
Bayesian Analysis (2022) 17, Number 1, pp. 95–126

Bias Correction in Clustered Underreported
Data

Guilherme Lopes de Oliveira∗, Raffaele Argiento†, Rosangela Helena Loschi‡, Renato
Martins Assunção§, Fabrizio Ruggeri¶, and Márcia D’Elia Branco‖

Abstract. Data quality from poor and socially deprived regions have given rise
to many statistical challenges. One of them is the underreporting of vital events
leading to biased estimates for the associated risks. To deal with underreported
count data, models based on compound Poisson distributions have been commonly
assumed. To be identifiable, such models usually require extra and strong infor-
mation about the probability of reporting the event in all areas of interest, which
is not always available. We introduce a novel approach for the compound Poisson
model assuming that the areas are clustered according to their data quality. We
leverage these clusters to create a hierarchical structure in which the reporting
probabilities decrease as we move from the best group to the worst ones. We obtain
constraints for model identifiability and prove that only prior information about
the reporting probability in areas experiencing the best data quality is required.
Several approaches to model the uncertainty about the reporting probabilities are
presented, including reference priors. Different features regarding the proposed
methodology are studied through simulation. We apply our model to map the
early neonatal mortality risks in Minas Gerais, a Brazilian state that presents
heterogeneous characteristics and a relevant socio-economical inequality.

Keywords: compound Poisson model, generalized Beta distribution, Jeffreys
prior, model identifiability, neonatal mortality, underreporting.
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1 Introduction

The estimation of economic, health and social indicators in underdeveloped and de-
veloping countries has been a challenging task due to the low quality of the available
data. In such areas, even with the recent advances, data coming from official collection
systems usually experience considerable underreporting of events. To cite an example,
it is common to miss the report of infants who die shortly after birth. If not accounted
for, such phenomena typically lead to the underestimation of vital statistics, compro-
mising the definition of appropriate government intervention policies and distribution
of financial resources.
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In the statistical literature, the bias problem induced by a defective data report-
ing process is commonly handled by considering hierarchical models that accommodate
truncated or censored observations. For mapping the risks associated to count events
subjected to underreporting, Bailey et al. (2005) consider the censored Poisson regres-
sion model proposed by Caudill and Mixon Jr. (1995) assuming that, for suspected areas,
the observed count represents a right-censoring threshold for the true non-observed total
number of events. This approach relies on the fact that, a priori, all areas experienc-
ing underreporting are precisely known. Bailey et al. (2005) consider ad-hoc procedures
to determine the censored (underreported) areas. Later, Oliveira, Loschi, and Assunção
(2017) define a random-censoring Poisson model (RCPM) introducing more flexibility in
the analysis of underreported count data. The RCPM allows for the estimation of both
the associated occurrence rates and the probability of each area to experience censoring.
The authors shown that quality of posterior estimates is related to the availability of
informative prior distributions for the censoring probabilities.

The compound Poisson model (CPM) is an alternative approach to deal with po-
tentially underreported counts. It allows for the joint modeling of the event occurrence
rates and the associated reporting probabilities. The main difference between RCPM
and CPM is that the former models the underreporting status of each area: Is area i
suffering from underreporting or not? In turn, the latter models the area-specific prob-
ability of each particular event being reported, then all areas are, in principle, subject
to underreporting.

To guarantee the CPM identifiability, it is necessary to introduce prior information
on the reporting process. This has been carried out in different ways in the literature
depending on the context and the type of information available. For example, Whit-
temore and Gong (1991), Stamey, Young, and Boese (2006) and Dvorzak and Wagner
(2015) resort to a validation dataset on the reporting process. This refers to another
independent data source, free of underreporting, that can be used to calibrate the bias
induced by the underreporting in the main dataset under analysis. Such additional gold
standard dataset does not necessarily have to be on the same scale as the primary data
but it has to be available for each sample unit. Thus, validation datasets are rarely avail-
able and they can be very expensive to obtain. All three previous papers use the same
illustrative example which is based on a single validation dataset of severely restrictive
extent. Specifically, their validation dataset is based on a 1987 study that selected a
sample of 203 physicians divided in four groups according to their nationality (Eng-
land, Belgium, France, and Italy). In each group, the sample of physicians was asked to
complete a specimen death certificate for the case history of a single 51-year-old woman
with an ulcerating tumor of the cervix. The certificate had enough information to in-
duce the correct classification of the patient as a victim of cervical cancer. However,
the groups reached different proportions of death certificates correctly coded as cervical
cancer. The result is then used as a gold-standard estimation of the correct diagnosis
and completion of death certificates for this specific cancer as the underlying cause of
death. Hence, this validation dataset is outdated and should be looked cautiously if
used for recent death data. Furthermore, it is useful only for one single cancer (cervical
cancer) in four specific countries, being hardly generalizable for other sorts of cancers
or other regions.
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Moreno and Girón (1998) resort to a different strategy as they did not have a valida-
tion dataset in their study of reported assaults in Málaga and Stockholm. They provide
a detailed investigation under the CPM whenever conjugate families are considered to
independently model the prior uncertainty for the reporting probabilities and the occur-
rence rates. The authors emphasize that prior information on the reporting probabilities
is expected to be included to make the posterior distribution estimation feasible. Such
information can be obtained through specific surveys or from experts’ opinion and then
be conveniently used to set the hyperparameters of the conjugate prior distributions.
Following Moreno and Girón (1998)’s approach, Schmertmann and Gonzaga (2018)
consider the CPM to estimate the age-specific mortality and life expectancy for small
areas with defective vital records in Brazil. Probabilistic prior information on the death
registration coverage in each area is considered to elicit an informative Beta prior dis-
tribution for the death reporting probability in three age groups. The authors derived
such a prior information from standard demographic estimation techniques, such as the
Death Distribution Methods, and also from intensive field audits conducted by Brazilian
public health researchers.

As an alternative to this previous models, Stoner, Economou, and Drummond (2019)
present a Bayesian hierarchical CPM to account for the underreporting in tuberculo-
sis counts in Brazil. To complement the partial information in the data, their model
only requires an informative prior distribution for the mean reporting rate. To elicit
such an informative prior across all Brazilian microregions, the authors consider exter-
nal estimates of the overall tuberculosis detection rate derived by the World Health
Organization through an inventory study.

Trustful prior information about the overall mean reporting process is not always
available. Sometimes, one counts only with pieces of prior information on the reporting
process for some subsets of areas, obtained through local inventory studies (local active
search for cases) or experts’ opinion. In many epidemiological studies, for example, one
only knows a priori that the severity levels of underreporting are likely associated with
some socioeconomic indicators or, merely, that less socially deprived areas properly
record a greater percentage of their events, producing more reliable information (see
Campos, Loschi, and França, 2007; Bailey et al., 2005; Silva et al., 2017, for instance).
That is the case, for example, when mapping the infant mortality rates in underdevel-
oped regions, such as Africa and Latin America, based on data coming from defective
death registration systems (World Health Organization, 2006; Alkema and New, 2014;
Alexander and Alkema, 2018).

Inspired by situations in which validation datasets are unaccessible and reliable prior
information about the reporting process is only available for areas experiencing the best
data quality, we propose a new hierarchical Bayesian approach for the CPM (Section 2).
It considers that the areas composing the region of interest are ordered according to data
quality categories. If it is reasonable to additionally cluster the areas into homogeneous
groups, then the model becomes more parsimonious. The clusters may be defined based
on experts’ opinion or applying some clustering technique to data quality indicators
provided by previous studies and surveys. In our model, the data quality clustering of
the areas is a tool used to model their reporting probabilities. We leverage the clusters
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to create a hierarchical structure in which the reporting probabilities decrease as we
move from the best data quality areas to the worst ones. The novelty in our approach
is that only an informative prior distribution about the reporting probability at areas
experiencing the best data quality is required to ensure identifiability (Section 2.1).
To model the event occurrence rates, we consider a set of potential covariates through
a regression structure. Bayesian variable selection is incorporated into the model to
identify regressors with a non-zero effect.

Extensive simulation studies are presented to evaluate the performance of the pro-
posed model in different scenarios (Section 3). We apply the developed Bayesian method-
ology to estimate the early neonatal mortality rates in Minas Gerais State, Brazil, for
the periods 1999–2001 and 2009–2011 (Section 4), where the death counts are known
to be underreported (Campos, Loschi, and França, 2007). In this context, the proposed
approach is attractive because neither validation datasets nor prior knowledge about
the overall mean reporting probability is available. Section 5 closes the paper with our
main conclusions.

