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Bayesian Estimation of Correlation Matrices of
Longitudinal Data

Riddhi Pratim Ghosh∗, Bani Mallick†, and Mohsen Pourahmadi‡

Abstract. Estimation of correlation matrices is a challenging problem due to the
notorious positive-definiteness constraint and high-dimensionality. Reparameter-
izing Cholesky factors of correlation matrices in terms of angles or hyperspherical
coordinates where the angles vary freely in the range [0, π) has become popular
in the last two decades. However, it has not been used in Bayesian estimation of
correlation matrices perhaps due to lack of clear statistical relevance and suitable
priors for the angles. In this paper, we show for the first time that for longitudinal
data these angles are the inverse cosine of the semi-partial correlations (SPCs).
This simple connection makes it possible to introduce physically meaningful se-
lection and shrinkage priors on the angles or correlation matrices with emphasis
on selection (sparsity) and shrinking towards longitudinal structure. Our method
deals effectively with the positive-definiteness constraint in posterior computa-
tion. We compare the performance of our Bayesian estimation based on angles
with some recent methods based on partial autocorrelations through simulation
and apply the method to a data related to clinical trial on smoking.

Keywords: angular parameterization, Cholesky decomposition, longitudinal data,
selection, shrinkage, structured correlation matrix.

1 Introduction

Covariance and correlation matrices play a fundamental role in every aspect of mul-
tivariate statistics (Anderson, 2003). Flexible modeling and estimation of correlation
matrices are daunting tasks due to (1) the positive-definiteness constraint, (2) the num-
ber of unknown elements growing quadratically with the dimension and (3) the diagonal
entries being the same and equal to one. More specifically, modeling directly the indi-
vidual elements requires repeatedly checking the positive-definiteness of the estimated
matrix in an iterative model fitting procedure. Many strategies involving various matrix
decompositions such as spectral, Cholesky decomposition, and factor models have been
developed to circumvent the notorious positive-definiteness constraint (Chiu et al., 1996;
Pinheiro and Bates, 1996; Pourahmadi, 1999; Fan et al., 2008). Unconstrained param-
eterization of correlation matrices using angles and partial autocorrelations has been
around for a while (Pinheiro and Bates, 1996; Rapisarda et al., 2007; Joe, 2006) where
the partial autocorrelations and angles as new parameters vary freely in the ranges
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[−1, 1] (Joe, 2006) and [0, π) (Pinheiro and Bates, 1996; Pourahmadi and Wang, 2015;
Tsay and Pourahmadi, 2017), respectively.

In Bayesian covariance or precision matrix estimation, inverse-Wishart distribution
and its various modifications have been widely used due to its mathematical simplicity.
The separation strategy in Barnard et al. (2000) writes a covariance matrix as Σ = SRS
and assumes independent prior for the diagonal matrix of standard deviations S and the
correlation matrix R. Specifically they considered two priors: The first one is marginally
uniform prior for rij obtained from marginal distribution on R starting from a standard
inverse-Wishart prior on Σ with specific choices of hyperparameters, and the second
one is the jointly uniform prior of the form p(R) ∝ 1 over Rk where Rk denotes
the space of all valid correlation matrices of dimension k. In the context of graphical
model selection, Kundu et al. (2019) used regularized inverse-Wishart prior on Σ and
showed its connection to shrinkage in Σ−1 through equivalence with a Cholesky-based
regularization approach. In this article we restrict our attention only on the estimation
of a correlation matrix for ordered data and not the covariance matrix owing to the
separation strategy. We address some Bayesian modeling and inferential challenges in
estimating a correlation matrix by introducing suitable priors on the angles which go
beyond the traditional use of the inverse-Wishart distribution, the marginal and joint
uniform priors in Barnard et al. (2000).

Structured correlation matrices play an important role in many applications. Liechty
et al. (2004) considered various block-structured correlation matrices such as common
correlation model, grouped correlation model and grouped variables model, and the
priors on R were restricted to the set Rk of positive-definite correlation matrices. For
example, in the common correlation model, the prior on R is

p(R|μ, σ2) = C(μ, σ2)
∏
i<j

exp{−(rij − μ)2/2σ2}I{R ∈ Rk},

where C(μ, σ2) is the normalizing constant with normal and inverse gamma distributions
for μ and σ2, respectively. Due to the lack of conjugacy in the prior model, they used
Metropolis-Hastings (MH) algorithm for posterior inference. However, presence of the
indicator function I{R ∈ Rk} makes the computation very expensive. In fact, the
proposal density for a particular element rij in every iteration of the MH step must be
restricted to an interval [lij , uij ] where these limits are quadratic functions of the rest
of the elements of R, see (Barnard et al., 2000, p. 1305) for more details and explicit
formulae for lij , uij .

The challenges of dealing with the positive-definiteness and unit diagonal constraints
of a correlation matrix have led to two unconstrained reparameterizations of R for
ordered or longitudinal data. The reparameterization in Joe (2006) is based on the
notion of partial autocorrelation function (PAC), or the correlation coefficient between
two variables given the intermediate variables. The key advantages of using PACs are
avoiding the positive-definiteness constraint and providing interpretable parameters.
Interestingly, PACs had appeared earlier in Kurowicka and Cooke (2003), Kurowicka
and Cooke (2006) in the context of vine graphical models. It has proved useful for
elicitation of priors for Bayesian correlation estimation as in Daniels and Pourahmadi
(2009) who constructed a flexible prior on R using independent shifted Beta priors on
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the PACs, and Wang and Daniels (2014) developed the underlying regression models

involving PACs and a triangular prior which shifts the prior weight to a more intuitive

choice. Moreover, Gaskins et al. (2014) proposed shrinkage and selection priors on the

PACs aiming to estimate the correlation matrix. In all these developments, instead of

setting the full partial correlations or the entries in R−1 to zero to incorporate sparsity,

the goal has been to set some PACs to zero to encourage parsimony in modeling R.

