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Bayesian Multiple Changepoint Detection for
Stochastic Models in Continuous Time

Lu Shaochuan∗

Abstract. A multiple changepoint model in continuous time is formulated as
a continuous-time hidden Markov model, defined on a countable infinite state
space. The new formulation of the multiple changepoint model allows the model
complexities, i.e. the number of changepoints, to accrue unboundedly upon the
arrivals of new data. Inference on the number of changepoints and their locations
is based on a collapsed Gibbs sampler. We suggest a new version of forward-
filtering backward-sampling (FFBS) algorithm in continuous time for simulating
the full trajectory of the latent Markov chain, i.e. the changepoints. The FFBS
algorithm is based on a randomized time-discretization for the latent Markov
chain through uniformization schemes, combined with a discrete-time version of
FFBS algorithm. It is shown that, desirably, both the computational cost and
the memory cost of the FFBS algorithm are only quadratic to the number of
changepoints. The new formulation of the multiple changepoint models allows
varying scale of run lengths of changepoints to be characterized. We demonstrate
the methods through simulations and a real data example for earthquakes.

Keywords: continuous-time forward-filtering backward-sampling algorithms,
uniformization, infinite hidden Markov Models, Markov jump processes,
Poisson processes.

1 Introduction

Changepoint models arise in many practical applications, e.g. signal processing, system
control, bioinformatics, finance, among many others. Typically, chronologically ordered
data streams are collected over a period during which a (random) number of structural
breaks happen at unknown locations, so that observations within the same segment,
or equivalently, observations between two consecutive changepoints, are regarded as
homogeneous and observations across different segments are heterogeneous. The interest
lies in making inference for the number and the locations of changepoints and other
model parameters. Among many literatures, recently, pruned exact linear time PELT
(Killick et al. 2012), wild binary segmentation WBS (Fryzlewicz 2014) and simultaneous
multiscale change point estimator SMUCE (Frick et al. 2014) are popular.

In Bayesian context of retrospective changepoint detection, Monte Carlo strategies
are often applied for posterior inference, see e.g. Stephens (1994), Green (1995), Chib
(1998), Lavielle and Lebarbier (2001), Fearnhead (2006) and Ruggieri and Lawrence
(2014), among many others. Online inference for multiple changepoint problems by
use of particle filtering is discussed by Chopin (2007), Fearnhead and Liu (2007) and
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Yildirim et al. (2013) and some others. Ko et al. (2015) proposes a Bayesian multi-
ple changepoint model based on the Dirichlet process hidden Markov model, in which
the number of changepoints is not required to be specified. Martinez and Mena (2014)
proposes another Bayesian nonparametric approach to changepoint detection based on
random partition distributions (Barry and Hartigan 1992) and a split-merge Markov
Chain Monte Carlo (MCMC) algorithm is applied for the posterior inference. Most of
these studies are suitable only for detecting changepoints appearing in discrete time
series or discretely observed random processes. Although some continuous time random
processes may be approximated ideally by their discrete time counterparts, it is nec-
essary to develop multiple changepoint models in continuous time in their own right.
So, the approximation error introduced by using the discrete-time counterpart, which
is often difficult to quantify, can be avoided.

We consider Bayesian multiple changepoint problems for some continuous-time ran-
dom processes. Multiple changepoint problems in discrete time are often treated in the
framework of hierarchical Bayesian models, e.g. latent Markov models, due to some ef-
ficient posterior simulation strategies such as forward-backward recursions (Chib 1998,
Scott 2002, Fearnhead and Liu 2007) and Viterbi dynamics can be utilized for the infer-
ence of changepoints. Similarly, we formulate multiple changepoint problems of random
processes into continuous-time hidden Markov models. Recently, some multiple change-
point models for continuous-time stochastic models, such as (marked) Poisson process
and finite Markov chain, are formulated as continuous-time hidden Markov models (Rao
and Teh 2013, Lu 2019, Lu 2020). However, these models are only suitable for multiple
changepoint problems with a fixed number of changepoints. Although the number of
changepoints may be determined by use of some model selection criteria after a se-
ries of multiple changepoint models with diverse numbers of changepoints fitted, the
definition of the model complexities in different criteria can be sharply different. In
some cases, different numbers of changepoints may be identified by a range of model
selection criteria. The uncertainties in the number of changepoints are difficult to quan-
tify.

A new multiple changepoint model for stochastic models in continuous time is for-
mulated, in which the changepoint locations are associated with a left-to-right latent
Markov chain defined on a countable infinite state space. In a full Bayesian approach,
the joint posterior of the number of changepoints and their locations is simulated via
efficient Markov chain Monte Carlo strategies. We suggest a continuous-time version
of forward-filtering backward-sampling (FFBS) algorithm within the Gibbs sampling
scheme, which is an extension of the discrete-time forward-filtering backward-sampling
algorithm of Fearnhead and Liu (2007). It is based on a randomized time-discretization
for the latent Markov process on a countable infinite state space through uniformization
schemes. Therefore, there are no time-discretization errors required to be accounted for.
For multiple changepoint problems in discrete time, it is well-known that the compu-
tational cost of the FFBS algorithm is proportional to the number of observations and
the memory cost increases with respect to the number of observations quadratically,
which is prohibitive when the data set is large and the changepoints are only sparsely
distributed. Often, particle filters or pruning techniques have been applied to deal with
these problems: see Fearnhead and Liu (2007). Nevertheless, with the uniformization
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scheme, it is possible to deal with the issue of computational cost and storage cost of

a Bayesian multiple changepoint problem in continuous time directly at the scale of

changepoint numbers. It is shown that both the computational cost and the memory

cost of the FFBS algorithm are only quadratic to the number of uniformization times

generated from the uniformization schemes, which can be scaled down to the number of

changepoints. This is desirable in comparison to its discrete-time counterpart. Further-

more, By integrating out the model parameters and targeting the marginal posteriors of

the number of changepoints and their locations, the efficiency of the posterior simulation

scheme is improved.