2 Model specification

Consider a region divided into A areas and denote by Ti the total number of events

at area i for i = 1, . . . , A. Assume that Ti | λi
ind∼ Poisson(λi), where λi is the mean

expected counts in the ith area. The relative risk for the event at area i is given by
θi = λi/Ei, where Ei is a known offset quantity representing the expected number of
events in such area. The offset Ei allows for a variation in the population size over
the areas. In the context of underreported data, Ti is not fully observed for, at least,
part of the areas, so that the reported number of events Yi corresponds only to a
fraction of Ti. To consider this data feature, each event occurring in the ith area is

associated to a binary random variable Zt
ind∼ Bernoulli(εi), t = 1, . . . , Ti, that de-

termines whether the event will be reported or not, where εi ∈ [0, 1] represents the
associated reporting probability. The random variables in the sequence Z1, Z2, . . . , ZTi

are assumed as being identically distributed, mutually independent and also indepen-
dent of Ti. Consequently, Yi =

∑Ti

t=1 Zt has a compound Poisson distribution in which

Yi | Ti, εi
ind∼ Binomial(Ti, εi) and Ti | θi ind∼ Poisson(Eiθi). Marginalizing the joint

distribution of (Yi, Ti) over Ti, it follows that the observed count Yi has the conditional
distribution

Yi | θi, εi ind∼ Poisson(Eiθiεi). (2.1)

The model in expression (2.1) is called compound Poisson model (CPM). To model
the relative risks we assume that θ = (θ1, . . . , θA) is related to a set of p potential
covariates such that log(θi) = β0 + β1X1i + · · · + βpXpi, i = 1, . . . , A. Random effects
may be included in the log-linear predictor to capture any residual spatial or local
variation in the relative risk. The greatest challenge under the CPM is the modeling of
the reporting probabilities ε = (ε1, . . . , εA). If no further information is available, only
the parameter ηi = θiεi is identified from the observed data Yi since any parameter
combination such that θ̃iε̃i = θiεi yields the same likelihood function.
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Different approaches to model ε have been discussed in the literature. Moreno and
Girón (1998) and Schmertmann and Gonzaga (2018) directly model the uncertainty
about εi using informative beta prior distributions. A more general approach assumes
that εi = g(H1i, . . . , Hmi), where H1i, . . . , Hmi is a set of m covariates related to the
reporting process and g is any non-negative function such that 0 < g(H1i, . . . , Hmi) < 1
for all i. There are many possible choices for g. The most popular one is to assume that
g is a logistic function, as in Whittemore and Gong (1991), Dvorzak and Wagner (2015)
and Stoner, Economou, and Drummond (2019). As discussed in Section 1, all these
approaches require either strong prior information about each εi or validation datasets
to ensure model identifiability.

One of the main goals in this work is to model ε in situations where no vali-
dation dataset is available to guarantee model identifiability and whenever reliable
prior information about the percentage of underreporting is only available for areas
where data are known to be better reported. In this context, we assume that εi =
g(H1i, . . . , Hmi) = 1−γ− f(H1i, . . . , Hmi), where γ ∈ [0, 1) is the basal underreporting
probability in the area with the best data quality and f is any non-negative function
such that f(H1i, . . . , Hmi) < 1 − γ for all i. The function f captures the increase in
the basal underreporting probability explained by the covariates. If f equals to zero in
the best area, then f(H1l, . . . , Hml) denotes the increase in the underreporting proba-
bility for area l when compared to the best one. As in the model proposed by Stoner,
Economou, and Drummond (2019), covariates H1i, . . . , Hmi are assumed to be differ-
ent from X1i, . . . , Xpi to guarantee model identifiability. This model limitation may be
avoided only if validation datasets are accessible as in Dvorzak and Wagner (2015).
A further discussion on this issue is given in Section 2.1.

The definition of a general f which satisfies all these constraints is not a simple task.
To facilitate its construction, we assume that it is possible to sort the areas according
to their data quality. Additionally, we assume that the reporting probabilities are equal
for areas where the covariates related to the reporting process experience similar values.
For this purpose, we assume that the A areas are grouped into K known data quality
clusters, whereK ≤ A. We allow forK = A to account for situations in which there is no
prior information for clustering the areas. However, if such information is available and
K < A, we obtain a more parsimonious model and more data information to estimate
the reporting probabilities throughout the areas.

In practice, there are many ways to define the clusters. We may consider some
grouping proposals available from previous works or to be guided by experts’ informa-
tion. Another possibility is to perform usual clustering techniques based on available
covariates that are related to data quality in the region of interest.

Based on such grouping structure, we use a convenient coding scheme to represent the
clustering indicator variable, which is different from variables in X1i, . . . , Xpi. Let hi =
(h1i, . . . , hKi)

T be the clustering variable composed by binary quantities h1i, . . . , hKi

and defined according to the following split-coding scheme: if area i belongs to cluster j
then hli = 1 for all l ≤ j and hli = 0 otherwise. Let γ = (γ1, . . . , γK), where γj ∈ [0, 1)

for all j = 1, . . . ,K, such that
∑K

j=1 γj < 1. We assume that the reporting probability
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at area i is given by

εi = 1− hT
i γ. (2.2)

The constraint imposed on γ is necessary to guarantee that εi �= 0 ∀ i, and, consequently,
to ensure non-null mean for the associated Poisson distribution.

The proposed model has some interesting features. Firstly, to be identifiable, it only
requires information about the reporting probabilities in the best areas (see discussion in
Section 2.1). Besides that, εi is represented in terms of interpretable parameters, which
facilitates prior elicitation. For a given area i, hi = (1, 0, . . . , 0)T and hi = (1, 1, . . . , 1)T

represent the two most extreme situations. If hi = (1, 0, . . . , 0)T then the ith area has
the highest level of data quality. We will assume that data in such area are recorded
with a higher probability (εi = 1− γ1) if compared to the areas in the remaining data
quality levels. At the other extreme, if hi = (1, 1, . . . , 1)T then the ith area lies in the
worst data quality category. Data in this region are recorded with a lower probability
(εi = 1−γ1−· · ·−γK) if compared to those areas belonging to clusters with better data
quality. Thus, the parameter γ1 represents the probability of not recording an event in
areas classified in the highest level of data quality. The parameter γ2 is the increment
on such probability for areas experiencing the second highest data quality level, and so
on. Another attractive feature of the proposed model is that, although the clustering
indicator variable cannot be used to also model the relative risks θ, the covariates used
for clustering are indirectly taken into consideration when estimating θ, since the areas
belonging to the same cluster are homogeneous w.r.t. such clustering covariates.

2.1 On model identifiability

The lack of identifiability of the compound Poisson model presented in expression (2.1)
has been discussed by several authors (Whittemore and Gong, 1991; Moreno and Girón,
1998; Stamey, Young, and Boese, 2006; Papadopoulos and Silva, 2012; Dvorzak and
Wagner, 2015; Schmertmann and Gonzaga, 2018; Stoner, Economou, and Drummond,
2019). All these previous works impose some constraints on θ and ε to attain model
identifiability.

A well-known way to overcome non-identifiability problems requires extra informa-
tion about the reporting probabilities ε = (ε1, . . . εA). In the most extreme cases, all
components of vector ε should be fixed at a known quantity. Moreno and Girón (1998)
and Schmertmann and Gonzaga (2018) show that this extreme constraint may be re-
laxed when the target of the statistical analysis is to estimate the relative risks. This
is done by incorporating external estimates of registration coverage through very infor-
mative prior distributions about each component of ε.

To the best of our knowledge, there are two approaches to obtain an identifiable
model when sets of covariates, say X and H, are used to model the relative risk θ
and the reporting probability ε, respectively. The first one requires extra information
from independent validation datasets (Whittemore and Gong, 1991; Stamey, Young,
and Boese, 2006; Dvorzak and Wagner, 2015). This is a rare situation in practice that,
however, does not require the intersection of X and H to be empty. The second one,
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adopted by Papadopoulos and Silva (2012) and Stoner, Economou, and Drummond
(2019), creates some kind of linear separability of the covariates sets X and H. Stoner,
Economou, and Drummond (2019) build X and H by splitting the set of all available
covariates into two disjoint sets based on experts’ opinion. Hence, there is an empty
intersection between the covariates in the sets X and H but this is not enough to guar-
antee identifiability. In their modeling framework, they also had available an informative
prior distribution for the overall mean reporting rate which was sufficient to complete
the identifiability conditions. Papadopoulos and Silva (2012) allow intersection between
the two sets of covariates but impose prior information to establish appropriate con-
straints on the parametric space, such as restrictions on the signs or exclusion of some
coefficients. This avoids the need for validation datasets.

Our approach also assumes, as in Stoner, Economou, and Drummond (2019), that
the clustering covariates associated with ε are not considered in the log-linear predictor
of the relative risks θ. In principle, this constraint seems to be quite restrictive. Nev-
ertheless, for model identifiability, what is required is the lack of strict mathematical
collinearity between X and H, but not their statistical independence. Thus, the two
disjoint sets X and H may be correlated. In many practical situations, we can and
probably will have the two sets composed by covariates carrying similar information,
measuring related aspects of the areas. For instance, to estimate infant mortality rates,
one expects that poor social-economic conditions will affect both the relative risks and
the reporting probabilities. It is true that to avoid the identifiability issues we must
not use the same covariates when modeling θ and ε. However, we are allowed to use
correlated variables, since our identifiability assumption requires just the strict empty
intersection between the two sets, not the orthogonality of the information they carry.
This make our model much more attractive for practical implementation with respect
to the previously proposed alternatives.

If the number of clusters K is smaller than the initial number of areas A, the cluster-
ing strategy proposed in expression (2.2) imposes a reduction in the parametric space
related to the CPM in expression (2.1). Even under such a reduction and assuming that
X and H are disjoint sets, the proposed CPM remains unidentifiable. Its identification
will depend on the only trustful prior information we have available: the percentage
of data reporting in areas with the best data quality. Nevertheless, if such a piece of
information is not available, other constraints for model identification are possible as
discussed in the following.

Assume log(θi) = β0 + β1X1i + · · · + βpXpi, i = 1, . . . , A, and denote by Aj the
subset of areas belonging to the j-th data quality cluster, for j = 1, . . . ,K. Under these
assumptions, the log-likelihood function associated with the proposed model is

l(Ψ;y) =

K∑
j=1

∑
i∈Aj

{
−Ei exp {β0 + β1X1i + · · ·+ βpXpi}

(
1−

j∑
l=1

γl

)
(2.3)

+ yi

(
logEi + β0 + β1X1i + · · ·+ βpXpi + log

(
1−

j∑
l=1

γl

))
− log yi!

