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A Theoretical Investigation of How Evidence
Flows in Bayesian Network Meta-Analysis of

Disconnected Networks

Audrey Béliveau∗ and Paul Gustafson†

Abstract. Network meta-analysis has gained popularity in the last decade as a
method for comparing the efficacy/safety of multiple medical interventions by syn-
thesizing data across clinical studies. Bayesian methods for network meta-analysis
have undergone further development than frequentist methods and are more con-
venient to use. Most of the current literature pertains to connected networks but
disconnected networks commonly arise. There is not at the moment a trusted
gold-standard approach to analyze disconnected networks. Intuitively, the stan-
dard method for analyzing connected networks, which is contrast-based, does not
seem useful in disconnected networks, but this has not been explained rigorously.
Our work is the first to provide the theoretical groundwork for understanding how
evidence flows within Bayesian contrast-based models of disconnected networks.
We achieve this by quantifying the ratio of posterior to prior variance of dis-
connected treatment contrasts. We show that when using an uninformative prior
on the treatment contrasts, the standard approach is not useful to analyze dis-
connected networks (even when the number of studies, treatments or patients is
large); however, it can be useful under moderately informative priors, which can be
informed from additional observational data when available. A simulation study
provides a demonstration of the theoretical results and explores non-asymptotic
cases. An illustration on a real-world dataset is provided.

Keywords: Bayesian inference, Bayesian network meta-analysis, contrast-based
approach, disconnected network, indirect evidence, mixed treatment comparison,
network meta-analysis.

1 Introduction

Network meta-analysis (NMA) has become increasingly popular in the past decade
for comparing the efficacy and/or safety of several medical interventions (Zarin et al.,
2017). When developing a new treatment or intervention for a health condition, its
efficacy/safety shall be compared with all the available evidence obtained through a
systematic literature review of published studies. While meta-analysis only allows for
the comparison of two treatments, network meta-analysis allows for the comparison
of all relevant treatments in a single analysis in order to support policies and costs
pertaining to newly developed treatments as well as guidelines for health practitioners
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Figure 1: Schematic representation of a connected network of evidence. The size of
the nodes and edges are proportional to the number of studies examining a specific
treatment and the number of comparisons between two given treatments, respectively.
Treatments are abbreviated as SK (streptokinase), Ret (reteplase), AtPA (accelerated
alteplase), ASPAC (anistreplase), UK (urokinase), tPA (alteplase), Ten (tenecteplase)
and SKtPA (streptokinase+alteplase); see Boland et al. (2003).

(Efthimiou et al., 2016). The use of a Bayesian framework is popular among practi-
tioners for implementing network meta-analysis. Bayesian NMA methods have been
developed to a further degree and are easier to implement than their frequentist coun-
terparts (Hoaglin et al., 2011; Dias et al., 2013). They also have the advantage of lending
themselves nicely to health-economic decision modeling (Dias et al., 2018).

For any outcome of interest, one can represent the NMA evidence base by drawing
a network of nodes and edges, see Figure 1. The nodes represent the treatments while
an edge between two nodes indicates that the treatments were compared in at least
one study. For two given treatments, if there is a path in the network of evidence that
connects the two treatments, we say that the treatments are connected; otherwise we say
they are disconnected. Likewise if all pairs of treatments in the network are connected,
we say that the network is connected (Figure 1); otherwise, we say that the network is
disconnected (Figure 2). In other words, in a disconnected network there are at least
two treatments, e.g. SK and AtPA, that have neither been compared directly within
a study (SK vs AtPA) nor are related through comparator treatments over a series of
studies (e.g. SK vs Ret and Ret vs AtPA).

Standard NMA methods were developed for connected networks (Lu and Ades,
2004) but in recent years there has been a noticeable interest in disconnected networks
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Figure 2: Schematic representation of a disconnected network of evidence. The size of
the nodes and edges are proportional to the number of studies examining a specific
treatment and the number of comparisons between two given treatments, respectively.

(Stevens et al., 2018; Thom et al., 2019; Rucker et al., 2019; Schmitz et al., 2018).
In practice, many situations can lead to disconnected networks. An example is when,
for a given set of studies, a primary outcome of interest (e.g. remission) produces a
connected network of evidence but other secondary outcomes of interest (e.g. side effects)
were not measured or reported in all studies. This results in disconnected networks
for those secondary outcomes. Another example is when outcomes are measured on
different scales, patient populations or at different follow-up times or when different
dosages were used across studies. This likely results in a disconnected network unless
a connected network is formed by pooling scales, follow-up times and/or drug dosages
which may not be reasonable. Goring et al. (2016) provide other examples of contexts
where disconnected networks tend to occur such as when there is no accepted standard
of care, when the use of the standard of care is debated, when there are several accepted
standards of care or when there has been a major change in standard of care.

The data for an NMA is usually obtained at the aggregate level rather than the indi-
vidual patient level, because the latter is typically confidential. In connected networks,
this aggregate data is commonly analyzed using a contrast-based model following Lu
and Ades (2004); Dias et al. (2013). The overwhelmingly common choice is to use inde-
pendent priors on the trial-specific baseline treatment effects – not treating the latter
as exchangeable is the traditionally accepted practice in meta-analysis (Higgins et al.,
2019; Dias and Ades, 2016). However one may use common parameters across stud-
ies to model the study-specific relative differences between treatments. Thus in essence
we are deliberately choosing to allow borrowing strength across studies about relative
difference between treatments and deliberately choosing to not borrow strength across
studies about the absolute risk of the outcome. This has been seen to work very sensibly
in connected networks, enabling the desired indirect comparisons of pairs of treatment
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that have never been implemented in the same trial. However, practitioners have had to
explore alternative methods for the analysis of disconnected networks as the standard
approach would not yield useful inference for disconnected contrasts. An illustration of
the failure of the standard model can be found in a small simulation study by Goring
et al. (2016) where the posterior distribution on contrasts of disconnected treatments
was not updated significantly from the prior distribution.

