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Particle Methods for Stochastic Differential
Equation Mixed Effects Models

Imke Botha∗,§,¶, Robert Kohn†,§, and Christopher Drovandi‡,§

Abstract. Parameter inference for stochastic differential equation mixed effects
models (SDEMEMs) is challenging. Analytical solutions for these models are
rarely available, which means that the likelihood is also intractable. In this case,
exact inference (up to the discretisation of the stochastic differential equation) is
possible using particle MCMC methods. Although the exact posterior is targeted
by these methods, a naive implementation for SDEMEMs can be highly inefficient.
Our article develops three extensions to the naive approach which exploit specific
aspects of SDEMEMs and other advances such as correlated pseudo-marginal
methods. We compare these methods on simulated data and data from a tumour
xenography study on mice.

Keywords: Bayesian inference, hierarchical models, MCMC, particle Gibbs,
pseudo-marginal, random effects.

1 Introduction

Stochastic differential equations (SDEs) are defined as ordinary differential equations
(ODEs) with one or more stochastic components. SDEs allow for random variations
around the mean dynamics specified by the ODE. These models can be used to capture
inherent randomness in the system of interest. For repeated measures data, random
effects can be used to account for between-subject variability; this gives an SDE mixed
effects model (SDEMEM).

SDEMEMs are emerging as a useful class of models for biomedical and pharma-
cokinetic/pharmacodynamic data (Donnet et al., 2010; Donnet and Samson, 2013a;
Leander et al., 2015). They have also been applied in psychology (Oravecz et al., 2011)
and spatio-temporal modelling (Duan et al., 2009). Statistical inference for these models
is generally difficult however. In most cases, the SDE does not have an explicit or analyt-
ical solution (transition density), making the likelihood intractable. Including random
effects adds further complexity.

Parameter inference for SDEMEMs has largely focussed on maximum likelihood es-
timation; e.g. Picchini et al. (2010), Picchini and Ditlevsen (2011), Delattre et al. (2013)
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and Donnet and Samson (2013a,b). There are few Bayesian inference methods; Donnet
et al. (2010) propose a Gibbs sampler coupled with an Euler-Maruyama discretisation
of the intractable transition density. Whitaker et al. (2017a) take a data augmentation
approach based on a diffusion bridge, which allows for non-linear dynamics between ob-
served time points. Picchini and Forman (2019) compare results from a particle MCMC
algorithm (Andrieu and Roberts, 2009; Andrieu et al., 2010) and a Bayesian synthetic
likelihood approach (Wood, 2010; Price et al., 2018). They apply both methods to an
SDE with known solution, and suggest an Euler-Maruyama approximation if the solu-
tion is unavailable.

It is unlikely however that any one approach to estimating SDEMEMs is optimal
for all applications. Performance will depend on the complexity of the underlying SDE,
the number of parameters, the number of observations for each subject, as well as the
complexity of the random effects. Inference results also depend on the properties of the
ODE underlying the SDEMEM, and whether it reflects important features of the data,
such as monotonicity or periodicity. It has been our experience that methods that work
well on simple examples can often fail badly on more complex ones. This motivates our
focus on significant extensions to the pseudo-marginal approach of Picchini and For-
man (2019) for SDEMEMs. Pseudo-marginal methods can overcome some limitations
of data augmentation approaches because they integrate out the latent states (Stramer
and Bognar, 2011; Gunawan et al., 2018b). This is especially useful when there is sub-
stantial correlation between the latent variables and the parameters of interest. Our
article develops a suite of new and efficient Bayesian methods for SDEMEMs that take
advantage of advances in particle methods and exploit specific aspects of SDEMEMs.
We compare these methods on a model adapted from one used by Picchini and Forman
(2019) to model the growth of tumour volumes in mice. We believe that the results of
this comparison are of interest to the wider Bayesian community.

The rest of the paper is organised as follows. Sections 2 and 3 provide the neces-
sary background on state space models, stochastic differential equations, particle filters
and particle MCMC methods. Section 4 proposes three potential particle methods for
SDEMEMs. Sections 5–7 compare these methods with the Picchini and Forman (2019)
approach on simulated and real data from a tumor xenography study on mice, modelled
with a monotonic growth SDEMEM. Appendix B (Botha et al., 2020) gives a second ex-
ample which shows the performance of our methods on a non-monotonic data example.
Section 8 concludes with a discussion of the results and possible future work. Code for
our methods is available at https://github.com/imkebotha/particle-mcmc-sdemem.