}
,
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where Ψ = (β0, β1, . . . , βp, γ1, . . . , γK). As the proposed model belongs to the exponen-

tial family, we obtain that T (y) =

(
A∑
i=1

yi,
A∑
i=1

yiX1i, . . . ,
A∑
i=1

yiXpi,
∑

i∈A1

yi,
∑

i∈A2

yi, . . . ,

∑
i∈AK

yi

)
is the (p + K + 1)-dimensional sufficient statistic for the parameter vector

Ψ. Note that, the first coordinate of vector T (y) is a linear combination of the last
K coordinates. Thus, the number of unknown parameters exceeds by one the number
of linearly independent pieces of sample information (sufficient statistics). This implies
that only p+K parameters can be estimated without additional information (McHugh,
1956; Picci, 1977; Huang, 2005).

Proposition 2.1. The proposed model under the specification in expression (2.3) is
identifiable if β0 or one of the coordinates of vector γ is fixed at a known value.

Proof. Firstly, fix β0 at a known value. In this case, model identifiability follows by
noticing that the vector of sufficient statistics associated to the parameter vector Ψ∗ =

(β1, . . . , βp, γ1, . . . , γK) is given by T ∗(y)=

(
A∑
i=1

yiX1i, . . . ,
A∑
i=1

yiXpi,
∑

i∈A1

yi,
∑

i∈A2

yi, . . . ,

∑
i∈AK

yi

)
, which is composed by independent pieces of information. Similarly, with-

out losing generality, let γ1 to be known. Under this assumption the sufficient statis-
tics related to the parameter vector Ψ∗∗ = (β0, β1, . . . , βp, γ2, . . . , γK) are given in

T ∗∗(y) =

(
A∑
i=1

yi,
A∑
i=1

yiX1i, . . . ,
A∑
i=1

yiXpi,
∑

i∈A2

yi, . . . ,
∑

i∈AK

yi

)
. In this case, the proof

follows straightforwardly by noticing that the first coordinate of T ∗∗(y) can not be
recovered as a linear combination of the last p + K − 1 coordinates as it depends on∑
i∈A1

yi.

Our proposal is to approach situations in which trustful prior information is only
available about γ1. This parameter is easily interpretable as the underreporting proba-
bility in those areas having the best data quality. Thus, only prior information about the
proportion of unrecorded data in such areas is required to identify the proposed model.
Despite its appealing interpretation, the precise choice of the value for γ1 may not be a
simple task in practical situations. However, it is possible to obtain from experts some
pieces of information about the most likely values for such parameter. This information
may be suitably expressed by means of a non-degenerated informative prior distribution
for γ1 thus relaxing the requirement of exactly knowing its value (for further discus-
sion on the use of prior information to attain model identification see Gustafson et al.
(2005)).

Another way to investigate model identifiability is to consider the associated Fisher
information. The Fisher information plays an important role in the asymptotic theory of
maximum likelihood estimation as well as in Bayesian reference analysis. Besides that,



G. Lopes de Oliveira et al. 103

Rothenberg (1971) showed that a model that belongs to the exponential family is glob-

ally identifiable if the Fisher information matrix is nonsingular. Let Λ(j) =

(
1−

j∑
l=1

γl

)
and μij = Ei exp {β0 + β1X1i + · · ·+ βpXpi}Λ(j). The Fisher information matrix I(Ψ)
resulting from expression (2.3) is given by

I(Ψ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∑
j=1

∑
i∈Aj

μij . . .
K∑

j=1

∑
i∈Aj

μijXpi

K∑
j=1

∑
i∈Aj

−μij

Λ(j)

K∑
j=2

∑
i∈Aj

−μij

Λ(j)
. . .

∑
i∈AK

−μij

Λ(K)

.

.

.
. . .

.

.

.

.

.

.

.

.

. . . .

.

.

.
K∑

j=1

∑
i∈Aj

μijXpi . . .
K∑

j=1

∑
i∈Aj

μijX
2
pi

K∑
j=1

∑
i∈Aj

−μijXpi

Λ(j)

K∑
j=2

∑
i∈Aj

−μijXpi

Λ(j)
. . .

∑
i∈AK

−μijXpi

Λ(K)

K∑
j=1

∑
i∈Aj

−μij

Λ(j)
. . .

K∑
j=1

∑
i∈Aj

−μijXpi

Λ(j)

K∑
j=1

∑
i∈Aj

μij

Λ(j)2

K∑
j=2

∑
i∈Aj

μij

Λ(j)2
. . .

∑
i∈AK

μij

Λ(K)2

K∑
j=2

∑
i∈Aj

−μij

Λ(j)
. . .

K∑
j=2

∑
i∈Aj

−μijXpi

Λ(j)

K∑
j=2

∑
i∈Aj

μij

Λ(j)2

K∑
j=2

∑
i∈Aj

μij

Λ(j)2
. . .

∑
i∈AK

μij

Λ(K)2

.

.

.
. . .

.

.

.

.

.

.

.

.

. . . .

.

.

.∑
i∈AK

−μij

Λ(K)
. . .

∑
i∈AK

−μijXpi

Λ(K)

∑
i∈AK

μij

Λ(K)2

∑
i∈AK

μij

Λ(K)2
. . .

∑
i∈AK

μij

Λ(K)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The K × K sub-matrix highlighted in bold will be considered in Section 2.2 to build
the Jeffreys prior for γ given β = (β0, β1, . . . , βp).

Proposition 2.2. The Fisher matrix information I(Ψ) associated with the model given
in expressions (2.1) and (2.2) is singular.

Proof. Denote by Cκ the column vector of I(Ψ) associated to the parameter κ ∈ Ψ such
that I(Ψ) =

[
Cβ0 . . . Cβp Cγ1 Cγ2 . . . CγK

]
. Let ξ0 = 1, ξ1 = (1−γ1) and ξj = −γj for j =

2, . . . ,K. Assuming these non-null constants, it follows that ξ0Cβ0+ξ1Cγ1+
K∑
j=2

ξjCγj = 0.

Thus, I(Ψ) is a singular matrix and, from Theorem 3 in (Rothenberg, 1971), it follows
that the associated statistical model is not globally identifiable.

As previously shown in Proposition 2.1, model identifiability is achieved provided
that the parameter γ1 is fixed at a known value. In the general case, it is difficult
to prove directly that the Fisher information matrix I(Ψ) is nonsingular when we
fix γ1. However, some special cases are amenable to analytic treatment and they are
illuminating for this identifiability discussion as shown in Proposition 2.3.

Proposition 2.3. Assume that the areas experience a common relative risk log(θi) =
β0, for i = 1, . . . , A. If γ1 is fixed at a known value γ0

1 ∈ [0, 1] then the Fisher information
matrix associated with the model given in expressions (2.1) and (2.2) is nonsingular.

Proof. The Fisher information matrix I(Ψ∗) under this model specification is obtained
from I(Ψ) by removing the columns and rows related to parameters β1, . . . , βp and γ1
and setting γ1 = γ0

1 . After some calculation, we obtain that the determinant of I(Ψ∗)
is

det I(Ψ∗) =

(∑
i∈A1

μi1

)⎡
⎣ K∏
j=2

∑
i∈Aj

μij

(
1− γ0

1 −
j∑

l=2

γl

)−2
⎤
⎦ .



104 Bias Correction in Clustered Underreported Data

All sum terms in det I(Ψ∗) are positive. Consequently, we have det I(Ψ∗) > 0 implying
that I(Ψ)∗ is a nonsingular matrix. From Theorem 3 in (Rothenberg, 1971), it follows
that the associated statistical model is globally identifiable.

The previous propositions provide some mathematical constraints for model identi-
fiability, which are necessary to guarantee that all parameters can be estimated from
the observed data. Such constraints do not guarantee, however, that all parameters will
be well estimated, that is, having theoretical identifiability may not guarantee the prac-
tical identifiability. Even for an identifiable model, large sample sizes might be required
to obtain good parameter estimates in some situations. On the other hand, for a non-
identifiable model, some parameters might not be estimated even with large datasets if
the identifiability constraints are not considered.

Remark 2.1. As suggested by an anonymous referee, an equivalent representation of
our model is obtained considering the parameterization

εi = exp
{
−hT

i δ
}
, (2.4)

where δ1 = − log(1 − γ1), δj = − log
(
1−

∑j
l=1 γl

)
+ log

(
1−

∑j−1
l=1 γl

)
and hi is as

defined in equation (2.2). Under this parametrization, the likelihood function is given by

l(Ψ;y) =

A∑
i=1

{−Ei exp {β0 + β1X1i + · · ·+ βpXpi − δ1 − δ2h2,i − . . .− δKhK,i}

+ yi (logEi + β0 + β1X1i + · · ·+ βpXpi − δ1 − δ2h2,i − . . .− δKhK,i)} .

Concerning the model identification, the parametrization in (2.4) is quite attractive as
it leads to a regular Poisson generalized linear model (GLM). By framing the model as a
GLM, the conditions for model identification are easily found, especially the requirement
that θ and ε are associated with disjoint sets of covariates. Also, as the first component
of hi is equal to 1 for all i, such parameterization makes it clear that δ1 works like
a second intercept for which an informative prior must be elicited. However, such a
parametrization brings some additional challenges to model the uncertainty about ε.
While γj has a clear and meaningful interpretation for practitioners, δj is interpreted
as the ratio between the reporting probability in cluster j and cluster j − 1 in the log
scale for j > 1. As for δ1, it is the log of the proportion of recorded data in the best
cluster in relation to a scenario with perfectly recorded data. We also have a challenge
regarding the appropriate prior specification for δ. To ensure a valid Poisson model we
must have δj > 0 for all j. As, a priori, we only have trustful information about ε1
and we know that 0 < εK ≤ εK−1 ≤ · · · ≤ ε2 ≤ ε1 ≤ 1, we can not simply assume
independent positive distributions for the δs. Notice that δ1 = log(1) − log (ε1) and
δl = log (εl−1)−log (εl), for l = 2, . . . ,K. Then, we must transform the prior information
of ε1 to the log-scale and use it to build a distribution with positive support for δ1. Then,
the prior distribution of δ2 should be such that the distribution of δ2 + δ1 = − log(ε2)
is a truncated distribution putting all probability mass in values higher than δ1. Similar
constraints should be imposed to the prior distributions of the remaining δs.
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2.2 Prior distributions

In this section, we detail the prior distributions for the parameters θ = (θ1, . . . , θA) and
γ = (γ1, . . . , γK) that are required to complete our model specification.