Alternative statistical methods have been proposed for the analysis of disconnected
networks but they rely on strong assumptions. Stevens et al. (2018) provide a sys-
tematic review of methods which includes: use of external controls, treatment effect
parameter, random baseline models, adjusted treatment response (including external
evidence-based adjustment, iterative proportional fitting, propensity score matching
methods, unanchored matching adjusted indirect comparisons (MAIC), simulated treat-
ment comparisons (STC)), model-based meta-analysis, multivariate meta-analysis and
class effect models. Among those methods, MAIC and STC have been used in health
technology assessment (HTA) submissions but have been consistently criticized (Poo-
ley et al., 2017). These methods require individual patient-level data for one of the
studies and require that all the effects modifiers and prognostics factors are known and
available (Signorovitch et al., 2010, 2012; Caro and Ishak, 2010; Ishak et al. , 2015;
Phillippo et al., 2018, 2016). The later assumption is, as reported by the National
Institute for Health and Care Excellence (NICE), widely accepted as “very hard to
meet” and “unanchored comparisons based on disconnected networks and/or involving
single-arm studies are therefore problematic” (Phillippo et al., 2016). As pointed out
by Phillippo et al. (2018), “further research is needed to assess all available methods
alongside MAIC and STC; in particular, to examine their properties and robustness to
breakdown of assumptions, with varying levels of data availability, through thorough
simulation studies.” Overall, the analysis of disconnected networks is still an area of
controversy and further theoretical and empirical investigations are needed to better
understand the properties of the statistical methods proposed.

With this paper, we introduce for the first time a theoretical framework to under-
stand how evidence flows in Bayesian models of disconnected networks with respect to
estimating the relative effect of disconnected treatments. We achieve this by considering
the standard contrast-based NMA model (Dias et al., 2013) and evaluating theoretically,
in disconnected networks, the ratio of posterior to prior variance between all pairs of
disconnected treatments. If treatments A and B are not connected, would we literally ex-
pect no evidence about the relative effect of treatment B compared to A, in the sense that
its posterior variance is the same as its prior variance? Or might there be some reduction
in posterior variance, and if so how much? Moreover, might such a reduction depend
on the number of studies, number of treatments, sample sizes and/or choice of priors?

In Section 2 we describe the Bayesian contrast-based model used through this pa-
per. In Section 3, we describe our approach and methodology for the theoretical work.
Through theoretical developments in Section 4, we show that the ratio of posterior to
prior variance for contrasts of disconnected treatments is bounded below by 0.5 when
using a standard uninformative prior (provided some asymptotic conditions are met).
The standard contrast-based NMA model is therefore not useful to analyze disconnected
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networks (even when the number of studies, treatments or patients is large) when using
uninformative priors. A lower bound is also obtained for an alternate form of uninfor-
mative prior and similar conclusions are reached. In Section 5, we conduct a simulation
study which gives an empirical confirmation of the theoretical results. In the simulation
study, we also explore the use of moderately informative priors on the treatment con-
trasts and find that, contrary to uninformative priors, they allow evidence to flow in the
network to estimate disconnected contrasts. We also explore the case of small sample
sizes (15 per arm) and find that our theoretical lower bounds are quite robust. In Sec-
tion 6 we illustrate our results on a real-world dataset and find that our theoretical lower
bounds on the posterior to prior variance ratio are quite robust to the small sample sizes
and small number of events. Finally, we conclude with a discussion in Section 7.

2 Setup
Suppose we have s studies (or trials) labeled 1, . . . , s and t treatments labeled 1, . . . , t.
Assume without loss of generality that treatment 1 is identified as the baseline treatment
in each study (which could be missing in some studies). The purpose of the baseline
treatment will be clarified when formulating the model.

In any trial i ∈ {1, . . . , s}, suppose we have ai ≥ 2 treatment arms (groups), labeled
1, . . . , ai. Note that we exclude the possibility of single-arm studies as their incorpora-
tion in NMA is not straightforward and often not recommended due to the lack of a
comparator and randomization. Suppose without loss of generality that arms are labeled
after being sorted in ascending order by treatment label. Let Ai be the ai×(t−1) design
matrix for each trial i, defined such that Ai,kj = 1 if the k-th arm involves treatment
j + 1, otherwise Ai,kj = 0. Thus, each row-sum is either zero or one, depending on
whether the arm involves treatment 1 or not.

The binomial data is given by nik and Rik and is available for arms k ∈ {1, . . . , ai}
of studies i ∈ {1, . . . , s}. The former, nik, denotes the number of individuals in the
k-th arm of study i. The latter, Rik, is a binomial outcome, i.e. a count of the number
of individuals that responded favorably (or unfavorably) to the treatment in the k-th
arm of study i. Note that although we focus on a binomial outcome through the paper,
theory could be developed analogously for other types of outcomes, such as rate, count
or continuous outcomes. This would simply involve adapting the normal approximation
and delta-method presented at the beginning of Section 4 to accommodate different
distributions and link functions.