2 Stochastic Differential Equation Mixed Effects
Models

We denote random variables by capital letters and their realisations by lowercase let-
ters; N is the set of positive integers. The symbol ∼ denotes simulation according to a
probability distribution, which refers to either the distribution or density depending on
the context. For conciseness, we define xi:j := {xi, xi+1, . . . , xj} for j > i.

https://github.com/imkebotha/particle-mcmc-sdemem
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2.1 State Space Models

State space models (SSMs) consist of two processes: a Markov process {Xt}t≥0 ⊂ X ,
where Xt is usually only partially observed and is often viewed as a latent process,
and an observed process {Yt}t≥0 ⊂ Y . The X and Y spaces are typically subsets of
Euclidean space. To obtain an SSM, we assume that {(xt, yt); t ≥ 0} is Markov with
model parameters θ, so that

p(xt, yt | x0:t−1,y0:t−1,θ) = p(xt, yt | xt−1, yt−1,θ)

= g(yt | xt, xt−1, yt−1,θ)f(xt | xt−1, yt−1,θ).

For ease of exposition, t = 0, . . . , T − 1 are assumed to be the observation times. We
simplify further and assume that

g(yt | xt, xt−1, yt−1,θ) = g(yt | xt,θ), f(xt | xt−1, yt−1,θ) = f(xt | xt−1,θ),

where g(yt | xt,θ) is the observation density and f(xt | xt−1,θ) is the state transition
density; π(θ) is the prior for θ. The unnormalized posterior density of the latent states
and model parameters is

p(x0:T−1,θ | y0:T−1) ∝ p(y0:T−1 | x0:T−1,θ)p(x0:T−1 | θ)π(θ), (1)

where

p(y0:T−1 | x0:T−1,θ) =

T−1∏
t=0

g(yt | xt,θ), and

p(x0:T−1 | θ) = μ(x0 | θ)
T−1∏
t=1

f(xt | xt−1,θ).

The marginal posterior for θ is,

p(θ | y0:T−1) ∝ π(θ)p(y0:T−1 | θ),

with likelihood

p(y0:T−1 | θ) =
∫

p(y0:T−1 | x0:T−1,θ)p(x0:T−1 | θ)dx0:T−1. (2)

The integral in (2) is usually intractable. For some models, inference is also complicated
due to an intractable transition density, see e.g. the SDEs in Section 2.2. While approx-
imate methods can be used in this case, Section 3.2 shows that exact inference is still
feasible if it is possible to simulate from the transition density.

2.2 Stochastic Differential Equation Mixed Effects Models

A one-dimensional Itô process (Øksendal, 2013, p. 22) is a stochastic process {Xt}t≥0

satisfying

Xt = X0 +

∫ t

0

μ(s,Xt)ds+

∫ t

0

√
v(s,Xt)dBs, (3)
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where Bt =
∫ t

0
dBs is standard one-dimensional Brownian motion. The differential form

of (3) gives the stochastic differential equation (SDE) governing {Xt}t≥0. For simplicity,
we only consider one-dimensional SDEs, but it is straightforward to extend the methods
introduced in Section 4 to higher dimensions.

Given an Itô process {Xt}t≥0, the general form for a one-dimensional continuous
SDE parameterised by φX is

dXt = μ(Xt,φX , t)dt+
√
v(Xt,φX , t)dBt, X0 = X0(φX),

where μ(·) is the drift,
√
v(·) is the diffusion, φX are the fixed model parameters and

{Bt}t≥0 is a standard Brownian motion process. This model can be extended by allowing
some of the parameters to vary between the m = 1, . . . ,M individuals. In this more
general setting, let φX be the vector of fixed common parameters of the SDE, and
ηm the vector of subject specific parameters (random effects), where ηm ∼ p(φη). The
stochastic differential equation mixed effects model (SDEMEM) is then given by,

dXm,t = μ(Xm,t,φX ,ηm)dt+
√
v(Xm,t,φX ,ηm)dBm,t, Xm0 = Xm0(φX ,ηm). (4)

The solution to (4) gives the transition density of the states. If an analytical solution
for the transition density is unavailable, numerical methods can be used; Section 2.3
discusses some of these.