Modeling the prior uncertainty about γ

As a starting point, we could consider independent informative Beta distributions by

eliciting γj
ind∼ Beta(αj , νj), j = 1, . . . ,K, where the hyperparameters αj > 0 and

νj > 0 should be elicited by experts. This strategy was considered by Schmertmann and
Gonzaga (2018) in their particular application to estimate age-mortality rates in Brazil.
This is a cumbersome approach as it might lead to some difficulties in the computational
implementation of our model. First of all, the constraint

∑K
j=1 γj < 1 should be satisfied

since some events are recorded even in areas belonging to the worst data quality cluster
and, to have a valid Poisson model, εi must be non-null for all i. Furthermore, some
dependence among the γj ’s is desirable. To deal with the first problem, we may consider
a Dirichlet distribution on the augmented vector (γ1, . . . , γK , γK+1), where γK+1 =

1−
∑K

j=1 γj is the percentage of data recorded in the worst cluster. More interestingly,
both issues may be jointly addressed as described below. We propose considering a joint
prior for γ = (γ1, . . . , γK) based on the generalized Beta distribution as follows:

γ1 ∼ GBeta(α1, ν1; a1, a
∗
1),

γk | γ1:k−1 ∼ GBeta
(
αk, νk; ak[1−

∑k−1
j=1 γj ], a

∗
k[1−

∑k−1
j=1 γj ]

)
, k = 2, . . . ,K,

}

(2.5)
where GBeta(α, ν; a, b) denotes the generalized Beta distribution with probability den-

sity function (p.d.f.) given by f(x | α, ν; a, b) = Γ(α+ν)
Γ(α)Γ(ν)(b−a)

(
x−a
b−a

)α−1 (
1− x−a

b−a

)ν−1

,

x ∈ (a, b), α > 0, ν > 0, a ∈ R, b ∈ R. The generalized Beta distribution can be ob-
tained as the linear transformation X = a+(b−a)B, where B ∼ Beta(α, ν). By letting
aj = 0 and a∗j = 1 for all j = 1, . . . ,K, the prior distribution in expression (2.5) is the
well-known stick-breaking representation of the Dirichlet process, in which we consider
independent random variables Zj ∼ Beta(αj , νj), j = 1, . . . ,K, and we let γ1 = Z1 and

γj = Zj

∏j−1
l=1 (1− Zl) for j = 2, . . . ,K. This is an advantageous feature we consider to

facilitate the computational implementation of the generalized Beta prior distribution.

If we set αj = νj = 1 for j = 1, . . . ,K, and 0 ≤ aj < a∗j ≤ 1, j = 1, . . . ,K, the
conditional prior distributions given in expression (2.5) corresponds to a simpler model
which is based on conditional uniform distributions so that

γ1 ∼ U(a1, a∗1),
γk | γ1:k−1 ∼ U

(
ak[1−

∑k−1
j=1 γj ], a

∗
k[1−

∑k−1
j=1 γj ]

)
, k = 2, . . . ,K.

}
(2.6)

The uniform prior distribution in expression (2.6) is more parsimonious and easier
to be elicited. In turn, the generalized Beta prior distribution in expression (2.5) is
more flexible and provides different shapes for the marginal prior distribution of each
γj . Thus, the choice between the prior distributions given by expressions (2.5) and (2.6)
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will depend on the information that the practitioner has available. In practice, the choice
of all prior hyperparameters might be driven by experts’ opinion or guided by results of
previous studies. Special attention, however, should be given to the prior distribution
of γ1 as it plays an important role in the proposed model identification. As discussed
in Section 2.1, it has to be informative, putting a significant probability mass in the
subset of the parametric space indicated by the experts as containing the most likely
values for such parameter.

Independently of the prior that is chosen for γ, the generalized Beta or the particular
case of the conditional uniform, by assuming the structure in expression (2.2), the
increment in the underreporting probability associated with each cluster j amounts just
to a fraction of what is left after considering the probabilities of the previous (better)
groups. Thus, the prior distribution for εi outside the best cluster inherits the prior
information for the reporting probability in the best areas.

The unconditional prior expectation and variance of εi are useful whenever an in-
formative prior distribution for γ1 or any other component of parameter vector γ is
to be elicited. Assuming the distribution in (2.5), respectively, the prior unconditional
expectation and variance of εi, for all i ∈ Aj , i.e., all areas classified in the jth data
quality cluster, for j = 1, . . . ,K, are

E(εi) =

j∏
l=1

{1− cl} and V(εi) = V

(
j−1∑
l=1

γl

)[
dl + (1− cl)

2
]
+ dl

[
1− E

(
j−1∑
l=1

γl

)]2

,

where cl = al+(a∗l −al)αl[αl+νl]
−1 and dl =

[
(a∗l − al)

2αlνl
] [
(αl + νl)

2(αl + νl + 1)
]−1

.
For the particular case in which aj = 0 and a∗j = 1 for all j, it follows that

E(γj) =
αj

αj + νj

j−1∏
l=1

νl
αl + νl

, and

V(γj) = E(γj)

(
αj + 1

αj + νj + 1

j−1∏
l=1

νl + 1

αl + νl + 1
− E(γj)

)
.

Similar results under the conditional uniform prior distribution in expression (2.6) are
provided in the Supplementary Material (Oliveira et al., 2020).

Another way to model the prior uncertainty about the model parameters is to con-

sider the Jeffreys’ approach (Jeffreys, 1946). Let Yi | θi, εi ind∼ Poisson(Eiθiεi) in which
log(θi) = β0 + β1X1i + · · · + βpXpi. We assume that, a priori, γ is independent of
β = (β0, β1, . . . , βp) and we only focus on the Jeffreys prior for γ. The Fisher informa-
tion matrix for the vector γ, given β, is the bottom rightK×K submatrix highlighted in
bold in I(Ψ) which is given in Section 2.1. Consequently, the Jeffreys prior distribution
for γ becomes

πJ (γ | β) ∝

√√√√√ K∏
j=1

(
1−

j∑
l=1

γl

)−1

. (2.7)
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The challenge is to prove that the prior in expression (2.7) is a proper distribution
and to investigate the level of prior information about γ1 that is induced by the Jeffreys
prior.

Proposition 2.4. The Jeffreys prior distribution for γ given in expression (2.7) is
proper.

Proof. The proof of Proposition 2.4 follows straightforwardly by noticing that
the Jeffreys prior given in expression (2.7) may be represented as πJ(γ | β) ∝
ψ(γ1)ψ(γ2 | γ1) · · · ψ(γK | γ1, . . . , γK−1), where ψ(γ1) is the kernel of the general-
ized Beta distribution GBeta(1, 1/2; 0, 1) and ψ(γk | γ1, . . . , γk−1) is the kernel of a

GBeta

(
1, 1/2; 0, 1−

k−1∑
l=1

γl

)
, for k = 2, . . .K. Consequently, πJ (γ | β) is proper as it

belongs to the generalized Beta family of distributions given in expression (2.5).

Assuming the Jeffreys prior in expression (2.7), the prior expected value of γ1 is
0.6667 and its marginal prior distribution concentrates most probability mass around
large values (see Figure 1). It is expected that such prior does not provide good posterior
estimates for the model parameters whenever the true percentage of underreported
events in areas with the best data quality is small and far from that prior expected
value. Particularly, it is not an appropriate prior to model the uncertainty about γ1 in
the case study addressed in the paper where the probability of underreporting in the
best areas is expected to be close to zero. To illustrate the effect of the marginal Jeffreys
prior distribution of γ1 on the joint Jeffreys prior for γ, we present in Figure 1 the joint
Jeffreys prior distribution for parameters γ1 and γ2. As the prior associated to γ1 is
centered around large values, the most probable prior values for the vector (γ1, γ2) are
associated to large values for γ1 and small values for γ2.

Figure 1: Marginal Jeffreys prior for γ1 (left) and the joint Jeffreys prior for γ1 and γ2
(right).
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Modeling the prior uncertainty about θ

To model the uncertainty about the relative risk θ, assume that p covariates are available
such that log(θi) = β0+β1X1i+ · · ·+βpXpi, i = 1, . . . , A. The intercept β0 represents a
common term affecting the risk of all areas with prior N(0, σ2

β0
). To model the prior un-

certainty about the fixed effects β = (β1, . . . , βp), we assume that β | Σβ ∼ Np(0,Σβ),
where Np denotes the p-variate Gaussian distribution and Σβ = diag{σ2

1 , . . . , σ
2
p}. It is

also appealing to consider some technique to perform Bayesian variable selection. The
goal is to identify covariates that are statistically significant (non-zero effect) to explain
the relative risks. The stochastic search variable selection (SSVS) method, proposed by
George and McCulloch (1993), assigns a spike-slab mixture of Gaussian distributions
to the fixed effects β. The spike element concentrates closely around zero, reflecting
whether the covariate should be included in the model. The slab component has a suffi-
ciently large variance to allow the effect to spread over larger values. Thus, to complete
the SSVS prior specification we, additionally, assume that

σ2
m | ωm, σ2

slab, σ
2
spike

ind∼ (1− ωm)δσ2
spike

(σ2
m) + ωmδσ2

slab
(σ2

m) (2.8)

ωm | ρm ind∼ Bernoulli(ρm),

where δx(·) denotes the Kronecker delta concentrated at point x and the hyperparam-
eters σ2

slab, σ2
spike and ρm, for m = 1, . . . , p, should be specified.