2.1 Bayesian contrast-based model

The generally accepted approach for the network meta-analysis of connected networks
is the contrast-based (CB) approach (Lu and Ades, 2004; Dias et al., 2013). Nowadays,
it is overwhelmingly implemented in a Bayesian way, which we follow in this paper.

When Rik is a binomial outcome, the natural way to model such data is to start
with a binomial distribution, that is:

Rik|φik
independent∼ Binomial(nik, φik), (2.1)
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where the parameter φi = (φi1, . . . , φiai)
� is further modeled using a logit link:

logit(φi) = 1aiαi +Aiδi, (2.2)

where 1ai is a vector of ones of length ai, αi is the absolute effect (log-odds) of treat-
ment 1 in trial i and δi = (δi2, . . . , δit)

�, where δij is the effect of treatment j relative
to treatment 1 in trial i (log-odds ratio). Note that αi is defined even for studies that do
not include treatment 1 (the baseline treatment). Also, δij is defined even if treatment
j is not included in study i and the multiplication by Ai in (2.2) selects the appropri-
ate treatments. The use of the within-study relative treatment effects δi is key to the
contrast-based approach. It is assumed that the within-study relative treatment effect
of any two treatments j and j′ �= j can be expressed through the transitivity relation
δi,jj′ ≡ δij′ − δij (Dias et al., 2013).

Strength is borrowed across studies when modeling the study-specific relative effects
between treatments:

δi|d,Σ ∼ N(d,Σ), (2.3)

with mean relative treatment effects d = (d12, . . . , d1t)
�. This use of a common d

across studies enables the comparisons of treatments that have never been implemented
in the same trial by allowing evidence to flow in the network. For Σ we adopt the usual
compound symmetry structure described in Dias et al. (2013), with variances τ2 and
covariances 0.5τ2, i.e. Σ = (τ2/2)(Jt−1 + It−1) with It−1, the (t − 1) × (t − 1) identity
matrix, and Jt−1, the (t−1)×(t−1) matrix of ones. The compound symmetry structure
ensures that study-specific contrasts have the same variance for any pair of treatments.
This way, the conditional variance of δi,jj′ = δij′−δij , for any j′ �= j and the conditional
variance of δij are the same, that is τ2. Independent priors are used on τ2 and d.

The aim of any network meta-analysis is typically to compare treatments. The
posterior distribution on the parameter d permits inference on contrasts with treat-
ment 1 only, the baseline treatment. To compare other pairs of treatments (j, j′) where
j �= j′ �= 1, we compute the posterior distribution of djj′ ≡ d1j′ − d1j , which follows
from the transitivity of the δij ’s.

Strength is not borrowed across trials to inform αi, the absolute log-odds of the
outcome in study i for the baseline treatment. From a frequentist perspective, this is
equivalent to saying the αi’s are fixed effects. As such, independent priors are used on

the αi’s: αi|μα, σ
2
α

iid∼ N(μα, σ
2
α) for set values of μα and σ2

α. For example, to obtain an
uninformative prior, one can take μα = 0 and a large value for σ2

α.

3 Methodology

Suppose we observe data as described in Section 2 that forms a disconnected network
where treatments 1, . . . , t∗ are disconnected from treatments t∗+1, . . . , t, with min(t∗, t−
t∗) ≥ 2. We say that treatments t∗ + 1, . . . , t form the auxiliary network, which is
disconnected from the main network composed of treatments 1, . . . , t∗. Let p = t − t∗

be the number of treatments in the auxiliary network.
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Suppose the observed data for this disconnected network are analyzed using the
contrast-based model presented in Section 2.1. We want to assess theoretically whether
in disconnected networks the posterior distribution of djj′ for disconnected treatments
j and j′ (i.e. j ∈ {1, . . . , t∗} and j′ ∈ {t∗ + 1, . . . , t}) can be updated significantly from
the prior distribution. To do so, we consider an asymptotic framework (large enough
sample size in each study) and derive theoretical results that can apply to any number
of studies, treatments or patients. In cases where we find that the posterior variance of
djj′ does not differ significantly from the prior variance, for any disconnected treatments
j and j′, we would have demonstrated theoretically that the Bayesian contrast-based
approach lacks utility in those cases.

We consider two possible priors on d, which we denote respectively by π1 and π2.
Both have the multivariate normal form d ∼ N(0,Σd). For π1, we use a variance-
covariance matrix proportional to the identity, that is: Σd = σ2

dIt−1, where σ2
d takes

a numerical value. This choice of prior is recommended by the National Institute for
Health and Care Excellence (Dias et al., 2013). With this prior, the prior variance of
contrasts that involve the baseline treatment is σ2

d while it is 2σ2
d for other contrasts,

which might not be desirable. Thus for π2, we use Σd = σ2
d(It−1+Jt−1)/2, which has the

desirable property of equal prior variance (σ2
d) on each contrast. Note that π2 imposes

a correlation of 0.5 between elements of d whereas they are independent using π1.

We do not impose a structure on the prior for τ2 as this is not necessary for the
theoretical developments. For the prior on the αi’s, we do not prescribe a value for μα

but ensure that the prior is uninformative (which is the common practice) by taking
the limit σ2

α → ∞.

A reader not interested in the theoretical derivations may skip to Table 1 for a
summary of the theoretical results.