Although the angular parameterization has been around much longer (Pinheiro and

Bates, 1996; Rapisarda et al., 2007), it has not been used as yet in eliciting priors for

correlation matrices.

The aim of this article is to study and deal with some of the computational challenges

in Bayesian estimation of correlation matrices by using its Cholesky decomposition,

(Pinheiro and Bates, 1996; Rapisarda et al., 2007) and the ensuing angles (hyperspher-

ical coordinates) as the new parameters varying freely in the range [0, π). This enables

us to deal effectively with the positive-definiteness constraint, resulting in faster compu-

tation of the posteriors for our proposed selection and shrinkage priors. For longitudinal

data, we show that these angles are directly related to the as yet dormant notion of

semi-partial correlations (SPCs). More precisely, we identify the angles as the inverse

cosine of ρji:1,2,...,j−1 between the variables yi and yj (i > j) conditioned on the pre-

vious variables y1, y2, . . . , yj−1, see Huber (1981), Eaves and Chang (1992), and Madar

(2015). We propose natural and appealing shrinkage and selection priors on these angles

and show that their performance is similar to or in some cases better than the shrinkage

and selection priors on the partial autocorrelation (Gaskins et al., 2014).

The rest of this article is organized as follows. In Section 2, we discuss some pre-

liminaries about the angular parameterization and connect the angles to the notion

of semi-partial correlations. Section 3 introduces our proposed shrinkage and selection

priors on the angles and develops Bayesian estimation of correlation matrices. Sampling

scheme under our proposed priors is discussed in Section 4. Section 5 compares the per-

formance of our priors to those based on the PACs through simulations. In Section 6,

priors are compared on a data from a smoking cessation clinical trial. Finally Section 7

concludes the article with discussion.

2 Reparameterization of R by angles

This section describes a connection between the well-known hyperspherical coordinates

(angles) of the Cholesky factor of a correlation matrix R = (rij) and the less famil-

iar semi-partial correlation coefficients ρji:1,2,...,j−1 between the variables yi and yj
(i > j) conditioned on the previous variables y1, y2, . . . , yj−1, see Huber (1981), Eaves

and Chang (1992), and Madar (2015).

For a k×k correlation matrix R with 1’s on the diagonal, its Cholesky decomposition

is given by R = BB� where the Cholesky factor B is a lower triangular matrix. Since

the rows of B are vectors of unit-length, it turns out that they admit the following

representation involving trigonometric functions of some angles (Pinheiro and Bates,
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1996; Rapisarda et al., 2007):

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0
c21 s21 0 0 . . . 0
c31 c32s31 s32s31 0 . . . 0

c41 c42s41 c43s42s41
∏3

j=1 s4j . . . 0
...

...
...

. . .
...

ck1 ck2sk1 ck3sk2sk1 ck4
∏3

j=1 skj . . .
∏k−1

j=1 skj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

with cij = cos(θij) and sij = sin(θij), where the angles θij ’s are measured in radians,
1 ≤ j < i ≤ k. Restricting θij ∈ [0, π) makes the diagonal entries of B non-negative,
and hence B is unique to which we can associate a (k − 1) × (k − 1) lower triangular
matrix Θ with k(k − 1)/2 angles:

Θ =

⎡
⎢⎢⎢⎣
θ21 0 0 . . . 0
θ31 θ32 0 . . . 0
...

...
...

. . .
...

θk1 θk2 θk3 . . . θk,k−1

⎤
⎥⎥⎥⎦ .

Note that the (i, j)-th element of Θ is denoted by θi+1,j so that θij corresponds to the
(i, j)-th element of R, we refer to Θ as the angular matrix associated to R. For further
details, properties and applications of these angles, see Creal et al. (2011), Zhang et al.
(2015) and Tsay and Pourahmadi (2017).

Given a correlation matrix R (symmetric and positive definite) and its Cholesky
decomposition R = BB� with entries bij , matching entries of both sides it follows that

b11 = 1, bi1 = ri1, i = 2, . . . , k. (2.2)

Thus, the entries in the first columns of B and R are the same. The θijs, the entries of
Θ are computed recursively via

θi1 = arccos(bi1) = arccos(ri1), for i = 2, 3, . . . , k, (2.3)

θij = arccos
( bij∏j−1

l=1 sin(θil)

)
, for 2 ≤ j < i ≤ k.

Also, given a matrix Θ with entries θij ∈ [0, π), construct the lower triangular matrix
B = (bij)i,j∈{1,2,...,k} via

bij =

{∏i−1
l=1 sin (θil), for i = j,

cos (θij)
∏j−1

l=1 sin (θil), for 1 ≤ j < i ≤ k,
(2.4)

and then the correlation matrix R = BB�.
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We illustrate the nature of nonlinear relationship between the angles and correlations
for a general correlation matrix using the following two simple examples ((a) and (b))
of increasing dimensions:

(a) For k = 2, there is only one angle θ21 and

B =

[
1 0

cos θ21 sin θ21

]
,

and from (2.2) we obtain the simple relation r21 = cos θ21. Then, the statistical meaning
of θ21 as the inverse cosine of r21 is fairly clear.