To allow for local differences among the risks, apart from the covariates pattern,
a more complete model with regional effects u = (u1, . . . , uA) can be considered in

the log-linear regression by assuming that ui
iid∼ N(0, σ2

u), i = 1, . . . , A. Spatial effects
s = (s1, . . . , sA) that quantify the influence of neighboring areas can also be added into
the regression structure such that log(θi) = β0 +Xiβ + si + ui. The usual joint prior
distribution of s is the intrinsic conditional autoregressive distribution (ICAR) with
variance parameter σ2

s (see Besag, York, and Mollié (1991) for details on the ICAR
prior definition). We further assume that the model variance parameters are such that
σ2
s ∼ IG(as, ds) and σ2

u ∼ IG(au, du), where IG denotes the Inverse-Gamma distribution.
The parameters β0, β, u and s are considered as being independent.

Assuming the prior distributions discussed in this section, the joint posterior distri-
bution for all model parameters is not known in closed form. Posterior inference can be
carried out through a Markov chain Monte Carlo (MCMC) scheme. The posterior full
conditional distributions that can be considered for sampling from the joint posterior
distribution are given in the Supplementary Material (Oliveira et al., 2020).

3 Simulated data studies

In this section, we investigate the performance of the proposed model through Monte
Carlo simulations. To mimic our case study presented in Section 4, we consider the map
of Minas Gerais State that is composed of A = 75 areas. A total of 100 datasets are

generated from Poisson distributions such that Yi
ind∼ Poisson(Eiθiεi), for i = 1, . . . , 75,

where εi = 1 − hT
i γ and the expected number of cases Ei is known and equal to the
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one available for the case study. We also consider the same clustering indicator variable
used in the case study, which has K = 4 data quality categories (clusters), partitioning
the map in groups with a total of 28, 16, 14 and 17 areas, respectively, from the best
to the worst category. This clustering variable is based on the adequacy index (AI)
introduced by França et al. (2006). We provide a detailed explanation of the clustering
construction in Section 4. We set γ = (0.05, 0.10, 0.15, 0.20) imposing that 5% of events
are not reported in those areas classified at the highest level of data quality whereas
only 50% of events are reported in those areas belonging to the worst data quality
cluster. To generate the relative risks, we consider independent observations from five
covariates such that log(θi) = β0 + β1X1i + · · · + β5X5i, where β0 = 0.50 and β =
(−0.25,−0.25, 0, 0, 0.25). These covariates are different from the clustering covariate.
They were selected from our real dataset such that part of them are correlated with the
clustering covariate. All covariates considered here are provided in the Supplementary
Material (Oliveira et al., 2020).

When fitting the simulated datasets, three different structures are considered for
the relative risk θ. In Model 1, we let log(θi) = β0 + β1X1i + · · · + β5X5i, where

βm
iid∼ N(0, 10) for m = 0, . . . , 5. Model 2 differs from Model 1 by considering a variable

selection scheme on the set of covariates through the SSVS prior distribution given in
expression (2.8) with σ2

spike = 0.001, σ2
slab = 10 and ρm = 0.5 for m = 1, . . . , 5. Model

3 differs from Model 2 by the inclusion of both local and spatially structured random
effects in the log-linear regression such that log(θi) = β0+β1X1i+ · · ·+β5X5i+ui+ si,

where ui
iid∼ N(0, σ2

u) is the local effect of area i and s = (s1, . . . , sA) denotes the
spatial effects having the ICAR prior distribution (Besag, York, and Mollié, 1991) with
precision parameter τs = σ−2

s . The neighboring structure inherent to the map of case
study in Section 4 is adopted to model the spatial effects s and we further assume
that the model precision parameters are modeled as 1/σ2

s ∼ Gamma(0.5, 0.0005) and
1/σ2

u ∼ Gamma(2, 0.01).

The prior specification for γ differs throughout the simulation studies and it will be
properly described in each case. Basically, the joint prior distributions given in expres-
sions (2.5) and (2.6) are elicited with different levels of information, specially focusing
on the prior distribution for the parameter γ1 which is associated with the model iden-
tifiability.

Posterior estimates (posterior means) for the relative risks, θ, are compared in
terms of bias (Bias), relative mean squared error (RMSE) and the nominal cover-
age of the 95% highest posterior density intervals (Cov.) averaged over the R = 100

Monte Carlo replications. Specifically, the bias =
[∑R

r=1

∑A
i=1

(
θ̂i − θ

)]
/(R × A) and

RMSE =

[∑R
r=1

∑A
i=1

(
θ̂i−θ
θ

)2
]
/(R × A). All simulations were performed in Open-

BUGS (available at http://www.openbugs.net/w/FrontPage) through the rbugs pack-
age from software R (R Core Team , 2015). A sample of the BUGS code is provided
in the Supplementary Material (Oliveira et al., 2020). For each generated dataset, the
MCMC scheme considered a total of 100,000 iterations, being the first 50,000 discarded
as a burn-in period and a lag of 25 iterations was selected to avoid autocorrelated
posterior samples.

http://www.openbugs.net/w/FrontPage
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3.1 Simulation Study I: comparing the generalized Beta and the
conditional uniform priors for γ

In this study, we mainly evaluate the sensitivity of the posterior estimates of θ when
different degrees of information are assumed in the prior distributions for γ defined in
expressions (2.5) and (2.6). In both cases, two different levels of prior information, named
partially informative and fully informative, are considered. The partially informative
case assumes an informative prior only for the parameter γ1. Here, that is attained by
choosing hyperparameters such that the prior π(γ1) is centered and highly concentrated
around the true value of γ1. We elicited γ1 ∼ GB(2.9, 55.1; 0, 1) under the generalized
Beta prior and γ1 ∼ U(0, 0.10) under the conditional uniform prior. For all remaining γj ,
j = 2, . . . , 4, the associated prior distribution assumes aj = 0, a∗j = 1 and, additionally
for the generalized Beta case, it also considers αj = νj = 1. By doing so, we impose a
strong constraint on the reporting probability associated to areas belonging to the best
data quality cluster but, for all the remaining areas, the only prior information is the one
inherited from the prior of γ1. Finally, in the case of fully informative prior distributions,
all hyperparameters aj and a∗j and, additionally αj and ν∗j in the generalized Beta case,
are chosen such that π(γj) is centered and highly concentrated around the true value
of γj , for j = 1, . . . , 4. For comparison purposes, we also consider the standard Poisson
model which does not take underreporting into account.

RMSE Bias Cov. RMSE Bias Cov.
proposed model with generalized Beta prior on γ
partially informative fully informative

Model 1 0.001 0.004 0.989 0.001 −0.004 0.991
Model 2 0.001 0.004 0.993 0.001 −0.003 0.993
Model 3 0.002 0.002 0.997 0.002 −0.003 0.997

proposed model with conditional uniform prior on γ
partially informative fully informative

Model 1 0.001 −0.001 0.988 0.001 −0.001 0.989
Model 2 0.001 −0.001 0.993 0.001 −0.002 0.992
Model 3 0.002 −0.003 0.997 0.002 −0.003 0.996

standard Poisson model (underreporting ignored)
Model 1 0.069 −0.622 0.069 – – –
Model 2 0.069 −0.621 0.106 – – –
Model 3 0.076 −0.626 0.424 – – –

Table 1: Bias, relative mean squared error (RMSE) and nominal coverage of 95% credible
intervals (Cov.) for the estimated relative risks θ; Simulation Study I.

Table 1 summarizes the results. By eliciting an informative prior distribution only for
parameter γ1 (partially informative case), the proposed model provides good posterior
estimates for the risks with bias and RMSE close of zero. The results are quite close to
those obtained under informative prior for all components of parameter vector γ (fully
informative case). In general, we observe a slight difference between results obtained
under the generalized Beta prior and the conditional uniform distributions for γ, where
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the former has a greater number of hyperparameters to be chosen. Results under Models
1–3 are quite similar showing that spatial and local effects do not significantly influence
the posterior inferences. This is an interesting result as the data are generated from a
model that does not include any spatial or local correlation. It should be also mentioned
that the non-significant (null) effect of covariates X3 and X4 (results not shown) is well
identified even under Model 1 which does not consider variable selection.

Table 1 also shows that, as expected, the standard Poisson model fails in estimat-
ing the relative risks, θ, whenever applied to analyze underreported data. It produces
very poor estimates, always underestimating the relative risks no matter the structure
imposed to model them. The RMSE under such a model is reasonably small but the
95% credible intervals do not contain the true value of the relative risk for the great
majority of the Monte Carlo replications, which means that the posterior distribution
for θ tends to put negligible probability mass around its true value.

3.2 Simulation Study II: effect of the prior uncertainty about γ1

The prior distribution for parameter γ1 plays an important role in model identification
and, consequently, in the quality of the posterior estimates. In this section, we reex-
amine the datasets considered in Section 3.1 fitting the proposed model with different
partially informative prior distributions for γ, that is, an informative prior distribution
is considered only for the component γ1. A sensitivity analysis is performed in order to
evaluate the influence of such prior distribution on the posterior inference.

The evaluation metrics for the posterior estimates of θ under six different conditional
uniform priors for γ1 (Table 2) show that the relative risks tend to be underestimated
if, a priori, we elicited γ1 ∼ U(0.0, 0.01) and γ1 ∼ U(0.0, 0.05). Such prior distributions
put all probability mass below 0.05 which is the true value of γ1. On the other hand, the
risks tend to be overestimated whenever the prior expectation exceeds the true value
of γ1. The highest the difference between the prior expectation E(γ1) and the true
value of γ1, the highest are the bias and RMSE of the posterior estimates of θ. This is
not a surprising result and it evidences the importance of searching for reliable prior
information about parameter γ1 in practical situations.