4 Theoretical developments on the posterior to prior
variance ratio of disconnected contrasts

In order to gain theoretical insight, we start by approximating the responses with a
normal distribution. Assuming the nik’s are large enough, a normal approximation on
(2.1) is

Rik

nik
| φik ≈ N [φik, φik(1− φik)/nik]. (4.1)

Furthermore, setting Yik = logit(Rik/nik) for all i’s and k’s and applying the delta-
method, we get that

Yi | φi ∼ N [logit(φi), diag(vi)], (4.2)

where vik = {nikφik(1−φik)}−1, and logit(φi) is modeled as in Section 2 as logit(φi) =

1aiαi + Aiδi with αi
iid∼ N(μα, σ

2
α) and δi | d, τ2 iid∼ N{d, (τ2/2)(It−1 + Jt−1)}. We

take the vik’s as known to make mathematical derivations possible, following standard
meta-analytic derivations, see Borenstein et al. (2009) chapters 5 and 14. The assump-
tions necessary for the normal approximation (4.1) to hold ensure that the νik’s can
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be approximated precisely from the data and thus they can be treated as fixed. Fixed
values for the variance of the normal distribution also arise naturally when the outcome
of interest is continuous (as opposed to binomial). Means and standard error estimates
are extracted from a systematic literature review and the standard error estimates are
then treated as fixed quantities in the variance of a normal model.

Marginally, f(Yi | d, τ2) is normally distributed and the mean and variance pa-
rameters can be obtained using the laws of total expectation and variance as E{E(Yi |
δi, αi) | d, τ2} and E{var(Yi | δi, αi) | d, τ2}+var{E(Yi | δi, αi) | d, τ2}. This givesYi |
d, τ2 ∼ N (1aiμα +Aid, Gi), where Gi = diag(vi) + σ2

αJai + (τ2/2)Ai(It−1 + Jt−1)A
T
i .

Since we are interested in the posterior distribution of d we now use the Bayes
theorem π(d | Y, τ2) ∝ f(Y | d, τ2)π(d). Assuming a multivariate normal prior on d,
of the form d ∼ N(0,Σd) we get

var(d | Y, τ2) =
(
Σ−1

d +Δσα

)−1
, (4.3)

where Δσα =
∑s

i=1 A
�
i G

−1
i Ai. We develop Δσα using the definition of Ai and take the

limit of interest σ2
α → ∞. The details of those calculations and a general expression for

Δ = limσ2
α→∞ Δσα are in Online Appendix A (Béliveau and Gustafson, 2020a). It is

important to point out that Δ is symmetric and block-diagonal of the form

Δ =

(
ΔA 0
0 ΔB

)
,

where ΔA is a (t∗ − 1)× (t∗ − 1) matrix and ΔB is a (t− t∗)× (t− t∗) singular matrix.
Both matrices ΔA and ΔB are functions of τ2, the vi’s and the design matrices Ai.

Now we exploit the block-diagonal form of Δ. Let V ∗ ≡ var(d | Y, τ2) and P ≡ Σ−1
d ,

then (
V ∗
11 V ∗

12

V ∗
21 V ∗

22

)
=

(
P11 +ΔA P12

P21 P22 +ΔB

)−1

. (4.4)

Hence, V ∗
22 =

{
P22 +ΔB − P21(P11 +ΔA)

−1P12

}−1
. We are interested in the value

of V ∗
22 because it corresponds to the posterior distribution of disconnected contrasts

between treatments in the auxiliary network and the baseline treatment, conditional on
τ2 (we will eliminate the conditioning on τ2 later).

Theorem 4.1. When the prior variance on d is π1, we have

V ∗
22 = (P22 +ΔB)

−1
, (4.5)

where P22 = It−t∗/σ
2
d.

Proof. This is obtained simply by noting that when the prior variance on d is π1, we
have P21 = P12 = 0.

Theorem 4.2. When the prior variance on d is π2, and assuming that σ2
d is large

(relative to the elements of ΔA, which do not depend on σ2
d) we have

V ∗
22 ≈ (P22 +ΔB)

−1
, (4.6)

where P22 = 2(It−t∗ − Jt−t∗/t)/σ
2
d.
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Proof. When the prior variance on d is π2, we have P12 = P�
21 = −2J(t∗−1)×(t−t∗)/(tσ

2
d).

Because we do not have P21 = P12 = 0, things do not develop as nicely. However,
assuming that σ2

d is large (relative to the elements of ΔA, which do not depend on σ2
d)

we have that P21(P11 + ΔA)
−1P12 ≈ P21Δ

−1
A P12 is negligible relative to P22. Thus,

V ∗
22 ≈ (P22 +ΔB)

−1
, where P22 = 2(It−t∗ − Jt−t∗/t)/σ

2
d.

The diagonal elements of V ∗
22 are of particular interest because they are the condi-

tional posterior variances of disconnected contrasts between treatments in the auxiliary
network and the baseline treatment, i.e. the var(d1j′ | Y, τ2)’s. Theorems 4.3 and 4.4
develop the value of V ∗

22 further and consider how it behaves in the non informative
prior limit of σ2

d → ∞ (and the point mass prior limit of σ2
d).

Theorem 4.3. Under prior π1(d) we have limσ2
d→∞ var(d1j′ | Y, τ2)/σ2

d = 1/p and

limσ2
d→0 var(d1j′ | Y, τ2)/σ2

d = 1 for any treatment j′ �= 1 in the auxiliary network.

The proof of Theorem 4.3 is given in Online Appendix B.

