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Rank-Normalization, Folding, and Localization:
An Improved R̂ for Assessing Convergence of

MCMC (with Discussion)∗†

Aki Vehtari‡, Andrew Gelman§, Daniel Simpson¶,
Bob Carpenter‖, and Paul-Christian Bürkner∗∗

Abstract. Markov chain Monte Carlo is a key computational tool in Bayesian
statistics, but it can be challenging to monitor the convergence of an iterative
stochastic algorithm. In this paper we show that the convergence diagnostic R̂ of
Gelman and Rubin (1992) has serious flaws. Traditional R̂ will fail to correctly
diagnose convergence failures when the chain has a heavy tail or when the variance
varies across the chains. In this paper we propose an alternative rank-based diag-
nostic that fixes these problems. We also introduce a collection of quantile-based
local efficiency measures, along with a practical approach for computing Monte
Carlo error estimates for quantiles. We suggest that common trace plots should be
replaced with rank plots from multiple chains. Finally, we give recommendations
for how these methods should be used in practice.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are important in computational statistics,
especially in Bayesian applications where the goal is to represent posterior inference
using a sample of posterior draws. While MCMC, as well as more general iterative
simulation algorithms, can usually be proven to converge to the target distribution as
the number of draws approaches infinity, there are rarely strong guarantees about their
behavior after finite time. Indeed, decades of experience tell us that the finite sample
behavior of these algorithms can be almost arbitrarily bad.
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Figure 1: Examples of two challenges in assessing convergence of iterative simulations.
(a) In the left plot, either sequence alone looks stable, but the juxtaposition makes it
clear that they have not converged to a common distribution. (b) In the right plot,
the two sequences happen to cover a common distribution but neither sequence appears
stationary. These graphs demonstrate the need to use between-sequence and also within-
sequence information when assessing convergence. Adapted from Gelman et al. (2013).

1.1 Monitoring convergence using multiple chains

In an attempt to assuage concerns of poor convergence, we typically run multiple inde-
pendent chains to see if the obtained distribution is similar across chains. We can also
visually inspect the sample paths of the chains via trace plots as well as study summary
statistics such as the empirical autocorrelation function.

Running multiple chains is critical to any MCMC convergence diagnostic. Figure 1
illustrates two ways in which sequences of iterative simulations can fail to converge.
In the first example, two chains are in different parts of the target distribution; in the
second example, the chains move but have not attained stationarity. Slow mixing can
arise with multimodal target distributions or when a chain is stuck in a region of high
curvature with a step size too large to make an acceptable proposal for the next step.
The two examples in Figure 1 make it clear that any method for assessing mixing and
effective sample size should use information between and within chains.

As we are often fitting models with large numbers of parameters, it is not realistic
to expect to make and interpret trace plots such as in Figure 1 for all quantities of
interest. Hence we need numerical summaries that can flag potential problems.

Of the various convergence diagnostics (see reviews by Cowles and Carlin, 1996;
Mengersen et al., 1999; Robert and Casella, 2004), probably the most widely used is the

potential scale reduction factor R̂ (Gelman and Rubin, 1992; Brooks and Gelman, 1998).
It is recommended as the primary convergence diagnostic in widely applied software
packages for MCMC sampling such as Stan (Carpenter et al., 2017), JAGS (Plummer,
2003), WinBUGS (Lunn et al., 2000), OpenBUGS (Lunn et al., 2009), PyMC3 (Salvatier
et al., 2016), and NIMBLE (de Valpine et al., 2017), which together are estimated to
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have hundreds of thousands of users. R̂ is computed for each scalar quantity of interest,
as the standard deviation of that quantity from all the chains included together, divided
by the root mean square of the separate within-chain standard deviations. The idea is
that if a set of simulations have not mixed well, the variance of all the chains mixed
together should be higher than the variance of individual chains. More recently, Gelman
et al. (2013) introduced split-R̂ which also compares the first half of each chain to the
second half, to try to detect lack of convergence within each chain. In this paper when
we refer to R̂ we are always speaking of the split-R̂ variant.

Convergence diagnostics are most effective when computed using multiple chains
initialized at a diverse set of starting points. This reduces the chance that we falsely di-
agnose mixing when beginning at a different point would lead to a qualitatively different
posterior.

In the context of Markov chain Monte Carlo, one can interpret R̂ with diverse seeding
as an operationalization of the qualitative statement that, after warmup, convergence of
the Markov chain should be relatively insensitive to the starting point, at least within
a reasonable part of the parameter space. This is the closest we can come to verifying
empirically that the Markov chain is geometrically ergodic, which is a critical property
if we want a central limit theorem to hold for approximate posterior expectations.
Without this, we have no control over the large deviation behavior of the estimates and
the constructed Markov chains may be useless for practical purposes.

1.2 Example where traditional R̂ fails

Unfortunately, R̂ can fail to diagnose poor mixing, which can be a problem when it is
used as a default rule. The following example shows how failure can occur.

The red histograms in Figure 2 show the distribution of R̂ (that is, split-R̂ from
Gelman et al. (2013)) in four different scenarios. (Ignore the light blue histograms for
now; they show the results using an improved diagnostic that we shall discuss later in
this paper.) In all four scenarios, traditional R̂ is well under 1.1 under all simulations,
thus not detecting any convergence problems—but in fact the two scenarios on the left
have been constructed so that they are far from mixed. These are problems that are
not detected by traditional R̂.

In each of the four scenarios in Figure 2, we run four chains for 1000 iterations each
and then replicate the entire simulation 1000 times. The top row of the figure shows
results for independent AR(1) processes with autoregressive parameter ρ = 0.3. The

top left graph shows the distribution of R̂ when one of the four chains is manually
transformed to only have 1/3 of the variance compared to the other three chains (see
Vehtari et al. (2020), Appendix A for more details). This corresponds to a scenario where
one chain fails to correctly explore the tails of the target distribution and one would
hope could be identified as non-convergent. The split-R̂ statistic defined in Gelman et al.
(2013) does not detect the poor mixing, while the new variant of split-R̂ defined later
in this paper does. The top-right figure shows the same scenario but with all the chains
having the same variance, and now both R̂ values correctly identify that mixing occurs.
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Figure 2: An example showing problems undetected by traditional R̂. Each plot shows
histograms of R̂ values over 1000 replications of four chains, each with a thousand draws.
In the left column, one of these four chains was incorrect. In the top left plot, we set
one of the four chains to have a variance lower than the others. In the bottom left plot,
we took one of the four chains and shifted it. In both cases, the traditional R̂ estimate
does not detect the poor behavior, while the new value does. In the right column, all
the chains are simulated with the same distribution. The chains used for the top row
plots target a normal distribution, while the chains used for the bottom row plots target
a Cauchy distribution.

The second row of Figure 2 shows the behavior of R̂ when the target distribution has
infinite variance. In this case the chains were constructed as a ratio of stationary AR(1)
processes with ρ = 0.3, and the distribution of the ratio is Cauchy. All of the simulated
chains have unit scale, but in the lower-left figure, we have manually shifted one of
the four chains two units to the right. This corresponds to a scenario where one chain
provides a biased estimate of the target distribution. The Gelman et al. (2013) version

of R̂ would catch this behavior if the chain had finite variance, but in this case the
infinite variance destroys its effectiveness—traditional R̂ and split-R̂ are defined based
on second-moment statistics—and it inappropriately returns a value very close to 1.

This example identified two problems with traditional R̂:

1. If the chains have different variances but the same mean parameters, traditional
R̂ ≈ 1.

2. If the chains have infinite variance, traditional R̂ ≈ 1 even if one of the chains
has a different location parameter to the others. This can also lead to numerical
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instability for thick-tailed distributions even when the variance is technically finite.
It’s typically hard to assess empirically if a chain has large but finite variance or
infinite variance.

A related problem is that R̂ is typically computed only for the posterior mean. While
this provides an estimate for the convergence in the bulk of the distribution, it says little
about the convergence in the tails, which is a concern for posterior interval estimates
as well as for inferences about rare events.

2 Recommendations for practice

The traditional R̂ statistic is general, easy to compute, and can catch many problems
of poor convergence, but the discussion above reveals some scenarios where it fails. The
present paper proposes improvements that overcome these problems. In addition, as
the convergence of the Markov chain needs not be uniform across the parameter space,
we propose a localized version of effective sample size that allows us to assess better
the behavior of localized functionals and quantiles of the chain. Finally, we propose
three new methods to visualize the convergence of an iterative algorithm that are more
informative than standard trace plots.

In this section we lay out practical recommendations for using the tools developed in
this paper. In the interest of specificity, we have provided numerical targets for both R̂
and effective sample size (ESS), which are useful as first level checks when analyzing reli-
ability of inference for many quantities. However, these values should be adapted as nec-
essary for the given application, and ultimately domain expertise should be used to check
that Monte Carlo standard errors (MCSE) for all quantities of interest are small enough.

In Section 4, we propose modifications to R̂ based on rank-normalizing and folding
the posterior draws, only using the sample if R̂ < 1.01. This threshold is much tighter
than the one recommended by Gelman and Rubin (1992), reflecting lessons learnt over
more than 25 years of use, as well as the simulation results in Appendix A. Gelman
and Rubin (1992) derived R̂ under the assumption that, as simulations went forward,
the within-chain variance would gradually increase while the between-chain variance
decreased, stabilizing when their ratio was 1. The potential scale reduction factor rep-
resented the factor by which the between-chain variation might decline under future
simulations, and a potential scale reduction factor of 1.1 implied that there was little to
be gained in inferential precision by running the chains longer. However, as discussed by
Brooks and Gelman (1998), the dynamics of MCMC are such that the between-chain
variance can decrease before it increases, if the initial part of the simulation pulls all
the chains to the center of the distribution, only for them to be redispersed with further
simulation. As a result, R̂ cannot in general be interpreted as a potential scale reduction
factor, and in practice and in simulations we have found that R̂ can dip below 1.1 well
before convergence in some examples (a point also raised by Vats and Knudson (2018)),
and we have found this to be much more rare when using the 1.01 threshold.

In addition, we recommend running at least four chains by default. Multiple chains
are more likely to reveal multimodality and poor adaptation or mixing: we see examples
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for complex, misspecified or non-identifiable models in the Stan discussion forum all the
time. Furthermore, most computers are able to run chains in parallel, giving multiple
chains with no increase in computation time. Here we do not consider massive paral-
lelization such as running 1000 chains or more; further research is needed in considering
how to use such simulations most efficiently in such computational environments (see,
for instance, the method discussed in Jacob et al. (2017)).

Roughly speaking, the effective sample size of a quantity of interest captures how
many independent draws contain the same amount of information as the dependent sam-
ple obtained by the MCMC algorithm. The higher the ESS the better. When there might
be difficulties with mixing, it is important to use between-chain as well as within-chain
information in computing the ESS. A common example arises in hierarchical models
with funnel-shaped posteriors, where MCMC algorithms can struggle to simultaneously
adapt to a “narrow” region of high density and low volume, and a “wide” region of low
density and high volume. In such a case, differences in step-size adaptation can lead to
chains that have different behavior in the neighborhood of the narrow part of the fun-
nel (Betancourt and Girolami, 2019). For multimodal distributions with well-separated

modes, the split-R̂ adjustment leads to an ESS estimate that is close to the number of
distinct modes that are found. In this situation, ESS can be drastically overestimated
if computed from a single chain.

