1(n1), s1(n2)) = (α
√
n1

√
n2 + γ) + β exp

(
− (n1 − n2)

2

2ρ2

)
+ σ21{n1=n2},

Cov(s2(n1), s2(n2)) = (αn1n2 + γ) + β exp

(
− (n1 − n2)

2

2ρ2

)
+ σ21{n1=n2},

with α, γ, β, ρ, σ2 some positive parameters, specific to each kernel, and 1 being the
indicator function. The left-most term represents a parameterized version of the linear
kernel, while the middle term is the well known radial basis function kernel (a.k.a.
squared exponential), and the right-most term corresponds to noise on the variance
terms. Results from additional kernels are presented in the Supplementary Material
(Section 1.1) (Raynal et al., 2020), but they showed no significant improvement over
those presented here.

In order to estimate the parameters of the mean and covariance functions for a given
network realization, we fit a Gaussian process for each statistics separately through
STAN (Carpenter et al., 2017) by specifying their corresponding FDD at {nt} and
a prior for each parameter. The priors for the parameters of the mean function are
normal distributions centered at their corresponding least squares fit estimates for both
statistics. For the covariance function, we assume a positively truncated standard normal
distribution for the prior. This makes sense for σ2 as it is a noise term. Moreover, since
γ plays the role of an intercept term, we expect it to be approximately zero given the
shape of the empirical variances (Figure 3, left panels). For the other parameters, their
priors were chosen to guarantee convergence of the No-U-Turn sampler performed by
STAN. For α we additionally imposed a minimal value of 0.05 to facilitate convergence of
the STAN sampler, and this minimal value also guarantees that the covariance function
contains a non-vanishing dot product term that is essential to mimic the empirical
variance-covariance observed in Figure 3. For ρ, since it corresponds to the typical
distance between turning points in the summary statistic curves, we constrained it to
be no less than the distance between two consecutive grid points for the number of
tracked nodes.

Once estimates are obtained from STAN, we evaluate the mean and covariance
functions at no to deduce the distribution of each statistic for each network realization
at no. Note that we have two marginal normal distributions, one per summary statistic.
We can employ these distributions in different ways to enrich the reference table:

(i) for each GP (one per summary), evaluated at no, we use the posterior mean of the
GP that we take as our extrapolated summary statistic, to populate the reference
table;

(ii) for each GP (one per summary), evaluated at no, we use the posterior mean and
variance of the GP, as well as the empirical correlation between the summaries,
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Figure 3: The variance (left column) and covariance matrix (right column) of the average
degree (top) and the number of triangles (bottom), for various values of n over 500
network realizations generated from the DMC model with qm = 0.5 and qc = 0.25.

to populate the reference table; these estimates are used to reconstruct the multi-
variate (here, bivariate) normal distribution of the summaries.

In order to obtain the ABC posteriors, we need to compute some measures of sim-
ilarity between the extrapolated and observed network statistics. For situation (i), we
can use the same standardized Euclidean distance as for the least squares approach.
We denote the associated results as GPc-ABC hereafter. For (ii), the reconstructed dis-
tributions at no provide a natural way to do this by evaluating the bivariate normal
density functions at the observed statistics. Hence, we define the ABC posterior as the
parameter values associated with generated networks providing the highest densities to
the observed statistics. This strategy is denoted GPa-ABC hereafter. While this ap-
proach takes into consideration the extra information provided by the GP marginal
distributions, one major problem can occur, which is the situation where all the extrap-
olated normal distributions give a zero density to the observed summaries. In theory
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Method Summary nature Posteriors from Other features
S-ABC true lowest distance
LS-ABC ext. with least-squares lowest distance
GPa-ABC ext. with GP means highest density reconstructed normal
GPb-ABC ext. with GP means highest density reconstructed normal with

inflated covariance matrix
GPc-ABC ext. with GP means lowest distance
RE-ABC 500 ext. with least-squares lowest distance sample triangle count tracked

up to ns = 500 nodes
RE-ABC 1000 ext. with least-squares lowest distance sample triangle count tracked

up to ns = 1000 nodes

Table 1: Summary of the different extrapolation method names and their features (“ext.”
stands for extrapolated).