Theorem 4.4. Under prior π2(d) we have limσ2
d→∞ var(d1j′ | Y, τ2)/σ2

d = 0.5p−1/(1−
pt−1) for any treatment j′ �= 1 in the auxiliary network.

The proof of Theorem 4.4 is given in Online Appendix C.

The results obtained in Theorems 4.3 and 4.4 concern uniquely disconnected con-
trasts that involve treatment 1 but we are interested in all treatment contrasts.

Theorem 4.5. For any treatments j from the main network and j′ from the auxiliary
network, var(djj′ | Y, τ2) ≥ var(d1j′ | Y, τ2) under prior π1(d). The same result holds
approximately under prior π2(d) when σ2

d is large.

Proof. First, we note that var(djj′ | Y, τ2) = var(d1j | Y, τ2) + var(d1j′ | Y, τ2) −
2Cov(d1j , d1j′ | Y, τ2) ≥ var(d1j′ | Y, τ2) − 2Cov(d1j , d1j′ | Y, τ2). In the case of prior
π1(d), we have P12 = P21 = 0, thus V ∗

12 = V ∗
21 = 0. As a result, Cov(d1j , d1j′ | Y, τ2) = 0

and we can conclude var(djj′ | Y, τ2) ≥ var(d1j′ | Y, τ2). In the case of prior π2(d), we
have when σ2

d is large, P12 = P21 ≈ 0 thus var(djj′ | Y, τ2) ≥ var(d1j′ | Y, τ2) also holds
approximately.

Application of Fatou’s lemma reveals that Theorems 4.3 and 4.4 limits are lower
bounds when replacing the conditional posterior variances var(. | Y, τ2) for their un-
conditional counterparts var(. | Y). Thus, for any treatments j and j′ in the main and
auxiliary network, respectively, we have under prior π1(d),

lim
σ2
d→∞

var(djj′ | Y)/σ2
d ≥ p−1, (4.7)

and
lim
σ2
d→0

var(djj′ | Y)/σ2
d ≥ 1; (4.8)

and under prior π2(d),

lim
σ2
d→∞

var(djj′ | Y)/σ2
d ≥ 0.5p−1/(1− pt−1). (4.9)
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Taking into account the fact that under prior π1 when j �= 1 the prior variance
of djj′ is 2σ2

d rather than σ2
d (see Section 3), we construct Table 1 to summarize our

theoretical results on the ratio of posterior to prior variance for disconnected treatment
contrasts. Row 1 is based on the results of 4.3 and 4.4. Row 3 is based on the results of
Theorem 4.5. Finally, rows 2 and 4 are based on (4.7)–(4.9).

σ2
d → ∞ σ2

d → 0
Row id Variance ratio π1(d) π2(d) π1(d) π2(d)

1
var(d1j′ |Y,τ2)

var(d1j′ )
p−1 0.5p−1/(1− pt−1) 1 N/A

2
var(d1j′ |Y)

var(d1j′ )
≥ p−1 ≥ 0.5p−1/(1− pt−1) ≥ 1 N/A

3
var(djj′ |Y,τ2)

var(djj′ )
≥ 0.5p−1 ≥ 0.5p−1/(1− pt−1) ≥ 0.5 N/A

4
var(djj′ |Y)

var(djj′ )
≥ 0.5p−1 ≥ 0.5p−1/(1− pt−1) ≥ 0.5 N/A

Table 1: Value or lower bound of the posterior-to-prior variance ratio specified on the left
under the conditions specified at the top. Treatment j represents any treatment from
the main network that is not treatment 1, and j′ is any treatment from the auxiliary
network (j and j′ are disconnected). Note: t is the number of treatments in the network
and p is the number of treatments in the auxiliary network.

4.1 Discussion of the theoretical results

Firstly from Table 1 we see that when using the contrast-based approach to analyze
data from a disconnected network, with either prior π1 or π2 and an overly large value of
σ2
d, the data do not inform the posterior distribution of d significantly for disconnected

contrasts. Because the prior variance is very large, even if the posterior distribution was
reduced from the prior variance by a factor of 2, 10 or 100 the posterior distribution
would remain very wide and negligibly informed by the data. This holds true even
when increasing the number of studies or the number of patients because the results
only depend on p and t. However in practice, depending on the choice of a “large” σ2

d,
a factor of 10 or 100 could be moderately useful. This will be explored with a simulation
study in Section 5.

Secondly from Table 1 we see that under an informative point mass prior (σ2
d → 0)

of the form π1, the data could potentially inform the posterior variance significantly for
disconnected contrasts but only for those not involving treatment 1. In those case, the
ratio of posterior to prior variance could be as low as 0.5. This is an interesting result
which may be an artifact of using a prior where contrasts not involving treatment 1
were given twice the variance of contrasts involving treatment 1. This will be explored
in the simulation study of Section 5.

Thirdly, in the special case of Online Appendix B.1 (two treatments in the auxiliary
subnetwork, and prior π1) we were able to show that the posterior variance is a weighted
average of two quantities and thus bounded above and below. In that case, we can say
with certitude that 0.5 ≤ var(d1j′ | Y)/σ2

d ≤ 1, for any value of σ2
d. For all other cases,

our asymptotic results do not allow us to conclude on the size of var(d1j′ | Y) for a
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moderately informative prior on d but this will be explored in the simulation study of
Section 5.

5 Simulation study

We conducted a small simulation study to attend to the following five objectives:

O1: Give an empirical demonstration of (4.3) and (A.1) (Online Appendix).