A small value of R̂ is not enough to ensure that an MCMC sample is useful in prac-
tice (Vats and Knudson, 2018). The effective sample size must also be large enough to
get stable inferences for quantities of interest. Gelman et al. (2013) proposed an ESS es-
timate which combines autocovariance-based single-chain variance estimates (Hastings,
1970; Geyer, 1992) from multiple chains using between- and within-chain information as

in R̂. In Section 3.2 we propose an improved algorithm, and as with R̂, we recommend
computing the ESS on the rank-normalized sample. This does not directly compute the
ESS relevant for computing the mean of the parameter, but instead computes a quantity
that is well defined even if the chains do not have finite mean or variance. Specifically,
it computes the ESS of a sample from a rank-normalized version of the quantity of
interest, using the rank transformation followed by the inverse normal transformation.
This is still indicative of the effective sample size for computing an average, and if it
is low the computed expectations are unlikely to be good approximations to the actual
target expectations.

To ensure reliable estimates of variances and autocorrelations needed for R̂ and ESS,
we recommend requiring that the rank-normalized ESS is greater than 400, a number
we chose based on practical experience and simulations (see Appendix A) as typically
sufficient to get a stable estimate of the Monte Carlo standard error.

Finally, when reporting quantile estimates or posterior intervals, we strongly sug-
gest assessing the convergence of the chains for these quantiles. In Section 4.3, we show
that convergence of Markov chains is not uniform across the parameter space, that
is, convergence might be different in the bulk of the distribution (e.g., for the mean
or median) than in the tails (e.g., for extreme quantiles). We propose diagnostics and
effective sample sizes specifically for extreme quantiles. This is different from the stan-
dard ESS estimate (which we refer to as bulk-ESS), which mainly assesses how well the
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centre of the distribution is resolved. Instead, these “tail-ESS” measures allow the user
to estimate the MCSE for interval estimates.

3 R̂ and the effective sample size

When coupled with an ESS estimate, R̂ is the most common way to assess the con-
vergence of a set of simulated chains. There is a link between these two measures for
a single chain (see, e.g. Vats and Knudson, 2018), but we prefer to treat these as two

separate questions: “Did the chains mix well?” (split-R̂) and “Is the effective sample
size large enough to get a stable estimate of uncertainty?” In this section we define the
R̂ and ESS statistics that we propose to modify.

3.1 Split-R̂

Here we present split-R̂, following Gelman et al. (2013) but using the notation of Stan
Development Team (2018b). This formulation represents the current standard in con-
vergence diagnostics for iterative simulations. In the equations below, N is the number
of draws per chain, M is the number of chains, S = MN is the total number of draws
from all chains, θ(nm) is nth draw of mth chain, θ(.m) is the average of draws from
mth chain, and θ(..) is average of all draws. For each scalar summary of interest θ, we
compute B and W , the between- and within-chain variances:

B =
N

M − 1

M∑
m=1

(θ
(.m) − θ

(..)
)2, where θ

(.m)
=

1

N

N∑
n=1

θ(nm), θ
(..)

=
1

M

M∑
m=1

θ
(.m)

,

(3.1)

W =
1

M

M∑
m=1

s2m, where s2m =
1

N − 1

N∑
n=1

(θ(nm) − θ
(.m)

)2. (3.2)

The between-chain variance, B, also contains the factor N because it is based on the

variance of the within-chain means, θ
(.m)

, each of which is an average of N values θ(nm).
We can estimate var(θ|y), the marginal posterior variance of the estimand, by a weighted
average of W and B, namely,

v̂ar
+
(θ|y) = N − 1

N
W +

1

N
B. (3.3)

This quantity overestimates the marginal posterior variance assuming the starting distri-
butions and all intermediate distributions of the simulations are appropriately overdis-
persed compared to the target distribution, but is unbiased under stationarity (that
is, if the starting distribution equals the target distribution), or in the limit N → ∞.
To have an overdispersed starting distribution, independent Markov chains should be
initialized with diffuse starting values for the parameters.

Meanwhile, for any finite N , the within-chain variance W should underestimate
var(θ|y) because the individual chains haven’t had the time to explore all of the target
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distribution and, as a result, will have less variability. In the limit as N → ∞, the
expectation of W also approaches var(θ|y).

We monitor convergence of the iterative simulations to the target distribution by
estimating the factor by which the scale of the current distribution for θ might be
reduced if the simulations were continued in the limit N → ∞. This leads to the
estimator

R̂ =

√
v̂ar

+
(θ|y)

W
, (3.4)

which for an ergodic process declines to 1 as N → ∞. We call this split-R̂ because we
are applying it to chains that have been split in half so that M is twice the number of
simulated chains. Without splitting, R̂ would get fooled by non-stationary chains as in
Figure 1b.

In cases, where we can be absolutely certain that a single chain is sufficient, R̂ could
be computed using only single chain marginal variance and autocorrelations (see, e.g.
Vats and Knudson, 2018). However we are willing to trade off a slightly higher vari-
ance for increased diagnostic sensitivity (as described in the introduction) that running
multiple chains brings.

3.2 The effective sample size

We estimate effective sample size by combining information from R̂ and the autocorre-
lation estimates within the chains.

The effective sample size and Monte Carlo standard error

Given S independent simulation draws, the accuracy of average of the simulations θ̄ as
an estimate of the posterior mean E(θ|y) can be estimated as

Var(θ̄) =
Var(θ|y)

S
. (3.5)

This generalizes to posterior expectations of functionals of parameters E (g(θ)|y). The
square root of (3.5) is called the Monte Carlo standard error (MCSE).

In general, the simulations of θ within each chain tend to be autocorrelated, and
Var(θ̄) can be larger or smaller in expectation. In the early days of using MCMC for
Bayesian inference, the focus was in estimating the single chain estimate variance di-
rectly, for example, based on autocorrelations or batch means (Hastings, 1970; Geyer,
1992). See more different variance estimation algorithms in reviews by Cowles and Car-
lin (1996), Mengersen et al. (1999), and Robert and Casella (2004). Interpreting whether
Monte Carlo standard error for a quantity of interest is small enough requires domain
expertise.

Effective sample size (ESS) can be computed by dividing any variance estimate for an
MCMC estimate by the variance estimate assuming independent draws. As convergence
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diagnostics in general started to be more popular (Gelman and Rubin, 1992; Cowles
and Carlin, 1996; Mengersen et al., 1999; Robert and Casella, 2004), eventually ESS
also became popular as description of the efficiency of the simulation (an early example
of reporting ESS for Gibbs sampler is Sorensen et al., 1995). The term effective sample
size had already been used before, for example, to describe amount of information in
climatological time series (Laurmann and Gates, 1977) and the efficiency of importance
sampling in Bayesian inference (Kong et al., 1994).

Although ESS is not a replacement for MCSE, it can provide a scale-free measure
of information, which can be especially useful when diagnosing the sampling efficiency
for a large number of variables. The downside of the term effective sample size is that it
may give a false impression that the dependent simulation sample would be equivalent
to an independent simulation sample with size ESS, while the equivalence is only for the
estimation efficiency of the posterior mean, and the efficiency of the same dependent
simulation sample for estimating another posterior functional E (g(θ)|y) or quantiles can
be very different. To simplify notation, in this section we consider the effective sample
size for the posterior mean E (θ|y). This can be generalized in a straightforward manner
to ESS estimates for E (g(θ)|y). Section 4.3 deals with estimating the effective sample
size of quantiles, which cannot be presented as expectations.

Estimating the effective sample size

The first proposals of ESS estimates used information only from a single chain (see,
e.g. Sorensen et al., 1995). The convergence diagnostic package coda (Plummer et al.,
2006) combines (since version 0.5.7 in 2001) single chain spectral variance based ESS
estimates simply by summing them, but this approach gives over-optimistic estimates if
spectral variances in different chains are not equal (e.g. when different step size is used
in different chains) or if chains are not mixing well. Gelman et al. (2003) proposed an
ESS estimate,

Seff,BDA2 = MN
v̂ar

+

B
, (3.6)

where v̂ar
+

is a marginal posterior variance estimate and B is between-chain variance
estimate as given in Section 3.1. This corresponds to a batch means approach with each
chain being one batch. As there are usually only a small number of batches (chains), and
information from autocorrelations is not used, this ESS estimate has high variance. Gel-
man et al. (2013) proposed an ESS estimate which appropriately combines autocorrela-
tion information from multiple chains. Stan Development Team (2018b) made some com-
putational improvements, and the present article provides a further improved version.

For a single chain of length N , the effective sample size of a chain can defined in
terms of the autocorrelations within the chain at different lags,

Neff =
N∑∞

t=−∞ ρt
=

N

1 + 2
∑∞

t=1 ρt
, (3.7)

where ρt is autocorrelation at lag t ≥ 0. An equivalent approach was used by Hastings
(1970) for estimating the variance of the mean estimate from a single chain. For a chain
with joint probability function p(θ) with mean μ and standard deviation σ, ρt is defined
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to be

ρt =
1

σ2

∫
Θ

(θ(n) − μ)(θ(n+t) − μ) p(θ) dθ. (3.8)

This is just the correlation between the two chains offset by t positions. Because we
know θ(n) and θ(n+t) have the same marginal distribution at convergence, multiplying
the two difference terms and reducing yields,

ρt =
1

σ2

∫
Θ

θ(n) θ(n+t) p(θ) dθ. (3.9)

In practice, the probability function in question cannot be tractably integrated and
thus neither autocorrelation nor the effective sample size can be directly calculated.
Instead, these quantities must be estimated from the sample itself. Computations of
autocorrelations for all lags simultaneously can be done efficiently via the fast Fourier
transform algorithm (FFT; see Geyer, 2011). In our experiments, FFT-based autocor-
relation estimates have also been computationally more accurate than naive autocovari-
ance computation. As recommended by Geyer (1992) we use the biased estimate with
divisor N , instead of unbiased estimate with divisor N − t. Also in our experiments, the
biased estimate provided smaller variance in the final ESS estimate.

The autocorrelation estimates ρ̂t,m at lag t from multiple chains m ∈ (1, . . . ,M) are

combined with the within-chain variance estimate W = 1
M

∑M
m=1 s

2
m and the multi-

chain variance estimate v̂ar
+

= W (N − 1)/N + B/N to compute the combined auto-
correlation at lag t as,

ρ̂t = 1−
W − 1

M

∑M
m=1 s

2
mρ̂t,m

v̂ar
+ . (3.10)

If ρ̂t,m = 0 for all m, ρ̂t = 1 − R̂−2. If in addition chains are mixing well so that

R̂ ≈ 1, then ρ̂t ≈ 0. If ρ̂t,m �= 0 and R̂ ≈ 1, then ρ̂t ≈ 1
M

∑M
m=1 ρ̂t,m. If R̂ 	 1,

then ρ̂t ≈ 1− R̂−2. If chains are mixing well, this expression is equivalent to averaging
autocorrelations, and if chains are not mixing well, simulations in each chain are implic-
itly assumed to be more correlated with each other. In our experiments, multi-chain ρt
given by (3.10) and FFT-based ρ̂t,m had smaller variance than the related multi-chain
ρt proposed by Gelman et al. (2013).

