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Adaptive Variable Selection for Sequential
Prediction in Multivariate Dynamic Models

Isaac Lavine∗, Michael Lindon†, and Mike West‡

Abstract. We discuss Bayesian model uncertainty analysis and forecasting in se-
quential dynamic modeling of multivariate time series. The perspective is that of
a decision-maker with a specific forecasting objective that guides thinking about
relevant models. Based on formal Bayesian decision-theoretic reasoning, we de-
velop a time-adaptive approach to exploring, weighting, combining and selecting
models that differ in terms of predictive variables included. The adaptivity allows
for changes in the sets of favored models over time, and is guided by the specific
forecasting goals. A synthetic example illustrates how decision-guided variable se-
lection differs from traditional Bayesian model uncertainty analysis and standard
model averaging. An applied study in one motivating application of long-term
macroeconomic forecasting highlights the utility of the new approach in terms of
improving predictions as well as its ability to identify and interpret different sets
of relevant models over time with respect to specific, defined forecasting goals.

Keywords: Bayesian forecasting, decision analysis, dynamic dependency network
models, dynamic linear models, Gibbs model probabilities, macroeconomic
forecasting, model averaging, model structure uncertainty, shotgun stochastic
search.

1 Introduction

Model structure uncertainty lies at the heart of much of scientific modeling but remains
a central challenge to statistical methodology. Specific problems of variable selection
and model weighting or averaging are central in Bayesian analysis and have seen enor-
mous development to date. However, more recent literature has increasingly emphasized
the need for broader Bayesian views of model structure uncertainty. In particular, the
proscribed nature of standard Bayesian model uncertainty and issues faced in realistic
M-open settings have led to growing recent interest in new Bayesian approaches to scor-
ing, weighting and combining models. We are concerned with these general questions
in contexts of sequential analysis for forecasting and decision-making using dynamic
state-space models for time series. Here the issues of model uncertainty are exacer-
bated by the potential for relevant, data-respecting models to change in structure over
time, as well as for parameters within a model to be time-varying. This, together with
broader challenges, has been highlighted across a class of dynamic model contexts in
West (2020). The current paper picks-up the theme and addresses the challenges with a
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novel Bayesian approach to weighting and, over time, adaptively reweighting structures
from large model classes, guided by specific forecasting and/or decision goals.

Critical limitations of model probabilities are significantly highlighted in the se-
quential time series setting. First, model marginal likelihoods score only 1-step ahead
forecasting accuracy. The marginal likelihood value on a model from n observations
is the product of realized values of 1-step forecast densities. This clearly demarks the
applied relevance of this score. Models are built with forecasting and decision goals, and
1-step forecast accuracy is rarely the only motivating goal. A model scoring highly in
that sense may be hopeless for multi-step ahead forecasting, or define poor forecasts
for resulting decisions. More broadly, the need to consider explicit goals in model struc-
ture assessment has been recognized at least implicitly in recent literature on model
weighting and combination (e.g. Clyde and Iversen, 2013; Amisano and Geweke, 2017;
McAlinn et al., 2018; McAlinn and West, 2019; McAlinn et al., 2020; Yao et al., 2018),
and explicitly in some areas related to multi-step forecasting and decisions when com-
paring and combining models (e.g. Nakajima and West, 2013a; Kapetanios et al., 2015;
West, 2020). A model that forecasts well on one subset of outcomes in a multivariate set-
ting may be poor in other dimensions. A model scoring highly on one purely statistical
metric may be inferior to other models in a decision problem or in terms of contextually
relevant forecast accuracy measures (e.g. Berry and West, 2020; Berry et al., 2020). We
argue for a more explicit, core focus on integrating forecasting and decision goals as
arbiters of model assessment to advance practically relevant methodology.

A further concern is that practical interests in model uncertainty rarely include
identifying “true models”; rather, model structure is often a nuisance parameter and
not of inherent interest otherwise. In variable selection, identifying a model, or a few
models, that are useful for prediction is typically the goal. The academic enterprise of
treating increasingly large sets of models defined by many subsets of potential predictors
quickly runs into the well-known– and intractable– problems of model multiplicities,
redundancies and collinearities: many models with differing structures generate similar
predictions, collinearities drive complications in interpretation, and model averaging
induces increased noise in resulting predictions (e.g. Hans et al., 2007a,b; George, 2010;
Giannone et al., 2018). Practically, interest often lies in “good choices” in terms of
forecast and decision outcomes (e.g. Gruber and West, 2016, 2017; West, 2020). Then,
the increasing dimension of model spaces argues against the traditional Bayesian view
of maintaining interest in all possible models. In sequential analysis of time series this is
particularly highlighted, as monitoring and updating scores on many models over time
quickly raises the computational stakes. As many models will be of little or no interest,
coupled with the common issue of huge redundancy of model classes, this argues for
selective analysis of smaller numbers of models and a concern to– at selected points over
time– review and refresh selected sets of models under consideration.