This leads to a state-space model if the process shown in (4) is hidden. Let ym,t ∈
{Ym,t}t≥0 denote a noisy observation for individual m,m = 1, . . . ,M at time ξm,t, t =
0, . . . , Tm − 1, where Tm is the number of observations for individual m. To simplify
notation, we assume that observations are taken at the same time points for all individ-
uals, i.e. ξt, t = 0, . . . , T −1, but this restriction is unnecessary for our methods. Further
dependence on ξt is denoted simply by t, e.g. 0 : T − 1 represents ξ0 : ξT−1. We assume
that the observation equations are given by

ym,t | xm,t, σ
2 ∼ N (ym,t;xm,t, σ

2). (5)

Let θ = (σ,φX ,φη) be the vector of all unknown parameters in the model, ym =
ym,0:T−1 and xm = xm,0:T−1. The joint posterior of θ, η1:M and x1:M can be expressed
as

p(θ,η1:M ,x1:M | y1:M ) ∝ p(θ)
M∏

m=1

p(ym | xm,θ)p(xm | ηm,θ)p(ηm | θ).

The following running example is used throughout the paper to illustrate some of
the concepts and methods.

Example (SDEMEM with constant drift and diffusion). Consider the SDEMEM

Xm,t = βmdt+ γdBm,t, Xm,0 = x0, (6)

log(βm) ∼ N
(
log(βm);μβ , σ

2
β

)
,
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with random effects ηm = log(βm), unknown static model parameters φX = {γ, x0}
and random effects hyperparameters φη = {μβ , σβ}. The exact transition density of
this model is obtained by solving (6),

f(xm,t | xm,t−1, βm, γ, x0) = N (xm,t;xm,t−1 + βm, γ2).

If a Gaussian observation density is assumed, the full model is given by⎧⎪⎨⎪⎩
g(ym,t | xm,t,θ) = N (ym,t;xm,t, σ

2),

f(xm,t | xm,t−1, ηm,θ) = N (xm,t;xm,t−1 + βm, γ2),

p(ηm | θ) = N (ηm;μβ , σ
2
β),

(7)

where θ = {σ, γ, x0, μβ , σβ}.

2.3 SDE Simulation

Consider the SDEMEM for a single individual,

dXt = μ(Xt,φX ,η)dt+
√
v(Xt,φX ,η)dBt, X0 = X0(φX ,η).

If the SDE cannot be solved analytically, then it is necessary to use approximate
methods. This section describes two common approaches for approximate simulation
of SDEs: the Euler-Maruyama discretisation (EMD) and the diffusion bridge approach.
Both methods simulate the SDE between discrete time points (generally corresponding
to the observed times) along the entire diffusion trajectory or path, i.e. from t = 0 to
T −1. The error resulting from the discretisation is controlled using data augmentation,
which introduces additional (unobserved) states between observation times.

Given a process {Xt}t≥0, the time interval [ξt, ξt+1] between two observations is split
into D subintervals, where D denotes the level of discretisation,

ξt = τ0 < τ1 < · · · < τk < τk+1 < · · · < τD = ξt+1, Δτ =
ξt+1 − ξt

D
.

The EMD and diffusion bridges simulate over each subinterval as follows

Xτk+1
= Xτk + μDB(·)Δτ +

√
ΨDB(·)ΔBτk ,

where μDB(·) and ΨDB(·) are determined by the method used, and ΔBτk = Bτk+1
−

Bτk . Since ΔBτk ∼ N (ΔBτk ; 0,Δτ) by definition, the path is simulated by recursively
applying

xτk+1
| xτk ∼ N (xτk+1

;xτk + μDB(·)Δτ,ΨDB(·)Δτ). (8)

The joint density of this approximation is

q(xτ1:τD | xτ0 , φX , η) ∝
D−1∏
k=0

N (xτk+1
;xτk + μDB(·)Δτ,ΨDB(·)Δτ).
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Euler-Maruyama

The Euler-Maruyama discretisation (EMD) is the simplest method to simulate an ap-
proximate trajectory from an SDE. Assuming that the drift and diffusion coefficients
are locally constant,

μ(Xτk ,φX ,η) = μk,
√
v(Xτk ,φX ,η) =

√
vk,

the EMD uses the proposal

xτk+1
| xτk ∼ N (xτk+1

;xτk + μkΔτ, vkΔτ), (9)

which approximates the transition density f(xτk+1
| xτk ,φX ,η). If the SDE has constant

drift and diffusion, then the EMD gives the exact solution, i.e. the transition density.