(b) For k = 3, we have

Θ =

[
θ21 0
θ31 θ32

]
.

The relationship between rij ’s and θij ’s are

θ21 = arccos(r21), θ31 = arccos(r31), θ32 = arccos
(r32 − cos(θ21)cos(θ31)

sin(θ21)sin(θ31)

)
, (2.5)

so that while the two angles in the first column are tied to the individual marginal
correlations as in (2.2), this is not the case for θ32 in the second column. In fact, the
situation gets more complicated for larger k’s. In general, the entries of the first column
of Θ are just the inverse cosine of the respective entries of the first column of R, but
as one moves towards its last column the expression for θij becomes more complicated
and hence less interpretable as a function of the entries of R.

However, in case of some special correlation matrices, the angles are nicely struc-
tured. We present forms of Θ for AR(1) and banded correlation structure which are
of special interest in longitudinal data in the next two examples and a block common
correlation in example (e).

(c) AR(1) correlation matrix: For an AR(1) correlation specified by r, corre-
sponding Θ is characterized by a single angle, θ21 = arccos (r). This is called pivotal
angle and other angles are function of it, called implied angle(Tsay and Pourahmadi,
2017). Moreover, it is instructive to note that the corresponding angle approaches to
π/2 as the lag increases which is stated in the following proposition.

Proposition 1. For a k-dimensional AR(1) correlation matrix R with rij = r|i−j|, the
angle θij → π/2 (i > j) as (i− j) → ∞.

Proof. We use induction on the column index j by noting that (i − m) → ∞ for 1 ≤
m ≤ j.

For j = 1, ri1 = r(i−1) = bi1 which goes to 0 under the assumption. Therefore,
θi1 → π/2. Suppose that the assertion holds for any integer m < j, i.e. θim → π/2. By

construction of B, this implies bim → 0. Since rij = bijbjj +
∑j−1

l=1 bilbjl and diagonal
entries of B are positive, it follows that bij → 0 as (i− j) → ∞, which further implies
θij → π/2.
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(d) Banded correlation matrix: A correlation matrix R = (rij) is called λ-
banded if

rij =

{
rij �= 0 if |i− j| ≤ λ,

0 otherwise,

where λ is an integer between 1 and k. Corresponding Θ is also banded by the following
proposition.

Proposition 2. A k-dimensional correlation matrix R is λ-banded if and only if the
corresponding Θ = (θij) satisfies

θij =

{
θij �= π/2 if |i− j| ≤ λ,

π/2 otherwise.

Proof. The proof follows using the Cholesky decomposition and relating it to Θ. Con-
sider R = BB� where B = ((bij)) as given in (1). Suppose Θ satisfies θij = π/2 for
|i− j| > λ. Then from (1), it follows that bij = 0 for |i− j| > λ.

Thus, for |i− j| > λ, we have

rij =

k∑
l=1

bilbjl =

j∑
l=1

bilbjl (assuming i > j).

Since bij = 0 for |i− j| > λ and l runs over 1, 2, . . . , j and i > j, i.e. contribution of bjl
for each summand is 0 which implies rij = 0 for |i− j| > λ.

For the only if part, rij = 0 for |i − j| > λ where 1 ≤ λ < k and the proof follows
by induction. Note

ri1 = bi1b11 (since B is lower triangular matrix).

By the construction of B, the diagonal entries are positive. Thus ri1 = 0 implies bi1 = 0
which in turn implies θi1 = π/2. For the induction step, assuming j < i and i− j > λ,
consider

rij =

j∑
l=1

bilbjl = bijbjj +

j−1∑
l=1

bilbjl.

From the induction hypothesis, θjl = π/2 for l ≤ j−1 implies the second summand is 0.
Thus, we must have bij = 0 which implies θij = π/2 and this completes the proof.

(e) Block common correlation matrices: As a generalization of a compound
symmetric (exchangeable) correlation matrix, consider a block common correlation ma-
trix which is a blocked-matrix where the correlations within each block are equal and
different across blocks. Such matrices arise in many applications due presence of com-
mon (latent) factors in different regions (aggregation of carbon dioxide sequestration
storage assessment units Blondes et al. (2013)) and stock returns of different companies
within the same industry (Liechty et al., 2004; Tsay and Pourahmadi, 2017). As an
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illustration, we consider the following 6× 6 correlation matrix,

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 r1 r2 r2 r3 r3
1 r2 r2 r3 r3

1 r4 r5 r5
1 r5 r5

1 r6
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with 6 distinct correlations ri, i = 1, 2, . . . , 6, which is much smaller than 15, the num-
ber of distinct entries of a generic correlation matrix of this size. The correspond-
ing matrix of angles Θ, is completely determined by six pivotal angles denoted by
(θ21, θ31, θ51, θ43, θ53, θ65) (Tsay and Pourahmadi, 2017) where their subscripts indicate
their locations in the partitioned matrix Θ.