In Section 2, a multiple changepoint model for a stochastic process is formulated as

a continuous-time hidden Markov model. We then introduce a continuous-time FFBS

algorithm for the simulation of the trajectories of the latent Markov chain defined on a

countable infinite state space. The posteriors of the number of changepoints and their

locations are approximated via a Gibbs sampling scheme. In some cases, it might be

desirable to obtain the MAP estimates of changepoints. In section 3, we discuss the

continuous-time version of the Viterbi algorithm, particularly for multiple changepoint

problems of Markov jump processes and (marked) Poisson processes. We demonstrate

the methods through 5 numerical examples. The first two numerical examples are sim-

ulation studies for the multiple changepoint problem of a Markov jump process. The

last three numerical examples include simulation studies for Poisson process and a real

data example of New Zealand deep earthquakes.

2 Model Formulation and Bayesian Multiple
Changepoints Detection

2.1 Model Formulation

Let Yθ(t) be a continuous-time random process on a time interval [0, T ]. Assume it is

subject to abrupt changes at unknown locations 0 � τ0 < τ1 < · · · < τm < τm+1 � T ,

such that the observed random process Yθ(t) is partitioned into m+ 1 segments by m

changepoints τ = (τ1, · · · , τm). The number of changepoints m is often unknown. The

main interest lies in making inference for the number of changepoints m, their locations

τ and model parameters θ = (θ1, · · · , θm+1) in each segment of Yθ(t).

In a Bayesian context, the priors for the number of changepoints m, their locations

τ and θ need to be specified. For computational reasons illuminated later, we implicitly

define priors for the number of changepoints and their locations by defining priors for

the run lengths, i.e. the segment lengths, between consecutive changepoints. The priors

for the model parameters θ in Yθ(t) will be given in Section 4 after Yθ(t) is defined.

We assume a priori run length of the i-th segment is exponentially distributed with

rate qi. This type of priors for the changepoints can be defined as a latent Markov chain

X(t) on a numerable infinite state space, with a left-to-right transition rate matrix Q

parameterized exactly in terms of a multiple changepoint model. We define the transition
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rate matrix of a left-to-right Markov chain X(t) by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−q1 q1 0 · · · 0 0 0 · · ·
0 −q2 q2 · · · 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · −qm qm 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

.

When X(t) is in the i-th state, Yθ(t) is parameterized by θi. This type of model formu-
lation is a particular type of continuous time hidden Markov models (CTHMMs) and
also a type of product partition models (Barry and Hartigan, 1992).

In the following, we define the brackets [j, i] after a matrix A as the (j, i)-th entry of
A. The sample path of a random process Z(t) on a time interval [a, b] or [a, b) is denoted
by Z[a, b] or Z[a, b) respectively. Generically, p(.) denotes a probability density (mass)
function. For convenience, Yθ(t) is abbreviated to Y(t). Throughout the discussion, we
denote a vector (z1, · · · , zn) by z1:n.

With m changepoints τ on [0, T ], Y(t) is partitioned into m+ 1 segments. The i-th
segment of Y(t) is associated with the model parameter θi. Given τ and θ, we assume
conditional independence of Y(t) across segments. The likelihood is written as

L(m, τ, θ) = p (Y[0, T ]|m, τ, θ) =

m+1∏
i=1

p (Y[τi−1, τi)|θi) .

After defining priors for θ, the marginal likelihood of Y(t) on an interval [s, t) is given
by

M(s, t) =

∫
Θ

p (Y[s, t)|θ) p(θ) dθ.

We assume the marginal likelihood of Y(t) within an interval can be exactly evaluated,
which is achieved either by choosing a conjugate prior p(θ) for θ or carrying out a
numerical integration. The priors for m changepoints located at τ1, · · · , τm are given by

p(m, τ) =

m∏
i=1

qie
−qi(τi−τi−1)e−qm+1(τm+1−τm).

Thus, the marginal posterior of the number of changepoints and their locations is written
as

p(m, τ |Y[0, T ]) ∝
m∏
i=1

{qie−qi(τi−τi−1)M(τi−1, τi)}e−qm+1(τm+1−τm)M(τm, τm+1), (1)

which is known up to a normalizing constant.

Generally, reversible jump MCMC (RJMCMC) methods can be applied to simulate
approximately from the marginal posterior of the number of changepoints and their po-
sitions. However, these methods can be computationally inefficient, leading to problems
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such as slow convergence and poor mixing. Instead, we may consider a time discretiza-
tion ofY(t) by assuming that the locations of changepoints are only at the endpoints of a
set of consecutive time intervals, partitioned evenly at 0 < t1 < t2 < · · · < tn < T . Then,
efficient posterior simulation strategies such as forward-backward recursions (Chib 1998,
Scott 2002, Fearnhead and Liu 2007) can be applied. Nevertheless, the approximation
error by time-discretization techniques is often difficult to quantify. We suggest a ran-
domized time-discretization by use of the uniformization scheme for a continuous-time
Markov jump process on a countable infinite state space, so that quantifying the time-
discretization error is bypassed.

2.2 Uniformization Scheme

Let Z(t) be a time-inhomogeneous Markov chain on a countable infinite state space
with transition rates

qij(t) = lim
Δt→0

1

Δt
P (Z(t+Δt) = j|Z(t) = i), j �= i.