Example (SDEMEM with constant drift and diffusion). The EMD for the SDEMEM
in (6), with μk = βm and vk = γ2, is

xm,τk+1
| xm,τk ∼ N (xm,τk+1

;xm,τk + βmΔτ, γ2Δτ),

xm,τk+1
| xm,τk ∼ N (xm,τk+1

;xm,τk + βm, γ2), Δτ = 1,

which is the exact transition density.

Diffusion Bridges

Simulating from the (approximate) transition density may be sub-optimal if some obser-
vations are highly informative or there is little observation noise. More effective trajec-
tories can be obtained if the proposal for xt can be directed towards yt. This is possible
using a diffusion bridge.

The modified diffusion bridge (MDB) of Durham and Gallant (2002) (see also Go-
lightly and Wilkinson, 2008) directs xt linearly towards yt. The MDB is derived by ap-
proximating the joint distribution of Xτk+1

, Yξt+1 | xτk using a multivariate normal dis-
tribution, and then conditioning on Yξt+1 = yξt+1 . The distribution of Xτk+1

, Yξt+1 | xτk

is obtained from the observation density (5) and the EMD (9) of Xτk+1
| xτk ; see Ap-

pendix 1 of Golightly and Wilkinson (2008) for a more detailed derivation. The MDB
is a bridge proposal of the form

xτk+1
| xτk , yξt+1 ∼ N{xτk+1

;xτk + μMDB(xτk , yξt+1)Δτ,ΨMDB(xτk)Δτ},

where

μMDB(xτk , yξt+1) = μk +
vk(yξt+1 − (xτk + μkΔk))

vkΔk + σ2
=

μkσ
2 + vk(yξt+1 − xτk)

vkΔk + σ2
,

ΨMDB(xτk) = vk − v2kΔτ

vkΔk + σ2
=

vkσ
2 + v2k(Δk −Δτ)

vkΔk + σ2
,

and Δk = ξt+1 − τk.
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Whitaker et al. (2017b) notes that the modified diffusion bridge can perform poorly
when the drift coefficient (μ(Xτk ,φX ,η) = μk) is not approximately constant. To over-
come this problem, they propose partitioning the SDE into a deterministic process and a
residual stochastic process, such that the latter has constant drift. Rewriting the model
in terms of these processes gives

Xt = ζt +Rt, ζt, t ≥ 0,

dζt = f(ζt)dt, ζ0 = x0,

dRt = {μ(Xt,φX ,η)− f(ζt)}dt+
√
v(Xt,φX ,η)dBt, R0 = 0. (10)

The idea is to choose ζt and f(·) such that the drift of (10) is approximately constant.
The simplest solution (Whitaker et al., 2017b) is to set ζt = πt and f(·) = μ(·) as

Xt = πt +Rt, πt, t ≥ 0,

dπt = μ(πt,φX ,η)dt, π0 = x0,

dRt = {μ(Xt,φX ,η)− μ(πt,φX ,η)}dt+
√
v(Xt,φX ,η)dBt, R0 = 0

noting that Yξt+1−πξt+1 = Rξt+1+εξt+1 . The residual bridge is obtained by constructing
the MDB on the residual process {Rt}. This bridge proposal is

xτk+1
| xτk , yξt+1 ∼ N (xτk+1

;xτk + μRB(xτk , yξt+1)Δτ,ΨRB(xτk , yξt+1)Δτ),

where

ΨRB(xτk , yξt+1) = ΨMDB(xτk , yξt+1), δπk =
πτk+1

− πτk

Δτ
and

μRB(xτk , yξt+1) = μk +
vk(yξt+1 − (πξt+1 + rτk + (μk − δπk )Δk))

vkΔk + σ2
.