We address the above issues with a new Bayesian approach to adaptive (over time)
model uncertainty analysis. The ideas are general while being presented in the moti-
vating context of multivariate time series forecasting with specific forecast goals, and
in which the model structure in question is the specification of sets of predictor vari-
ables in dynamic linear models for the multivariate series. The example context uses
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flexible classes of dynamic dependency network models for a vector time series, and
explores analysis in a topical macro-economic forecasting context. Section 2 defines the
time series setting. Section 3 opens with explicit desiderata underlying the perspective
on sequential analysis and forecasting in the context of predictor variable uncertainty,
responding to the issues and challenges discussed above. This section then defines both
the conceptual basis and technical/computational details of the novel adaptive variable
selection strategy. A simulation study in Section 4 is followed by results from a macroe-
conomic case study in Section 5. The application focuses on the relevance of model
structure uncertainty with respect to multi-step ahead and path forecasting, i.e., the
specific and key goal in monetary policy-related contexts of forecasting trajectories of
economic indicators over a path of time points into the future. Summary comments
appear in Section 6, with supporting material in Appendices.

2 Time Series Setting and Perspectives

2.1 Multivariate Time Series: Notation and Models

The m × 1 vector yt comprises a set of m univariate time series yj,t in equally-spaced
time. The class of Dynamic Dependency Network Models (DDNMs) is a flexible frame-
work for modeling and forecasting, and is increasingly exploited due to the ability to
customize univariate series, sensitively model cross-series relationships and their dynam-
ics over time, and to scale with m. DDNMs couple together sets of univariate dynamic
linear models (DLMs) and exploit the well-known, analytic forward filtering and fore-
casting results of DLMs (e.g., chapt. 4 in each of West and Harrison, 1997; Prado and
West, 2010). Full details can be seen in Zhao et al. (2016), with a recent, relevant ex-
ample in Irie and West (2019). The cross-series structure of DDNMs is also intimately
related to other popular multivariate models applied in economics, finance and related
areas (e.g. Primiceri, 2005; Nakajima and West, 2013a,b; Zhou et al., 2014; Nakajima
and West, 2015, 2017; Shirota et al., 2017; Lopes et al., 2018).

A DDNM is defined by a set of univariate dynamic models

yj,t = F′
j,tθj,t + νj,t, Fj,t =

(
xj,t

ypa(j),t

)
, θj,t =

(
φj,t

γj,t

)
, νj,t ∼ N(0, 1/λj,t), (1)

where j = 1, . . . ,m indexes series and t = 1, 2, . . . indexes time. In each series j, the
state vector and volatility (θj,t, λj,t) evolve via a linear state equation coupled with a
discount volatility model, assumedly independently across series. Observation errors νj,t
are independent across j and over t. The regression vector Fj,t involves: (a) a subvector
xj,t of exogenous predictors and/or selected lagged values of some of the m series–
giving opportunity for sparse and time-varying vector autoregressive components as
well as external predictor variables; (b) a subvector ypa(j),t of parental predictors– here
pa(j) ⊆ {j + 1, . . . ,m} is an index set selecting some of the contemporaneous values of
other series ordered higher than j in the vector. The triangular structure of the parental
sets defines the multivariate model of yt by a series of conditional relationships. The
conformably partitioned state vector θj,t includes subvectors of dynamic coefficients
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φj,t on exogenous and lagged predictors, and γj,t on parental predictors, viz E(yj,t|∗) =
F′

j,tθj,t = x′
j,tφj,t + y′

pa(j),tγj,t where ∗ indicates all relevant terms.

The joint distribution can theoretically be decomposed into any series ordering; in
practice the series order matters for interpretation and will impact on variable selection
for each of the decoupled univariate models. In our economic time series examples below
we follow prior authors in choosing a contextually relevant ordering (e.g. Nakajima
and West, 2013b; Eickmeier et al., 2015). For broader commentary on the ordering in
applications, we refer to the particularly germane discussion and reply to discussion
in Zhao et al. (2016), as well developments in related models in Nakajima and West
(2015) and Crespo Cuaresma et al. (2019). Common empirical experiences are that
the impact of the ordering is typically very limited from the viewpoint of forecasting
accuracy. Otherwise, with interests in justification a modeller is free to define her/his
own ordering based on application-specific rationales, and then explore and evaluate
multiple possible choices. While these are important applied considerations, they are
not of main interest in connection with the primary contributions of this paper and we
proceed with a chosen order.

At each time t, denote by Dt the current information set. This includes initial in-
formation D0, all data y1, . . . ,yt up to time t, and all other information used in the
modeling process– including the xj,t, interventions or changes to model structure, etc.
Implicitly in what follows, Dt also includes information needed or relevant in forecasting
multiple steps ahead, including future values of exogenous predictors.

2.2 Sequential Learning and Forecasting

The models of (1) are standard DLMs amenable to analytic computation for forward fil-
tering and 1-step ahead forecasting. In our example context, the evolution of θj,t is a sim-
ple (linear, conditionally normal) random walk, and is coupled with a discount/random
walk volatility model for λj,t. This standard framework allows for change over time con-
trolled by discount factors (e.g. Prado and West, 2010, section 4.3). A lower discount
factor allows more substantial changes over time, while a discount factor of 1 corre-
sponds to static coefficients; a brief summary of time t evolution and updating appears
in Appendix 1 of the Supplement (Lavine et al., 2020). Importantly, filtering analyses
are both analytic and conditionally independent across series j so are done in parallel,
while forecasting involves recoupling across series.