Assume for some constant λ > 0,

qi(t) =
∑
j �=i

qij(t) < λ. (2)

Let Ps,t[i, j] denote the transition probability of observing Z(t) in state j at time t given
that it was in state i at time s. Define a transition probability matrix Pt by

Pt[i, j] =

⎧⎨
⎩

qij(t)
λ , if j �= i;

1−
∑
k �=i

qik(t)
λ , if j = i. (3)

Then, for all s ≤ t and all i, j,

Ps,t[i, j] =

∞∑
k=0

(t− s)kλk

k!
e−λ(t−s)

∫ t

s

∫ t

s

· · ·
∫ t

s

Pt1Pt2 · · ·Ptk [i, j]dU(t1, t2, · · · , tk), (4)

where U(t1, t2, · · · , tk) is the k -dimensional uniform distribution of the order statistics
t1 < t2 < · · · < tk and Pt1Pt2 · · ·Ptk is the matrix product of the transition matrices in
(3), see Van Dijk et al. (2018) and Jensen (1953).

In this case, we say that the Markov chain is subordinated to the Poisson process.
The above equation has a natural interpretation as Poisson randomization. During [s, t],
jumps occur according to a Poisson process with rate λ. Given that k jumps have
occurred, the jump times are uniformly distributed on [s, t]. At these Poisson epochs,
the state transitions happen in terms of a discrete-time Markov chain with the transition
probability matrix defined by (3). It is noted that the uniformization scheme is also
viable for a Markov jump process on a countable infinite state space, which can be used
in multiple changepoint models with a potentially unbounded number of changepoints.
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2.3 Gibbs Samplers with a Continuous-Time FFBS Algorithm

Assume {t1, t2, · · · , tn} is a sequence of uniformization times of X(t) generated from
the uniformization schemes, such that X(t1), · · · ,X(tn) is a discrete-time Markov chain
with the transition probability matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 1− p1 0 · · · 0 0 · · ·
0 p2 1− p2 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · pm 1− pm · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Given t1:n, the locations of changepoints of Y(t) are choosen from the set of dis-
crete times {t1, t2, · · · , tn}. We then treat Y1 � Y[0, t1),Y2 � Y[t1, t2), · · · ,Yn+1 �
Y[tn, T ) as a sequence of granularized observations. Let si denote X(ti) for i = 1, . . . , n
and let g(i, k) denote the probability mass function of the run length of a segment,
beginning from ti and ending at tk, so that

g(i, k) � (

k−1∏
j=i

psj )(1− psk), k > i. (6)

The associated cumulative distribution function of the run length for this segment is
written as

G(i, k) �
k∑

j=i+1

g(i, j).

Let Ct be a state variable taking values in 0, 1, 2, · · · , t − 1, which is defined to be the
location of the most recent changepoint before time t. If there is no changepoint before
t, Ct = 0. {Ct} is a discrete-time Markov chain on 0, 1, 2, · · · , t − 1. In Fearnhead and
Liu (2007), the transition probability of Ct is given by

P(Ct+1 = j|Ct = i) =

⎧⎪⎨
⎪⎩

1−G(i,t+1)
1−G(i,t) , if j = i;

g(i,t+1)
1−G(i,t) , if j = t;

0, otherwise.

(7)

The forward filtering algorithm gives the filtering probabilities

P(Ct+1 = i|Y1:t+1)

∝

⎧⎪⎨
⎪⎩
P(Ct = i|Y1:t)

(
1−G(i,t+1)
1−G(i,t)

)(
M(i,t+1)
M(i,t)

)
, for i = 0, 1, · · · , t− 1;

M(t, t+ 1)
t−1∑
j=0

P(Ct = j|Y1:t)
(

g(j,t+1)
1−G(j,t)

)
, for i = t.

(8)

When the filtering probabilities are stored, the backward sampling step generates
samples from the posteriors of the number of changepoints and their locations. So, the



L. Shaochuan 527

last changepoint Cn is generated first according to the filtering probabilities
P(Cn|Y[0, T ]). Given the latest changepoint Cn = t, the next changepoint is gener-
ated recursively and backwards according to

P(Ct = i|Y1:n, Cn = t) ∝ P(Ct = i|Y1:t)

(
g(i, t+ 1)

1−G(i, t)

)
. (9)

The recursion terminates when Ct = 0. This is another version of the continuous-time
forward-filtering backward-sampling (FFBS) algorithm: see Rao and Teh (2013) for
another version of the FFBS algorithm for Markov-modulated Poisson processes with a
finite number of states and continuous-time Bayesian network.

The computational cost of this version of FFBS algorithm is quadratic in n, that is
the actual number of simulated uniformization times. The memory cost of this version
of FFBS algorithm is only quadratic in n. By computing directly on the scale of change-
points, the memory cost is significantly lowered, which is otherwise prohibitive as in the
usual case when the filtering probabilities are computed and stored in an event-by-event
scale, particularly for a very long sequence of observations in which the changepoints are
only sparsely distributed. The proposed method is potentially suitable for the detection
of sparse changepoints in a very long sequence of observations.

Gibbs sampling is completed by sampling the model parameters conditioned on the
full path of the latent Markov chain. Let Γ(a, b) be the prior distribution of qi. So, the

joint prior of Q is given by
m∏
i=1

ba

Γ(a)q
a−1
i exp{−bqi}. The hyperparameters a and b in the

priors are given subjectively in numerical examples. The likelihood of X(t), 0 ≤ t ≤ T is

written as
m∏
i=1

qi exp{−qi(τi − τi−1)}. Therefore, the posterior distribution of Q is given

by

p(Q|X[0, T ]) ∝
m∏
i=1

ba

Γ(a)
q
(a+1)−1
i exp{−[b+ (τi − τi−1)]qi}. (10)

The full conditional of qi is distributed according to Γ(a+1, b+(τi−τi−1)). A two-block
Gibbs samper is given in Algorithm 1.

Algorithm 1 Block Gibbs sampler 1.

1. Initialize Q0, the number of changepoints m0 and their locations τ1, τ2, · · · , τm0 ;
2. Uniformization scheme: Sample a sequence of Poisson times {t1, t2, · · · , tn} with a
constant intensity rate λ satisfying (2) and define a discrete-time Markov chain with
the transition probability matrix P given in (3);
3. Sample a set of changepoints τ1, τ2, · · · , τm∗ by use of a discrete-time FFBS
algorithm as aforementioned;
4. Conditioned on the current trajectory of the latent Markov chain X(t), sample the
transition rate matrix Q according to (10);
5. Repeat steps (2) ∼ (4) until the maximum number of iterations reached.