3 Particle MCMC

There are at least two possible Bayesian strategies to obtain parameter inference for
θ for state-space SDEMEMs. The first is to use a Metropolis-Hastings algorithm to
sample from θ | y1:M . This requires the likelihood p(θ | y1:M ) to be analytically
tractable, which is generally not the case for SDEMEMs. The second strategy involves
a component-wise sampling approach, which iteratively updates θ | y1:M ,η1:M ,x1:M ,
η1:M | y1:M ,θ,x1:M and x1:M | y1:M ,θ,η1:M . The distribution of xm | y1:M ,θ,η1:M

can be complicated however, especially if the exact transition density is unknown. In-
efficiency can also be an issue if there is high correlation between x1:M and either θ or
η1:M .

In both cases, a particle filter may be used to overcome these issues. The following
sections describe particle filters, particle methods and their variants for state-space
models. Section 4 covers the specific application of these methods to SDEMEMs.
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Algorithm 1: The generic particle filter of Doucet and Johansen (2009).

Input : data y1:T , number of particles N , static parameters θ, initial states
x1:N
0 and the vector of random numbers u†.

Output : weighted sample {x1:N
1:T ,W 1:N

1:T }, likelihood estimate Ẑ
Notation: We use the convention that index (n) means ‘for all n ∈ {1, . . . , N}’

1 Initialise x
(n)
1 = x

(n)
0 , W

(n)
1 = 1

N , w
(n)
1 = 1

N π1(x
(n)
1 , y1 | θ), Ẑ =

∑N
i=1 w

i
1

2 for t = 2 to T do

3 Resample (with replacement) N particles from x1:N
t−1 according to W 1:N

t−1

4 Move the particles, x
(n)
t ∼ q(x

(n)
t | yt, x(n)

t−1,θ)

5 Calculate weights w
(n)
t =

πt(x
(n)
t ,yt|x(n)

t−1θ)

N ·q(x(n)
t |yt,x

(n)
t−1,θ)

6 Normalize weights W
(n)
t =

w
(n)
t∑N

i=1 wi
t

7 Update likelihood estimate Ẑ = Ẑ ×
∑N

i=1 w
i
t

8 end

†Note that the random numbers in u are used implicitly when the particles are resampled and moved
(steps 3 and 4).

3.1 Particle Filters

Exact state estimation of SSMs using the Kalman filter is only possible when they are
Gaussian or conditionally Gaussian. For non-linear, non-Gaussian SSMs, a particle filter
can be used for simulation consistent estimation (Gordon et al., 1993; Carpenter et al.,
1999; Doucet et al., 2000; Del Moral et al., 2006; Doucet and Johansen, 2009).

Particle filters are used to traverse through a sequence of intermediary distributions
towards some target distribution. We describe the generic particle filter of Doucet and
Johansen (2009) (see Algorithm 1), with a filtering distribution of the form

pt(x1:t | y1:t,θ) ∝ π1(x1, y1 | θ)
t∏

j=2

πt(xj , yj | xj−1,θ), t = 1, . . . , T

= g(y1|x1,θ)f(x1 | θ)
t∏

j=2

g(yj |xj ,θ)f(xj | xj−1,θ). (11)

A combination of move, reweight and resample steps are used to transition through
this sequence. The move step generates values for xt from some proposal distribution
q(xt | yt, xt−1,θ). Once moved, the N particles are re-weighted according to,

wn
t = Wn

t−1

πt(xt, yt | xt−1θ)

q(xt | yt, xt−1,θ)
, Wn

t =
wn

t∑N
i=1 w

i
t

.

Particles are then resampled with probability W 1:N
t for the next iteration. This is

done to avoid particle impoverishment, where most of the weight is given to few particles.
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There are several resampling methods that can be used, including multinomial, stratified
(Kitagawa, 1996), and more recently, the Srinivasan sampling process (Gerber et al.,
2019).

The particle filter gives an unbiased estimate of the likelihood from the unnormalized
weights,

p̂(Y 1:T | θ) =
T∏

t=1

N∑
n=1

w
(n)
t . (12)

The bootstrap particle filter of Gordon et al. (1993) is a special case of the generic
particle filter with q(xt | yt, xt−1,θ) = f(xt | xt−1,θ). The calculation of the weights
then simplifies to wn

t = Wn
t−1g(yt | xt,θ).