As noise in the correlation estimates ρ̂t increases as t increases, the large-lag terms
need to be down weighted (lag window approach, see, e.g. Geyer, 1992; Flegal and Jones,
2010) or the sum of ρ̂t can be truncated with some truncation lag T to get

Seff =
NM

1 + 2
∑T

t=1 ρt
. (3.11)

We use a truncation rule proposed by Geyer (1992), which takes into account certain
properties of the autocorrelations for Markov chains. Even when the simulations are
constructed using an MCMC algorithm, the time series of simulations for a scalar pa-
rameter or summary will not in general have the Markov property; nonetheless we have
found these Markov-derived heuristics to work well in practice. In our experiments,
Geyer’s truncation had superior stability compared to flat-top (e.g. Doss et al., 2014)
and slug-sail (Vats and Knudson, 2018) lag window approaches.
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For Markov chains typically used in MCMC, negative autocorrelations can happen
only on odd lags and by summing over pairs starting from lag t = 0, the paired auto-
correlation is guaranteed to be positive, monotone and convex modulo estimator noise
(Geyer, 1992, 2011). The effective sample size of combined chains is then defined as

Seff =
N M

τ̂
, (3.12)

where

τ̂ = 1 + 2

2k+1∑
t=1

ρ̂t = −1 + 2

k∑
t′=0

P̂t′ , (3.13)

and P̂t′ = ρ̂2t′ + ρ̂2t′+1. The initial positive sequence estimator is obtained by choosing
the largest k such that P̂t′ > 0 for all t′ = 1, . . . , k. The initial monotone sequence
estimator is obtained by further reducing P̂t′ to the minimum of the preceding values
so that the estimated sequence becomes monotone.

In case of antithetic Markov chains, which have negative autocorrelations on odd
lags, the effective sample size Seff can also be larger than S. For example, the dynamic
Hamiltonian Monte Carlo (HMC) algorithms used in Stan (Hoffman and Gelman, 2014;
Betancourt, 2017; Stan Development Team, 2018b) is likely to produce Seff > S for
parameters with a close to Gaussian posterior (in the unconstrained space) and low
dependence on the other parameters. The benefit of this kind of super-efficiency is often
limited as it is unlikely to simultaneously have super-efficiency for mean and variance
(or tail quantiles) as demonstrated in our experiments.

In extreme antithetic cases, magnitude of single lag autocorrelations can stay large
for a large lag t, even if the paired autocorrelations are close to zero. To improve the
stability and reduce the variance of the ESS estimate, we determine the truncation
lag as usual, but compute the average of truncated sum ending to usual odd lag and
truncated sum ending to the next even lag. Sometimes these estimates are used for
very short antithetic chains, and just by chance there can be strange estimates, and as
highly antithetic chains are unlikely, in our software implementation we have restricted
the ESS estimate to an upper bound of S log10(S).

The effective sample size Seff described here is different from similar formulas in the
literature in that we use multiple chains and between-chain variance in the computation,
which typically gives us more conservative claims (lower values of Seff) compared to
single chain estimates, especially when mixing of the chains is poor. If the chains are
not mixing at all (e.g., if the posterior is multimodal and the chains are stuck in different
modes), then our Seff is close to the number of distinct modes that are found. Thus,
our ESS estimate can be also to diagnose multimodality.

The values of R̂ and ESS require reliable estimates of variances and autocorrelations
(in addition to the existence of these quantities; see our Cauchy examples in Section 5.1),
which can only occur if the chains have enough independent replicates. In particular,
we only recommend relying on the R̂ estimate to make decisions about the quality of
the chain if each of the split chains has an average ESS estimate of at least 50. In our
minimum recommended setup of four parallel chains, the total ESS should be at least
400 before we expect R̂ to be useful.
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4 Improving convergence diagnostics

4.1 Rank normalization helps R̂ when there are heavy tails

As split-R̂ and Seff are well defined only if the marginal posteriors have finite mean
and variance, we propose to use rank normalized parameter values instead of the actual
parameter values for the purpose of diagnosing convergence.

The use of ranks to avoid the assumption of normality goes back to Friedman (1937).
Chernoff and Savage (1958) show rank based approaches have good asymptotic effi-
ciency. Instead of using rank values directly and modifying tests for them, Fisher and
Yates (1938) propose to use expected normal scores (ordered statistics) and use the nor-
mal models. Blom (1958) shows that accurate approximation of the expected normal
scores can be computed efficiently from ranks using an inverse normal transformation.

Rank normalized split-R̂ and Seff are computed using the equations in Section 3.1
and 3.2, but replacing the original parameter values θ(nm) with their corresponding rank
normalized values (normal scores) denoted as z(nm). Rank normalization proceeds as
follows. First, replace each value θ(nm) by its rank r(nm) within the pooled draws from
all chains. Average rank for ties are used to conserve the number of unique values of
discrete quantities. Second, transform ranks to normal scores using the inverse normal
transformation and a fractional offset (Blom, 1958):

z(nm) = Φ−1

(
r(nm) − 3/8

S + 1/4

)
. (4.1)

Using normalized ranks (normal scores) z(nm) instead of ranks r(nm) themselves has the

benefits that (1) for continuous variables the normality assumptions in computation of R̂

and Seff are fulfilled (via the transformation), (2) the values of R̂ and Seff are practically
the same as before for nearly normally distributed variables (the interpretation doesn’t

change for the cases where the original R̂ worked well), and (3) rank-normalized R̂ and
Seff are invariant to monotone transformations (e.g. we get the same diagnostic values
when examining a variable or logarithm of a variable). The effects of rank normalization
are further explored in the online appendix.

We will use the term bulk effective sample size (bulk-ESS or bulk-Seff) to refer to
the effective sample size based on the rank normalized draws. Bulk-ESS is useful for
diagnosing problems due to trends or different locations of the chains (see Appendix A).
Further, it is well defined even for distributions with infinite mean or variance, a case
where previous ESS estimates fail. However, due to the rank normalization, bulk-ESS is
no longer directly applicable to estimate the Monte Carlo standard error of the posterior
mean. We will come back to the issue of computing Monte Carlo standard errors for
relevant quantities in Section 4.4.

4.2 Folding reveals problems with variance and tail exploration

Both original and rank normalized split-R̂ can be fooled if the chains have the same
location but different scales. This can happen if one or more chains is stuck near the
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middle of the distribution. To alleviate this problem, we propose a rank normalized
split-R̂ statistic not only for the original draws θ(nm), but also for the corresponding
folded draws ζ(mn), absolute deviations from the median,

ζ(mn) =
∣∣∣θ(nm) −median(θ)

∣∣∣ . (4.2)

We call the rank normalized split-R̂ measure computed on the ζ(mn) values folded-split-
R̂. This measures convergence in the tails rather than in the bulk of the distribution.
To obtain a single conservative R̂ estimate, we propose to report the maximum of rank
normalized split-R̂ and rank normalized folded-split-R̂ for each parameter.

Figure 1 demonstrates how our new version of R̂ catches some examples of lack of
convergence that were not detected by earlier versions of the potential scale reduction
factor. We do not intend with this example to claim that our new R̂ is perfect—of course,
it can be defeated too. Rather, we use these simple scenarios to develop intuition about
problems with traditional split-R̂ and possible directions for improvement.

4.3 Localizing convergence diagnostics: Assessing the quality of
quantiles, the median absolute deviation, and small-interval
probabilities

The new R̂ and bulk-ESS introduced above are useful as overall efficiency measures.
Next we introduce convergence diagnostics for quantiles and related quantities, which
are more focused measures and help to diagnose reliability of reported posterior inter-
vals. Estimating the efficiency of quantile estimates has a high practical relevance in
particular as we observe the efficiency for tail quantiles to often be lower than for the
mean or median. This especially has implications if people are making decisions based
on whether or not a specific quantile is below or above a fixed value (for example, if a
posterior interval contains zero).

The α-quantile is defined as the parameter value θα for which Pr(θ ≤ θα) = α. An

estimate θ̂α of θα can be obtained by finding the α-quantile of the empirical cumulative
distribution function (ECDF) of the posterior draws θ(s).

The cumulative probabilities Pr(θ ≤ θα) can be written as expectation which can
be estimated with sample mean

Pr(θ ≤ θα) = E(I(θ ≤ θα)) ≈ Īα =
1

S

S∑
s=1

I(θ(s) ≤ θα), (4.3)

where I(·) is the indicator function. The indicator function transforms simulation draws
to 0’s and 1’s, and thus the subsequent computations are bijectively invariant. Efficiency
estimates of the ECDF at any θα can now be obtained by applying rank-normalizing
and subsequent computations directly on the indicator function’s results. More details
on the variance of the cumulative distribution function can be found in the online
appendix. Raftery and Lewis (1992) proposed to focus on accuracy of cumulative or
interval probabilities and also proposed a specific effective sample size estimate for
these probability estimates.
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Although the quantiles cannot be written directly as an expectation, the quantile
estimate is strongly consistent and Doss et al. (2014) provide conditions for a quantile
central limit theorem. Assuming that the CDF is a continuous function F which is
smooth near an α-quantile of interest, we could compute

Var(θ̂α) = Var(F−1(̄Iα)) = Var(̄Iα)/f(θα). (4.4)

Even if we do not usually know F , this shows that the variance of θα is just the variance
of Īα scaled by the unknown density f(θα), and thus the effective sample size for the

quantile estimate θ̂α is the same as for the corresponding cumulative probability.

To get a better sense of the sampling efficiency in the distributions’ tails, we propose
to compute the minimum of the effective sample sizes of the 5% and 95% quantiles, which
we will call tail effective sample size (tail-ESS or tail-Seff). Tail-ESS can help diagnosing
problems due to different scales of the chains (see Appendix A).

Since the marginal posterior distributions might not have finite mean and variance,
for example, the popular rstanarm package (Stan Development Team, 2018a) reports
median and median absolute deviation (MAD) instead of mean and standard error.
Median and MAD are well defined even when the marginal distribution does not have
finite mean and variance. Since the median is same as the 50% quantile, we can get an
efficiency estimate for it as for any other quantile.

Further, we can also compute an efficiency estimate for the median absolute devia-
tion by computing the efficiency estimate of an indicator function based on the folded
parameter values ζ (see (4.2)):

Pr(ζ ≤ ζ0.5) ≈ Īζ,0.5 =
1

S

S∑
s=1

I(ζ(s) ≤ ζ0.5), (4.5)

where ζ0.5 is the median of the folded values. The efficiency estimate for the MAD is
obtained by applying the same approach as for the median (and other quantiles) but
with the folded parameters values.

We can get more local efficiency estimates by considering small probability intervals.
We propose to compute the efficiency estimates for

Īα,δ = Pr(Q̂α < θ ≤ Q̂α+δ), (4.6)

where Q̂α is an empirical α-quantile, δ = 1/k is the length of the interval for some
positive integer k, and α ∈ (0, δ, . . . , 1− δ) changes in steps of δ. Each interval has S/k
draws, and the efficiency measures the autocorrelation of an indicator function which
is 1 when the values are inside the specific interval and 0 otherwise. This gives us a
local efficiency measure which is more localized than efficiency measure for quantiles
and can be used to build intuition about what types of posterior functionals can be
computed as illustrated in the examples. While the expectation of a function that only
depends on intermediate values can be usually estimated with relative ease, expectations
of tail probabilities or other posterior functionals that depend critically on the tail of
the distribution will be usually more difficult to estimate. In addition, small probability
intervals can be used in practical equivalence testing (see, e.g., Wellek, 2010).
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A natural multivariate extension of small intervals would be to consider small prob-
ability volumes using a box or sphere with dimensions determined, for example, by
marginal quantiles. The visualization of the multivariate results would be easiest in 2
or 3 dimensions. In higher dimensions, for example, k-means clustering could be used
to determine hyper-spheres. Even if it gets more difficult to visualize where the prob-
lematic region in the high dimensional space is, the diagnosing that sampling efficiency
is low in some parts of the posterior can be useful.