O2: Give an empirical demonstration of the theoretical results in rows 1 and 3 of
Table 1.

O3: Give an empirical demonstration of the theoretical results in rows 2 and 4 of
Table 1.

O4: Explore what happens when the sample size is large but moderately informative
priors are used (we do not have general theoretical results for this).

O5: Explore a scenario with small sample sizes (we do not have theoretical results for
this).

We considered a simple design with 5 treatments, labeled 1 to 5, and 3 studies. In
the first study patients were randomized to treatments 1 and 2; in the second study
patients were randomized to treatments 2 and 3; and in the third study patients were
randomized to treatments 4 and 5. Hence, treatments 1, 2 and 3 form the main network,
with treatment 1 as the baseline treatment; and treatments 4 and 5 form the auxiliary
network. Schematically, this network is presented in Figure 3. We considered two sce-
narios with this design: 1000 patients per arm and 15 patients per arm. The former will
be used to assess objectives O1 to O4 (large-sample sizes were assumed to derive the
theory). The second scenario addresses objective O5.

We generated one dataset per scenario using the design (we do not generate many
datasets per scenario as our goal in this work is not to assess the average performance
of a statistical method over a large number of datasets). To generate the datasets, we
generated the d1j ’s independently usingN(0, 0.152) distributions and then generated the

Figure 3: Schematic representation of the network used in the simulation study.
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δij ’s using (2.3) with τ2 = 0.01. We generated the αi’s independently using N(0.5, 0.52)
distributions. We then generated binomial data, with 1000 (scenario 1) or 15 (scenario 2)
patients per arms, using (2.1) and (2.2).

For the analysis of both datasets, we considered both priors π1(d) and π2(d) and
considered a range of values for σ2

d: 0.001 (very informative – nearly a point mass prior),
2 (moderately informative), 5 (moderately informative) and 100 (uninformative). Note
that the magnitude of σ2

d shall be interpreted on the logit scale.

To address objectives O1 to O5, we analyzed the datasets using three methods,
which we call M1, M2 and M3 for convenience. Note that in practice only method M3
can be used. Methods M1 and M2 can be implemented in the context of this simulation
study because all parameters are known. For each method, we compute the ratio of
posterior to prior variance on the treatment contrasts.

Method M1 consists of using formula (4.3) to calculate var(djj′ | Y, τ2)/σ2
d for

all connected and disconnected contrasts while substituting Δσα by Δ from (A.1)
(Online Appendix) and setting τ2 at its true value, 0.01.

Method M2 is an implementation of the contrast-based model described in Section 2
using the JAGS software (v. 4.3.0), except that we pretend that τ2 = 0.01 is known.
For the αi’s we used independent N(0, 1002) priors. For method M2, we used a sample
of 50,000 iterations thinned from 3 chains ran until convergence, which was assessed
with traceplots. Initial values were generated randomly, and we used 10,000 adapta-
tions and 100,000 burn-in iterations. The run times to convergence ranged from 0.4
mins with σ2

d = 0.001 to 24 mins with σ2
d = 100 for 3 chains in parallel on an Intel

Core i7-8650U processor. Traceplots and R code are provided in Online Appendix and
R Code Supplement (Béliveau and Gustafson, 2020b), respectively.

Method M3 is an implementation of the contrast-based model described in Section 2
using the JAGS software. Contrary to method M2, τ2 is not fixed with method M3 and
a Unif(0, 20) prior is used on τ2. For the αi’s we use independent N(0, 1002) priors as in
method M2. We used the same MCMC settings as method M2 and run times were sim-
ilar. Traceplots and R code are provided in Online Appendix and R Code Supplement,
respectively.

To address objective O1, we compare the results between methods M1 and M2 in
the n = 1000 scenario; if our theory is correct, methods M2 and M1 should give very
similar values of var(djj′ | Y, τ2). Objective O2 is addressed by comparing values of
var(djj′ | Y, τ2) from disconnected contrasts for method M2 in the n = 1000 scenario
with rows 1 and 3 from Table 1. Objective O3 is addressed by comparing values of
var(djj′ | Y) from disconnected contrasts for method M3 in the n = 1000 scenario with
rows 2 and 4 from Table 1. Objective O4 is addressed by looking at the results from
method M3 when σ2

d = 2 or 5 in the n = 1000 scenario. Objective O5 is addressed by
looking at the results from all methods in the n = 15 scenario.

The results for scenarios 1 (n = 1000) and 2 (n = 15) are presented in Figure 4 and
5 respectively.
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Figure 4: Results for the simulation study on scenario 1, using 1000 patients per arm.
This graph shows the posterior-to-prior variance ratio for all (10) treatment contrasts
obtained by methods M1, M2 and M3, with priors π1 and π2 and four different values
of σ2

d. Note that some points and lines appear stacked on top of each other. The dotted
horizontal lines indicate the value 1 corresponding to no difference between the posterior
and the prior variance.

5.1 Objective O1

In Figure 4 we see that when σ2
d is equal to 0.001, 2, 5 or 100 the results from methods

M1 and M2 are in line with each other, which supports the correctness of (4.3) and

(A.1) (Online Appendix). The largest discrepancy between M1 and M2 is observed
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when σ2
d = 100 and this could be explained by the convergence not being as good for

this scenario despite the longest run time.

5.2 Objective O2

For this objective, we look at the results from disconnected contrasts for method M2 in
Figure 4.