this should not happen, however in practice this is possible due to numerical approxima-
tions, especially when the GP posterior variances are small. This is not an uncommon
situation as the GP variances are usually lower a posteriori than a priori. To prevent
this issue we also display the GP results using (ii), but inflating the variance-covariance
matrices by a factor 100. This strategy is denoted GPb-ABC. An alternative strategy
to benefit from the GP marginal distributions is to marginally evaluate each normal
density at the observed summary statistic value and use, for example, the sum of these
evaluated densities as a similarity measure between observed and extrapolated summary
statistics. Because this methodology does not consider the correlation among summary
statistics, we focused our investigations on GPa-ABC.

3 Simulation Studies

We conduct simulation studies to assess the performance of our extrapolation ABC
procedure for the DMC model described above. To facilitate the reading of the various
tables and graphs present in the remainder of this manuscript, Table 1 summarizes the
different method abbreviations and their features. The prior distributions of the DMC
parameters are uniform over the rectangular parameter space with qm ∈ [0.15, 0.35]
and qc ∈ [0.1, 0.9]. The reason for the tight restriction on the parameter space in terms
of qm is that the functional form for the growth of average degree depends highly on
this parameter in similar models (Ispolatov et al., 2005). For this proof of concept, we
have thus restricted the parameter space to a subset of parameter values that result
in polynomial growth. As in any Bayesian approach, the priors should be determined
cautiously by practitioners. Nonetheless, if one wants to increase the prior range, a naive
strategy would be to choose an extrapolation method that is specific to a given part of
the prior space, depending on the shape of the tracked summaries. This approach would
however be tedious and instead we suggest employing a more flexible extrapolation
method. Adapting Gaussian processes would involve either using a flexible family of
kernels, for example the spectral mixture kernel (Lloyd et al., 2014) or using automatic
combinations of different simple kernels (see e.g. Wilson and Adams, 2013; Sun et al.,
2018).
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For each parameter sample drawn from the prior, a corresponding network realiza-
tion is generated with average degree and number of triangles tracked every 5 nodes from
35 up to ns = 500 as the network grows. In this way, we generate B = 4000 realizations
to populate our reference table. As mentioned earlier, the growing process starts from
a small seed network and its choice is not without influence on the final network. This
seed is often selected to reproduce certain characteristics of observed networks, and/or
is motivated by specialist knowledge (Hormozdiari et al., 2007; Schweiger et al., 2011).
For example, when studying protein-protein-interaction (PPI) networks, Hormozdiari
et al. (2007) build a seed network made of 50 nodes in order to reproduce cliques and
normalized degree distribution of an observed yeast PPI network. In our simulation
study, for simplicity, we use an Erdos–Rényi graph (ER, Erdõs and Rényi, 1960) of 30
nodes with the probability parameter p = 0.2; we also specify a random seed for the
ER network generation function such that the resulting graph has one connected com-
ponent only. As a reminder, the ER model starts from a fixed number of unconnected
nodes, and an edge between a node pair is turned on with probability p. We could also
have started from a smaller graph, such as a triangle, however in this ABC framework
a larger seed reduces the variability across simulated graphs given the same parameter
values, and thus also reduces variability among the same summary statistic.

The two methods of extrapolation, as described above, are based on the tracked
quantities, average degree and number of triangles, for various values of no = 1000,
2000, 5000, 10000. For each no, we grow 200 networks up to no nodes for each pair of
parameter values (qm, qc) ∈ {(0.2, 0.3), (0.2, 0.7), (0.25, 0.5), (0.3, 0.2), (0.3, 0.7)} in the
interior of the parameter space. Each set of 200 replicate simulations is used as test
(observed) data to assess the ability of the methods to retrieve the corresponding true
pair of parameter values. The resulting ABC posterior for each method of extrapolation
is compared against the classical ABC posterior obtained by generating networks fully
up to no nodes and the posterior mean is averaged across 200 ABC posteriors. We
similarly estimate the standard deviation (SD) and root mean squared error (RMSE)
of the posterior means. For all methods relying on a standardized Euclidean distance,
to form the ABC posterior samples, we retain the simulated parameters achieving the
50 smallest distances. For the Gaussian process extrapolation using the reconstruction
of the bivariate normal distributions, in order to keep the results comparable, the ABC
posterior is defined as the parameters providing the 50 highest density values. Analysis
based on non-extrapolated summaries is termed here standard ABC (S-ABC), as it
provides a more conventional contrast over extrapolated summaries.