4.4 Monte Carlo error estimates for quantiles

To obtain the MCSE for θ̂α, Doss et al. (2014) use a Gaussian kernel density estimate of
f(θα) and batch means and subsampling bootstrap method for estimating Var(̄Iα), and
Liu et al. (2016) use a flat top kernel density estimate for f(θα) and a spectral variance
approach for Var(̄Iα).

We propose an alternative approach which avoids the need to estimate f(θα). Here

is how we estimate, for example, a central 90% Monte Carlo error interval for θ̂α (any
quantiles or intervals can be computed using the same algorithm):

1. Compute the effective sample size Seff for estimating the expectation E(I(θ ≤ θ̂α)).

2. Compute a and b as 5% and 95% quantiles (for other than 90% interval use
corresponding quantiles) of

Beta (Seffα+ 1, Seff(1− α) + 1) . (4.7)

Using Seff here takes into account the efficiency of the posterior draws. The vari-
ance of this beta distribution matches the variance of normal approximation, but
using quantiles guarantees that 0 < a < 1 and 0 < b < 1. Asymptotically as
Seff → ∞, this beta distribution converges towards a normal distribution. Instead
of drawing random sample from the beta distribution, we get sufficient accuracy
for MCSE using just two deterministically chosen quantiles.

3. Propagate a and b through the nonlinear inverse transforms A = (F−1(a)) and
B = (F−1(b)). Then A and B are corresponding quantiles in the transformed
scale. As we don’t know F for the quantity of interest, we use a simple numerical
approximation:

Â = θ(s
′) where s′ ≤ Sa < s′ + 1,

B̂ = θ(s
′′) where s′′ − 1 < Sb ≤ s′′,

where θ(s) have been sorted in ascending order. Â and B̂ are then estimated 5%
and 95% quantiles (or other quantiles corresponding to which quantiles a and b

were chosen to be) of the Monte Carlo error interval for θ̂α.

The Monte Carlo standard error for θ̂α can be approximated, for example, by com-
puting (B̂ − Â)/2, where Â and B̂ are estimated 16% and 84% Monte Carlo error
quantiles computed with the above algorithm. Use of deterministically chosen 16% and
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84% quantiles a and b, propagating them through the nonlinear transformation and
estimating the standard error from the transformed quantiles, corresponds to unscented
transformation which is known to estimate the variance of the transformed quantity
correct to the second order (Julier and Uhlmann, 1997).

The above algorithm is useful as a default, as it is more robust than density esti-
mation based approaches for non-smooth densities, which is common case, for example,
when variables are constrained in a (semi-open) range. Â and B̂ are likely to have high
variance in case of extreme tail quantiles and thick-tailed distributions, as there are
not many θ(s) in extreme tails. The approaches using a density estimate for f(θα) can
provide better accuracy when the assumptions of the density estimate are fulfilled, but
they can have a high bias if the density is not smooth or the shape of the kernel doesn’t
match well the tail properties of the distribution. To improve accuracy of extreme tail
quantile estimates, common extreme value models could be used to model the tail of
the distribution.

4.5 Diagnostic visualizations

In order to develop intuitions around the convergence of iterative algorithms, we pro-
pose several new diagnostic visualizations in addition to the numerical convergence
diagnostics discussed above. We illustrate with several examples in Section 5.

Rank plots Extending the idea of using ranks instead of the original parameter values,
we propose using rank plots for each chain instead of trace plots. Rank plots, such as
Figure 6, are histograms of the ranked posterior draws (ranked over all chains) plotted
separately for each chain. If all of the chains are targeting the same posterior, we expect
the ranks in each chain to be uniform, whereas if one chain has a different location or
scale parameter, this will be reflected in the deviation from uniformity. If rank plots of
all chains look similar, this indicates good mixing of the chains. As compared to trace
plots, rank plots don’t tend to squeeze to a fuzzy mess when used with long chains.

Quantile and small-interval plots The efficiency of quantiles or small-interval prob-
abilities may vary drastically across different quantiles and small-interval positions,
respectively. We thus propose to use diagnostic plots that display efficiency of quantiles
or small-interval probabilities across their whole range to better diagnose areas of the
distributions that the iterative algorithm fails to explore efficiently.

Efficiency per iteration plots For a well-explored distribution, we expect the ESS
measures to grow linearly with the total number of draws S, or, equivalently, that the
relative efficiency (ESS divided S) is approximately constant for different values of S. For
small number of draws, both bulk and tail-ESS may be unreliable and cannot necessarily
reveal convergence problems. As a result, some issues may only be detectable as S
increases, if ESS grows sublinearly or even decreases with increasing S. Equivalently,
in such a case, we would expect to see a relatively sharp drop in the relative efficiency
measures. We therefore propose to plot the change of both bulk and tail ESS with
increasing S. This can be done based on a single model without a need to refit, as we can
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just extract initial sequences of certain length from the original chains. However, some
convergence problems only occur at relatively high S and may thus not be detectable
if the total number of draws is too small.

5 Examples

We now demonstrate our approach and recommended workflow on several small exam-
ples. Unless mentioned otherwise, we use dynamic Hamiltonian Monte Carlo (HMC)
with multinomial sampling (Betancourt, 2017) as implemented in Stan (Stan Develop-
ment Team, 2018b). We run 4 chains, each with 1000 warmup iterations, which do not
form a Markov chain and are discarded, and 1000 post-warmup iterations, which are
saved and used for inference.

5.1 Cauchy: A distribution with infinite mean and variance

Traditional R̂ is based on calculating within and between chain variances. If the marginal
distribution of a quantity of interest is such that the variance is infinite, this approach
is not well justified, as we demonstrate here with a Cauchy-distributed example.

Nominal parameterization of the Cauchy distribution

We start by simulating from independent standard Cauchy distributions for each ele-
ment of a 50-dimensional vector x:

xj ∼ Cauchy(0, 1) for j = 1, . . . , 50. (5.1)

We monitor the convergence for each of the xj separately. As the distribution of x
has thick tails, we may expect any generic MCMC algorithm to have mixing problems.
Several values of R̂ greater than 1.01 and some effective sample sizes less than 400
also indicate convergence problems (in addition a HMC-specific diagnostic, “iterations
exceed maximum tree depth” (Stan Development Team, 2018b) also indicated slow
mixing of the chains). The online appendix contains more results with longer chains and

other R̂ diagnostics. We can further analyze potential problems using local efficiency and
rank plots. We specifically investigate x36, which, in this specific run, had the smallest
tail-ESS of 34. Figure 3 shows the local efficiency of small interval probability estimates
(see Section 4.3). The efficiency of sampling is low in the tails, which is clearly caused
by slow mixing in long tails of the Cauchy distribution. Figure 4 shows the efficiency of
quantile estimates (see Section 4.3), which also is low in the tails.

We may also investigate how the estimated effective sample sizes change when we use
more and more draws; Brooks and Gelman (1998) proposed to use similar graph for R̂. If
the effective sample size is highly unstable, does not increase proportionally with more
draws, or even decreases, this indicates that simply running longer chains will likely
not solve the convergence issues. In Figure 5, we see how unstable both bulk-ESS and
tail-ESS are for this example. Rank plots in Figure 6 clearly show the mixing problem
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Figure 3: Local efficiency of small-interval probability estimates for the Cauchy model
with nominal parameterization. Results are displayed for the element of x with the
smallest tail-ESS. The dashed line shows the recommended threshold of 400. Orange
ticks show the position of iterations that exceeded the maximum tree depth in the
dynamic HMC algorithm.

Figure 4: Efficiency of quantile estimates for the Cauchy model with nominal param-
eterization. Results are displayed for the element of x with the smallest tail-ESS. The
dashed line shows the recommended threshold of 400. Orange ticks show the position
of iterations that exceeded the maximum tree depth in the dynamic HMC algorithm.

between chains. In case of good mixing all rank plots should be close to uniform. More
experiments can be found in Appendix B and in the online appendix.

Alternative parameterization of the Cauchy distribution

Next, we examine an alternative parameterization of the Cauchy as a scale mixture of
Gaussians:

aj ∼ Normal(0, 1), bj ∼ Gamma(0.5, 0.5), xj = aj/
√

bj . (5.2)

The model has two parameters which have thin-tailed distributions so that we may
assume good mixing of Markov chains. Cauchy-distributed x can be computed deter-
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Figure 5: Estimated effective sample sizes with increasing number of iterations for the
Cauchy model with nominal parameterization. Results are displayed for the element of
x with the smallest tail-ESS. The dashed line shows the recommended threshold of 400.

Figure 6: Rank plots of posterior draws from four chains for the Cauchy model with
nominal parameterization. Results are displayed for the element of x with the smallest
tail-ESS.

ministically from a and b. In addition to improved sampling performance, the example
illustrates that focusing on diagnostics matters. We define two 50-dimensional parame-
ter vectors a and b from which the 50-dimensional quantity x is computed.

For all parameters, R̂ is less than 1.01 and ESS exceeds 400, indicating that sampling
worked much better with this alternative parameterization. The online appendix con-
tains more results using other parameterizations of the Cauchy distribution. The vectors
a and b used to form the Cauchy-distributed x have stable quantile, mean and variance
values. The quantiles of each xj are stable too, but the mean and variance estimates
are widely varying. We can further analyze potential problems using local efficiency es-
timates and rank plots. For this example, we take a detailed look at x40, which had the
smallest bulk-ESS of 2848. Figures 7 and 8 show good sampling efficiency for the small-
interval probability and quantile estimates. The rank plots in Figure 9 also look close
to uniform across chains, which is consistent with good mixing. The appearances of the
plots in Figures 7, 8, and 9 are what we would expect for well mixing chains in general.
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Figure 7: Local efficiency of small-interval probability estimates for the Cauchy model
with alternative parameterization. Results are displayed for the element of x with the
smallest tail-ESS. The dashed line shows the recommended threshold of 400.

Figure 8: Efficiency of quantile estimates for the Cauchy model with alternative param-
eterization. Results are displayed for the element of x with the smallest tail-ESS. The
dashed line shows the recommended threshold of 400.

Figure 9: Rank plots of posterior draws from four chains for the Cauchy model with
alternative parameterization. Results are displayed for the element of x with the smallest
tail-ESS.
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Figure 10: Trace plots of posterior draws from four chains for the Cauchy model with
nominal and alternative parameterization. We do not tell which plot belongs to which
model and let the reader decide themselves how easy it is to see differences in conver-
gence from those trace plots. Results are displayed for the element of x with the smallest
tail-ESS in the respective model.

In contrast, trace plots may be much less clear in certain situations. To illustrate
this point, we show trace plots of the Cauchy model in the nominal and alternative
parameterizations side by side in Figure 10. Recall that the computation converged well
in the alternative parameterization but not in the nominal parameterization.

Half-Cauchy distribution with nominal parameterization

Half-Cauchy priors for non-negative parameters are common and often specified via
the nominal parameterization. In this example, we set independent half-Cauchy dis-
tributions on each element of the 50-dimensional vector x constrained to be positive.
Probabilistic programming frameworks usually implement positivity constraint by sam-
pling in the unconstrained log(x) space, which changes the geometry crucially. With this

transformation, all values of R̂ are less than 1.01 and ESS exceeds 400 for all parameters,
indicating good performance of the sampler despite using the nominal parameterization
of the Cauchy distribution. More experiments for the half-Cauchy distribution can be
found in the online appendix.