One strength of this model formulation is that it allows a varying scale of segment
lengths to be characterized in the transition rate (changepoint recurrence rate) matrix



528 Multiple Changepoint Detection in Continuous Time

Q. When the rate parameters in Q are highly variable, the Poisson rate λ utilized in
the uniformization scheme will be dominated by the largest qi in Q, potentially leading
to an excessive number of Poisson events generated by the uniformization procedure,
which will significantly inflate the memory cost and computational cost and slow the
algorithm. Instead, we consider a modification of the previous uniformization scheme by
using a nonhomogeneous Poisson process with the Poisson rate λ(t) adaptively tuned
with respect to the hazard rate (changepoint recurrence rate) q(t). We choose a piecewise
constant intensity function λ(t) to implement the randomized time-discretization for the
latent Markov chain piecewisely (Van Dijk 1992). To simulate the subordinated Poisson
process with a piecewise constant intensity function λ(t), the standard thinning methods
(Lewis and Shedler 1979) can be employed. Algorithm 1 is replaced by the following
Algorithm 2.

Algorithm 2 Block Gibbs sampler 2.

1. Initialize Q0, the number of changepoints m0 and their locations τ1, τ2, · · · , τm0 ;
2. Sample a sequence of Poisson times {t1, t2, · · · , tn} from a nonhomogeneous Poisson
process with a piecewise constant intensity function λ(t) via the thinning methods.
Calculate state transition probabilities of the discrete-time Markov chain according to
(3), with λ in (2) replaced by λ(t);
3. Sample a set of changepoints τ1, τ2, · · · , τm∗ by use of a discrete-time FFBS
algorithm as aforementioned;
4. Conditioned on the current trajectory of the latent Markov chain X(t), sample the
transition rate matrix Q according to (10);
5. Repeat steps (2) ∼ (4) until the maximum number of iterations reached.

In many cases, the posterior of the model parameter θ in each segment is also of
interest. We may sample from p(θ|Y[0, T ]) by a collapsed Gibbs sampler, in which
the model parameter θ is integrated out from the joint posterior and the block Gibbs
sampler (Algorithm 2) is applied to the remaining components until convergence. Then,
the model parameter θ in each segment is sampled according to the full conditionals,
see Liu (1994).

In simulation studies, we observed that the simulated trajectories of the latent
Markov chain, the locations of changepoints, typically show some “knots”. These
“knots” happens when the filtering probabilities of a changepoint location are not con-
centrated in a single uniformization time, but instead spread across several consecutive
uniformization times. In this case, the backward sampling step will sometimes treat part
of them or all of them as individual changepoints. This sort of “knot” will inflate the
memory and computational costs if kept into the next iteration. A direct approach to
pruning these “knots” is to slightly modify the backward sampling step by resampling
the most recent changepoint before t several times according to (9) and choosing the
most distant one from t as the most recent changepoint before t. Our numerical studies
show that this is a very effective approach to prune the extra changepoints cheaply.

In step 2 of Algorithm 3, the changepoints themselves are treated as uniformization
times in the next iteration, so that likely changepoint locations can be kept in following
iterations.
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Algorithm 3 Collapsed Gibbs sampler 3.

1. Set an initial value m0 for the number of changepoints , their locations
τ = {τ1, · · · , τm0} and the changepoint recurrence rate matrix Q0 with m+ 1 states;
2. Let the Poisson intensity rate λ(t) be k times of the changepoint recurrence rate,
λ(t) = kqi when t ∈ [τi−1, τi), i = 1, · · · ,m+ 1. Simulate a nonhomogeneous Poisson
process U = {u1, u2, · · · , uK} with piecewise constant intensity function by thinning
methods. Combine U and τ to form a sequence of uniformization times {t1, · · · , tn}.
Calculate the state transition probabilities {ps1 , · · · , psn} of the discrete-time Markov
chain {X(t1), · · · ,X(tn)} according to (3), with λ(t) in (2) replaced by (k+ 1)qi when
t ∈ [τi−1, τi);
3. Conditioned on the current model parameters, recursively calculate the forward
probabilities according to (8) and sample a set of changepoints τ1, τ2, · · · , τm′

according to (9). In the backward sampling step, the “knots” are pruned by repeatedly
sampling the most recent changepoint before t and choosing the most distant one from
t as the most recent changepoint;
4. Given the current trajectory of the latent Markov chain X(t), sample the transition
rate matrix Q according to (10);
5. After the Markov chain converges, sample the model parameters θi in each segment
from the full conditionals p(θi|Y[τi−1, τi)), i = 1, · · · ,m′ + 1;
6. Repeat steps (2)–(5) until the maximum number of iterations reached.

The current model formulation is more flexible than multiple changepoint mod-
els with the number of changepoints fixed or the maximum number of changepoints
bounded. It is also noted that when all qis are given in advance, we may run an ex-
act Monte Carlo sampling algorithm for changepoints. However, this is unrealistic in
practice. As qis in Q might be different, varying scale of run lengths between change-
points can be incorporated into the model, which is desirable in practice to avoid model
bias. This approach is applicable for multiple changepoint models for any random pro-
cess when the marginal likelihood can be exactly evaluated, which is of course evident
when conjugate priors are introduced, for example for the exponential family of random
processes, or the marginal likelihood can be numerically computed.

We call the Poisson rate in the uniformization scheme a resolution parameter. The
use of a high intensity rate will lead to the generation of a large number of uniformization
times, so that the positions of changepoints can be located in a finer time scale. However,
both the memory cost and computational cost will inflate significantly, making the
algorithm less efficient. Nevertheless, choosing a relatively small Poisson rate will reduce
both the memory cost and computational cost on average, but the accuracy of estimation
for the locations of changepoints will be lowered: see numerical examples in Section 4.
The resolution parameter needs to be carefully tuned for a tradeoff between the costs
and accuracies of the estimation.