When appropriate, the standardized Euclidean distance is based on the standard
deviation of each summary. We approximate these values at no, using a set of 1000
simulated networks built up to no. Even though this requires additional computation,
it is well known that this standardization is crucial for most ABC methods (see e.g.
Prangle, 2017). One way to circumvent this is to instead use the extrapolated sum-
mary values. Both strategies lead to comparable results as long as the extrapolation
methods lead to similar standardization values. Nonetheless, by using non-extrapolated
summaries we can interpret large differences between ABC posteriors as solely due to
the extrapolation quality, without dependence to the standardization used.
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Figure 4 summarizes the posterior means for each combination of true parameter
value and no. In general, across all combinations, there seems to be more significant
bias in the estimate of qc regardless of the method used to obtain the ABC posterior.
We observe that the average S-ABC posterior means are relatively unchanged with the
number of nodes, while posteriors based on extrapolated summaries are further from the
truth the larger no is, but are still very similar to the standard ABC for 1000 and 2000
nodes. The LS-ABC and GPc-ABC posteriors are often the closest to the standard ABC
across all true parameter pairs. The similarity between these two extrapolation methods
is not surprising as the least squares function is provided as GP prior mean function.
For GPa-ABC, on the two first parameters, we observe a characteristic bias toward the
prior mean (0.5, 0.25) when no increases. This is explained by the numerical problem
mentioned earlier, namely that less than 50 reconstructed normal distributions are able
to give non-zero density to the observed summaries, meaning that simulated parameters
are instead randomly selected over the prior space. This bias increases with no for two
reasons: first, the normal distributions might be centered in regions of the summary
space too far from the observations, this is accentuated by extrapolation errors that can
occur for a larger no; second, the variance-covariance matrices induce too peaked normal
distributions. It is to prevent this second case that GPb-ABC artificially inflates these
matrices by a factor of 100. Note that a higher factor did not change results. Another
way to reduce the impact of the numerical problem of having zero densities would have
been to increase the total number of simulated data points, which would have improved
the performance of every method. As expected, the GPb-ABC strategy manages to
reduce the bias for the problematic parameters, however results remain less satisfactory
than when using the GP distance-based strategy (GPc-ABC). Finally, for the third pair
of parameters, (0.25, 0.5), all average posterior means are close to the truth, which,
for this specific case, coincides with the prior mean. Because of this coincidence, it is
difficult to determine whether or not the performance of GPa-ABC is due to its bias
toward the prior mean.

Figures 5 and 6 summarize for each true parameter, the standard deviation (SD)
(left bar of each pair) of the 200 posterior means, and root mean square error (RMSE)
(right bar of each pair) between the posterior means and the true parameter value, for
each combination. Most of the comments emerging from Figure 4 are still visible here.
Regarding the parameter qm, LS-ABC and GPc-ABC provide the most similar SD and
RMSE compared to the standard ABC. Both methods are also showing high robustness
to the growth of no. For qc however, the degradation with this growth can be observed.
Concerning the GP density-based method, GPa-ABC, the SD is characteristically very
low, because most of the posteriors are centered at the prior mean.