Table 2 also shows that, if we assume γ1 ∼ U(0, 0.05) or γ1 ∼ U(0, 0.15), the prior
means differ from the true value of γ1 by the same amount. Although the latter prior
imposes much higher prior variance than the former, the posterior estimates present
similar absolute values for the bias and the RMSE in both cases. This suggests that
quality of posterior estimates under the proposed model are more strongly related to
the prior expectation of γ1 than to its prior variance. Such an idea is supported by the
results in Table 3 which exhibits some evaluation metrics related to posterior inference
for θ assuming different partially informative generalized Beta prior distributions for
γ. In all cases, γ1 ∼ GB(α1, ν1; 0, 1) where hyperparameters α1 and ν1 are chosen such
that this prior is centered around the true value of γ1, that is, E(γ1) = 0.05, but the
prior uncertainty about γ1 varies from 0.00002 to 0.00950.

Table 3 shows that the RMSE approaches zero in all cases. As expected, the bias
tends to increase as the prior uncertainty about γ1 increases. If the generalized Beta prior
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RMSE Bias RMSE Bias RMSE Bias

γ1 ∼ U(0.0,0.01) γ1 ∼ U(0.0,0.05) γ1 ∼ U(0.0,0.15)
Model 1 0.004 −0.091 0.002 −0.050 0.002 0.055
Model 2 0.003 −0.090 0.002 −0.050 0.002 0.047
Model 3 0.004 −0.093 0.002 −0.053 0.002 0.049

γ1 ∼ U(0.0,0.30) γ1 ∼ U(0.0,0.50) γ1 ∼ U(0.0,0.70)
Model 1 0.014 0.225 0.062 0.440 0.137 0.570
Model 2 0.015 0.227 0.065 0.467 0.112 0.527
Model 3 0.014 0.215 0.078 0.494 0.240 0.766

Table 2: Bias and relative mean squared error (RMSE) for the estimated relative risks
θ assuming partially informative conditional uniform priors to γ with six levels of prior
information on γ1 (E(γ1) and V (γ1) are different in all cases); Simulation Study II.

distributions with V (γ1) = 0.00024 and V (γ1) = 0.00226 are assumed, the biases are
much smaller than those observed in Table 2 under priors γ1 ∼ U(0.0, 0.05) and γ1 ∼
U(0.0, 0.15) whose variances are similar (respectively, V (γ1) = 0.00021 and V (γ1) =
0.00188). Moreover, the bias and RMSE under the prior U(0.0, 0.30), which has variance
equal to 0.0075, are much higher than those obtained when assuming a generalized Beta
prior with a variance equal to 0.0095. In summary, these findings provide more evidence
that the posterior inference is more influenced by the prior expectation of γ1 than by
its prior variance.

RMSE Bias RMSE Bias RMSE Bias

V(γ1) = 0.00002 V(γ1) = 0.00024 V(γ1) = 0.00083
Model 1 0.001 0.002 0.002 0.003 0.001 0.005
Model 2 0.001 0.000 0.001 0.002 0.001 0.005
Model 3 0.002 0.001 0.002 0.000 0.002 0.002

V(γ1) = 0.00144 V(γ1) = 0.00226 V(γ1) = 0.00950
Model 1 0.001 0.006 0.001 0.007 0.002 0.017
Model 2 0.001 0.006 0.001 0.009 0.002 0.028
Model 3 0.002 0.004 0.002 0.007 0.002 0.026

Table 3: Bias and relative mean squared error (RMSE) for the estimated relative risks
θ assuming partially informative generalized Beta priors to γ with six distinct levels of
information on γ1 (E(γ1) = 0.05 (true γ1) and a different prior variance in each case);
Simulation Study II.

Table 4 exhibits the averaged posterior means for parameters β0, β, γ and ω under
three out of the different partially informative conditional uniform prior distributions
for γ1 considered in previous studies. Results for Models 1–3 are quite similar, thus
we only present the results obtained under Model 3. The vector of fixed effects β and
variable selection parameter ω are well estimated regardless of the prior distribution
elicited for γ1 but very little is learned about γ1 from the data. The posterior mean of
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γ1 tends to be close to its prior expectation, reinforcing the importance of obtaining
reliable prior information about this parameter. Posterior estimates for the remaining
components of γ become worse as the prior expectation of γ1 gets far from its true value
and the prior variance of γ1 increases.

Parameter True Value
U(0, 0.01) U(0, 0.10) U(0, 0.70)

Mean ω̂ Mean ω̂ Mean ω̂

β0 0.500 0.450 – 0.500 – 0.780 –
β1 −0.250 −0.250 1.000 −0.250 1.000 −0.250 1.000
β2 −0.250 −0.260 1.000 −0.260 1.000 −0.260 1.000
β3 0.000 0.000 0.020 0.000 0.020 0.000 0.020
β4 0.000 0.000 0.030 0.000 0.030 0.000 0.030
β5 0.250 0.240 0.990 0.240 0.990 0.240 0.990
γ1 0.05 0.005 – 0.048 – 0.261 –
γ2 0.100 0.103 – 0.099 – 0.077 –
γ3 0.150 0.155 – 0.148 – 0.114 –
γ4 0.200 0.211 – 0.202 – 0.156 –

Table 4: Averaged posterior means of β0, β, γ and ω under three different prior speci-
fications on parameter γ1; Simulation Study II.

Goodness of posterior estimation for parameters β0 and γ1 are closely related, which
is not a surprising result given the identifiability issues discussed in Section 2.1. The
intercept β0 is overestimated (resp., underestimated) if γ1 is also overestimated (resp.,
underestimated). Since β0 directly affects the estimation of the relative risks θ, by
overestimating (resp., underestimating) β0, the relative risks θ is overestimated (resp.,
underestimated) inducing the larger positive (resp., negative) bias shown in Table 2.

3.3 Simulation Study III: breaking the identification constraints

Our goal here is to show the effect of using the same source of information to model both
the relative risk θ and the reporting probability ε. We consider two different scenarios.
In the first one, the same covariate is present in both sets X and H . Consequently, as
the constraints for the model identification are not fulfilled, we should have problems
to estimate the model parameters. In the second scenario, we will use the same variable
but coded in two different ways: In X it is continuous while for H it is considered in a
discretized scale obtained by breaking its continuous range into four intervals and coding
them with dummy variables. In this case, despite the very strong correlation between
X and H, we should obtain good posterior estimates for all model parameters.

We consider the same four clusters used in the previous simulation studies, which are
based on a variable called adequacy index (AI) available in our case study (Section 4). In
the first scenario, named Categorical AI, the variable AI is considered in its discretized
version with four categories indicating the clusters and the variable AI enter in this
discretized form in both X and H. In the second scenario, named Continuous AI, its
discretized version is maintained inH but, forX, we consider the original continuous AI
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re-scaled to have a zero mean and a unit standard deviation. To generate the datasets, we
set γ = (0.05, 0.10, 0.15, 0.20) and assume the covariates X1i, . . . , X4i as in the previous
studies. In the Continuous AI scenario, we let log(θi) = β0+β1X1i+ · · ·+β5X5i, where
X5i is the AI in its continuous scale, β0 = 0.15 and β = (−0.25,−0, 25, 0, 0,−0.25). In
the Categorical AI scenario, we assume log(θi) = β0 + β1X1i + · · ·+ β4X4i + β5,1D1i +
· · ·+β5,3D3i, where β0 = 0.15 and β = (−0.25,−0.25, 0, 0, 0.25, 0.50, 0.75). The dummy
variable Dli represents the lth level of the discretized AI for l = 1, 2, 3. To analyze the
data, we consider the partially informative conditional uniform prior for γ in which
γ1 ∼ U(0, 0.10).

As expected, Table 5 shows that the posterior inferences for the relative risks are
much worse if we break the identifiability constraints (Categorical AI case). However,
such estimates do not lose quality if we consider strongly correlated variables to model
θ and ε (Continuous AI case). In the Categorical AI case, Table 6 shows confound-
ing between the parameters γ and the effects of the dummy variables, being all these
parameters poorly estimated. This problem is not experienced by the parameters in
the Continuous AI case. These findings are in perfect agreement with the theoretical
identifiability results discussed in Section 2.1.

RMSE Bias Cov. RMSE Bias Cov.
Continuous AI Categorical AI

Model 1 0.002 −0.009 0.982 5.789 3.785 0.880
Model 2 0.002 −0.009 0.986 12.654 4.207 0.885
Model 3 0.002 −0.010 0.995 11.489 4.670 0.823

Table 5: Bias, relative mean squared error (RMSE) and nominal coverage of 95% credible
intervals (Cov.) for the estimated relative risks θ; Simulation Study III.

Continuous AI Categorical AI
Parameter True Value Posterior Mean ω̂ True Value Posterior Mean ω̂

β0 0.150 0.141 – 0.150 0.146 –
β1 −0.250 −0.248 1.000 −0.250 −0.248 1.000
β2 −0.250 −0.253 1.000 −0.250 −0.251 1.000
β3 0.000 −0.001 0.018 0.000 0.002 0.016
β4 0.000 0.002 0.018 0.000 0.003 0.020
β5 −0.250 −0.255 0.999 0.250 0.507 0.938
β6 – – – 0.500 1.144 0.997
β7 – – – 0.750 1.811 0.996
γ1 0.050 0.048 – 0.050 0.048 –
γ2 0.100 0.093 – 0.100 0.256 –
γ3 0.150 0.152 – 0.150 0.272 –
γ4 0.200 0.196 – 0.200 0.182 –

Table 6: Averaged posterior means of β0, β, γ and ω under Model 2; Simulation Study
III.
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3.4 Comments on further simulation studies

Section 3 of the Supplementary Material (Oliveira et al., 2020) presents additional sim-
ulation studies exploring other features of the proposed model. In the following, we
present the main results obtained from such studies. A discussion about the misspec-
ification of the number of data quality clusters, K, is provided in Section 3.1 of the
Supplementary Material. In summary, for the simulated datasets, we note that the mis-
specification of K introduces more bias as well as higher variability in the posterior
estimates of θ. Both bias and RMSE are much higher if the number of clusters assumed
in when fitting the proposed model is smaller than the true value of K if compared with
the case of assuming a value for K that is greater than the true one.