However, even using Algorithm 2–3, it is still possible the uniformization scheme
occasionally produces too many Poisson events (uniformization times), causing issues
of inflated computational costs and memory costs. In this case, we may set an upper
bound on the number of Poisson events. The truncation error can be quantified as
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follows:

‖P̄L
s,t − Ps,t‖ ≤

∞∑
k=L+1

λk(t− s)k

k!
e−λ(t−s) ≤ λL(t− s)L

L!
, (11)

where ‖.‖ denotes the standard supremum norm and P̄
L
s,t is the truncated version of (4)

at level k = L: see Van Dijk (2018).

3 Continuous-Time Viterbi Algorithm

In some cases, it is desirable to obtain maximum a posteriori (MAP) estimates of the
set of changepoints. The MAP estimates of the set of changepoints, the optimal path
of the latent Markov chain X(t), is selected from potentially an infinite number of
trajectories, which is inaccessible in general. Nevertheless, when Y(t) is Markov jump
process or (marked) Poisson process as illustrated in the next section. The following
algorithm is able to retrieve exactly the most probable sample path by a continuous-
time version of the Viterbi algorithm. Let u1 < u2 < · · · < un be the set of event times,
the arrival times of a (marked) Poisson process or the transition times of a Markov
jump process respectively. Define

Mi(uk) = max
X[0,uk)

log p

(
X[0, uk),X(uk) = i,Y[0, uk]

)
. (12)

For these Markov renewal processes, Viterbi recursion shows that

Mj(u) = max
i

{
Mi(uk) + log p

(
X(u) = j,Y(uk, u]

∣∣X(uk) = i
)}

, (13)

for uk < u ≤ uk+1 and j = i or j = i + 1, in which log p
(
X(u) = j,Y(uk, u]

∣∣X(uk) =

i
)
needs to be maximized over the path space from uk to u. When Y(t) is Markov

jump process or (marked) Poisson process, log p
(
X(u) = j,Y(uk, u]

∣∣X(uk) = i
)
can be

explicitly maximized: see Bebbington (2007), Lu (2019) and Lu (2020). It turns out that
the most probable path of the latent Markov chain X(t) has state transitions exactly
at the event times, the arrival times of a (marked) Poisson process Y(u) or the state
transition epochs of the observed Markov jump process Y(u) respectively. As a result,
the optimal set of changepoint locations is chosen exactly from these event times: see
Lu (2019) and Lu (2020) for nearly the same argument. The search for the set of most
probable changepoints can be equivalently implemented by a discrete-time version of
the Viterbi algorithm (Viterbi, 1967).

Let fk(j) be the probability density of the most probable path of x(t) up to time
uk upon reaching state j, and φk(j) be the optimal state at time uk−1 for the path
reaching state j at the next time step uk.

The memory cost in this case is quadratic in n, which is prohibitive for a long se-
quence of event times. Instead, we may first obtain the MAP estimates of the number
of changepoints from the marginal posteriors. Conditioned on the number of change-
points, then, the MAP estimates of the locations of changepoints can be obtained from
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Algorithm 4 Continuous-time Viterbi Algorithm.

1. Initialize f1(j) = π1p
(
X(u1) = j,Y(0, u1]

∣∣X(0) = 1
)
and set φ1(j) = 0 for j = 1.

2. For k = 2, · · · , n and j = i or i+ 1, recursively compute

fk(j) = max
i

{
fk−1(i)p

(
X(uk) = j,Y(uk−1, uk]

∣∣X(uk−1) = i
)}

and

φk(j) = argmax
i

{
fk−1(i)p

(
X(uk) = j,Y(uk−1, uk]

∣∣X(uk−1) = i
)}

.

3. Let xn = argmax
j

fn(j) and backtrack the state sequence as follows:

For k = n− 1, · · · , 1, xk = φk+1(xk+1).

the continuous-time version of a Viterbi algorithm for a finite-state hidden Markov

model (HMM): see Bebbington (2007), Lu (2019) and Lu (2020). In this case, both the

memory cost and the computational cost are only proportional to mn, where m is the

MAP estimate of the number of changepoints.

Algorithm 4 is only suitable for special cases as demonstrated in the above exam-

ples. In general, we may obtain approximately the MAP estimates of changepoints via

the uniformization scheme as follows. First, we obtain MAP estimates of the number

of changepoints directly from the marginal posteriors. Conditioned on the number of

changepoints, we may perform a randomized time-discretization for both X(t) and Y(t)

through the uniformization scheme. Conditioned on a particular time-discretization of

X(t) and Y(t), we carry out the discrete-time Viterbi algorithm to obtain a “MAP”

estimate of the locations of changepoints. This randomized time-discretization for the

latent Markov chain X(t) by the uniformization scheme and the following discrete-time

Viterbi algorithm can be performed many times. We may choose the one which gives

the highest posterior density of θ as the “MAP” estimate among the potentially many

different segmentations. We call it a “randomized Viterbi algorithm”.