In general, for a k × k correlation matrix R, if there is d common correlation
blocks, then the pivotal angles consist of d angles in the range [0, π), say θpivotal =
(θ1, θ2, . . . , θd)

�. The other angles in Θ matrix, called implied angles, are functions of
pivotal angles and can be obtained using an algorithm in Tsay and Pourahmadi (2017).
When the blocks are known, it is simple to determine the positions of pivotal angles.
One can use prior only on the pivotal angles to shrink them to different target val-
ues, and this will reduce the dimension of the parameter space to d and finally use
the algorithm in (Tsay and Pourahmadi, 2017, p. 11) to estimate the entire correlation
matrix. It is worthwhile to note that AR(1) and banded correlation matrices often arise
in the context of longitudinal data. Therefore, the characterization of Θ as discussed in
examples (c) and (d) is useful to elicit prior in Bayesian estimation of such matrices.

2.1 The angles and semi-partial correlations

Statistical interpretation and plausible meaning of the angles as the new parameters of
a correlation matrix are of interest when eliciting priors. This task is complicated by the
nonlinearity of the relationships between the correlations and angles as seen in (2.5).

Here, we use a relatively dormant formula for bij stated without proof in (Cooke
et al., 2011, Chapter 3) and identify the angles as the inverse cosine of the semi-partial
correlations (SPCs) ρji:1,2,...,j−1 between the variables yi and yj (i > j) conditioned on
the previous variables, see Huber (1981), Eaves and Chang (1992), and Madar (2015).
Surprisingly, the simplicity of the relations between the angles and SPCs is reminiscent
of the relations in (2.2) between the entries of the first columns of Θ and R.

Theorem 1. Let R be a general k × k positive-definite correlation matrix with the
Cholesky decomposition R = BB� where the Cholesky factor B is a lower triangular
matrix. Then,

(a) the entries of B = (bij) can be expressed in terms of the semi-partial correlations
(SPCs) as

bi1 = ri1, bii =

√√√√1−
i−1∑
u=1

b2iu for i = 2, 3, . . . , k, (2.6)
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bij = ρji:1,2,...,j−1

j−1∏
u=1

√
1− ρ2ui:1,2,...,u−1 for 2 ≤ j < i ≤ k. (2.7)

(b) the angles θij’s are precisely the inverse cosine of the SPCs:

ρji:1,2,...,j−1 = cos(θij) for 1 ≤ j < i ≤ k. (2.8)

The proof is given in Appendix A (Ghosh et al., 2020).

2.2 Distributions of the angles

Cholesky decomposition of a correlation matrix, and hence the concepts of the angles
and semi-partial correlations depend on ordering or labeling the variables in R. Next,
one may assign distributions to the angles so that the distribution of R is a power of its
determinant and hence invariant to permutations of its rows and columns (Pourahmadi
and Wang, 2015, Theorem 1).

Theorem 2. For a k-dimensional random correlation matrix R with the corresponding
matrix of angles Θ, let the random variables in the jth column of Θ be independent and
identically distributed as

θij ∼ pj(θ) ∝ (sin θ)2α+k−j for j = 1, · · · , k, i = j + 1, j + 2, . . . , k, (2.9)

where α is a constant, θ ∈ [0, π). Then

(a) the joint distribution of R is given by

p(R) = ck(α)[det(R)]α, ck(α) =

k−1∏
j=1

( Γ( 2α+j
2 + 1)

√
πΓ( 2α+j+1

2 )

)j

, (2.10)

where ck(α) is the normalizing constant.

(b) The marginal density of each rij, 1 ≤ j < i ≤ k, of the correlation matrix R

is proportional to (1− r2ij)
α+ k

2−1, i.e., a shifted Beta(α + k/2, α + k/2) distribution in
[−1, 1].

(c) The distribution is symmetric about π/2, hence its mean and median are equal
to π/2.

Although the proof appears in (Pourahmadi and Wang, 2015, Theorem 1), for
reader’s convenience, we give an outline in Appendix B.

One can identify (2.9) as the distribution of axial data. In addition to non-negativity
and density integrating to one, such a distribution must satisfy p(θ) = p(θ+π) for all θ in
[0, π) (Arnold and SenGupta, 2006) which holds for (2.9) by noting that pj(θ) = |pj(θ)|
and |sin(θ + π)| = |sin(θ)| for θ in [0, π).

It turns out that these distributions on the angles reduce to the joint uniform prior
of Barnard et al. (2000) on a correlation matrix for specific value of α.
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Recall that the joint uniform prior assigns a uniform distribution to the set of all
valid k × k correlation matrices

pJ (R) ∝ 1, R ∈ Rk. (2.11)

Indeed, α = 0 in (2.10) leads to pJ . As such this prior is noninformative and not suitable
in longitudinal data analysis, since higher lag (auto)correlations tend to zero faster than
those with smaller lags.

3 Prior specifications on angles

We propose shrinkage and selection priors on angles for ordered data guided by the fact
that two variables far apart have correlation decaying to zero. Therefore, it is natural
to expect that the semi-partial correlation between two variables yi & yj (i > j) in the
random vector Y given the preceding variables y1, y2, . . . , yj−1 decays to zero as the
lag (i − j) increases. In terms of angles, this essentially means that the corresponding
θij goes to π/2, since θij is related to the corresponding semi-partial correlation only
through the cosine function (2.8). A key role behind construction of our shrinkage prior
is played by the (modified) shifted beta distribution with parameters α and β, denoted
by SBeta(α, β), in [−1, 1]:

p(ρ) =
(1 + ρ)α−1(1− ρ)β−1

B(α, β)2α+β−1
, for − 1 ≤ y ≤ 1. (3.1)

With α = β, p(ρ) symmetric around 0 having mean zero and variance 1/(2α+ 1).