At time t for each series j, the conditional (on parental predictors) 1-step ahead
forecast distribution p(yj,t|ypa(j),t,Dt−1) is a univariate T-distribution with trivially
computed parameters. This yields the joint forecast density function via composition,
i.e., p(yt|Dt−1) =

∏m
j=1 p(yj,t|ypa(j),t,Dt−1). For k > 1, forecasting k-steps ahead is

based on direct simulation, exploiting the recursive structure of DDNMs. This enables
computationally trivial simulation of the path of the multivariate time series over the
next k time points. Technically, this simply propagates samples of the paths of states
and volatilities (θj,∗, λj,∗) for each series j, coupled with sampling from the conditionally
normal DLMs to generate the y∗. Standing at time t, for example, this evaluates the
full path forecast distribution by generating Monte Carlo samples, a.k.a. “synthetic
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futures”, from p(yt+1, . . . ,yt+k|Dt) =
∏k

h=1 p(yt+h|yt+1, . . . ,yt+h−1,Dt). All practical
forecasting interests over the coming k periods can then be addressed with relevant
Monte Carlo summaries (e.g., expected or median paths, prediction of turning points,
maxima or minima, value-at-risk, expected utility functions, etc.).

2.3 Model Uncertainty: Predictive Variable Specification

The central model structure uncertainty question in DDNMs is specification of predictor
variables in both exogenous/lagged xj,t terms and parental sets pa(j). Write Mj for a
set of candidate models Mr

j for series j, indexed by r ∈ {1, . . . , |Mj |}. Mathematically,
Mr

j ∈ {0, 1}p is a p-dimensional vector selecting predictor variables. An important point
is that we will be expanding the framework so that model spaces are effectively time
dependent, i.e., Mj → Mj,t, but for now maintain the simpler notation. Denote by M
any single multivariate model for yt defined by a selection of one model from each of
the m sets Mj .

Consider first the discount learning extension of standard Bayesian model probability
analysis, and BMA as a special case. At any time t − 1, denote the current model
probabilities by p(M|Dt−1). Given a model space discount factor α such that 0 < α ≤ 1,
the discount modified model probability at time t is defined by

p(M|Dt) ∝ p(M|Dt−1)
α p(yt|M,Dt−1) ∝ p(M|D0)

αt
t∏

h=1

p(yh|M,Dh−1)
αt−h

,

where the earlier notation for 1-step forecast p.d.f.s has been extended to be explicit
that it depends on the specific model structure M. A discount α < 1 acts to reduce the
impact of historical information in model comparisons, with data from n time points
in the past discounted by αn in the cumulation of model scores. Evidently, standard
Bayesian analysis sets α = 1. As t increases, α < 1 means that model weights will
not degenerate; they adapt over time and respond to varying 1-step predictive abilities
across the sets of models (West and Harrison, 1989a, p. 445; Raftery et al., 2010; Xie,
2012; Koop and Korobilis, 2013; Zhao et al., 2016). A major potential benefit is that
of adapting more rapidly to reweight models based on more “local” behavior in the
series, and down-weight models that were historically more favored but are locally of
lower predictive value. This often yields improved predictive performance as illustrated
in multiple examples in the above references.

A major benefit of DDNMs is that model uncertainty is addressed across series j
independently, as dynamic variable selection problems in each of the univariate DLMs.
This implies

∑m
j=1 |Mj | possible models M, whereas a direct multivariate analysis

would involve a much more substantial set of
∏m

j=1 |Mj | models. That is, as earlier

noted, p(yt|M,Dt−1) ∝
∏m

j=1 p(yj,t|Mj ,ypa(j),tDt−1) so the contributions to model
scores given by the set of m 1-step forecast p.d.f. values are decoupled across series.

Traditional Bayesian analysis– perhaps with the practically motivated but otherwise
subjective intervention-based discount model probability variant– proceeds using model
scores defined above.
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3 Time-Adaptive Variable Selection

3.1 Model Structure Uncertainty and Practical Forecasting

Following discussion and motivation in Section 1, we develop analysis consistent with
the following perspectives.

• Performance in prediction with respect to specific, defined forecasting goals should
arbitrate model comparisons, combination and selection. Evaluation of alternative
models, and the definition of models scores to use in weighting models for aggre-
gation in prediction and selection of future “optimal” models, should consider
specific forecast and/or decision goals.

• At each time t, it is desirable to have a single chosen model for communication
and use in forecasting, and changes to the chosen model over time justified based
on improvements in forecast accuracy modulo specific forecasting goals.

• Consideration of banks of models to assess any “current” model, and combination
of selected sets of models for forecasting purposes, should be entertained at any
times that forecast accuracy under that chosen model might be questioned. This
can be done routinely at each time point, or at selective time points based on model
monitoring and assessment of predictive accuracy modulo the specific forecasting
goals (West and Harrison, 1986; West, 1986; West and Harrison, 1989b; Gruber
and West, 2016, 2017).