4 Numerical Examples

4.1 Multiple Changepoint Models for Markov Jump Processes

Markov chains are widely used in modelling weather, bioinformatics, speech recognition

and modern credit management, see Polansky (2007), Arnesen et al. (2016) and Xing

et al. (2012). Let Y(t) be a r-state continuous-time finite Markov chain observed on

[0, T ], specified by the transition rate matrix DX(t). Y(t) is subject to abrupt changes

at unknown locations corresponding to a random number of changepoints. We consider

multiple changepoint models of Markov jump processes with the changepoint locations

associated with a latent Markov chain X(t). When X(t) is in state k, Y(t) is parameter-

ized by Dk = (dij(k))r×r. The likelihood of the trajectory of Y(t), with the transition
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D1 D2 D3

(a) −1 0.5 0.5 −6 2 4 −0.2 0.1 0.1
Model 0.1 −0.2 0.1 0.5 −1 0.5 2 −4 2
for 1 2 −3 0.04 0.06 −0.1 0.1 0.2 −0.3
4 D4 τs

Segments −3 1 2 τ1 = 678.7
0.2 −0.7 0.5 τ2 = 1753.7
2 2 −4 τ3 = 2668.3

D1 D2 D3

(b) −1.19 0.67 0.52 −4.9 1.62 3.28 −0.2 0.09 0.11
Model 0.09 −0.20 0.11 0.63 −1.05 0.42 2.33 −4.47 2.14
for 1.13 1.95 −3.08 0.05 0.06 −0.11 0.11 0.15 −0.26
4 D4 τs MAP of τs

Segments −3.12 1.02 2.10 τ1 = 668.6 τ1 = 678.7
0.2 −0.77 0.57 τ2 = 1727.3 τ2 = 1761
1.93 1.88 −3.81 τ3 = 2654.6 τ3 = 2666.6

Table 1: The table lists the estimated D, the locations of changepoint τs. The priors
for the hyper parameters in Q and D are Γ(1, 1) and Γ(2, 2) respectively.

rate matrix D = (dij), is written as

L =
r∏

i=1

⎛
⎜⎝ ∏

1≤j≤r
j �=i

d
Nij

ij

⎞
⎟⎠ e−diTi ,

where the sufficient statistics Nij and Ti are the total transition numbers of Y(t) from
i to j and the overall sojourn time of Y(t) in state i respectively. By choosing priors
of D from the Gamma distribution Γ(α, β), which is a conjugate prior, the marginal
likelihood of Y(t) can be explicitly written as:

r∏
i=1

∏
1≤j≤r
j �=i

βα

Γ(α)

Γ(α+Nij)

(β + Ti)(α+Nij)
. (14)

We demonstrate two numerical examples for Markov jump processes. In the first
numerical example, a 3-state Markov jump process is observed, which is partitioned by
several changepoints at unknown locations. The trajectory of the observed Markov jump
process and the exact locations of changepoints are displayed in the top of Figure 1.
The parameters of the simulated Markov jump process are specified in Table 1. In this
numerical example, each segment consists of 300 state transitions. We run the Gibbs
sampler in Algorithm 3 a total of 6000 iterations, with the last 2800 iterations collected
as independent draws. The posterior of the number of changepoints is indicated in the
left top of Figure 2. In the figure, the dominant mode of the posterior of the number
of changepoints is 3, which is consistent with the true model. The MAP estimate of
changepoint locations given by the continuous-time Viterbi algorithm is listed in Table 1.
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Figure 1: The top of the figure displays the trajectory of the simulated Markov jump
process with 3 changepoints. The three plots indicate the effect of different values of
k on the accuracies of the estimation at three levels, k = 6, 3 and 11 in the top, the
middle and the bottom of the figure respectively. In all the plots, the posterior means
and the 95% HPD credible intervals are demonstrated by solid red lines, with the exact
positions of 3 changepoints indicated by dashed blue lines.

In the uniformization scheme, the Poisson intensity rate is k times the changepoint
recurrence rate. In this numerical example, we also demonstrate the scaling effects of k
on the efficiencies and accuracies of the estimates. The right of Figure 2 indicates the
central processing unit (CPU) time and the effective sample size per iteration with 3
different scalings k = 6, 3 and 11. From the figure, it is indicated that the computational
cost per iteration is quadratic to the scaling coefficient k. However, the effective sample
size is only roughly linear with respect to the scaling parameter. In all cases, we observed
a bias of the estimates for the locations of changepoints by posterior means (see Figure
1), which is a price paid for pruning nearly repeated changepoints. In Figure 1, the blue
dash lines mark the exact locations of changepoints and the solid red lines mark the
posterior means of changepoint locations. It is observed that all the posterior means of
changepoints are located to the left of the exact changepoint locations. The degree of
bias is obviously dependent on the scaling: see Figure 1. The bias is significant when
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Figure 2: The left of the figure displays the posterior distribution of the number of
changepoints. The right of the figure demonstrates the effect of the scaling parameter
k on the efficiency of the estimation.

k = 3 in the middle of Figure 1, but negligible for k = 11 in the bottom of Figure 1.
Further exploration shows that the 95% highest posterior density (HPD) intervals of
changepoint locations, which are demonstrated in Figure 1 by red horizontal bold line
segments, are also affected by the scaling parameter. For k = 3, the 95% HPD intervals of
changepoint locations are so wide that the upper (lower) bounds of the posterior credible
intervals are partially superimposed on adjacent one: see the middle of Figure 1. This is a
poor estimate of the uncertainties of changepoint locations due to low resolution. With
increasing k, the 95% HPD intervals of changepoint locations are narrowed. Further
increasing k above 11 is unnecessary as it won’t improve the accuracies of the credible
intervals much. The posterior means of the transition rate matrix of the observed Markov
jump processes are listed in Table 1. The estimates are close to the true values. Some
of the posteriors of the transition intensity rate and their 95% highest posterior density
(HPD) intervals are shown in Figure 3. From the figure, it is apparent that the estimation
is reasonably accurate. In this numerical example, to alleviate the memory cost and the
computational cost, the number of Poisson events generated from the uniformization
scheme is upper-bounded by 200. The truncation error can be evaluated by (10). In
practice, this upper bound is rarely reached and the truncation error is negligible.