5.2 Hierarchical model: Eight schools

The eight schools problem is a classic example (see Section 5.5 in Gelman et al., 2013),
which even in its simplicity illustrates typical problems in inference for hierarchical
models. We can parameterize this simple model in at least two ways. The centered
parameterization (θ, μ, τ, σ) is,

θj ∼ Normal(μ, τ),

yj ∼ Normal(θj , σj).
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In contrast, the non-centered parameterization (θ̃, μ, τ, σ) can be written as,

θ̃j ∼ Normal(0, 1),

θj = μ+ τ θ̃j ,

yj ∼ Normal(θj , σj).

In both cases, θj are the treatment effects in the eight schools, and μ, τ represent the pop-
ulation mean and standard deviation of the distribution of these effects. In the centered
parameterization, the θ are parameters, whereas in the non-centered parameterization,
the θ̃ are parameters and θ is a derived quantity.

Geometrically, the centered parameterization exhibits a funnel shape that contracts
into a region of strong curvature around the population mean when faced with small val-
ues of the population standard deviation τ , making it difficult for many simple Markov
chain methods to adequately explore the full distribution of this parameter. In the fol-
lowing, we will focus on analyzing convergence of τ . The online appendix contains more
detailed analysis of different algorithm variants and results of longer chains.

A centered eight schools model

Instead of the default options, we run the centered parameterization model with more
conservative settings of the HMC sample to reduce the probability of getting diver-
gent transitions, which bias the obtained estimates if they occur; for details see Stan
Development Team (2018b). Still, we observe a lot of divergent transitions, which in

itself is already a sufficient indicator of convergence problems. We can also use R̂ and
ESS diagnostics to recognize problematic parts of the posterior. The latter two have
the advantage over the divergent transitions diagnostic that they can be used with all
MCMC algorithms not only with HMC.

Bulk-ESS and tail-ESS for the between-school standard deviation τ are 67 and 82,
respectively. Both are much less than 400, indicating we should investigate that param-
eter more carefully. Figures 11 and 12 show the sampling efficiency for the small-interval
probability and quantile estimates. The sampler has difficulties in exploring small τ val-
ues. As the sampling efficiency for small τ values is practically zero, we may assume that
we miss substantial amount of posterior mass and get biased estimates. In this case, the
severe sampling problems for small τ values is reflected in the sampling efficiency for all
quantiles. Red ticks, which show the position of iterations with divergences, have con-
centrated to small τ values, which gives us another indication of problems in exploring
small values.

Figure 13 shows how the estimated effective sample sizes change when we use more
and more draws. Here we do not see sudden changes, but both bulk-ESS and tail-ESS
are consistently low. In line with the other findings, rank plots of τ displayed in Figure 14
clearly show problems in the mixing of the chains. In particular, the rank plot for the
first chain indicates that it was unable to explore the lower-end of the posterior range,
while the spike in the rank plot for chain 2 indicates that it spent too much time stuck
in these values. More experiments can be found in Appendices C and D as well as in
the online appendix.
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Figure 11: Local efficiency of small-interval probability estimates of τ for the eight
schools model with centered parameterization. The dashed line shows the recommended
threshold of 400. Red ticks show the position of divergent transitions.

Figure 12: Efficiency of quantile estimates of τ for the eight schools model with centered
parameterization. The dashed line shows the recommended threshold of 400. Red ticks
show the position of divergent transitions.

Figure 13: Estimated effective sample sizes of τ with increasing number of iterations
for the eight schools model with centered parameterization. The dashed line shows the
recommended threshold of 400.
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Figure 14: Rank plots of posterior draws of τ from four chains for the eight schools
model with centered parameterization.

Figure 15: Local efficiency of small-interval probability estimates of τ for the eight
schools model with the non-centered parameterization. The dashed line shows the rec-
ommended threshold of 400.

Non-centered eight schools model

For hierarchical models, the corresponding non-centered parameterization often works
better (Betancourt and Girolami, 2019). For reasons of comparability, we use the same
conservative sampler settings as for the centered parameterization model. For the non-
centered parameterization, we do not observe divergences or other warnings. All values
of R̂ are less than 1.01 and ESS exceeds 400, indicating a much better efficiency of the
non-centered parameterization. Figures 15 and 16 show the efficiency of small-interval
probability estimates and the efficiency of quantile estimates for τ . Small τ values are
still more difficult to explore, but the relative efficiency is good. The rank plots of τ
Figure 17 show no substantial differences between chains.

Supplementary Material

Rank-Normalization, Folding, and Localization: An Improved R̂ for Assessing Conver-
gence of MCMC. Supplementary Material. (DOI: 10.1214/20-BA1221SUPP; .pdf).

https://doi.org/10.1214/20-BA1221SUPP
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Figure 16: Efficiency of quantile estimates of τ for the eight schools model with the
non-centered parameterization. The dashed line shows the recommended threshold of
400.

Figure 17: Rank plots of posterior draws of τ from four chains for the eight schools
model with non-centered parameterization.
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Invited Discussion

Dootika Vats∗ and Galin Jones†

We congratulate Vehtari et al. (2021) for a thought-provoking article addressing im-
portant and challenging practical problems facing users of Markov chain Monte Carlo
(MCMC) algorithms. Their novel visualizations and tools will allow users to gain further
insights into their simulation experiments. Vehtari et al. (2021) develop an improvement
of the R̂ statistic of Gelman and Rubin (1992). The main issues we consider are what
exactly this new statistic estimates and how it might be used. We also discuss some
reasons for the instability of the original R̂ and how that might be improved.

We mostly focus on the use of a single Markov chain. However, we have no intention
of rekindling the debates of one long run versus shorter parallel runs of the previous
century (see, e.g., Gelman and Rubin, 1992; Geyer, 1992) except to say that any com-
parisons between methods should be based on the same overall computational effort.
Modern computational hardware makes independent parallel implementation of MCMC
nearly trivial and we see no reason not to take advantage of it. Indeed we routinely do
so in our applied work. Our focus on single chain simulations below is done only to
simplify the discussion.

1 Stationarity, convergence, and mixing

MCMC practitioners often speak of detecting convergence, stationarity, or mixing of the
Markov chain when assessing their simulation output. It will pay dividends to define
these terms and understand how they are distinct concepts.

Suppose F is a probability distribution having support X; in Bayesian statistics this
is the posterior distribution. Our goal is to learn about F in order to perform statistical
inference and due to the complexity of F we are forced to use Monte Carlo methods;
more on this in Section 1.1. MCMC algorithms typically simulate a realization of a time-
homogenous Markov chain {X1, X2, X3, . . .} with its dynamics determined by a Markov
transition kernel, P (x, ·). Somewhat loosely, we can think of the kernel as giving the
probability of moving to a set A given that the current state is x, or

P (x,A) = Pr(Xn+1 ∈ A | Xn = x) n ≥ 1.

The distribution ν for X1 is chosen by the practitioner. Point mass initial distributions
are common, in which case the initial state is chosen deterministically. Each element of
the Markov chain has a marginal distribution which we will denote Fn(ν, P ) to highlight
the dependence of the marginal distribution on the chosen algorithm P and the initial
distribution ν. The exact form of Fn(ν, P ) is typically not explicitly available.
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Standard MCMC algorithms such as Metropolis-Hastings, Gibbs samplers, condi-
tional Metropolis-Hastings, and so on, yield time-homogenous Markov chains such that
the target distribution F is invariant. Thus, if Xn ∼ F , then Xn+1 ∼ F for all n. Such
a Markov chain is said to be stationary.

If X1 ∼ F , then Fn(ν, P ) = F for all n, but otherwise this will not be the case.
While it is uncommon to be able to make an initial draw from F , it is typically the case
that, for large n, the marginal distribution Fn(ν, P ) will be close to F irrespective of
the choice of ν. More specifically, if ‖ · ‖ is total variation norm, then, under standard
assumptions (Douc et al., 2018; Meyn and Tweedie, 2009) the Markov chain is ergodic,
so that for all ν,

‖Fn(ν, P )− F‖ → 0 as n → ∞. (1)

This implies that the marginal distribution of Xn converges weakly to F . Thus, as the
simulation experiment progresses it will produce an increasingly representative sample
from F no matter the initial distribution ν.

Since the convergence in (1) is an asymptotic event, MCMC experiments often begin
by trying to identify n∗ so that the distribution of Xn∗ is approximately F . Given ε > 0,
ideally we would be able to identify some n∗ = n∗(ε) so that

‖Fn∗(ν, P )− F‖ ≤ ε. (2)

Because the total variation norm is non-increasing in n, if we can identify n∗, then
every subsequent draw would also be approximately distributed as F . Informally, such
a Markov chain is often said to have reached stationarity or to have converged, even
though, in the strictest sense of these words, this it is not possible

The values before Xn∗ are often discarded and only the remaining are used for
estimation. Since n∗ need not be the smallest such value, it is known as a sufficient
burn-in. Naturally, the time to be within ε total variation distance of F depends on the
chosen algorithm, P , and the initial distribution, ν.

Mixing may be defined in several ways. The way we will use it here, in keeping with
common practice, is as an informal qualitative assessment as to whether the simulation
is adequately exploring the support of F . An MCMC simulation experiment which is
apparently exploring the support of F well is said to be mixing well while one that does
not is said to be mixing poorly.

These concepts are illustrated in the following example.

Example 1. Let F correspond to a two-component mixture of Gaussian distributions

.7N(−5, 1) + .3N(5, .5) .

We employ a Metropolis-Hastings algorithm with proposal N(·, h2) for h ∈ {1, 3, .03}.
The results for simulations of length 104 are given in Figure 1. The columns in the
figure correspond to the three choices of h while the rows correspond to different choices
of the initial distribution. In the top row the simulation was started with a draw from
F , that is, we deliberately set ν = F while in the bottom row we set ν to be the point
mass distribution at −10.
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Consider the top row of Figure 1. All three plots are simulations of stationary Markov
chains, for which convergence trivially holds. Although the simulation in the top right
panel is obviously slow mixing, it may be surprising that the simulation in the top left
panel is also slowly mixing. Neither simulation is exploring the support effectively. The
middle panel is the only simulation that is mixing well. It bears repeating that all three
panels display simulations of stationary Markov chains.

In the bottom row of Figure 1, none of the simulations are of stationary Markov
chains because we set ν to be the point mass distribution at −10. As with the top row,
only the middle plot exhibits a simulation which is mixing well while the other two
plots exhibit slow mixing. Moreover, identifying non-convergence looks to be challenging.
For example, although both plots in the left column are nearly identical, the simulation
in the bottom-left plot likely has not “converged” sufficiently close to F , even after
104 iterations, since it has not visited the other mode so that most of the mass of the
empirical distribution would be concentrated in the bottom mode. Similar comments
hold for the simulation in the bottom-right panel. However, the middle plot displays
a simulation which has likely “converged.” We say this because when we repeat this
simulation experiment a large number of times and examine the empirical distribution
of X500, that is the 500th step of the simulation, it is similar to F so we suspect that
convergence occurs much sooner than after 104 iterations.

At several points above we explicitly used our knowledge of the bimodality of the
invariant distribution. This sort of knowledge is often unavailable in practically relevant
applications of MCMC, which substantially complicates the assessment of the simulation
output.