The methodological contributions of this paper include a strategy for time-adaptive
variable selection that address these desiderata. The resulting adaptive variable selection
(AVS) strategy is composed of: (1) so-called Gibbs model probabilities, tying model
evaluations with defined forecasting objectives; (2) a local search strategy over model
spaces to dynamically explore potential models relative to a “current” selection; (3) a
choice of a representative model at each time point for communication, interpretability
and as a basis to evolve forward in time; and (4) the use of (1–3) adaptively over time.

3.2 Gibbs Model Probabilities

Our approach relates to the growing interest in Bayesian decision-guided inference with
loss or utility functions used to define mechanisms to update subjective probabilities
over models (or, more generally, over uncertain states and parameters). We use the term
“Gibbs model probabilities”, contributing to the growing literature concerned with so-
called generalized belief updating in which data-based evidence is represented in likeli-
hood functions constructed based on defined loss or utility functions (Jiang and Tanner,
2008; Bissiri et al., 2016). Previous work has used purely statistical loss functions, and
established that such an approach can provide superior risk performance to Bayesian
updating under model misspecification (Zhang, 2006a,b; Jiang and Tanner, 2008). Be-
yond expanding the ideas to dynamic model structure uncertainty and developing a
sequential, adaptive approach, a key focus here is to exploit the approach using loss or
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utility functions specific to the main prediction problems of interest, also linked to prior
work on explicitly recognizing model selection as a decision (e.g. Hahn and Carvalho,
2015).

Consider series j with (time 0) baseline model probabilities p(Mr
j |D0) over selected

models Mr
j ∈ Mj . Gibbs model probabilities based on data Dt (from all m series)

observed up to time t are defined by

pj(Mr
j |Dt) ∝ p(Mr

j |D0)e
τsj,t(Mr

j ), (2)

where τ > 0 and sj,t(Mr
j) is a model score. A higher model score indicates more support

for the model Mr
j and reflects historical performance in a specific forecasting or decision

problem. The scores are defined by choosing a utility function relevant to the specific
goals. Examples include simple point forecast metrics or full (log) predictive densities
for functions of the outcome time series as used in our examples below. With scores
on a known or standardized scale, the parameter τ balances information from the past
data with that in the prior. Questions of how to calibrate τ are discussed in Bissiri et al.
(2016) and in our settings in Sections 4 and 5 where scores are based on out-of-sample
predictive densities. The general setting allows scores to be of different forms across
series j, or to be based on a common function but with series j-specific weights, or to
involve the same score for each component series. Examples below use the latter, while
the generality is important to note for future applications. Gibbs model probabilities
are used for model averaging just as in standard model uncertainty analysis; note that
the latter arises as a special case when τ = 1 and scores are simply the logs of 1-step
ahead predictive densities. More generally, the Gibbs likelihoods can be interpreted as
extensions of model likelihood from the 1-step ahead predictive focus to that based on
a desired forecast or decision goal.

One of the major benefits of DDNMs is that, as discussed in Section 2.3, marginal
likelihoods for a multivariate model are simply the products of likelihoods from each of
the m univariate models. This carries over to Gibbs model probabilities assuming that
the scores are unrelated and that baseline models are independent across series. Then
the overall probabilities on the multivariate model M defined by the set of m chosen
models Mrj

j is simply the product of terms in (2),

p(M|Dt) ∝ p(M|D0)e
τst(M), st(M) =

m∑
j=1

sj,t(Mrj
j ), (3)

where p(M|D0) is the product of the p(Mr
j |D0). The overall probabilities p(M|Dt) are

used for model averaging for prediction and decisions, and then model selection. That
is, model evaluation is decoupled to the levels of the univariate series, then recoupled
to assess the overall multivariate model.

3.3 AVS Strategy and Representative Model Selection

The overall strategy of adaptive variable selection (AVS) is summarized in Algorithm 1
below. At each time t, we find a set of models using Shotgun Stochastic Search (SSS),
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a strategy to explore regions of strong models (Jones et al., 2005; Hans et al., 2007a,b;
Scott and Carvalho, 2008; Wang, 2015). Models are evaluated using Gibbs model prob-
abilities, and averaged together for forecasting and decisions before moving on to the
next time point. The AVS strategy is run in parallel over series j = 1, . . . ,m to find
candidate models and evaluate their Gibbs probabilities. Forecasting from multivariate
DDNMs is then trivial via sequential simulation.

Algorithm 1 Adaptive Variable Selection.

1: for time t in 1:T do
2: for series j in 1:m do
3: Find a set of candidate models Mj with SSS, seeded by representative model

M0,t−1

4: Calculate Gibbs probabilities pj(Mr
j |Dt−1)

5: Forecast with model averaging, where the probability of DDNM M is the prod-
uct of its univariate model probabilities.

6: Observe yt, and for each series j, update Gibbs Probabilities pj(Mr
j |Dt)

7: Choose a new representative model M0,t

As discussed in Section 1 and the desiderata of Section 3.1, it is often desirable for
interpretation and communication to operate using a single selected model unless or
until changes are suggested based on a breakdown in model performance or external
considerations. Thus selecting one model as a representative of the probability-weighted
set is of interest. Denote by M0,t a DDNM chosen as the representative model at
time t. A natural choice is the modal model with respect to Gibbs model probabilities,
i.e., modulo the baseline probabilities that model maximizing the overall score st(M).
Alternatives would choose M0,t as a Bayesian decision with respect to the mixture over
models. A natural approach would choose the representative model to best approximate
(e.g., using Kullback-Leibler divergence) a specific predictive distribution that averages
over the full set of models under consideration. This has theoretical and practical appeal,
but is computationally expensive relative to selection of the modal model.