Given the above results, there seems to be potential in the extrapolation methods,
however as one might expect the extrapolation quality is pivotal here. Moreover, this
quality is also parameter dependent. When a moderate number of nodes is observed,
the similarities in performance of LS-ABC and GPc-ABC compared to S-ABC suggest
that, at the bare minimum, one should use one of these two first as their bias from the
standard ABC is low, while the gains in computation time are substantial. Contrary
to the least squares, the GP still has room for improvement: it has the potential to be
refined in problem-specific ways, but also more general/automatic kernels could be used
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Figure 4: Average posterior means provided by the various methods, with the red dot
denoting the true parameter value. Each row corresponds to different values of the true
parameter (qm, qc) ∈ {(0.2, 0.3), (0.2, 0.7), (0.25, 0.5), (0.3, 0.2), (0.3, 0.7)}, each column
corresponds (from left to right) to values of no = 1000, 2000, 5000, 10000.
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Figure 5: Standard deviation (SD, left bar of each pair) and root mean square error
(RMSE, right bar of each pair) of the different estimators for qm. Each row corresponds
to different values of the true parameter (qm, qc) ∈ {(0.2, 0.3), (0.2, 0.7), (0.25, 0.5),
(0.3, 0.2), (0.3, 0.7)}, each column corresponds (from left to right) to values of no =
1000, 2000, 5000, 10000.
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Figure 6: Standard deviation (SD, left bar of each pair) and root mean square error
(RMSE, right bar of each pair) of the different estimators for qc. Each row corresponds
to different values of the true parameter (qm, qc) ∈ {(0.2, 0.3), (0.2, 0.7), (0.25, 0.5),
(0.3, 0.2), (0.3, 0.7)}, each column corresponds (from left to right) to values of no =
1000, 2000, 5000, 10000.
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to improve extrapolation quality across the different regions of the parameter space, see
for example Wilson and Adams (2013); Lloyd et al. (2014); Sun et al. (2018).

4 Subsampling Computationally Intensive Summaries

In addition to forward simulation from models, ABC requires evaluation of summary
statistics. Because generating some network summaries is computationally expensive,
another opportunity to save computational resources is to base these summaries on
a subsample of the network rather than the whole network. While the computation
of average degree scales well with network size n, a more complex summary such as
triangle enumeration is trivially solvable in O(n3) and the best-known algorithm takes
time O(n2.373) on sparse power-law graphs using fast matrix multiplication (Latapy,
2008). As a potential alternative for better scaling, as the network grows, we propose
to count the number of triangles in a subgraph induced by a set of randomly sampled
nodes without replacement. We call this the sample triangle count and contrast it with
the population triangle count computed over the whole population of nodes (the whole
network).

Similarly to Figure 1, Figure 7 shows the number of triangles in 100 randomly
sampled nodes for three network realizations generated from a DMC model. While this
summary shows much greater variability due to the sampling, the growth pattern is
approximately polynomial. We therefore fit the sample triangle count to the function
s̃b(n) = abn

cb +db. The number of triangles in the observed network generated from the
true parameter values will also be based on 100 subsampled nodes, meaning that we use
the same summary statistic for the observed network. Outside of the node samplings
and the use of this different polynomial function, we generated 1000 networks up to no

nodes, with parameters sampled from the prior, to determine the empirical standard
deviation for the sample triangle obtained on them. This empirical standard deviation
is needed to compute the Euclidean distances. Everything else is the same as in least
squares ABC, including the extrapolation. We will refer to this approach as RE-ABC.

Before assessing performance, we assess the time required for each method, both for
constructing one entry of the reference table, which entails generating the network and
tracking the statistics when applicable, and time needed to compute the statistic for the
observed network, which is required only once per procedure. For RE-ABC, we consider
tracking the statistics up to both ns = 500 and 1000 but randomly sample 100 nodes
in both cases for the triangle count, while for LS-ABC, we only tracked up to ns = 500.
We include this greater value for ns because it is less expensive computationally as it
based on a sample triangle count instead of the population triangle count. The results
averaged over 100 replications are reported in Tables 2 and 3. Note that the time to
construct a single entry in the reference table is independent of no for LS-ABC and
RE-ABC since the tracking is only for n1, . . . , ns regardless of no. While S-ABC is the
fastest for the smallest value of no, the other methods quickly overtake S-ABC as no

increases. As expected, it is consistently faster to compute the network statistics for the
subsample than for the full observed network, the speed-up being greater for large no.
As a more holistic measure of time, we compare the time needed to build a reference
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Figure 7: Growth of the number of triangles in a random sample of 100 nodes from
network realizations generated from the DMC model.