We also evaluate whether the number of areas within the best and worst data quality
clusters significantly affects the posterior inference for the relative risks θ (Section 3.2 of
the Supplementary Material). In summary, we observed that having a greater number
of areas within the best data quality cluster decreases the bias in the posterior estimates
of θ. This is an expected behavior since, whenever the number of areas within the best
group is larger, the model induces an informative prior for a greater number of areas.

Finally, from the study presented in Section 3.3 of the Supplementary Material,
we note that, if the data are correctly recorded (that is, assuming εi = 1 ∀ i), the
relative risks θ are overestimated under our approach and the bias magnitude depends
on the prior knowledge about γ (see Web Table 3). In this context, as expected, the
standard Poisson model performs very well presenting both bias and RMSE close to
zero. However, the standard Poisson model always underestimates the relative risks if
counts are partially recorded (see Table 1 of the main paper), and the bias magnitude
depends on the amount of underreporting in the data.

Therefore, it is important mentioning that the proposed model shows better results
whenever fitted to analyze perfectly recorded data (in terms of bias and RMSE) than
the standard Poisson model does whenever fitted to analyze underreported data. In
practical situations, the relative risk estimates may guide the definition of government
policies for control and intervention. Thus, the underestimation of such quantities leads
to undesirable consequences, for instance, if we are mapping disease or mortality risks.

4 Early neonatal mortality data in Brazil

Our goal here is to map the relative risk of early neonatal mortality (ENM) in Minas
Gerais State (MG), Brazil, and also to identify factors that are possibly associated to
the event occurrence. The ENM refers to the deaths occurring in the first seven days of
life. Quality of infant mortality information produced in MG is usually underreported
(Campos, Loschi, and França, 2007), mainly in the socio-economically more deprived
areas located in northern and northeastern regions of the state. In order to define efficient
policies to diminish the number of early neonatal deaths and properly distribute the
financial resources, it is important to correctly estimate the associated risks.

The counts were obtained from the Sistema de Informações sobre Mortalidade (SIM)
and Sistema de Informações sobre Nascidos Vivos (SINASC) from the National Health
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System of the Brazilian Ministry of Health (BMH). The 853 municipalities of MG were
grouped in A = 75 microregions (areas) following the official division suggested by
the BMH. Two periods of time comprising the two most recent Brazilian Demographic
Censuses are considered, namely, 1999–2001 and 2009–2011.

To analyze the datasets, we fit the proposed model assuming that Yi and Ei are,
respectively, the observed and the expected counts of ENM at area i = 1, . . . , 75. We

assume Yi | θi, εi ind∼ Poisson(Eiθiεi) for all i. We consider the usual naive estimator

for the offset Ei given by Ei = ni

(∑A
i=1 yi/

∑A
i=1 ni

)
, where ni represents the total

number of newborn children at risk in the ith area and yi is the observed count of early
neonatal deaths in such area. For comparison purposes, we also fit the standard Poisson
model which ignores the underreporting in its structure by assuming εi = 1 for all areas.

The ENM relative risk assumes a log-linear regression structure which includes lo-
cal and spatial random effects, that is, log(θi) = β0 + Xiβ + ui + si, i = 1, . . . , 75.
Five covariates are introduced in this regression model: the Municipal Human Develop-
ment Index (MHDI), the proportion of mothers with more than twelve years of formal
education (MomEduc), the proportion of children with weight at birth smaller than
2.5 Kg (LowWeight), the proportion of children who were born with some congenital
anomaly (Anomaly) and the proportion of mothers who made seven or more prenatal
visits during the pregnancy (Prenatal). The MHDI was collected from the Atlas of Hu-
man Development in Brazil (2010) and the other four covariates were obtained from the
DATASUS repository, maintained by the BMH.

To define the clustering structure, we consider the adequacy index (AI) introduced
by França et al. (2006) as a measure of the quality of infant mortality data collected in
Minas Gerais. Based on the adequacy index, França et al. (2006) proposed a partition
of the A = 75 microregions of MG into K = 4 groups: MG1 (most adequate, AI > 70.0,
28 microregions), MG2 (group intermediate A, 50.1 < AI < 70.0, 16 microregions),
MG3 (group intermediate B, 20.0 < AI < 50.0, 14 microregions) and MG4 (less ad-
equate group, AI < 20.0, 17 microregions). We consider these four groups to analyze
the ENM data in both periods, 1999–2001 and 2009–2011. Since there is an expectation
of improved data reporting quality in recent years, the K = 4 clusters induced by this
partition may be more heterogeneous in the period 1999–2001. In order to provide a
sensitivity analysis and also attempting to reduce the effect of within cluster hetero-
geneity, we divide each of the previous groups in two new groups obtaining another
clustering structure with K = 8 categories of data quality. The median of the AI within
each of the four initial groups is considered for defining the new partition into eight
groups. Panels (b) and (d) of Figure 2 display the groups defined in both cases (each
color corresponds to a different group).

About prior elicitation

To complete the model specification a prior distribution must be elicited for each param-
eter, with special attention to the informative prior needed for parameter γ1. According
to experts’ opinion, the reporting probability in areas experiencing the best data qual-
ity likely approaches one. Based on the information obtained from the specialists (local



G. Lopes de Oliveira et al. 117

epidemiologists and health researchers) for both periods of interest, we adopt the condi-
tional uniform prior distribution given in expression (2.6) eliciting an informative prior
distribution only for parameter γ1 (partially informative prior distribution). When con-
sidering the clustering structure with K = 4 data quality groups, we set γ1 ∼ U(0, 0.10)
for period 1999–2001 and, as an improvement on data reporting quality is expected in
more recent years, for period 2009–2011 it is assumed γ1 ∼ U(0, 0.05). When fitting the
data with K = 8 clusters, we set the prior γ1 ∼ U(0, 0.05) for both periods.

To model the prior uncertainty about the relative risks, θ, we assume the structure
of Model 3 described in the simulation studies (Section 3). We set β0 ∼ N(0, 100) and
perform a variable selection by eliciting the SSVS prior given in expression (2.8) for
β = (β1, . . . , β5) with σ2

slab = 100, σ2
spike = 0.001 and ρm = 0.5, m = 1, . . . , 5. For

parameters s, u, σ2
s and σ2

u we assume the prior distributions elicited in the simulated
studies (Section 3). Also, for the MCMC performed in OpenBUGS, we consider the
same specifications as in the simulated studies. The complete dataset and the BUGS
code considered in this case study are provided in the Supplementary Material (Oliveira
et al., 2020).

Posterior results

Figures 2 and 3 show the posterior estimates of the ENM risks in MG for periods
1999–2001 and 2009–2011, respectively. By fitting the proposed model, we estimate the
probability of recording the events in each area, see Panels (b) and (d) of Figures 2 and 3.
Panel (d) of Figure 2 show that, for the period 1999–2001, the posterior mean for the
probability of recording an early neonatal death at areas with the worst data quality is
0.551. Such estimate increases to 0.806 in the period 2009–2011 (Panel (d), Figure 3)
indicating an improvement in the data reporting process in North and Northeast areas.
The same occurred for the other areas showing that an improvement in data reporting
process spread out over the state. For those areas classified in the best data quality
cluster, the estimated reporting probability tends to be close in both periods, which is
expected as the posterior estimate for parameter εi in the best group is quite influenced
by its prior mean (see the discussion in Sections 2.1 and 3.2).

Posterior estimates for the relative risks under the standard Poisson model are dis-
played in Panel (e) of Figures 2 and 3. For the period 1999–2001 (Figure 2), such
estimates shows that areas in the North and Northeast regions of Minas Gerais expe-
rienced the lowest ENM risks, being smaller than the risk obtained for Belo Horizonte
city, the capital of the Minas Gerais State. This finding goes against the results obtained
in some epidemiological studies that relate the quality of data to socioeconomic and ac-
cess to health care indicators (e.g., Campos, Loschi, and França (2007)). Because the
North and Northeast regions are the poorest and present the lowest socio-educational
indicators in the state, experts believe that the ENM risks in such areas are much higher
than those estimated through the standard Poisson model, evidencing the incapacity
of this model to account for a high underregistration level. In relation to the most re-
cent period 2009–2011 (Figure 3), the spatial distribution of the posterior estimates
provided by the standard Poisson model are more compatible to what is expected by
the specialists. The posterior estimates for the ENM risks in the poorest areas (North
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Figure 2: Posterior mean for the relative risks, θ, of early neonatal mortality (Panels
(a) and (c)) and the reporting probabilities, ε, (Panels (b) and (d)) under the proposed
model with K = 4 (Panels (a) and (b)) and K = 8 (Panels (c) and (d)) and the standard
Poisson model (Panel (e)); Minas Gerais data, period 1999–2001.
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Figure 3: Posterior mean for the relative risks, θ, of early neonatal mortality (Panels
(a) and (c)) and the reporting probabilities, ε, (Panels (b) and (d)) under the proposed
model with K = 4 (Panels (a) and (b)) and K = 8 (Panels (c) and (d)) and the standard
Poisson model (Panel (e)); Minas Gerais data, period 2009–2011.
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and Northeast) are higher than the ones obtained for more developed regions of Minas
Gerais. It points to an improvement in the quality of the data reporting process as
indicated by the estimates for the reporting probabilities obtained under the proposed
model in both periods. Moreover, compared to the estimates for period 1999–2001 (Fig-
ure 2), the ENM risks for most regions in South and Southwest of Minas Gerais decrease
by 2009–2011. These results are possibly indicating the advance in the socio-economic
conditions and the access to health care in Minas Gerais.