We note that in Bayesian statistics, spike and slab priors have also been used in
practice as a selection prior with a spike at a target value, say π/2. There is a vast
literature on selection priors (Mitchell and Beauchamp, 1988; Ishwaran and Rao, 2005).

3.1 Selection prior

A way to motivate the formation of our selection prior is to note that when R is an
identity matrix, all the entries of Θ are π/2. Thus, forming a selection prior as a mixture
of a Dirac delta with mass at π/2 and a continuous density having support in [0, π), is
capable of selecting or centering the angles at π/2. In terms of the SPCs, this amounts
to encouraging the semi-partial correlation between yi and yj given y1, y2, . . . , yj−1 to
be centered at 0.

Similar to PAC framework where selection prior (Gaskins et al., 2014) on πij is con-
structed using a mixture of point mass at zero and a SBeta distribution in [−1, 1], our
selection prior on the angles, denoted by pθ,SP , assumes independent mixture distribu-
tions for individual θij ’s by

pθij ,SP (θ) ∝ (1− ηij)δπ/2(θ) + ηijsin(θ), where θ ∈ [0, π), (3.2)

where, ηij = Pr(θij �= π/2) for 1 ≤ i < j ≤ k and δπ/2 denotes a Dirac delta with mass
at π/2. To make such priors more suitable for longitudinal data, we further parameterize



1048 Bayesian Estimation of Correlation Matrices of Longitudinal Data

ηij = η0|j−i|−γ so that as the lag |j−i| increases, the prior in (3.2) puts more weight at
π/2. Since the angle θij is related to the partial correlation ρji:1,2,...,j−1 in (7) through
cos(θij), this implies that for variables which are far apart or having greater lag |i− j|,
the corresponding θij ’s are closer to π/2. We further assume a Unif(0, 1) distribution for
the hyper-parameter η0 and a Gamma(a, a) distribution for the hyper-parameter γ so
that γ has prior mean 1. In our simulation study, we choose a = 5 to make our results
comparable to those in Gaskins et al. (2014).

3.2 Shrinkage prior

In Bayesian covariance estimation, shrinkage priors have been used to shrink the poste-
rior estimate towards specific structures. For example, Liechty et al. (2004) considered
priors to shrink the correlation matrix to certain group-structured targets, and Wang
and Pillai (2013) considered scale mixture of uniform distributions to construct shrink-
age priors for covariance matrix estimation.

The shrinkage prior in Gaskins et al. (2014) shrinks the PAC (πij)’s towards 0 using
SBeta(αij , αij) which has mean zero and variance ξij = 1/(2αij + 1).

In the interest of parsimony, they parameterize ξij = ξ0|i−j|−γ , for ξ0 ∈ (0, 1), γ > 0,
so that for longitudinal data higher-lag terms are shrunk to 0 more aggressively.

To define an analogue of the above shrinkage prior on angles we exploit the interpre-
tation of angles in (2.8) and assume that the semi-partial correlation ρji:i,2,...,j−1 follows
a SBeta(αij , αij) distribution. Using change of variable, we propose our shrinkage prior
pθij ,SH on θij by,

pθij ,SH(θ) ∝ (sin θ)2αij−1, θ ∈ [0, π). (3.3)

Note that the form (3.3) is very similar to (2.9) except the exponent. The mean of the
distribution is π/2 [Theorem 2(c)] but the variance has no closed form expression. Using
delta method, the variance can be approximated by ηij = 1/(2αij + 1)

As in selection prior, we further parameterize ηij = η0|i− j|−γ to make it dependent
on lag and assume a Unif(0, 1) prior on η0 and a Gamma(a, a) prior on γ.

4 Sampling from posterior distribution

We assume throughout that the data y1, y2, · · · , yn follow a multivariate normal distri-
bution of dimension k with mean zero vector and covariance R. Restricting attention
to correlation matrices is natural, for example, in the analysis of multivariate probit
model to circumvent the issue of identifiability (Chib and Greenberg, 1998). Denoting
Y = [y1, y2, · · · , yn] the likelihood function parameterized by Θ is given by

L(Y |Θ) ∝ det(T (Θ))−n/2exp
{
− 1

2

n∑
i=1

y�i (T (Θ))−1yi

}
,

where T denotes the transformation from R to Θ.
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Updating θij :

Denote by Θ[−ij], the Θ matrix after dropping its (i, j)-th element and pθij (θ) the prior
for θij . For convenience, we often drop the subscripts SP and SH from pθij when the
context is easily understood. The posterior distribution of θij given others is:

p(θij |Θ[−ij], γ, η0, Y ) ∝ L(Y |θij ,Θ[−ij])pθij (θ). (4.1)

Note that the involvement of θij in the likelihood makes the posterior non-conjugate.
To sample from (4.1), we incorporate auxiliary variable zij (Damien et al., 1999; Neal
et al., 2003; Gaskins et al., 2014), write

p(θij |Θ[−ij], Y ) =

∫ ∞

0

I{zij < L(Y |θij ,Θ[−ij])pθij (θij)}dzij (4.2)

and sample θij in two steps. While the first step is common for both selection and
shrinkage prior, the notable difference appears in second step owing to the presence of
Dirac delta function in selection prior (3.2).