Method \ no 1000 2000 5000 10000
S-ABC 2.781 9.711 55.609 221.240
LS-ABC 8.572 8.572 8.572 8.572

RE-ABC 500 2.966 2.966 2.966 2.966
RE-ABC 1000 11.599 11.599 11.599 11.599

Table 2: Average time (in seconds) to construct a single entry in the ABC reference
table for the various methods.

table of various fixed sizes for each method as well as the time required to compute
the statistics for the observed network once. The results are summarized in Figure 8.
Using RE-ABC tracked up to ns = 500 is consistently the fastest, except for no = 1000,
while S-ABC is consistently the slowest for no = 5000 and 10000. For no = 2000, S-
ABC, LS-ABC, and RE-ABC tracked up to ns = 1000 all have similar computation
time. Between LS-ABC and RE-ABC tracked up to ns = 1000, the ordering of the
time required can depend on the size of the reference table. Regardless, the proposed
methods all offer significant speed-ups compared to S-ABC except for small values of no.
The time difference between LS-ABC and RE-ABC depends on the size of the reference
table, and the value of ns and no. While the numbers here may not always be realistic in
practice, this example illustrates the improvements in computation time offered by the
proposed methods. In the next section, we assess the time required for a large empirical
network.

Figures 4, 5 and 6 show the bias as well as SD and RMSE of RE-ABC, tracked
up to ns = 500 and 1000, in comparison with the other methods. RE-ABC exhibits
the same behavior as all other extrapolation methods, namely that the ABC posterior
accuracy diminishes when the range of extrapolation increases. Tracking sample-based
summaries up to ns = 1000 leads to better results than up to 500, which suggests a
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Summary type \ no 1000 2000 5000 10000
Full 1.003 4.488 33.387 154.484

Subsampled 0.101 0.226 0.666 1.567

Table 3: Average time (in seconds) to compute statistic for full network and subsampled
nodes.

Figure 8: The time required for the entire ABC procedure for various sizes of the full
network for S-ABC (blue), LS-ABC (purple), RE-ABC to ns = 500 (red), RE-ABC to
ns = 1000 (olive) for a reference table of size 10, 100, 1000 (from left to right).

quicker deterioration in the quality of the extrapolated quantities when using smaller
ns values, as expected. Interestingly, when ns = no = 1000, and in general when the
number of tracked nodes coincides with the size of the observed network, for the second
and fifth parameter pairs (i.e., for some but not all parameter combinations), RE-ABC
can lead to even better results than S-ABC, suggesting that the sample triangle count
can be as informative as the population triangle count. It is important to note that
at no = 1000 we still use the fitted polynomial functions to determine the summary
statistic values for this number of nodes rather than using the raw sample triangle
count for ns = 1000, which is much more noisy.

This example shows the potential decrease in computation time for RE-ABC, but
also the potential deterioration in performance that depends on the value of ns as well
as the extrapolation range, i.e. no. Nonetheless, posterior means are comparable to re-
sults obtained thanks to population summaries. As a final remark, as shown in Figure 7,
this type of summary presents large subsampling variance across nodes, and to reduce
this variability, an intuitive idea is to draw the sample triangle count multiple times,
and use the average of these quantities as our summary. As an example, given a ran-
domly generated DMC network with 1000 nodes, the empirical variance of the sample
triangle count is equal to 174,099. It drops to 15,232 and 8,308 when computing the
average sample triangle count over 10 or 20 replicates of the subsampling procedure,
respectively. We performed extrapolations based on such a summary, and while the vari-
ability is highly reduced, for this example the least squares fitted functions were barely
unchanged compared to the non-averaged version, leading to almost identical ABC pos-
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terior means (Supplementary Material, Section 1.2). Nonetheless, this consideration is
further investigated in Section 5, where a single observed network is studied.