Panels (a) and (c) of Figures 2 and 3 show that the proposed model provides esti-
mates for the ENM risks in Minas Gerais that are more compatible with the findings in
Campos, Loschi, and França (2007), especially in northeastern areas for both periods.
Its performance is specially good when estimating the ENM risks in the period 1999–
2001, in which data quality is more questionable. By accounting for underreporting,
the proposed model corrects at least part of the underestimation experienced by the
poorest microregions of the state providing more realistic estimates for the ENM risks
in such areas. As expected, for areas experiencing a good data quality, estimation under
both the proposed and the standard Poisson models are similar. As observed for the
standard Poisson model, the maps for the ENM relative risks estimated under the pro-
posed model in period 2009–2011 disclose a decrease in the risk for most microregions
in South and Southwest of Minas Gerais if compared to period 1999–2001.

Table 7 summarizes the results under the fitted models. The log pseudo-marginal
likelihood (LPML) criterion (Ibrahim, Chen, and Sinha, 2001) points that data from
1999–2001 are better fitted by the proposed model with K = 8 data quality clusters
whereas for period 2009–2011 the proposed model with K = 4 provides the best data
fit. The expected improvement in the quality of the data reporting process in the most
recent period, 2009–2011, makes the microregions more homogeneous in relation to
such data feature. Therefore, a smaller number of data quality categories is actually
expected. For each period, only results related to the best fitted models are considered
in the following analysis.

Assuming that a covariate Xm, m = 1, . . . , 5, should be included into the model
whenever ω̂m ≥ 0.5, where ω̂m denotes the posterior estimate for the associated inclusion
probability, then Table 7 shows that different sets of covariates are significant to explain
the ENM risks in the two analyzed periods. Under the best models, only the covariate
MHDI shows to be significant (likely non-zero effect) to explain the ENM risk for the
period 1999–2001 while, for the period 2009–2011, MHDI, Anomaly and Prenatal were
significant. As expected in practice, the effect of the covariate MDHI is negative in both
periods, indicating that the highest the MHDI, the smallest the ENM risk. The effect of
MHDI is smaller in the period 2009–2011. Also for this most recent period, we observe
that the ENM risk is smaller in areas with a high proportion of mothers who have
made seven or more prenatal visits during the pregnancy. Furthermore, the positive
effect associated to the proportion of children who were born with some congenital
anomaly (Anomaly) indicates that such characteristic has been an important factor
to the occurrence of early neonatal deaths in recent years. Covariates MomEduc and
LowWeight, usually pointed out as important factors to explain the infant mortality
rate, are not significant in the best model for both periods considered in our study.
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Covariate Mean St.Dev. P(β > 0) ω̂ .Mean St.Dev. P(β > 0) ω̂
proposed model with K = 4

1999–2001 (LPML = −334.107) 2009–2011 (LPML = −281.833)
Intercept 0.834 0.410 0.989 – 1.402 0.632 0.998 –
MHDI −1.592 0.647 0.000 1.000 −0.860 0.725 0.150 0.670

MomEduc −0.398 1.144 0.428 0.250 −0.218 0.558 0.399 0.190
LowWeight 1.694 2.462 0.706 0.706 −0.688 1.435 0.380 0.274
Anomaly 2.653 7.731 0.604 0.534 3.685 6.588 0.687 0.553
Prenatal 0.080 0.216 0.630 0.159 −0.949 0.552 0.084 0.791

proposed model with K = 8
1999–2001 (LPML = −325.948) 2009–2011 (LPML = −283.863)

Intercept 1.986 0.181 1.000 – 1.946 0.300 1.000 –
MHDI −3.369 0.311 0.000 1.000 −1.400 0.465 0.005 0.989

MomEduc −0.033 0.615 0.491 0.128 −0.120 0.357 0.425 0.140
LowWeight −0.095 0.592 0.483 0.168 −0.843 1.944 0.393 0.253
Anomaly 2.450 7.211 0.579 0.476 3.586 6.446 0.644 0.515
Prenatal 0.104 0.212 0.678 0.222 −1.170 0.306 0.000 1.000

standard Poisson model
1999–2001 (LPML = −338.997) 2009–2011 (LPML = −286.665)

Intercept 2.007 0.238 1.000 – 2.006 0.507 1.00 –
MHDI −3.797 0.486 0.000 1.000 −1.686 0.837 0.044 0.894

MomEduc −0.086 0.785 0.470 0.171 −0.058 0.279 0.444 0.091
LowWeight 0.545 1.374 0.587 0.294 −2.260 2.932 0.255 0.507
Anomaly 1.499 8.679 0.542 0.548 3.028 6.292 0.643 0.513
Prenatal 0.097 0.240 0.625 0.228 −0.934 0.507 0.050 0.865

Table 7: Posterior summaries for the regression effects β0 and β under proposed and
standard Poisson models; Minas Gerais data in both periods 1999–2001 and 2009–2011.
We provide the posterior mean (Mean), the standard deviation (St.Dev.), the posterior
probability of being positive (P(β > 0)) and the posterior inclusion probability (ω̂).

In closing, it is important to mention that the relative risk estimates provided by the
proposed and the standard Poisson models are closer in the period 2009–2011 than their
estimates obtained for the period 1999–2001. This is an evidence of improvement in the
quality of the ENM data recorded in the civil registration systems SIM and SINASC in
Minas Gerais State.

5 Discussion

We presented a novel Bayesian modeling framework to analyze potentially underre-
ported count data. We propose a clustering scheme that relates the reporting proba-
bilities among the areas according to a previous data quality partitioning. Auxiliary
variables and experts’ opinion can be considered to assess data quality throughout the
areas. One interesting feature of the proposed model is that, to ensure its identifiability,
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only an informative prior for the underreporting probability in areas experiencing the
best data quality is required. That is attractive because in the best areas information
about the reporting probability tends to be easily accessed.

Naturally, some care should be taken as the posterior inference tends to be highly
influenced by our prior specification for parameter γ1, the underreporting probability
in the best areas. In the simulation experiments, a sensitivity study involving different
levels of prior information for γ1 was performed. The results indicated that if the spec-
ified prior mean for γ1 turns out to be widely different from the truth, then the bias
correction is likely to be inaccurate. Therefore, in practical situations, it is truly relevant
searching for reliable information about this particular prior distribution, especially the
associated prior mean.

Our model was applied to correct the underreporting bias in a Brazilian neonatal
mortality dataset. In this case, previous works guided the partitioning of the region
according to the data quality experienced by its microregions. It is worth mentioning
that in other case studies in which the clustering structure may not be previously
available, one can apply usual clustering techniques to define the groups with basis
on covariates related to the quality of the reporting system. In our application, some
local epidemiologists and health researchers provided information about the reporting
process in areas where data are known to be better recorded. This information is used to
elicit the required informative prior distribution for γ1. It is likely that a different prior
specification in the neonatal mortality application might result in different inference
on the reporting probabilities. Consequently, it also affects the bias correction on the
mortality relative risks. However, the subjective nature of the solution for completely
underreported data is not unique. In Bailey et al. (2005), for example, a different choice
for the threshold used to define the censored areas can lead to different predictions.
That may be also observed in the model introduced by Oliveira, Loschi, and Assunção
(2017) if a different informative prior is elicited for the censoring probabilities. Also,
in the approach proposed by Stoner, Economou, and Drummond (2019), a distinct
prior specification to the mean reporting rate could lead to quite different posterior
inference. The usage of a complete validation dataset (as, e.g., Whittemore and Gong
(1991); Stamey, Young, and Boese (2006); Dvorzak and Wagner (2015)) might be a
less subjective approach depending on the quality, quantity and experimental design
of collecting such data. In many cases, as the one analyzed here, the elicitation of an
informative prior distribution for one parameter is a feasible and reasonable solution.

The precise mapping of risks related to vital statistics is an important tool to guide
health policies that may lead to a reduction of events such as infant mortality. Estimates
for the event reporting probabilities, which provide a measure of severity of underreport-
ing, help to decide about where additional resources for surveillance programs would be
most necessary and effective. The model introduced in this work is another attractive
tool to account for underreporting bias in this context.

It is an interesting topic for future research to introduce partitioning models, such
as Dirichlet process or product partition models, for underreported data. Such kind of
models will allow us to also infer about the clusters throughout the estimation process.
Extensions of the proposed model should also consider the situation in which there are
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spatial patterns in the reporting process. By borrowing strength from spatial modeling
and extreme learning machines, Prates (2019) introduce a hierarchical model to per-
form imputation over missing count data whose usage and adaptation for the context
of underreporting is an interesting point for further investigation as well. Although not
approached in this paper, the modeling of underreported count time series has been sug-
gested in recent years, for instance, by Bracher and Held (2020) and Fernández-Fontelo
et al. (2016). Another related problem that may interest readers is the estimation of
animal abundance with differential probability of detection (see, e.g., Dorazio and Royle
(2005); Hickey and Sollmann (2018)). In this context, hierarchical Poisson models are
also used to model both the underlying process and the detection (reporting) probabil-
ity.

Supplementary Material

Supplementary Materials for “Bias correction in clustered underreported data” (DOI:
10.1214/20-BA1244SUPP; .zip).
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