Analysis proceeds through the DDNM evolution to time t+1 using the single model
M0,t. Then observing yt+1 we face the question of identifying classes of models Mj and
computing Gibbs model probabilities. The theoretical indication that we continuously
update scores on all possible models is simply not practicable in realistic settings. Then,
as time evolves different models become of interest relative to those that had scored well
in the past. Further, interventions at certain times may change the class of models under
consideration (e.g. by adding new potential predictors not so far considered). Hence the
interest is (a) to identify sets of models at time t+1 that appear competitive with M0,t

in terms of the specific forecasting goals, i.e., in terms of the defined score function, while
(b) to do so computationally efficiently as this will be repeated at each time point. Our
AVS implementation utilizes an extension of SSS to address these goals, as detailed in
Section 3.4 below.

A practical modification is to use the model search and weighting via AVS only
at selected time points. That is, at time t + 1 and over a number of further time
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points, we may simply use the single model M0,t for evolution and forecasting. At some
point, however, consideration of other models will become important, and then the AVS
strategy of finding and weighing sets of models will come into play.

3.4 Finding Models: Shotgun Stochastic Search

Originally developed for graphical models and regression, shotgun stochastic search is
designed to quickly identify and explore interesting regions in large, discrete model
spaces (Jones et al., 2005; Hans et al., 2007a,b; Scott and Carvalho, 2008; Wang, 2015).
The proven ability to rapidly transit model spaces based on “local changes” to existing
models makes SSS perfectly suited to the AVS context in DDNMs with larger numbers
of potential predictor variables per series. At time t+1, the current representative model
M0,t serves as an initial “seed model”. Based on this, SSS proceeds as follows:

1. Identify a neighborhood of the seed model, typically the set of models
{M+

0,t,M◦
0,t,M−

0,t}, where

(a) M+
0,t is all models with 1 predictor added,

(b) M◦
0,t is all models with 1 predictor swapped,

(c) M−
0,t is all models with 1 predictor subtracted.

In DDNMs this applies separately to each of the m decoupled DLMs for univariate
series.

2. Evaluate all such models in the neighborhood. This can use posterior model prob-
abilities or Gibbs model probabilities, or any other scoring method desired (e.g.,
scores from specific decision problems– e.g. West, 2020, Section 2).

3. Record this set of models and scores in a running list.

4. Sample a new seed model from this neighborhood, and repeat. Sampling will be
done using model probabilities or the decision-guided Gibbs extensions.

When the seed model is highly scoring, then the set of neighboring models will typi-
cally include many other interesting models in terms of the score. SSS therefore fully
exploits local modes in model space to swiftly move between individual high probability
models to reach varied parts of the model space. Neighboring models can be evaluated
in parallel, which is a clear advantage over sequential search methods. This makes SSS
particularly suited for situations where full exploration of the model space is compu-
tationally impossible, either because the set of models is large, or calculating scores is
slow. Importantly, the goal is to identify subsets of highly scoring models to underlie
forecasting and evolution to the next time point; the goal is explicitly quite different to
that of MCMC-based model search strategies, i.e. of “structure learning”.

Within the SSS search at each time, each model identified requires fitting over a pe-
riod of past data– possibly all data from t = 0 or perhaps over a restricted recent period–



1068 Adaptive Variable Selection

to evaluate model scores based on the historical forecasting record. That DDNMs ad-
mit fast, analytic computation is critical here, enabling evaluation of even very large
sets of candidate models at each time point; again, these computations are inherently
decoupled hence parallelizable within each time point.

4 Synthetic Time Series Example

A simple but relevant and illuminating example with synthetic data illustrates AVS
compared to standard model averaging, and demonstrates how AVS selects predictors
with stable effects for long-term forecasting. This is clearest in the simple case where
m = 1 series so the DDNM reduces to a single DLM at j = m = 1, with data yt ≡ y1,t.
The data are simulated from a model exhibiting both steady and more rapidly changing
dynamics. We generate yt = c+ θ1,tx1,t+ θ2,tx2,t, with simulated θ1,t and θ2,t displayed
in Figure 1. Note that θ1,t is rapidly changing, while θ2,t is relatively steady. Predictors
x1,t and x2,t are randomly set at 1 or −1 with probability 1/2.

Figure 1: Time-varying coefficients θ1,t (red) and θ2,t (blue) underlying synthetic data.