5 Application to Scientific Citation Networks

We apply the proposed procedure to an empirical citation network from the American
Physical Society (The American Physical Society, 2019), containing no = 597,819 arti-
cles starting 1893 with over 7 million citations (corresponding to directed edges). Even
though more complex mechanistic models could be employed, we make use of the Price
model (Price, 1965), where each newly added node attaches itself, on average, to m ex-
isting nodes such that the probability to attach to a given node is proportional to k0+k,
where k0 is a constant and k is the in-degree of the node. The number of nodes a new
node attaches to is generated from a binomial distribution B(610, p), where the upper
bound of 610 is motivated by the maximum out-degree in the empirical network. The
prior distribution of (k0, p) is uniform over the rectangle [0.9, 1.1] × [0.019, 0.021]. The
center of the prior for k0 is based on Price’s original proposal, while that for p is obtained
by matching the first moment of the empirical network’s out-degree distribution.

We drew 400 parameter samples from the prior and generated network realizations
up to no = 597,819 nodes from a seed network of 28,645 nodes consisting of papers
published before 1960 inclusively. The LS-ABC (only extrapolation) and RE-ABC (sub-
sampling and extrapolation) results are based on the mean and variance of the in-degree
distribution and the number of triangles tracked for 50,000 nodes, i.e., ns = 28,645 +
50,000, at every 50 nodes. Of the three tracked statistics, the number of triangles is
the most computationally intensive and is based on a subsample of 25,000 nodes for
RE-ABC. We also investigated the influence of reducing the sampling variability by
considering the averaged sample triangle count obtained over 10 or 20 replicates (de-
noted RE-ABC 10 avg and RE-ABC 20 avg). The S-ABC results are based on the three
statistics computed at the full network size of no nodes. The ABC posterior distributions
are deduced in the same way as in the previous example, and for the Euclidean dis-
tance computation, we used 100 simulated networks to determine the required empirical
standard deviation of the summaries at no.

The mean of the in-degree distribution can be seen as a weighted average between
the mean of the in-degree distribution of the seed network and contributions from newly
added nodes which give a mean of m new in-edges. This motivates a functional form of
s̃b(n) = ab/n+ cb for the mean of the in-degree distribution for LS-ABC. We also know
that the in-degree distribution is approximately of power-law form P(ki = k) ∼ k−α.
Thus, the second moment can be seen as a generalized harmonic number, E(k2) ∼∑kmax

k=1 k2−α. Note that this summation is not infinite, since we are interested in the
variance of the in-degree distribution of networks of a given size, and they must have an
upper bound on the in-degree. The harmonic number Hkmax =

∑kmax

k=1
1
k has analytical

form γ+ψ0(kmax+1), where γ is the Euler-Mascheroni constant and ψ0 is the digamma
function. This motivates the functional form we use to extrapolate the variance of the
in-degree distribution as s̃b(n) = (γ+ψ0(abn+1))cb+db. Finally, for triangles, we employ
a polynomial functional form, s̃b(n) = abn

cb + db, for both LS-ABC and RE-ABC.
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Figure 9: The empirical vs. the extrapolated value of the mean (top left) and variance
(top right) of the in-degree distribution, number of triangles without sampling (bottom
left), and number of triangles with sampling (bottom right). On the bottom right graph,
blue circles represent 1 sample triangle count, while red squares and green triangles
correspond to the averaged sample triangle count over 10 and 20 independent replicates
of 25,000 nodes respectively.

The empirical value (x-axis) measured at no versus the extrapolated value (y-axis)
of the summary statistics for each generated network realization is shown in Figure 9.
The mean and variance of the in-degree distribution are well extrapolated. While the
extrapolated population triangle count does not perform quite as well compared to the
mean and variance, it is still close to the true count, despite the slightly larger spread
around the identity line. For the sample triangle count used by RE-ABC, when using a
single subsampling procedure, the points are still positioned around the identity line, i.e.,
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no bias is induced. This is also the case when using an average over 10 or 20 replicates of
the subsampling procedure. The non-averaged version exhibits the highest spread, while
the averaged summaries yield more accurate extrapolated values when compared with
the empirical values. By reducing subsampling variability, we generate more accurate
extrapolated summaries, and we therefore expect more accurate posterior distributions
when using the averaged summaries. The cost of greater precision here is the added
computational load needed for the replications. We also notice a slight improvement
when using 20 replicates instead of 10.