We see that slow mixing Markov chains can be stationary and fast mixing Markov
chains can be non-stationary. Fast mixing Markov chains likely converge more quickly
than those that are slow mixing. Vehtari et al. (2021, Section 3.1) use their split-R̂ to
address the question, “Did the chains mix well?” We are curious if the new split-R̂
can be successful in diagnosing convergence? Certainly, split-R̂ can identify situations
when summary statistics of chunks of the chains disagree; indicating that the chunks
may not have representatively explored the state space. On the other hand, it is not too
difficult to imagine implementing several parallel simulations which are all attracted to
one of the modes and produce results all look similar to the lower left panel in Figure 1.
Such a simulation would seemingly mix well, but would not, in fact, be producing a
representative sample from the target distribution.

1.1 Learning about F

Asymptotic arguments also justify the use of MCMC in learning about features of F .
For example, if h : X → R, we may be interested in the expectation

μh := EF [h(X)] =

∫
X

h(x)F (dx).

Often there are many expectations and marginal quantiles of interest, but in the interest
of a concise presentation, we will focus on univariate expectations; the general case is
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Figure 1: Trace plot of 104 samples of the Metropolis-Hastings algorithm for h = 1
(left), h = 3 (middle), and h = .03 (right). Top row are with ν = F and bottom row is
ν being the point mass at −10.

more complicated but can be handled analogously (Robertson et al., 2021; Vats et al.,
2019).

Suppose a sufficient burn-in, n∗ ≥ 1, is used, then we reindex the sample as

{X1, X2, . . . , Xn},

so the total simulation effort is n∗ + n − 1. If the expectation exists, then the sample
mean converges to μh. That is, as n → ∞, with probability 1,

h̄n :=
1

n

n∑
i=1

h(Xi) → μh. (3)

In order for h̄n to be reliable in the sense that another simulation of the same effort
would produce a similar result, we will need to control both the bias and the variance.
Choosing an initial distribution ν which is close to F , whether it is through the use of
a sufficient burn-in n∗ or by other means, is how we go about ensuring a representative
sample and hence controlling the bias. Controlling the variance boils down to the value
of n chosen, that is the size of the simulation effort after burn-in. The number of Monte
Carlo samples obtained depends only on our patience, but, no matter the size of n,
there will be an unknown Monte Carlo error θ̂n − θ. If a central limit theorem (CLT)
holds, that is, if there exists σ2 > 0 so that, as n → ∞,

√
n(h̄n − μh)

d→ N(0, σ2),
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then the approximate sampling distribution of the Monte Carlo error is available and we
can use it to assess its variability. Observe that σ2 �= VarFh(X) since it must account
for the serial dependence in the Markov chain.

As noted by Vehtari et al. (2021), if a CLT does not hold, the estimator h̄n has
unbounded variability and is unreliable. They further observe that one way to establish a
Markov chain CLT is to show that the Markov chain is geometrically ergodic. Geometric
ergodicity also has a connection to identifying a sufficient burn-in n∗ which we describe
in the next section.

2 Representative samples

If we are able to obtain one draw X1 ∼ F , then all subsequent samples are from F . Since
this is mostly challenging, users are left to choose ν so that n∗ is as small as possible
and approximately representative samples are obtained relatively quickly. The sufficient
burn-in n∗ may be identified through rigorous theoretical methods or by convergence
diagnostics.

2.1 Theory and its limitations

Recall that we would ideally want to find n∗ satisfying inequality (2). To slightly simplify
the presentation, we assume for the remainder that the initial distribution ν is a point
mass distribution at x1 and we denote the associated marginal distribution at time n
as Fn(x1, P ). If there exist M : X → R+ and 0 < ρ < 1 satisfying

‖Fn(x1, P )− F‖ ≤ M(x1)ρ
n, (4)

then the kernel P is geometrically ergodic. The influence of the initial value is explicit
in (4). If the initial value is chosen such that M(x1) is large, then convergence could be
slow until the Monte Carlo sample size is so large that ρn becomes small enough to offset
it. Amazingly there are rigorous, constructive methods for establishing (4) and finding
n∗ from (2). In particular, there is a substantial literature that provide upper bounds
for the right-hand side of (4) (Baxendale, 2005; Douc et al., 2004; Jerison, 2019; Roberts
and Tweedie, 1999; Rosenthal, 1995). While these upper bounds could be utilized more
frequently in applications to obtain values for n∗, the required analysis of the Markov
chain can be challenging, and the upper bounds are sometimes so conservative as to be
less than helpful (Jones and Hobert, 2004; Qin and Hobert, 2021).

2.2 Diagnostics and their limitations

Given the difficulty of finding a rigorous sufficient burn-in n∗ in realistic applications, it
is natural to try to assess the performance of the simulation by observing its output. This
has led to an extensive literature on so-called convergence diagnostics. The interested
reader may consult Roy’s (2020) recent review.

As adumbrated in Section 1, using a realization of a Markov chain (or even sev-
eral parallel chains) to detect convergence or non-convergence is challenging. There is
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certainly a little additional solace that can be taken if there are several parallel chains
started from different points and they all yield similar results. But this is far from a
guarantee that all of the meaningful parts of the space have been explored or that a
truly representative sample is being produced.

3 Interpretability and stability

Numerical diagnostics use the simulated data to construct summary statistics which
estimate a feature of the process. If the summary statistic stabilizes, then the diagnostic
indicates that there is no evidence of a problem (e.g. non-convergence) and victory is
declared. In most cases, such summary statistics are studied in-context and have clear
interpretations. So, although it is mathematically understood why a value closer to 1 is
desirable, it remains unclear exactly what feature of the process Vehtari et al.’s (2021)
new version of R̂ is estimating. In other words, what is the feature R, that the new R̂ is
estimating? We would greatly appreciate it if they could help us understand this better.

An interpretation of the original R̂ is possible via effective sample size (ESS). Recall
that σ2 is the variance from the asymptotic normal distribution of the Monte Carlo
error. If λ2 = VarFh(X), then the ESS for estimating μh is nλ2/σ2. If the estimated
ESS is large, then the Monte Carlo sample size is large enough that the variability due to
Monte Carlo sampling is small relative to the variability of the stationary distribution.
It seems clear that ESS is a measure of estimation reliability of the sample mean h̄n;
this intuition can be made rigorous (Gong and Flegal, 2016). While the original R̂
is commonly viewed as a convergence diagnostic, recently it has been shown to be
equivalent to the ESS for estimating μx = EFX (Vats and Knudson, 2021). Notice
that, as illustrated by Vehtari et al. (2021), this makes the original R̂ problematic when
this expectation does not exist.

Both ESS and R̂ require the estimation of σ2. The original R̂ uses B/n, the sample
variance of sample means fromM chains to estimate σ2, while common implementations
of ESS utilize more robust alternatives. Since M is typically small, the estimator B/n
is highly variable for σ2 which often leads to premature termination of the simulation
(Flegal et al., 2008). Vehtari et al. (2021, Section 3) use initial sequence estimators
in estimating ESS. Given the connection between R̂ and ESS, using this estimator in
place of B/n is likely to yield reduced variability in R̂. We also add here that a critical
assumption for validity of initial sequence estimators is reversibility (Geyer, 1992). Non-
reversible Markov chains are routine in applications, e.g. simple Gibbs samplers or other
component-wise samplers are typically not reversible. In this case, alternatives like batch
means (Glynn and Whitt, 1991) or spectral variance (Anderson, 1971) estimators will
be more appropriate.

4 Final remarks

Even after decades of empirical and theoretical work on MCMC algorithms, most
MCMC experiments are conducted in a black box manner because little is known about
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the structure of F prior to simulation. Diagnostics based on the simulated values cannot
prove that the simulation is providing representative samples, and the best we can hope
for is that it indicates when a problem has occurred. If the diagnostics do not indicate
a problem, then only a little solace should be taken by the practitioner: an absence of
evidence of non-convergence is not evidence of convergence.

However, we fully understand the need for both graphical and numerical diagnostics
and indeed, we use some of them in our own work. The creative methods of Vehtari
et al. (2021) significantly expand the toolkit of MCMC simulation output analysis.
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Christopher M. Hans∗

1 Overview

Markov chain Monte Carlo (MCMC) methods continue to play an important role in
statistical modeling and data analysis thirty-plus years after their introduction into the
statistics research community. This is especially true for Bayesian analysis, where in-
ference under all but the most standard of models typically requires the evaluation of
integrals that do not have closed-form solutions. Sampling-based approaches to poste-
rior inference have been popular in part due to their flexibility: rather than customizing
analytical approximations to each estimand of interest, samples from a posterior distri-
bution under one parameterization can usually be transformed easily to make inferences
about functions of the parameters and to facilitate predictive inference.

The present-day landscape of MCMC methods boasts an abundance of options for
posterior sampling. These options range from “bespoke” algorithms that are highly-
customized for particular models to generic methods that are intended to work well
for many different classes of models without requiring strong assumptions about the
dimensions of the parameter spaces or the shapes of the posteriors. Examples of the
latter are typically used in software that has been designed to facilitate Bayesian data
analysis by providing automated methods for posterior sampling that require minimal
input from the user. Stan (Carpenter et al., 2017) and NIMBLE (de Valpine et al., 2017)
are two contemporary examples of such software, while WinBUGS (Lunn et al., 2000),
JAGS (Plummer, 2003) and OpenBUGS (Lunn et al., 2009) have been used extensively
in applied data analysis over the past two decades.

Two central computational questions face modern practitioners when employing
MCMC to summarize complex Bayesian models: (i) which MCMC algorithm should one
use, and (ii) for how long should one run the chain(s) before convergence is achieved and
inferences are reliable? The two questions are somewhat interrelated, as a good choice
of algorithm may result in fewer required samples for reliable inference. Both questions
can be further refined. An algorithm in a chosen class might require tuning of some
sort (e.g., selection of a step-size for a non-adaptive Metropolis algorithm); decisions
about how long to run a chain may depend on the types of inferences required. Due to
its practical importance, question (ii) received attention in the statistics literature as
soon as MCMC methods began to be adopted for Bayesian inference. The question of
whether one should run single or multiple chains—and how to monitor and diagnose
convergence under both paradigms—was considered from different perspectives (see,
e.g., Geyer, 1992; Gelman and Rubin, 1992a,b). While opinions—and practice—varied,
it became common to see the multiple-chains approach advocated by Gelman (1996)
used in applications of MCMC. Convergence diagnostics under this paradigm included
use of the R̂ statistic (Gelman and Rubin, 1992a). Common graphical diagnostics for
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assessing convergence (or, perhaps more accurately, detecting non-convergence) included
trace plots of (functions of) the parameters.

The paper “Rank-Normalization, Folding, and Localization: An Improved R̂ for
Assessing Convergence of MCMC” (Vehtari et al., 2021) takes a modern look at aspects
of question (ii). The paper introduces improvements to existing convergence diagnostics
and proposes localized versions of effective sample size that are inspired by the fact
that convergence of functionals of interest that are specific to different regions of the
parameter space may converge at different rates. The ideas are relevant when one has a
great deal of freedom over the choice of MCMC algorithm as well as when one is using
automated methods for MCMC. As such, the paper’s contributions can be incorporated
into software such as Stan to improve MCMC practice. Moreover, the methods are
conceptually straightforward and easy to implement, making them accessible to those
programming MCMC algorithms from scratch.