Each model M is a univariate DLM defined by a choice of predictor variables. This
is illustrated for the Gibbs posterior modal model in Figure 2. All models include an
intercept so there are 4 possible combinations of the variables x1,t and x2,t for inclusion,
defining 4 candidate models at each time. In each DLM, the state vector and volatility
processes follow standard random walk evolutions as earlier discussed, with discount
factors δ = β = 0.98; see also Appendix 1 of the Supplement. Gibbs model probabilities
use τ = 1 as scores are log forecast densities so the resulting probabilities are on the same
scale as standard Bayesian model probabilities. The baseline priors at t = 0 give equal
weight to each model, and conjugate normal/inverse gamma priors for the state vector
and volatility in each model are based on informal analysis of data from an additional
training period of 30 time steps before formal model scoring and AVS analysis begins
over t = 100 time points.
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Figure 2: Synthetic data example: Indicators of inclusion (green) of x1,t and x2,t in the
posterior modal models under AVS (upper) and BMA (lower).

Figure 3 shows that AVS forecasting dominates BMA in terms of model-averaged
predictive density. With k = 25 to drive AVS, the k-step ahead based predictive density
score naturally improves over the myopic BMA. Smaller differences occur at periods
when the BMA drops x1,t or, by chance, θ1,t ≈ θ1,t+k. More deeply, using the same AVS
analysis with k = 25 in fact improves forecast accuracy over all horizons, as exhibited
by the marginal root mean squared forecast error (rMSFE) for each horizon 1−25 steps
ahead in the figure. This occurs even though the model is weighted by k = 25-step
ahead scores only, and the figure highlights the fact that standard BMA will tend to
perform well only at short horizons.

Reflecting central interests in multi-step ahead forecasting arising in many appli-
cations (e.g. Nakajima and West, 2013a), Gibbs model probabilities at each time are
based on model scores of marginal k-step ahead forecast accuracy with k = 25 as an
example. The model score function st(M) ≡ s1,t(M1) on each model M is simply

st(M) =

t−k∑
h=0

αt−k−h log(p(yh+k|M,Dh)),



1070 Adaptive Variable Selection

Figure 3: Synthetic data example: Multi-step ahead forecast performance using AVS
(red, solid) (with k = 25) and BMA (blue, dashed). Log forecast density scores
log(p(yt+25|Dt)) over time t (upper), and root mean squared forecast errors as a function
of forecast horizon (lower).

for some model discount factor α ∈ (0, 1]. Here α < 1 down-weights more distant past

outcomes as in the discount Bayesian model uncertainty analysis of Section 2.3 that

arises as the special case when k = 1; standard BMA is given with α = k = 1. Our

example here sets α = 0.98 for both Gibbs and Bayesian model probabilities. Previous

studies have identified 0.95 < α < 1 as an appropriate range, with little benefit in

considering multiple α values (Raftery et al., 2010; Koop and Korobilis, 2013; Zhao

et al., 2016).

The behavior of adaptive variable selection is best illustrated through the identifi-

cation of the representative model, taken here as the Gibbs posterior modal model at

each time point; see Figure 2. Predictor x1,t is uniformly excluded; inclusion of a vari-

able with rapidly changing and unpredictable dynamics generally degrades long-term

predictions. In contrast, the posterior modal model from BMA almost always includes

x1,t, except when the coefficient θ1,t drops near to 0.
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Figure 4: Macroeconomic example: Monthly time series of US Inflation, Consumption,
and yield on 10-year Treasury bonds (Tr10Yr) over 24 years up to the end of 2016.

5 Macroeconomic Case Study

5.1 Forecasting Context and Data

We address monthly forecasting of three key US macroeconomic series: year-over-year
Inflation, Consumption, and the 10-year yield on Treasury bonds (Tr10Yr). Data over
1991–2016 from the St. Louis Federal Reserve are shown in Figure 4. The sharp drop
in both Inflation and Consumption during recessions is clear in 2001 and 2008, while
Inflation and Tr10Yr show slight long-term downward trends. Improved forecasting of
these and related series is a central concern in national monetary policy, and forecasting
more than a few months ahead is notoriously challenging (e.g. Primiceri, 2005). While
particular interests lie in forecasting 12–24 months ahead at each time point, central
bank concerns spread across forecast horizons. It is becoming increasingly clear that
customizing models to the forecast horizon of interest can improve forecast accuracy
and potentially generate economic insights into dynamic relationships among series
over time (Nakajima and West, 2013a; McAlinn and West, 2019; McAlinn et al., 2020).

Potential predictors include all 1–12 month lags of each series. The DDNM orders
series as Inflation-Consumption-Tr10Yr. Hence Consumption and Tr10Yr are potential
parents of Inflation, Tr10Yr is a potential parent for Consumption, while Tr10Yr has no
parents. Including a possible intercept, the total predictor space has 39 potential pre-
dictors for Inflation, 38 for Consumption, and 37 for Tr10Yr. We summarize forecasting
results from analyses as follows. Earlier data from 1986–1990 was used informally to
choose informative priors at the start of 1991 for all states and volatilities. Analyses
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were run for a training period of 5 years, and then full forecast evaluations were made
over the 252 month period 1996–2016 inclusive.