Figure 10 displays the estimated posterior distributions for the different methods,
when including or not the triangle count in the summary statistics set, population or
sample based when appropriate. Including or excluding this summary gives some insights
on its influence on the final posteriors, especially since it has the worst extrapolation
quality. Table 4 summarizes posterior quantities of interest for the different approaches.

When making use of the triangles, for the parameter ko, we observe that all extrapo-
lated posteriors are relatively close to the S-ABC. Using sample triangle count provides
even better posteriors compared to LS-ABC, but no great improvement can be observed
when replicating the sampling procedure 10 or 20 times. However, this is not true for the
parameter p. Indeed, without using replicates, the RE-ABC posterior spreads over the
prior range, while the posterior gets closer to S-ABC with a higher number of replicates.
When examining Table 4, we notice that the posterior variances are always overesti-
mated compared to S-ABC, and in general RE-ABC (20 avg) provides the most similar
results.

If triangles are not used as a part of the ABC procedure, the S-ABC and LS-
ABC posteriors match even more closely. This is especially encouraging for the second
parameter. In this example, our proposed ABC procedure works well, especially when
the summary statistics are relevant and well extrapolated. While selection/relevance of
summary statistics is important for ABC methods based on distance, a more detailed
discussion of this question is not in the scope of our paper.

There is also significant difference between the time required for each procedure.
To compute each element of the ABC reference table on average, S-ABC takes 221,290
seconds, LS-ABC takes 13,047 seconds, and RE-ABC using 1, 10 and 20 sample triangle
counts takes respectively 8,724, 38,835 and 73,997 seconds. Computing the summary
statistics on the full observed network (for S-ABC and LS-ABC) takes 236 seconds,
while RE-ABC with 1 subsampling only needs 11 seconds. However, by using averaged
sample-based summaries we broadly multiply this time by the number of used replicates,
reaching 117 seconds when using 10, and 209 seconds for 20. While LS-ABC reduces
computation time, RE-ABC shows an even larger reduction when using a single sampling
replicate, although using too many replicates will increase computation burden. The
more time intensive summary statistic, triangle count, did not take too long to compute
even on the full network, which here made our comparisons possible. However, it would
not be feasible to compute summaries with similar or worse time complexity on very
large networks for all data. The relative time reduction due to RE-ABC in computing
both the elements of the reference table as well as the summary statistics of the full
empirical network is significant. Even though using averaged sample-based summaries
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With triangles Without triangles

S-ABC LS-ABC RE-ABC
RE-ABC
10 avg

RE-ABC
20 avg

S-ABC LS-ABC

Ê(k0 | S) 0.95707 0.98684 0.98414 0.98918 0.97615 1.06176 1.04600

Ê(p | S) 0.02091 0.02071 0.02022 0.02065 0.02077 0.01939 0.01937

V̂(k0 | S) 0.00182 0.00328 0.00270 0.00282 0.00278 0.00083 0.00154

V̂(p | S) (×10−7) 0.18944 1.16371 3.83804 0.98307 0.65569 0.48474 0.38601

Q̂2.5%(k0 | S) 0.90656 0.90850 0.91155 0.91289 0.90909 1.00105 0.97723

Q̂2.5%(p | S) 0.02064 0.02003 0.01920 0.02003 0.02017 0.01913 0.01913

Q̂97.5%(k0 | S) 1.05689 1.08409 1.08466 1.08444 1.08430 1.09731 1.09731

Q̂97.5%(p | S) 0.02108 0.02108 0.02105 0.02108 0.02108 0.01986 0.01984

Table 4: Approximated posterior mean, variance, 2.5% and 97.5% order quantiles for
the two parameters, obtained for the different approaches when including or not the
summaries based on triangles.

involves an increase in computation, the results might be close to the classic ABC
posterior, as observed in this example, making it worth consideration.