Step 1. Sample z∗ij from Unif(0, L(Y |θij ,Θ[−ij])) for an initial value of θij .

Step 2. For shrinkage prior (3.3), sample θij uniformly from the set {θ : z∗ij <
L(Y |θij ,Θ[−ij])pθij}.
In case of selection prior (3.2), sample θij from pθij ,SP (θ) restricted to the con-
strained set C = {θ : z∗ij < L(Y |θij ,Θ[−ij])}. To sample from pθij ,SP (θ) restricted
to C, let F (θ) = P (θij ≤ θ) be the cumulative distribution function of pθij ,SP .
The expression of F (θ) is available in closed form. Next draw U uniformly over
the set F (C) and update θij by F−1(U) = inf{θ : F (θ) ≥ U}.

Updating η0, γ:

For updating the parameters η0, γ in selection prior, we incorporate dummy variable
ϑij = I{θij �= 0} ∼ Ber(ηij) so that P (θij �= 0) = ηij . This makes the distribution of
η0, γ dependent on Θ only through the variables ϑij . Next we use two slice samplers to
update them and similar is the case for shrinkage prior.

5 Simulations

5.1 Comparing priors on the angles and PACs

We perform a number of simulation studies to assess the performance of our selection
and shrinkage priors on the angles relative to the selection and shrinkage priors of
Gaskins et al. (2014) on partial autocorrelations. Since the selection prior performed
better than the shrinkage prior in their simulation study, here we focus only on the
selection prior and follow their simulation set-up as much as possible.

The frequentist risks of the posterior estimates are evaluated by averaging the loss
over 60 simulation runs for the following two loss functions: The Kullback-Leibler loss
function L1(R, R̂) = tr(R̂−1R)− log|R̂−1R| − k, which is zero when R̂ = R. The second
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loss function for estimating Θ is defined by L2(Θ, Θ̂) = ||Θ̂−Θ||2F =
∑

i<j(θij − θ̂ij)
2,

where R̂ and Θ̂ denote the posterior estimates.

We consider 4 different 6 × 6 correlation matrices: RA (the identity matrix whose
Θ a lower-triangular matrix of order 5 having all entries π/2), RB (AR(1) matrix with
correlation 0.7), where ΘB is

ΘB =

⎡
⎢⎢⎢⎢⎣
0.795 0 0 0 0
1.059 0.960 0 0 0
1.221 1.189 0.960 0 0
1.328 1.316 1.189 0.960 0
1.402 1.396 1.316 1.189 0.960

⎤
⎥⎥⎥⎥⎦ ,

and RC , RD constructed from the following Θ matrices:

ΘC =

⎡
⎢⎢⎢⎢⎣
π/4(0.707) 0.866 0 0 0

π/6 π/4(0.862) 0.612 0 0
π/2 π/6 π/4(0.431) 0.306 0
π/2 π/2 π/6 π/4(0.431) 0.306
π/2 π/2 π/2 π/6 π/6(0.459)

⎤
⎥⎥⎥⎥⎦ ,

ΘD =

⎡
⎢⎢⎢⎢⎣
π/4(0.707) 0.866 0.707 0.866 0.809

π/6 π/4(0.862) 0.933 0.789 0.866
π/4 π/6 π/2(0.829) 0.838 0.848
π/6 π/3 π/2 π/2(0.765) 0.827
π/5 π/4 π/2 π/2 π/2(0.805)

⎤
⎥⎥⎥⎥⎦ .

In the above notation, off-diagonal elements of the corresponding R are given in
upper triangular matrix.

It can be seen that ΘC leads to a banded correlation matrix and the entries in the
rows of ΘD decay to π/2.

For each of the 4 correlation matrices, we simulate 60 data-sets of sample sizes
n = 20, 200 from a multivariate normal distribution having mean zero and covariance
matrix equals to the chosen correlation matrix. For comparison of the risks, our com-
petitor is pπ;SP which performed the best in Gaskins et al. (2014). To compute the
posterior for pπ;SP , we also obtain Π for each R above. We run an Markov chain Monte
Carlo (MCMC) for 5000 iterations with a burn-in 1000 and retain every tenth iter-
ation providing 500 outputs for each data-set. At each iteration of Θ, we retain the
corresponding correlation matrix R(Θ) and at each iteration of Π, in addition to R(Π),
Θ(Π) or Θ(R(Π)) is retained.

The posterior estimates of Θ, R(Θ), R(Π) and Θ(Π) are obtained by taking the
average of these samples after burn-in from each iteration. For each case, we gauged the
performance by the risk estimates with respect to the two loss functions discussed earlier
by taking average of these loss functions over 60 replications of the simulated data.