When σ2
d is equal to 100 (uninformative prior on d), all disconnected contrasts (red)

that involve the baseline treatment (triangle) have a ratio of posterior to prior variance
close to 0.5 for prior π1 and 0.42 for prior π2. Moreover, all disconnected contrasts (red)
that do not involve the baseline treatment (circle) have a ratio of posterior to prior
variance close to 0.25 for prior π1 and 0.42 for prior π2. These numbers are in line with
the theoretical results obtained when σ2

d → ∞ summarized in rows 1 and 3 of Table 1.
Note that here p−1 = 0.5 and 0.5p−1/(1− pt−1) = 0.42.

When σ2
d = 0.001 (very informative – close to point mass – prior on d) and prior π1

is used, the results for method M2 are close to 1, although slightly lower. This shows
support towards our theoretical results obtained when σ2

d → 0 summarized in rows 1
and 3 of Table 1. The fact that the lower bound is not quite met could be explained by
the fact that the limit σ2

d → 0 is not attained.

5.3 Objective O3

For this objective, we look at the results from disconnected contrasts for method M3 in
Figure 4.

When σ2
d = 100 (uninformative prior on d), all disconnected contrasts (red) that

involve the baseline treatment (triangle) have a ratio of posterior to prior variance close
to the theoretical lower bounds 0.5 for prior π1 and 0.42 for prior π2. Moreover, all
disconnected contrasts (red) that do not involve the baseline treatment (circle) have a
ratio of posterior to prior variance close to the theoretical lower bounds 0.25 for prior
π1 and 0.42 for prior π2. These numbers are in line with the theoretical results obtained
when σ2

d → ∞ summarized in rows 1 and 3 of Table 1.

When σ2
d = 0.001 (very informative – close to point mass – prior on d) and prior π1

is used, the ratio of posterior to prior variance with method M3 is very close to 1 for all
contrasts. This result is consistent with the theoretical results obtained when σ2

d → 0
summarized in rows 2 and 4 of Table 1.

5.4 Objective O4

For this objective, we look at the results from disconnected contrasts for method M3 in
Figure 4.

When σ2
d is equal 2 or 5 (moderately informative priors on d) all disconnected

contrasts (red) have a ratio of posterior to prior variance ≥ 0.5 for prior π1 and ≥ 0.42
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for prior π2. These numbers are in line with the theoretical lower bounds obtained when
σ2
d → ∞ summarized in rows 2 and 4 of Table 1, even though σ2

d = 2 or 5 is not large.

Disconnected contrasts show ratios of posterior to prior variance between 0.5 to
0.75 which are meaningful reductions in prior variances for prior variances of moderate
magnitudes. Some disconnected contrasts even show a ratio of posterior to prior variance
smaller than another connected contrast from the same network.

Under prior π1, we do not see a posterior to prior variance ratio twice as large in
contrasts that involve the baseline treatment compared to contrasts not involving the
baseline treatment (despite the prior variance on contrasts not involving the baseline
treatment being twice as large as the prior variance on contrasts involving the baseline
treatment). This can be explained by the fact that here the priors are informative: there
might not be enough information in the data to counteract the prior information. In
practice, it would be important that the choice of a moderately informative prior for
d reflects accurately the information available a priori on each of the contrasts. This
likely would not take the forms π1 nor π2.

5.5 Objective O5

The results from scenario 2 are presented in Figure 5. Despite the use of 15 patients
per arm the asymptotics hold very well as methods M1 and M2 give the same results.
The theoretical lower bounds from Table 1 for the ratio of posterior to prior variance of
disconnected contrasts are satisfied across all M3 analyses even with a sample size of 15.
When an uninformative prior is used (σ2

d = 100), the standard contrast-based approach
does not allow disconnected contrasts to be estimated with sufficient precision. However,
when moderately informative priors are used (σ2

d = 2 or 5), disconnected contrasts
show ratios of posterior to prior variance between 0.55 to 0.8 which are meaningful
reductions in prior variances when the for prior variances of moderate magnitudes.
Some disconnected contrasts even have a ratio of posterior to prior variance smaller
than another connected contrast from the same network.

6 Application to thrombolysis
We consider a dataset of 28 studies examining the effects of 8 thrombolytic drugs on
mortality within 30 to 35 days (binary outcome) among individuals who have had an
acute myocardial infarction (Boland et al., 2003). From the connected thrombolysis
dataset (Figure 1), we generate a disconnected dataset arbitrarily, with the treatments
SK, SKtPA, tPA and UK disconnected from the treatments ASPAC, AtPA, Ret and
Ten (Figure 2). We achieve this by dropping all the two arm studies that compared
any of the treatments that ought to be disconnected. We also drop one arm in each of
the three arm studies to achieve the desired disconnections. The disconnected dataset
contains 19 studies ranging from 59 to 20,163 patients. Event rates vary from 2–11%
across arms with 29% of arms having no more than 5 events.