The paper proposes several innovations aimed at improving assessment of MCMC
convergence based on multiple chains. First, the authors identify deficiencies in the
existing split-R̂ statistic (Gelman et al., 2013). They show that the existing statistic
will fail to diagnose non-convergence in two specific situations: when the chains have
different variances but the same mean and when the chains have different locations but
infinite variances. The examples are clear and compelling and of practical importance.
As noted in the paper, the former can occur when one chain is stuck in the bulk of the
distribution and does not adequately explore the distribution’s tails, while the latter can
occur by design in complex modeling situations. The authors propose a clever solution
for the heavy-tailed (latter) situation whereby convergence is monitored not based on the
samples directly but based on the (normalized) ranks of the samples across the multiple

chains. Computing split-R̂ after passing to the normalized ranks remedies potential
problems induced by heavy tails without introducing any obvious new complications. For
the former (same mean/difference variances) problematic setting, the authors propose
first folding the samples about their median via the absolute value operator before
rank normalizing the draws and computing the split-R̂ statistic. Both approaches are
demonstrated to fix the deficiencies with split-R̂ based on the non-transformed chains,
and it is recommended to use the maximum of the rank normalized split-R̂ and the
rank normalized folded-split-R̂ when assessing convergence.

The second main innovation in the paper is the introduction of new localized con-
vergence diagnostics and is also of practical importance. When analyzing data based on
MCMC output, one often hears the general advice to monitor the chains for convergence
based on each estimand of interest. This is wonderful advice if one knows in advance all
inferences that will be made. But as data analysis and statistical modeling is an itera-
tive endeavor, it is usually the case that one ends up making inferences about quantities
that were not necessarily monitored during the initial run of the chains. Problems may
arise if the initial runs were monitored based on measures of the bulk of the distribu-
tion (e.g., measures of location) but inferences about tail quantities (e.g., very small or
very large quantiles) end up being desired, as longer MCMC runs may be needed to
well-estimate the latter. Vehtari et al. (2021) propose monitoring effective sample size
for quantiles and small probability intervals for each parameter and running the chain
until convergence has been diagnosed for all.
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The new methods introduced in the paper are sensible and work well in practice. I
congratulate the authors on making improvements to current state-of-the-art methods
for this long-standing problem. The rest of my discussion is focused on the graphical
diagnostic techniques that are proposed in the paper, as they were of particular interest
to me.

2 Graphical diagnostics

The paper also proposes new diagnostic plots for visualizing aspects of MCMC conver-
gence. The use of ranks is extended to create plots to help assess whether each chain
is targeting the same distribution. Plots of effective sample size for quantiles and small
interval probabilities across the target distribution are used to assess whether the chains
are failing to well explore specific regions of the target distribution. Plots of effective
sample size per iteration for bulk and tail quantities are used to assess the relative
efficiency of the sampler. The visualizations make the numerical diagnostics more user-
friendly and interpretable. The “quantile and small-interval plots” are most interesting
to me, as they provide a clear visualization of how well the sampler is exploring the full
distribution. I expect these plots to be especially helpful when posterior samples will
be used to construct density estimates. The plots may have other diagnostic uses, e.g.,
asymmetry in plots such as Figure 4 in Vehtari et al. (2021) might in some cases suggest
specific deficiencies with the sampling algorithm.

When discussing graphical diagnostics, it is difficult not to think of the important
role that graphics play in regression analysis. In the regression setting, information about
residuals and measures of influence (Cook and Weisberg, 1982) can be plotted to help
diagnose model misfit, though care must be taken when making such interpretations
(Cook, 1994). One powerful feature of such plots is that in addition to identifying the
existence of potential deficiencies with a model, the plots often suggest reasons for the
deficiency as well as possible remedial measures that could be taken. The regression
graphics aid the interactive model building process.

With this in mind, an interesting question is the extent to which the diagnostic
visualizations proposed in Vehtari et al. (2021) might be able to serve a similar purpose:
can the plots suggest specific deficiencies with a sampling algorithm in addition to
indicating whether more samples should be obtained? The plots are designed to be
good at the latter; any potential for achieving the former would make them even more
powerful as diagnostic tools. Examples of specific deficiencies might include slow mixing
due to small step sizes in a Metropolis algorithm, slow mixing in a Gibbs sampler due to
strong correlation between parameters, a failure to rapidly mix across multiple modes
of a multimodal distribution, etc. If the plots can suggest specific reasons for slow
convergence, targeted modifications to the sampler could be made.

In thinking about this question I have focused on the rank plots that were introduced
in Section 4.5 of the paper as a proposed replacement for trace plots. It might be of
interest to study how specific problems with convergence manifest themselves in the
rank plots, with an eye toward using the rank plots as more general diagnostic tools.
If it is indeed the case that rank plots can be useful for detecting specific deficiencies,
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I expect that expertise in understanding how to map features of the plots to specific

deficiencies will build up over time as users begin to employ the plots across a variety

of examples.

As an initial attempt at investigating the potential for such mappings, I consider

below two simple examples that illustrate different ways in which a sampler may have

difficulty exploring the entirety of a target distribution. The two examples were specifi-

cally chosen to be extreme so that the effect on the rank plots is clear. In both examples,

a univariate target distribution f(x) was explored via a random-walk Metropolis algo-

rithm with Gaussian innovations. Four chains were run for 1000 iterations each. As

intended, in both examples both the rank normalized split-R̂ and the rank normal-

ized folded-split-R̂ statistics strongly indicate that more samples should be obtained.

The MCMC samples and the rank plots were then compared to assess the extent to

which features of the rank plots might be useful in indicating specific aspects of non-

convergence.

2.1 Example 1

The target distribution f(x) in this example is the standard normal distribution. The

four chains were started at the values −10, −8, 8 and 10, which are far from the bulk

of the target distribution’s mass. The standard deviation for the Gaussian innovation

in the proposal distribution was taken to be 0.1, which is small relative to the standard

deviation of the target distribution and should discourage rapid mixing. Trace plots

and rank plots for the four chains appear in Figure 1. The maximum of the two split-R̂

statistics is 2.35, a strong indication that more samples are needed. The rank plots

confirm this, as the ranks in each chain are clearly not uniform, with strong differences

observed across chains.

The ranks for chains 1 and 2 are heavily biased toward large values, while the

opposite is true for chains 3 and 4. There is little overlap between the histograms for

chains 1–2 and 3, while the ranks for chain 4 exhibit some overlap with the ranks for

chains 1–2. While the general lack of uniformity suggests the chains need to be run

longer, the patterns related to the overlap of the histograms suggest that some chains

spent more time exploring regions of large values of x, while other chains spent more

time exploring small values of x.

The reason for this is clear once we look at the trace plot. The starting values are well

into the tails of the distribution, and with no warm-up period accounted for, the chains

take a while to reach the bulk. Once there, the small standard deviation in the proposal

distribution results in slow mixing of the chain and contributes to non-uniformity in

the rank plots. In this example, the rank plots indicate a specific problem (the chains

are only exploring specific regions of the parameter space), but there are two causes of

the problem and it is not clear that the rank plots on their own can be used to identify

both.
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Figure 1: Trace and rank plots of MCMC output for the example in Section 2.1. The
target distribution is a standard normal distribution.

2.2 Example 2

The target distribution f(x) in this example is an equally-weighted mixture of a N(−4, 1)
distribution and a N(4, 1) distribution. The distribution has two distinct modes that
are well separated. The standard deviation for the Gaussian innovation in the proposal
distribution was taken to be 1 to facilitate mixing within a mode but to discourage
mixing across modes. The four chains were started at the values −5, −3, 3 and 5 so
that the first two chains start in the bulk of the distribution near the lower mode
while the second two chains start in the bulk of the distribution near the upper mode.
Trace plots and rank plots for the four chains appear in Figure 2. The maximum of the
two split-R̂ statistics is 1.56, a strong indication that more samples are needed. The
rank plots confirm this, as the ranks in each chain are clearly not uniform, with strong
differences observed across chains.

The rank plots indicate that chains 3 and 4 only explore the lower regions of the
target distribution, chain 2 only explores the upper region of the distribution, and
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Figure 2: Plots of MCMC output for the example in Section 2.2. The target distribution
is an equally-weighted mixture of a N(−4, 1) distribution and a N(4, 1) distribution.

chain 1 spends time exploring both regions, with more time spent in the upper region.
The rank plots exhibit some of the same non-overlap features as did the rank plots in
Example 2.1, but the reason for these features is different in this case. The chains mix
well within a mode and so portions of the rank plots are fairly uniform, but the chains
have difficulty jumping between modes and so the plots are not uniform across all the
ranks. The cause of the difficulty is clear once one looks at the trace plot.

2.3 A note on trace plots

Vehtari et al. (2021) suggest that one might consider replacing the use of trace plots to
diagnose MCMC convergence with the use of rank plots. Trace plots have been used to
visualize MCMC output since the methods became popular in the early 1990s (though
none appear in Gelfand and Smith, 1990). The authors provide several compelling argu-
ments for why trace plots are not universally useful. They note that in high dimensional
examples, examining large numbers of trace plots is not practical, and that trace plots
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“tend to squeeze to a fuzzy mess when used with a long chain.” Both are valid criti-
cisms that illustrate problems with trace plots. The authors also provide an interesting
example (summarized in Figure 10 in the paper) where MCMC is implemented based
on two different parameterizations of the Cauchy distribution. The sampler converges
well under one parameterization but not under the other; however, distinguishing good
from bad convergence based on trace plots is not easy.

While these are excellent examples of situations where trace plots are not particularly
useful, I would hesitate to completely replace my use of trace plots with rank plots. As
seen in Examples 2.1 and 2.2 above, there are situations where rank plots indicate
problems with convergence but trace plots provide extra information about what is
causing the problems. I find it is useful to rely on a wide range of summaries when
assessing convergence and look forward to using both types of plots in the future.
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Contributed Discussion

Théo Moins∗, Julyan Arbel†, Anne Dutfoy‡, and Stéphane Girard§

We have highly appreciated this contribution to improve Markov chain Monte Carlo
(MCMC) convergence diagnostics and would like to thank the authors for their in-
sightful paper. In this note we discuss an adaptation of the quantile transformation
introduced by the authors to the computation of some new R̂ and analyse associated
theoretical properties. More specifically, we propose to compute a continuous version
R̂(x) for any level x based on indicator variables I(θ(n,m) ≤ x), rather that on the pa-
rameter values θ(n,m) themselves or their Gaussian version (4.1). This provides us with a
function R̂(x) defining a local convergence diagnostic for any x. The rank-normalization
step is circumvented since working on Bernoulli random variables I(θ(n,m) ≤ x) ensures
the existence of all moments whatever the θ(n,m) distribution is. Assume that all ele-
ments θ(m,1), . . . , θ(m,N) of a given chain m follow the same distribution Fm (without
independence assumption) which may vary with m. Under this stationarity assumption,
mean and variance of Bernoulli random variables I(θ(n,m) ≤ x) can be easily written as
functions of Fm, leading to an explicit expression for R2(x), the population version of
R̂2(x):

R2(x) = 1 +
1

M

∑M
i=1

∑M
j=i+1 (Fi(x)− Fj(x))

2∑M
i=1 Fi(x)(1− Fi(x))

. (1)

Clearly, R2(x) ≥ 1 for all x ∈ R, with equality iff all Fm coincide. Moreover, R2(x) → 1
as |x| → ∞. In order to condense the continuous index (1) into a scalar one, we may
also consider its supremum over R, denoted by R∞, which is computed in practice at
empirical quantiles. Hereafter, we illustrate how the problems of traditional R̂ referred
to as items 1. and 2. of Section 1.2 in the paper are bypassed by our proposal on two
toy examples. See also Figure 1 for finite sample results.