The results are summarized in Table 1, where we note that for the identity matrix
(RA) our selection prior outperforms all its competitors, but our shrinkage prior is
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n R Loss pπ;SP pθ;SH pθ;SP pJ

L1(R̂, R) 0.025 0.032 0.018 0.967
20 RA L2(Θ̂,Θ) 0.6027 0.595 0.1001 1.002

L1(R̂, R) 0.0014 0.0015 0.0008 0.7071
200 RA L2(Θ̂,Θ) 0.0422 0.4247 0.0226 0.9961

L1(R̂, R) 0.34 0.45 0.35 1.065
20 RB L2(Θ̂,Θ) 0.6113 0.7655 0.6133 1.0046

L1(R̂, R) 0.027 0.0355 0.028 0.9574
200 RB L2(Θ̂,Θ) 0.1501 0.3553 0.1567 0.7654

L1(R̂, R) 2.095 0.5665 0.3500 1.985
20 RC L2(Θ̂,Θ) 0.9532 0.3965 0.1905 0.9643

L1(R̂, R) 1.665 0.1025 0.0765 1.7855
200 RC L2(Θ̂,Θ) 0.7562 0.2256 0.0985 0.7557

L1(R̂, R) 2.0035 0.8565 0.5567 2.6895
20 RD L2(Θ̂,Θ) 0.9779 0.6312 0.4608 1.2575

L1(R̂, R) 1.5001 0.2542 0.1959 2.0698
200 RD L2(Θ̂,Θ) 0.5672 0.2650 0.1065 0.9989

Table 1: Risks for our selection prior (pθ;SP ), shrinkage prior (pθ;SH) and the selection
prior in Gaskins et al. (2014).

outperformed by the selection prior in Gaskins et al. (2014). For the AR(1) (RB),
our selection prior and the selection prior of Gaskins et al. (2014) are comparable. For
banded RC and RD, our selection prior and shrinkage prior are comparable and perform
better than pπ;SP . The joint uniform prior performs poorly in all of these cases.

In summary, our selection prior and shrinkage prior show advantage over based on
certain scenarios.

5.2 Computational advantages of angle parameterization

The computational challenges of using constrained priors like the joint uniform prior
pJ(R) are well-known, other notable examples are the common correlation priors in
Liechty et al. (2004), priors for sparse R−1 in Wong et al., 2003; Pitt et al., 2006; Carter
et al., 2011, which place a flat prior on the non-zero components for a given pattern
of zeros. These methods usually require computing the normalizing constants related
to volumes of certain subsets of Rk corresponding to patterns of zeros, and where the
prior and posterior densities are supported on constrained sets. Due to the presence
of the indicator function of Rk in the prior and posterior, in the Metropolis-Hastings
scheme, the proposal density for updating rij has to be restricted to an interval [lij , uij ]
where these bounds are functions of the rest of the entries of R±1 (Barnard et al., 2000;
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Liechty et al., 2004). Of course, unconstrained parameterization resolves the tedious
task of computing the normalizing constant in every update of the MCMC algorithm
and consequently posterior computation is faster.

Next, we compare the time complexity of implementing the MCMC algorithm for the
constrained prior pJ (R) on the space of valid correlation matrices Rk, and its two un-
constrained reparameterizations on the spaces of angles Θ and partial autocorrelations
Π. The prior on the angles:

pθJ(Θ) ∝
∏
i>j

(sin θij)
k−j , (5.1)

is obtained from (2.9) for α = 0, and the prior on PACs is

pπJ(Π) ∝
∏
i<j

(1− π2
ij)

1+[(k−1)−(j−i)]/2, (5.2)

where πij ∈ [−1, 1], for more details see Gaskins et al. (2014).

We consider three different settings of (n, k), namely (50, 5), (100, 10) and (500, 15)
and simulate a sample of size n from a k-dimensional normal distribution having mean 0
and covariance matrices set to Identity, AR(1) with correlation 0.4 and a general corre-
lation matrix, respectively. For posterior sampling, we use the slice sampling techniques
similar to Section 4 for Θ and Gaskins et al. (2014) for Π with necessary adjustments
needed the priors (5.1) and (5.2) and for the constrained case we use Metropolis-Hastings
algorithm to sample individual correlations rij from the restricted set determined by
rest of the entires of R as in (Barnard et al., 2000; Liechty et al., 2004).

In Figure 1, we present run times (in log scale of seconds) for 2000 independent
MCMC samples satisfying “effectiveSize” function in R which gives effective number
of MCMC samplers adjusting the autocorrelation. As expected the unconstrained pri-
ors outperform constrained method significantly in any dimension with respect to the
execution-time. The simulations were run on a 2.6 GHz Intel Core i5 processor. The
numerical results above may not be surprising by noting that the computational com-
plexity of simulating a posterior of R based on priors on angles or generating general
random correlation matrices (Pourahmadi and Wang, 2015) is O(k3) compared to O(k4)
of the Joe (2006) proposal based on partial correlations, and O(k3) of the Lewandowski
et al. (2009) method using the partial correlations defined on C-vines, respectively.

6 Data analysis

We analyze a data set (Gaskins et al., 2014) simulated based on first Commit to Quit
(CTQ I) study of Marcus et al. (1999), a clinical trial designed to encourage women
to stop smoking. The aim of the study was how exercise is effective to increase quit
rate, as weight gain seems to be an influencing factor in a smoking cessation program.
Providing an educational intervention of equal time for the control group, the study
spans 12 weeks and the patients were encouraged to quit smoking at week 5.

The data is provided in the form of a 281 × 9 matrix, where rows correspond to
patients and columns 2–9 correspond to weeks and first column corresponds to treatment



R. P. Ghosh, B. Mallick, and M. Pourahmadi 1053

Figure 1: Time comparison in log scale of seconds for constrained vs unconstrained
method for 2000 effectively independent MCMC samples for three indicated correlation
matrices.

assignment (0 for control and 1 for exercise). For each patient, columns 2–9 denote the
patient’s smoking status from 5-th to 12-th week after they are asked to quit smoking.
With n = 281, k = 8 (discarding first column), we associate an n× k matrix Y = (yij)
to the data, whose entries take values −1,0,1; where 1 denotes success (i-th patient not
smoking in j-th week), −1 denotes failure (still smoking in j-th week) and 0 denotes a
missing observation. Introducing latent variables y∗ij , we assume a multivariate probit
model Chib and Greenberg (1998) where,

yij =

{
1 if y∗ij > 0,

−1 if y∗ij < 0,

and if yij = 0, the sign of y∗ij represents the (unobserved) quit status for the week.