We analyze the disconnected dataset with the BUGSnet R package for contrast-
based Bayesian NMA (Béliveau et al., 2019) using a binomial family distribution and
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Figure 5: Results for scenario 2, using 15 patients per arm. This graph shows the
posterior-to-prior variance ratio for all (10) treatment contrasts obtained by methods
M1, M2 and M3, with priors π1 and π2 and four different values of σ2

d. Note that some
points and lines appear stacked on top of each other. The dotted horizontal lines in-
dicate the value 1 corresponding to no difference between the posterior and the prior
variance.

a logit link. We conduct two analyses: one using prior π1(d) and one using π2(d), both
with σ2

d = 100. All other priors are set the same as in Section 5. We choose SK as the
reference treatment since it is the most prevalent treatment in the disconnected network
(tied with tPA). We use 5 million iterations thinned by a factor of 100, after a burnin
period of 100,000 iterations and an adaptation phase of 50,000 iterations (run time 20–25
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Figure 6: League table representing posterior median odds ratios along with 95% quan-
tile based credible intervals when comparing the treatment at the top with the treatment
on the left. Statistical significance is indicated with double asterisk. Red indicates that
the estimated odds of mortality is larger for the treatment at the top than the treatment
on the left while green indicates a lower estimate.

minutes for 3 chains not in parallel). We used such a large number of iterations because
there is a strong autocorrelation in the posterior variance for disconnected contrasts.
The R code is provided in Online Appendix.

Figure 6 presents a league table of all estimated pairwise comparisons after con-
ducting the analysis with prior π1. We find statistical evidence that treatments AtPA,
Ret and Ten are more efficacious than ASPAC at preventing mortality. The credible
intervals for disconnected contrasts are extremely large, as expected (see upper right
quadrant). The same conclusions are observed when conducting the analysis with prior
π2 (league table omitted).

For each contrast, we calculated the ratio of posterior to prior variance of d. When
prior π1 was used, the ratio varied between 0.0002 and 0.0013 for connected contrasts.
For disconnected contrasts involving the reference treatment SK, the ratio varied be-
tween 0.2563 and 0.2576 which is in line with the lower bound p−1 = 0.25 calculated
using our theoretical results (here we have 4 treatments in the auxiliary subnetwork
thus p = 4). For other disconnected contrasts, the ratio varied between 0.1282 and
0.1293 which is also in line with the lower bound 0.5p−1 = 0.125 calculated using our
theoretical results. When prior π2 was used, the ratio varied between 0.0002 and 0.0025
for connected contrasts. For disconnected contrasts, the ratio varied between 0.2571 and
0.2588 which is in line with the lower bound 0.5p−1/(1− pt−1) = 0.25 calculated using
our theoretical results (here we have 8 treatments thus t = 8).

An interesting point to note from these results is that the ratios of posterior to prior
variance hovered very closely to the theoretical lower bounds.
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7 Discussion

In this paper, we investigated theoretically and empirically how evidence flows in discon-

nected networks when using the contrast-based approach to network meta-analysis. We

derived lower bounds for the ratio of posterior to prior variance on disconnected treat-

ment contrasts in the limiting cases of uninformative and point mass priors (Table 1) and

illustrated their applicability with the thrombolysis dataset. The lower bounds demon-

strate that when using an uninformative prior on the treatment contrasts, the standard

NMA approach is not useful to analyze disconnected networks (even when the number

of studies, treatments or patients is large). Our theoretical developments assumed that

the sample size of the studies was large enough so that the normal approximation to the

binomial would hold. Very large or small probabilities of experiencing the outcome in

some arms could also affect the validity of the normal approximation. Our theoretical

findings thus may not apply in networks where evidence is sparse either because there

are only very small studies or because the event is rare or both of these issues. However,

the thrombolytic dataset where 29% of arms had no more than 5 events has proven

robust to the normality assumption. The simulation study has also proven robust when

using 15 patients per arm.

Our simulation study has shown that the standard NMA approach can be useful

when using moderately informative priors on d. Moderately informative priors can be

used for incorporating information from observational data or non randomized trials in

the evidence base for a network meta-analysis (Schmitz et al., 2013; Jenkins et al., 2014;

Zhang et al., 2019; Sutton and Abrams, 2001; Mak et al., 2009; Salpeter et al., 2009).

In our simulation study, we observed ratios of posterior to prior variance in the range

of 0.5 to 0.75 for disconnected contrasts with a sample size of 1000 and 0.55 to 0.8 for

a sample size of 15. It was even the case that the ratio of posterior to prior variance

for some disconnected contrasts was smaller than that of a connected contrast from the

same network, showing that moderately informative priors can really instigate a flow of

the evidence in a disconnected network.

The intuitive explanation as to why the contrast-based approach fails under an

uninformative prior on the treatment contrasts is that when using independent pri-

ors on the αi’s, strength is not borrowed across trials to inform the absolute odds of

the outcome in each study. One strategy to circumvent this, assuming similarity be-

tween trials, is to instead use a common prior on the trial-specific baseline treatment

effects (the αi’s) to borrow strength across trials (Goring et al., 2016; Béliveau et al.,

2017). This idea is controversial as the αi’s might not be exchangeable when studies

are conducted on different patient populations. However, a case study on two datasets

showed this strategy to be appropriate for those datasets suggesting that more real-

world datasets could benefit from this strategy (Béliveau et al., 2017). Clearly, more

theoretical and empirical investigations are required to assess and compare the perfor-

mance of competing methods for the analysis of disconnected networks. We hope that

the theoretical work presented herein and the empirical simulations will inspire such

developments.
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Supplementary Material

Online Appendix. A Theoretical Investigation on How Evidence Flows in Bayesian Net-
work Meta-Analysis of Disconnected Networks (DOI: 10.1214/20-BA1224SUPPA; .pdf).
The Online Appendix includes proofs, Maple code, traceplots from the simulation study
and R code for the data analysis.

R Code Supplement (DOI: 10.1214/20-BA1224SUPPB; .zip). The R code Supplement
available online includes the R code for the simulation study.
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