5.2 Horizon-Specific Multi-step Forecasting

Initial analysis considers marginal forecasts for k = 24 months ahead. The score is the
discounted log predictive density at the chosen horizon as in the univariate example in
Section 4 but now for the multivariate series; that is,

st(M) =

t−k∑
h=0

αt−k−h log p(yh+k|M,Dh)), (4)

where yh+k is the multivariate observation at time h+ k, and both AVS and BMA use
α = 0.98 for this study. Note that the computational cost of AVS scales linearly in the
number of series because we are able to take advantage of the DDNM structure. Model
scores are evaluated for each series j independently, and in parallel, by conditioning
on the past values of other series. Forecasts are evaluated using the joint 24-step ahead
forecast density. Figure 5 shows that AVS dominates BMA with respect to the long-term
forecasting objective function defined by the usual model-averaged predictive density
while, as expected, BMA analysis is more accurate in the shorter-term predictions.

Differences between model weightings and selection under AVS and BMA can be
visualized in terms of variables included in the modal DDNMs and how these variable
sets change over time. For BMA this is simply the model with maximum posterior
probability at each time point, while for AVS it is the representative modal model at
each time. The DDNM component models for the Inflation series are highlighted in
Figure 6. AVS focuses on higher lags of predictor variables, particularly lag-12 Inflation
and lag-12 Consumption. Models featuring these higher lags produce more stable and
accurate longer-term forecasts, although they are less accurate for 1-step forecasting
than models which include the lag-1 variable that are more favored under BMA.

5.3 Multi-step Path Forecasting

A major interest lies in improved path forecasting. In this applied context, the main fo-
cus is on how the macroeconomy is predicted to evolve over a coming period of months,
and how the series are predicted to interact over that time. Such goals are naturally
addressed in the Bayesian framework by exploring full joint predictive distributions
over multiple months. This is contrasted with the usual horizon-specific, or marginal
forecasting analysis, of Section 5.2. With a focus on the path over the next k time
points, we are therefore interested in the (k × m-dimensional) path forecast density
pt(yt+1, . . . ,yt+k|Dt), and refer to understanding the underlying distribution as path
forecasting. The suffix t makes explicit that this is the joint forecast over the next k
time points made at time t. In addition to potentially extracting distributional sum-
maries, one key use of models is simulation: generating “synthetic future paths” of the
economy that can be explored subjectively and used to interrogate predictions on ar-
bitrary functions of the economic variables (e.g., defined downturns, etc). In terms of
model structure assessment, the explicit aim is to find models that balance short and
longer-term forecasting, rather than focus on one or more specific horizon.
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Figure 5: Macroeconomic example: Marginal k = 24-steps ahead forecasting com-
parisons between AVS (red, solid) and BMA (blue, dashed). Log forecast densities
log(p(yt+24|Dt)) over time t (upper), and marginal root mean squared forecast errors
over 1 to 24 month forecast horizons (lower).

Define the corresponding log path forecast density (LPFD) score at any time t via

st(M) =

t−k∑
h=0

αt−k−h log(ph(yh+1, . . . ,yh+k|M,Dh)), (5)

with discount α ∈ (0, 1]. As above, the example sets α = 0.98 for both AVS and BMA.
As the loss function is based on a k-dimensional joint density, the natural setting for
the scale parameter τ in Gibbs model probabilities is τ = 1/k; this puts the model
score on the same scale as in standard Bayesian updating of model probabilities. As in
Section 5.2, the computation scales linearly in the number of series because the LPFD
score can be factored into independent terms for each univariate series.

In any chosen DDNM, forecast evaluation of path scores is via Monte Carlo. This
involves simple, direct/forward simulation of state vectors and volatilities in the usual
recursive form within each time point, and then sequentially over the next k time points.
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Figure 6: Macroeconomic example: Marginal k = 24-steps ahead forecasting compar-
isons. Dynamic variable inclusion (green) for DDNM series j = 1, Inflation, in the
posterior modal models: under marginal 24-step AVS (upper) and BMA (lower). Ver-
tical bars indicate the start and end of the great recession, during which AVS rapidly
adapts to changing economic conditions.
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This generates samples from the predictive distributions of these latent parameter pro-
cesses, each of which defines a full set of conditional multivariate normal distributions
for the outcome path yh+1, . . . ,yh+k. Monte Carlo averages of these normals evaluated
at the eventual outcome data provide Monte Carlo evaluations of path densities.

5.4 Path Forecasting Results

The expectation is that path forecast-guided AVS will improve longer-term (up to hori-
zon k) forecast accuracy while still favoring models with realistic short-term forecasts.
This is borne out. Figure 7 shows summary information for 1- and 12-month ahead
Inflation forecasts. Related plots for Consumption and Tr10Yr are in Appendix 2 of
the Supplement. Improved forecasting accuracy under AVS can be seen in the marginal
rMSFEs. The trend is for the short-term forecast accuracy to be very similar to BMA,
with AVS offering increasing improvements over BMA at longer forecast horizons.

Trajectories over time of indicators of variables included in modal models provide
insights into differences between AVS and BMA in this path forecasting context; this is
illustrated in Figure 8 in DDNM model components for predicting series j = 3, Tr10Yr.
It is typical and to be expected that the lag-1 value of a given series is a dominant
predictor of that series, especially with data at monthly levels. This holds true in the
models selected by both BMA and AVS for all 3 series, exemplified in this figure for
Tr10Yr. However, with the LPFD score using k = 24, AVS does better in capturing
longer-term dynamics; the figure highlights the involvement of higher lags of all series
in the AVS analysis relative to that using standard BMA.