Given that the data cover a fairly long time period, it is possible that the mecha-
nisms responsible for the growth and evolution of the citation network change over time.
A comprehensive way to address this question would be to consider a model selection
problem for different time intervals, where different network models incorporate different
growth mechanisms. We have considered the model selection problem for mechanistic
network models elsewhere (see e.g. Chen et al., 2019), and because this paper focuses
on parameter inference, we follow a somewhat different approach. Here we fit the same
canonical model of network growth to two overlapping time periods: the shorter period
from 1950 up to 2017 and the longer period from 1960 up to 2017. The posterior means
(95% credible intervals) for k0 and p for the shorter period are 0.94912 (0.90576, 1.01612)
and 0.02086 (0.02056, 0.02108), respectively, whereas the corresponding estimates for
the longer period are 0.95707 (0.90657, 1.09731) and 0.02091 (0.02064, 0.02108). These
results were obtained using triangle count as a summary, and this similitude did not
change appreciably when that summary was omitted (not shown). The similarity of the
posterior point estimates and credible intervals for the two intervals suggests that the
mechanisms responsible for the evolution of the citation network are stable or “station-
ary” over the 10-year period, or at the very least that a possible change in network
mechanisms has no influence on the resulting ABC posterior distributions for the given
model.

6 Discussion

Application of ABC to inference and model selection problems for mechanistic network
models requires (i) forward simulation of network realizations from the given model
and given parameter value, and (ii) computation of informative summary statistics that
characterize the simulated network. Either or both of these steps may be computation-
ally expensive. We proposed two methodological developments to make ABC feasible
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Figure 10: Posterior distributions for the different methods. The first row includes the
triangle count as summary, while the second row excludes it.

for modeling large networks using mechanistic models. First, because most mechanistic
models grow the network starting from a small seed network, we proposed growing the
network to a size smaller than the actual size of the observed network no and then
using extrapolation to estimate the values of the summary statistics at no. Second, we
proposed the use of sample-based summary statistics (possibly averaged over multiple
replicates), so that rather than computing the summary for the whole nodes in the
simulated network, we only compute it on the graph formed by a subset of them. This
approach works well for relatively local network summaries, such as degree or trian-
gle count, but requires care when applied to more global network metrics since these
metrics may exhibit high sampling variability. Although we used mechanistic network
models to demonstrate this approach, both extrapolated summaries and sampled sum-
maries are expected to be relevant in other ABC settings where the data are generated
incrementally.

One important aspect of the results is that the target of our extrapolation-based
ABC procedure is always the standard ABC (S-ABC) rather than the true parameter
value. While it is desirable to be as close to the true parameter value as possible, the goal
of the procedure is to cut down computation time and to produce close approximations
to S-ABC. It would be unreasonable to expect the ABC procedure based on extrapolated
summaries to outperform the S-ABC procedure corresponding to the same summaries in
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general. Another notable aspect is the bias of the extrapolated posteriors relative to S-
ABC as a function of the accuracy of the extrapolation. This was apparent in the citation
network application, where the relative bias changed noticeably with inclusion/exclusion
of triangles as a summary. Improving this accuracy should be the main focus of future
work in this area.

Lastly, while not the topic of this paper, the bias of ABC posteriors relative to the
true parameter value as a function of the selected summaries is an important issue. In
our simulations as well as our application, we only used rather limited sets of summaries.
Although the corresponding ABC posteriors show noticeable bias, we mainly sought to
convey the proof of concept for an extrapolation-based ABC procedure as well as the
interplay between S-ABC and the extrapolated counterparts. In practice, one should
seek to select a more holistic set of summaries to minimize bias.

Supplementary Material

Scalable Approximate Bayesian Computation for Growing Network Models via Extrap-
olated and Sampled Summaries (DOI: 10.1214/20-BA1248SUPP; .pdf). The supplemen-
tary material presents additional experiments regarding the DMC example presented
in Section 3, including the use of additional kernels for Gaussian processes, and the
comparison between employing the sample triangle count or its averaged version over
multiple replicates.
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