The second numerical example is still a multiple changepoint model for Markov jump
processes. The observed two-state Markov jump process is partitioned into 5 segments
by 4 changepoints. In this case, each segment consists of only 70 state transitions. The
transition intensity rate matrices of the observed Markov chain in adjacent segments
are close to each other. The true parameters of the observed Markov jump processes are
listed in Table 2. This numerical example is designed to make the detection of change-
points more difficult. For this numerical example, the Gibbs sampler in Algorithm 3
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Figure 3: Kernel density estimates for some of the model parameters. Line segments in
bold beneath each kernel density estimate indicate the 95% highest posterior density for
the model parameters. The left top, right top, left bottom and right bottom of the fig-
ure show the posterior distributions of d33(1), d13(2), d22(3) and d32(4) respectively. The
number of posterior samples and the bandwidth used in the kernel density estimation
are given.

D1 D2 D3 D4

(a) −1 1 −0.5 0.5 −0.8 0.8 −2 2
True 1 −1 0.2 −0.2 0.4 −0.4 1 −1

D5 τs τs
Model −1.5 1.5 τ1 = 84.5 τ3 = 433.6

0.8 −0.8 τ2 = 312.2 τ4 = 484

Table 2: The transition rate matrices of the observed Markov jump process in 5 segments
and the exact locations of changepoints. The priors for the hyper parameters in Q and
D are Γ(1, 1) and Γ(2, 2) respectively.
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Figure 4: The left top of the figure shows the trajectory of the simulated Markov jump
process with 4 changepoints marked by solid red lines. The right top of the figure
indicates the posterior of the number of changepoints. The two plots in the bottom of
the figure demonstrate the 95% HPD credible intervals of changepoint locations by solid
red lines beneath the histograms for a two-changepoint model and a three-changepoint
model respectively. The exact positions of the changepoints are indicated by solid red
lines.

was run for 1000 burn-in iterations followed by 5000 iterations, which are collected as
posterior samples. In the uniformization scheme, the Poisson intensity rate is 6 times
the changepoint recurrence rate. We set an upper bound of 300 for the number of uni-
formization times. In all the simulations, the number of uniformization times rarely
reaches this bound. The truncation error is negligible. The left top of Figure 4 indicates
the trajectory of the observed Markov jump process and the exact locations of change-
points. The posterior of the number of changepoints is indicated in the right top of
Figure 4. A bimodal pattern in the posterior suggests large uncertainties in the number
of changepoints. In this case, the number of changepoints might be 2 or 3, which is less
than the true values. We also demonstrate the posteriors of changepoint locations for
a two-changepoint model and a three-changepoint model in the left bottom and right
bottom of Figure 4 respectively, along with 95% HPD credible intervals. It is observed
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from the bottom of Figure 4 that only the first and the third changepoints can be
identified and other changepoints are simply missed because the observations are not
informative about their locations. The MAP estimates of the changepoint locations for
a two-changepoint model given by the continuous-time Viterbi algorithm are 84.5 and
410.7. The proposed model formulation is more flexible than the multiple changepoint
model with fixed number of changepoints in Lu (2020).

In the third numerical example, we consider multiple changepoint models for a Pois-
son process Y(t) with the changepoint locations associated with a latent Markov chain
X(t), so that when X(t) is in the i -th state, the intensity rate of Y(t) is parameter-
ized by λi. The stochastic intensity rate of the doubly stochastic point process Y(t)
is specified by λX(t). The likelihood of a Poisson process with intensity rate λ is given

by λNe−λT , where N is the total number of Poisson arrivals and T is the overall ob-
servation time. After taking a conjugate prior Γ(α, β) and integrating out λ from the
posterior, the marginal likelihood of Y(t) is exactly written as:

βα

Γ(α)

Γ(α+N)

(β + T )(α+N)
. (15)

A total of 10,000 Poisson events are partitioned into 5 segments by 4 changepoints,
with 2,000 Poisson events in each segment. The Poisson intensity rates specified in the
5 segments are 4,1,3,5 and 2. For this relatively long sequence of observations, it would
be very expensive to detect the sparsely distributed changepoints on an event-by-event
scale. One may discretize the Poisson process into a sequence of discrete Poisson ob-
servations by splitting the time intervals evenly and applying extant methods to detect
changepoints in a discrete-valued time series framework. To control the discretization
error, one may choose a relatively small bin width. However, with increasing bin num-
bers, the computational costs and memory costs inflate quickly: see Fearnhead (2006).
To lower the computational costs and memory costs, one may decrease the number of
bins by choosing a large bin width. In this case, however, the discretization error will
inflate and the estimation of the locations of changepoints will be at low resolution.
The advantage of randomized time discretization via uniformization is that there is no
time-discretization error and the changepoints can be detected directly on the scale of
the number of changepoints.

For this numerical example, the Gibbs sampler in Algorithm 3 was run for 500 burn-
in iterations followed by 500 iterations, which are collected as posterior samples. In the
uniformization scheme, the Poisson intensity rate is 7 times the changepoint recurrence
rate. We set an upper bound of 300 for the number of uniformization times. The num-
ber of uniformization times rarely reaches this bound. With this uniformization scheme,
the FFBS algorithm is efficient to simulate changepoints from a moderate number of
uniformization times, which is often less than 100. The left top of Figure 5 demonstrates
the cumulative time of 10,000 simulated Poisson events. The posterior of the number of
changepoints is indicated in the right top of Figure 5. The dominant mode in the poste-
rior of the number of changepoints is 4. The posterior of the locations of changepoints
is demonstrated in the bottom of Figure 5, with 95% HPD intervals of the changepoint
locations and their posterior mean estimates indicated in the figure. The changepoint
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Figure 5: The left top of the figure displays the cumulative event times of 10,000 simu-
lated Poisson observations with 4 changepoints. The right top of the figure indicates the
posterior of the number of changepoints. The bottom of the figure shows the posterior
means and the 95% HPD credible intervals of changepoint locations as solid red lines,
with the histograms of changepoint locations displayed and exact positions of change-
points marked by dashed lines. The priors for the hyper parameters in Q and λ are
Γ(2, 2) and Γ(2, 2) respectively.

locations given by the MAP estimation via the Viterbi algorithm are at event times
2002, 4001, 6001 and 8012.