5.5 Higher Dimensional Results

As described in Sections 5.2 and 5.3, the computational load of AVS analysis in DDNMs
scales linearly in the number of series, enabled by evaluating model scores independently
across series in the DDNM hierarchy. A further study of a higher-dimensional series
confirms the ability to scale computations while also reinforcing the role of the AVS
strategy in goal-focused forecasting.

We expand the previous analysis to 7-dimensions by adding time series of year-
over-year Wage Growth, M2 Money Stock, Moody’s BAA Corporate Bond, and Gold
prices. These variables are important indicators of the labor market, monetary policy,
and corporate activity. We consider as potential predictors 1, 3, 6, and 12 month lags of
each series. The model score is the marginal k = 24 month ahead log predictive density,
as defined in Section 5.2. As in the previous example, we set α = 0.98 for both AVS
and BMA, and τ = 1 to put the model score on the same scale as standard Bayesian
model probabilities.

Figures 9 and 10 compare the performance of AVS and BMA. The higher-dimensional
DDNM provides a greater diversity of economic signals to choose from as predictors,
leading to larger differences between AVS and BMA. As in the 3-dimensional example,
AVS consistently dominates BMA with respect to the 24-month ahead log forecast den-
sity, especially during periods of economic upheaval. The marginal rMSFE shows that
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Figure 7: Macroeconomic example: Path forecasting comparisons. The upper frame
shows 1-month and 12-months ahead forecasts of Inflation using AVS: data (blue,
dashed), forecast means (red, solid), 50% prediction intervals (dark gray bands) and
95% prediction intervals (light gray bands). The lower frames show marginal rMSFE
measures for Inflation, Consumption, and Tr10Yr over 1 to 24 month forecast horizons
for AVS (red, solid) and BMA (blue, dashed).

BMA performs better at short-term forecasting, while AVS produces superior results
over longer horizons.

6 Additional Comments

6.1 Conclusions

AVS builds on concepts in the recent Bayesian literature to define goal-oriented model
structure uncertainty analysis that avoids the shortcomings of standard approaches.
We do this in sequential, dynamic time series contexts by adapting goal-focused Gibbs
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Figure 8: Macroeconomic example: Path forecasting comparisons. Dynamic variable
inclusion (green) for DDNM series j = 3, Tr10Yr, in the posterior modal models: under
24-step path forecasting AVS (upper) and BMA (lower). Vertical bars indicate the start
and end of the great recession, during which AVS focuses on shorter term predictors to
adapt to changing economic conditions.
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Figure 9: 7-Dimensional macroeconomic example: Log forecast densities
log(p(yt+24|Dt)) over time t for AVS (red, solid) and BMA (blue, dashed).

Figure 10: 7-Dimensional macroeconomic example: Marginal rMSFE measures for all
series over 1 to 24 month forecast horizons for AVS (red, solid) and BMA (blue, dashed).

model probabilities coupled with efficient shotgun stochastic search over spaces of model

structures, overlaid on standard Bayesian analysis in DDNMs. The resulting method-

ology maximally exploits analytic Bayesian computations within DDNMs, and is open

to partial parallelization of both analytic and direct simulation-based computations for

forecasting for increasingly high-dimensional series.
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The examples with simulated and real economic data show the ability of goal-focused

AVS to achieve superior results to standard Bayesian model structure learning. AVS

improves longer-term forecast accuracy by identifying, weighting and averaging over

models whose structure is different to that identified by standard Bayesian analysis; time

series models more heavily weighted for longer-term forecasting naturally involve longer-

lagged predictors. The important context of path forecasting emphasizes the benefits

of AVS while also highlighting the relevance of standard Bayesian model probability

analysis in connection with shorter-term forecasting.

6.2 Potential Extensions and Related Research

The paper uses DDNMs as context and examples. The related class of Simultaneous

Graphical Dynamic Linear Models (SGDLMs) relax restrictions on the selection of

parental predictors (Gruber and West, 2016, 2017), with a trade-off in terms of ad-

ditional computational needs. AVS is directly extensible to SGDLMs (and, to other

multivariate dynamic model frameworks, at least in principle) and further development

in that direction can be anticipated.

The presentation and examples in the paper focus on the use of model scores based

on a specific, defined forecasting or decision goal. In other settings, there may be several–

possibly competing– goals. For example, in multi-step forecasting we may consider

marginal forecasts at each horizon h = 1, 2, . . . , k to be of explicit interest. Fitting sepa-

rate models and AVS analyses for each horizon would be is consistent with “models for

goals” as in Bayesian predictive synthesis approaches to model combination (McAlinn

et al., 2018; McAlinn and West, 2019; McAlinn et al., 2020), and with the over-arching

motivation for AVS. This obviously raises questions of computational demands as well

as of how to balance and potentially combine AVS analyses across goals. An alternative

view is to use some form of aggregate score that balances interest across the several

goals, consistent with practice in multi-objective Bayesian decision analysis.

Supplementary Material

Adaptive Variable Selection for Sequential Prediction in Multivariate Dynamic Models

– Supplementary Material – (DOI: 10.1214/20-BA1245SUPP; .pdf).
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