Next, we assume y∗i = (y∗i1, y
∗
i2, · · · , y∗ik)� ∼ Nk(μi, R) for i = 1, 2, · · · , n and μi

is parameterized as μi = X�
i β; where Xi is a q × k matrix of covariates and β is a

q × 1 vector of regressors. To circumvent the identifiability issue, covariance matrix is
restricted to be a correlation matrix. As in Gaskins et al. (2014), we consider two choices
of Xi: time-varying which specifies a different μit for each time within each treatment
group (q = 2k) and time-constant which gives the same μit across all times within
treatment group (q = 2). With this set-up, we consider a flat prior on β and the priors
on R are the selection and shrinkage priors in Gaskins et al. (2014) for PACs and the
angle (Θ), respectively.
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6.1 Posterior computation

For posterior computation, we run an MCMC chain for 12,000 iterations with a burn-in
of 3000, retaining every tenth observation. The three sets of parameters appearing in
the posterior are regression parameters, latent variables and correlation matrix.

1. Sampling β. The conditional posterior of β given latent variables y∗i , i = 1, 2, . . . , n
and R is multivariate normal.

2. Sampling R. For angle based priors, sampling scheme in Section 4 is used and R
code provided in Gaskins et al. (2014) has been used for PAC based priors on the
residuals y∗i − μi, for i = 1, 2, · · · , n.

3. Sampling y∗i s. For sampling latent variables, we use Proposition 1 of Liu et al.
(2009) as in Gaskins et al. (2014).

For comparison we use deviance information criterion (DIC) which does not require
counting the number of model parameters, making it an effective criterion for model
selection when shrinkage or sparsity is concerned. DIC is defined as (Spiegelhalter et al.,
2002) Dev + 2pD where,

Dev = −2

n∑
i=1

l(β̂, R̂|yi), (6.1)

pD = E{−2l(β,R|Y )} −Dev (6.2)

with l denoting log-likelihood function and expectation is taken with respect to the
posterior distribution.

For the CTQ data, the posterior estimate β̂ is the posterior mean, as for the posterior
estimate of R̂ we use the posterior median for angle-based priors and the one used by
(Gaskins et al., 2014, pp.12) for PAC-based priors. The numerical results for various
priors on the correlation matrix are reported in Table 2, where it can be seen that the
DIC is smaller for the time constant mean structure in coherence with the findings of
Gaskins et al. (2014). One can note that for time varying mean structure, the models
are heavily penalized by pD which deals with 14 extra parameters compared to time
constant models. Our angle-based selection prior appears have a tendency of lower DIC
value and hence preferred.

Our selection prior reports posterior mean of Θ to be

Θ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.81(0.69) 0.63 0.49 0.48 0.45 0.27 0.02
0.89 0.82(0.72) 0.66 0.64 0.61 0.29 0.09
1.05 0.85 0.86(0.85) 0.79 0.72 0.41 0.09
1.06 1.02 0.92 0.86(0.76) 0.72 0.62 0.19
1.10 1.09 1.05 1.02 1.01(0.81) 0.78 0.25
1.30 1.18 1.12 1.10 1.09 1.05(0.54) 0.20
1.55 1.54 1.48 1.30 1.25 1.24 1.21(0.05)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and R̂ is presented in upper triangular matrix.
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Mean Structure Prior Dev pD DIC
Time Constant pπ;SH 1027 14 1055
Time Constant pπ;SP 1045 13 1070
Time Constant pθ;SH 1023 13 1049
Time Constant pθ;SP 1026 11 1047
Time Varying pπ;SH 1017 25 1069
Time Varying pπ;SP 1037 29 1075
Time Varying pθ;SH 1024 23 1069
Time Varying pθ;SP 1019 22 1062

Table 2: DICs for various correlation priors for CTQ data.

7 Discussion

We have dealt with some computational challenges in Bayesian estimation of correla-
tion matrices by using its Cholesky decomposition and the ensuing angles as the new
parameters which vary freely in [0, π). This reparameterization deals effectively with the
positive-definiteness constraint on a correlation matrix and results in faster computation
of the posteriors. At a first encounter, angles may not seem the most natural parameters
in statistics. However, to our knowledge we have shown for the first time that the angles
in the present context are simply the inverse cosine of the familiar semi-partial correla-
tions, see Huber (1981), Eaves and Chang (1992), Cooke et al. (2011). Thus, the angles
are statistically meaningful and the new connection opens up the possibility of using
the wealth of distributions from directional statistics as potential priors for Bayesian
analysis of correlation matrices. Through simulations and data analysis we have shown
that the performance of our shrinkage and selection priors on the angles is better or
comparable to those based on the PACs in Gaskins et al. (2014).

Supplementary Material

Supplementary Material: Bayesian Estimation of Correlation Matrices of Longitudinal
Data (DOI: 10.1214/20-BA1237SUPP; .pdf).
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