The fourth numerical example is a mimic of the real data analysis in the next nu-
merical example. A small number of Poisson events are partitioned by 2 changepoints,
with 230 observations in each segment. The Poisson intensity rates in the 3 segments
are 15, 5 and 15. For this relatively small number of observations, the Gibbs sampler
in Algorithm 3 was run for 3000 iterations, with the last 2500 iterations collected as
posterior samples. The Poisson rate used in the uniformization scheme is 7 times the
changepoint recurrence rate. Often, only a dozen of uniformization times are generated
and the upper bound of 300 for the number of uniformization times is never reached.
The left top of Figure 6 displays the cumulative time of 690 Poisson events. The right top
of Figure 6 indicates the posterior of the number of changepoints. The dominant mode
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Figure 6: The left top of the figure displays the cumulative event times of 690 Poisson
observations with 2 changepoints. The right top of the figure indicates the posterior
of the number of changepoints. The bottom of the figure shows the posterior means
and the 95% HPD credible intervals of changepoint locations as solid red lines, with
the histograms of changepoint locations displayed and exact positions of changepoints
marked by dashed lines. The priors for the hyper parameters in Q and λ are Γ(2, 2) and
Γ(2, 2) respectively.

in the posterior of the number of changepoints is 2. The posterior of the locations of
changepoints is shown in the bottom of Figure 6, with 95% HPD intervals of the change-
point locations and their posterior mean estimates indicated in the figure. The MAP
estimates of changepoint locations via the Viterbi algorithm are eventtimes 228 and 448.

4.2 Time-Varying Patterns of Deep Earthquakes via Multiple
Changepoint Models

We apply the method to model the occurrence patterns of New Zealand deep earth-
quakes. The data set studied in this analysis is the New Zealand earthquake cata-
logue, freely available from GNS Science of New Zealand via Geonet (www.geonet.
org.nz). We choose those events from the New Zealand catalogue within a poly-

http://www.geonet.org.nz
http://www.geonet.org.nz
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Figure 7: The top of the figure is the yearly counts of deep earthquakes. The bottom of
the figure is the centralized and normalized cumulative sum of the inter-event times for
deep earthquakes.

gon with vertices (171◦E, 43◦S), (172.5◦E, 39.3◦S), (176◦E, 36.25◦S), (177◦E, 36.25◦S),
(178.7◦E, 37.6◦S), (178◦E, 40◦S) and (174◦E, 43◦S), at depth greater than 45 km with
magnitude above 5 in the New Zealand version of local magnitude scale, from 1945 until
2011. The total number of recorded earthquakes is 646. Nearly the same data set is anal-
ysed in Lu (2018). The occurrence time distribution of New Zealand deep earthquakes
is displayed in the top of Figure 7. From Figure 7, it seems that the yearly counts of
New Zealand deep earthquakes varies form time to time. Whether the time-varying be-
havior of the earthquake occurrence rate is associated with structural breaks or it is just
random fluctuation is of importance for seismic hazard evaluation and seismic risk fore-
casts. The centralized and normalized cumulative sum of inter-event times Δti, which

is given by
∑ j

i=1 Δti∑n
i=1 Δti

− j
n , is indicated in the bottom of Figure 7. This statistic behaves

as a Brownian bridge on [0, 1] if the observations are from a time-homogeneous Poisson
process. Otherwise, if the statistic deviates from the line segment: y = 0, 0 ≤ x ≤ 1
significantly, the observations should not be regarded as a homogeneous Poisson pro-
cess: see Galeano (2007) and Yang and Kuo (2001) for the detection of changepoints of
Poisson processes. From the bottom of Figure 7, it appears that a single-changepoint or
a two-changepoint model might be suitable to characterize the time-varying behavior
of the earthquake occurrence rate.

In this numerical example, the Gibbs sampling scheme iterates 8000 times, with
the last 2,000 samples treated as the posterior samples. We set an upper bound of
200 for the number of Poisson event numbers produced by the uniformization scheme.
The truncation error is negligible. The left top of Figure 8 shows the magnitude versus
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Figure 8: The left top of the figure is the magnitude versus time plot of the deep
earthquakes, with the posterior means of changepoint locations marked by red dash
lines. The right top of the figure indicates the posterior of the number of changepoints.
The bottom of the figure demonstrates the 95% HPD credible intervals of changepoint
locations by solid red lines and their histograms. The priors for the hyper parameters
in Q and λ are Γ(2, 2) and Γ(2, 2) respectively.

time (M-T) plot of deep earthquakes, with the locations of changepoints indicated by
vertical lines. The posterior of the number of changepoints is shown in the right top
of Figure 8. From the figure, the MAP estimation of the number of changepoints is
2. The posterior probability mass for the number of changepoints equal to or above
three is almost negligible. For the two-changepoint model, the posterior means for the
locations of changepoints are about 1953 and 1987, with 95% credible intervals indicated
by the red lines in boldface in the bottom of Figure 8. The credible interval for the
changepoint at 1987 looks a bit over-diffused, which might be attributed to the Poisson
rate varying with some sort of trend. The MAP estimation of the changepoint locations
is at 1957.5 and 1991.2. In this numerical example, we also run the RJMCMC (Green
1995) algorithm for a significantly longer time to obtain the posterior of the number of
changepoints of deep earthquakes (Figure 9), which is very diffusive in comparison to
the right top of Figure 8. Generally, these methods have problems of poor mixing and
highly correlated posterior samples.
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Figure 9: The histogram of changepoint numbers produced from 40,000 posterior sam-
ples collected after a significant longer burning time via the RJMCMC method. The
prior distribution of the number of changepoints is uniformly distributed between 0 and
kmax = 65. The prior distribution for the intensity rate parameter λ is Γ(2, 2).
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