Example 1 (Same mean and different variances). Here Fm(x) = F (x/σm) where σm

is a scale parameter. As an example, we consider M chains uniformly distributed on
[−σm, σm] with σm = σ ≤ σM for all m ∈ {1, . . . ,M−1} to model a lack of convergence.
From (1), function R2 has a maximum reached at −σ/2 and σ/2:

R2
∞ := sup

x∈R

R2(x) = R2(±σ/2) = 1 +
M − 1

M

(
1− 2

1 + σM

σ

)
.

It appears that R2
∞ is an increasing function of σM/σ with R2

∞ = 1 iff σM = σ, and
upper bounded by 2− 1/M .

Example 2 (Heavy tails and different locations). Here Fm(x) = F (x− μm), with F a
heavy-tailed distribution and μm a location parameter. We consider Pareto distributed
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Figure 1: Illustrations with M = 4 chains, N = 1000 iterations each. Colors blue, violet
and red resp. correspond to choices of ‘diverging’ distributions FM such that our scalar
diagnostic R∞ matches with 1.01, 1.03 and 1.05. Top row: density of distributions Fm

used, uniform (left) and Pareto (right). Colors for ‘diverging’ FM and black for others.
Second row: population (theoretical) version R(x) of our index. Third row: empirical
version R̂(x) of our index on simulated data; discussed rank-R̂ shown as colored dashed
lines. Bottom row: traceplots of one ‘converging’ chain (m = 1, black) and the ‘diverging’
chain (m = M , red case, R∞ = 1.05).

chains with shape parameter α > 0, and starting point η > 0 for (M − 1) chains and
ηM ≥ η for the remaining one. In that case, R2

∞ exists for any tail-index α > 0:

R2
∞ = R2(ηM ) = 1 +

1

M

((
ηM
η

)α

− 1

)
.

Thus, R∞ is an increasing function of ηM/η, with R∞ = 1 iff ηM = η.

To conclude, it appears on these two examples that the proposed local version R̂(x)
allows both to localize the convergence of the MCMC in different quantiles of the distri-
bution, and at the same time to handle the problems not detected by classical R̂ pointed
out in the article. Compared to the rank-R̂ proposed in the article, our scalar version
R̂∞ seems to be more conservative (see third row of Figure 1). Further investigation
has to be done on a range of real world problems.
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Rejoinder

Aki Vehtari∗, Andrew Gelman†, Daniel Simpson‡, Bob Carpenter§,

and Paul-Christian Bürkner¶

We thank the discussants for their kind words and insights. In addition to these dis-
cussions, based on how our paper has been cited, it seems it would have been good
to have included effective sample size (ESS) and Monte Carlo standard error (MCSE)

also in the title as they are equally important as R̂ and the main role of R̂ is to handle
information from multiple chains.

1 Graphical diagnostics

We agree with Hans, who wrote, “trace plots provide extra information about what
is causing the problems.” When proposing to replace trace plots with rank plots, we
were intentionally a bit provocative. Indeed, trace plots can be useful to illustrate slow
mixing or the long-lasting effect of initial values, and thus they have their role in the
convergence diagnostic workflow as one potential way to find causes for problems that
arise; see, e.g., Figure 32 in (Gelman et al., 2020). However, we do not think that
trace plots should be the first thing inspected after running Markov chain Monte Carlo
(MCMC). Rather, we recommend starting with R̂, ESS, and other diagnostics and then,
if there seem to be problems, using graphical tools such as rank plots and trace plots to
understand what went wrong. The area of graphical diagnostics for MCMC convergence
is under-researched. We think it is important to value such diagnostics as investigative
tools rather than treating them as ways of making yes/no recommendations.

Rank histogram plots can allow visual detection of smaller differences than can be
seen in trace plots, but they also have shortcomings. The interpretation of histograms is
also familiar for many users, so we intentionally focused on the visual aspect of the rank
plots. After the current paper had been accepted for publication, Säilynoja et al. (2021)
have developed a graphical test for testing uniformity of ranks, and they illustrate its use
for comparing ranks from multiple chains. We recommend this approach as it allows
us to assess whether the small differences between the chains are just due to chance
or if there is a deeper problem. The approach is based on examining the empirical
cumulative density function (ECDF) or its difference from the uniform baseline with a
computationally efficient way to compute simultaneous confidence bands. The benefits
compared to the histogram rank plots are that the ECDF doesn’t require a choice of bin
size and the simultaneous confidence band takes into account the dependence between
empirical cumulative density values. Figure 1 shows the benefit of ECDF rank plots
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Figure 1: Histogram and ECDF rank plots. When inspecting the sampling of parameter
τ , even when the 96% confidence bands of the histogram rank plots of chains 2 and 3
are exceeded by one bin each, the ECDF plot and the ECDF difference plot of the non-
centered parameterization eight schools model indicate no mixing issues as the ECDF of
the fractional ranks of each chain stay between the 96% simultaneous confidence bands.

over the histogram plots when analysing the convergence for the eight schools model
with non-centered parameterization.

2 Empirical diagnostics do not prove convergence

We agree with Vats and Jones, who wrote, “Diagnostics based on the simulated values
cannot prove that the simulation is providing representative samples, and the best we
can hope for is that it indicates when a problem has occurred.” The same holds also
for multiple chain diagnostics. Even coupling methods that produce perfect draws can
be fooled by a local mode that is well separated from others. On the other hand, we
can rarely find useful qualitative guarantees for complex model classes, and using these
techniques would be far beyond the ability of even advanced MCMC users. Furthermore,
these qualitative bounds frequently provide insufficient information about the actual
performance of the Markov chain. Hence, rather than trying to prove convergence, we
use numerical and graphical diagnostics as part of our workflow to catch problems of
poor mixing as quickly as possible.

3 Interpretation of R̂

Vats and Jones ask about the interpretation of the new version of R̂. Originally and
inherently, the interpretation of R̂ is as the ratio of the scale of all the chains mixed and
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the scale of each chain alone, and thus R̂ is inherently a multi-chain diagnostic. The
original and many later versions used standard deviation as a measure of scale, whereas
the rank-normalized version uses a non-parametric measure of variation, which has the
benefit of working when the variance of the target is infinite while still coinciding with
the variance-based R̂ when the target is normal.

In addition to using the rank-normalized R̂ as a more robust multi-chain diagnostic,
when computing ESS and MCSE, we are still using the total and within variances to
appropriately combine autocorrelations from several chains, which makes sense as all
ESS, MCSE and autocorrelations are defined in terms of variances that thus need to be
finite. We consider variance-based and rank-normalized R̂s as quick multi-chain diag-
nostics, ESS as a scale free multi-chain efficiency measure, and MCSE as interpretable
with respect to domain expertise.

As we mention in the paper, we recommend MCSE and the corresponding notion of
effective sample size as the diagnostics that allow interpretation in the context of the
domain knowledge about the required estimation accuracy. However, we don’t recom-
mend trusting MCSE if there are other signs of bad sampling behavior, because MCSE
estimates can be optimistic in these cases. If more reliability is needed, we recommend
checking whether the central limit theorem is kicking in as follows: double the number of
iterations and check that MCSE goes down by a factor of around

√
2 (correspondingly

ESS goes up by a factor of 2). If that doesn’t happen, there can be convergence issues or
the distribution may have infinite variance which can be diagnosed, for example, with
the Pareto k diagnostic (Vehtari et al., 2019). If the proposed diagnostics that work
with infinite variance do not show any clear convergence issues, but the distribution for
the quantity of interest has infinite variance we recommend estimating, for example,
the median instead of the mean, and then using the MCSE estimate provided in the
Section 4.4 of our paper.

4 Local diagnostics

The proposal by Moins, Arbel, Dutfoy, and Girard is interesting and closely related
to our local efficiency plots which are also based on indicator variables. Our local ESS
values use the basic R̂ to incorporate multichain information, and use autocorrelation
information to handle within-chain correlation. They can thus can be used similarly to
the estimate by Moins et al., with the additional benefit of using within-chain informa-
tion more efficiently.

As the example by Moins et al. has distributions that have different supports, it
seemed strange that R̂ was decreasing in the region of no-overlap. Investigating this
helped us to recognize an unwanted behavior that we had in our diagnostic code, which
we have now fixed. Following their example, we generated four “chains” of length 1000,
so that three of them have independent uniform draws from [−1, 1] and one of them has

uniform draws from [−1.25,−1.25]. Figure 2 shows R̂, ESS, and MCSE for indicator

functions I(θ ≤ x), where x ∈ [−1.25, 1.25]. The R̂ result is very similar to the result
by Moins et al. Here also we can see the easier interpretability of ESS as it is easy to
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Figure 2: Illustrations with M = 4 chains, N = 1000 iterations each. Three first chains
have independent uniform draws from [−1, 1] and the fourth has uniform draws from

[−1.25,−1.25]. We compute R̂, ESS, and MCSE for indicator functions I(θ ≤ x), where
x ∈ [−1.25, 1.25]. Black dots show values when the indicator function is non-constant
for all chains, and grey dots show values that were computed in cases where at least
one chain had constant value.

understand that an ESS very close to 0 is not good. Looking at the example, we realized
that we were computing the diagnostic values also in the cases where one or more chains
had constant value (shown as gray in the figure). For chains that remain constant, we
can’t distinguish between situations where the chain is not mixing well and where the
chain is mixing appropriately, but the alternatives have small probabilities relative to
the length of the chain. In such cases, we think we should err on the side of caution and
report that the estimation is not reliable. This will avoid providing overly optimistic
MCSE values, as shown in the bottom plot of Figure 2.

Figure 1 of Moins et al. is an excellent example of how difficult it is to use trace
plots as convergence diagnostics. Rank histograms and ECDFs can much more clearly
spot that the supports are not overlapping as shown in Figure 3.

Moins et al. plot their estimate with the parameter values on the x-axis. In the main
paper, we plotted quantiles on x-axis. For example, with the Cauchy distribution, values
of θ ranged from −5000 to 500, but most of the detail is in the range between −10 and
10, so the plot would have been hard to read. For the 8-schools example, we show local
and quantile ESS with τ on x-axis in the online appendix (due to the page limit these
plots were left out from the main article). For convenience, we reproduce one example
in Figure 4.
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Figure 3: Histogram and ECDF rank plots for the uniform example by Moins et al.
Compare these to the trace plots in Figure 1 of Moins et al.

Figure 4: Sometimes using the parameter value on x-axis of the local ESS plot can
provide useful additional information. Here τ is population prior scale parameter and
we can see there are sampling issues when the scale is close to 0.

5 Using these tools in statistical workflow

In the paper we focused on using R̂, ESS, and MCSE to summarize mixing and inference
for scalar quantities of interest one at a time. There is also a multivariate version of
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R̂ (Brooks and Gelman, 1998), and more recently Lambert and Vehtari (2021) have
proposed R∗, a multivariate measure of mixing that uses nonparametric classification
trees. We anticipate that future workflow will involve using R∗ and R̂ as screening tools
to flag poor mixing that can then be studied more carefully with graphical diagnostics.

R̂ and related tools can also be used for convergence diagnostics of stochastic op-
timization (e.g., in variational inference) with multiple parallel optimizations or with

split-R̂ for a single optimization (Dhaka et al., 2020). Again, this fits into workflow in two
ways, first by catching many problems early and second by building some trust in results
when approximate mixing has been achieved. But no diagnostic can catch everything,
so we emphasize the importance of fitting multiple models, as well as simulated-data
experimentation, as a way of understanding the domain of applicability of any fitting
procedure. We like R̂, ESS, and MCSE not because they are perfect, but because they
detect many problems and fit into this larger workflow.
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