3.2 Pseudo-Marginal MCMC

Markov chain Monte Carlo (MCMC) algorithms work by constructing an ergodic
Markov chain with the posterior distribution p(θ | y) as its stationary distribution.
The Metropolis-Hastings (MH) algorithm is a standard MCMC method, which accepts
candidate values θ∗ ∼ q(θ∗ | θ) with probability

α = min

(
1,

p(y | θ∗)p(θ∗)

p(y | θ)p(θ)
q(θ | θ∗)

q(θ∗ | θ)

)
. (13)

If the likelihood function p(y | θ) is intractable then the MH algorithm cannot be
implemented directly, however pseudo-marginal MCMC can be used.

The pseudo-marginal approach of Andrieu and Roberts (2009) allows for exact in-
ference for models with intractable likelihoods. In this approach, the intractable like-
lihood p(y1:T | θ) is replaced with a non-negative unbiased estimate within an oth-
erwise standard MH algorithm. The likelihood estimate is written interchangeably as
p̂(y1:T | θ) = p(y1:T | θ,u) where u ∼ p(u) are the auxiliary variables used to construct
the likelihood estimate. Unbiasedness means that

Ep(u)(p̂(y1:T | θ)) = Ep(u)(p(y1:T | θ,u)) =
∫

p(y1:T | θ,u)p(u)du = p(y1:T | θ).

Pseudo-marginal MCMC can therefore be defined as a standard MH algorithm on an
augmented space, i.e. the space of θ augmented with the auxiliary variables u. The
MCMC chain targets p(θ,u | y1:T ) which has the posterior p(θ | y1:T ) as its θ-marginal
distribution, since∫

p(θ,u | y1:T )du =

∫
p(y1:T | θ,u)p(θ)p(u)

p(y1:T )
du

=
p(θ)

p(y1:T )

∫
p(y1:T | θ,u)p(u)du

=
p(θ)p(y1:T | θ)

p(y1:T )
= p(θ | y1:T ).

The next sections describe the particle marginal Metropolis-Hastings (PMMH) and
particle Gibbs (PG) algorithms proposed by Andrieu et al. (2010).
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Particle Marginal Metropolis-Hastings

The PMMH algorithm is a pseudo-marginal method where the intractable likelihood
is replaced by an unbiased particle filter estimate (12). As in Section 3.2, the resulting
chain targets the joint density p(θ,u | y1:T ), where u is the vector of random numbers
used in the particle filter; u contains all the random numbers required to resample and
move the particles (steps 3 and 4 of Algorithm 1) and its elements are usually standard
uniform or standard normal.

Algorithm 2: Particle marginal Metropolis-Hastings.

Input : data y1:T , initial values θ
0 and number of iterations I

Output : posterior samples θ1:I

1 Initialise θ1 = θ0

2 Draw u ∼ p(·)
3 Run Algorithm 1 to obtain an unbiased estimate of p(y1:T | θ1,u)
4 for i = 2 to I do

5 Sample θ∗ ∼ q(· | θi−1) and u∗ ∼ p(·)
6 Run Algorithm 1 to obtain an unbiased estimate of p(y1:T | θ∗,u∗)
7 Calculate the acceptance probability

α = min

(
1,

p (y1:T | θ∗,u∗) p (θ∗)

p
(
y1:T | θi−1,u

)
p
(
θi−1

) q (θi−1 | θ∗)
q
(
θ∗ | θi−1

))

8 Draw u ∼ U(0, 1)
9 if u < α then

10 Set θi = θ∗ and u = u∗

11 else

12 Set θi = θi−1

13 end

14 end

A drawback of the PMMH algorithm is that it can be difficult to find good proposals.
Another drawback is the chain’s tendency to get stuck whenever the likelihood is greatly
overestimated for a particular value of θ, i.e. if p̂(y1:T | θ) is greatly overestimated, then
the acceptance probability for θ∗ will be small unless p̂(y1:T | θ∗) is also overestimated.
This issue is mitigated by decreasing the variance of the log of the ratio of the likelihood
estimates

R = log

(
p(y1:T | θ∗,u∗)

p(y1:T | θ,u)

)
. (14)

A common strategy to do this is to increase the number of particles N used in the
particle filter. Since the estimates are unbiased, this increases both the precision and
accuracy of the individual likelihood estimates. Sherlock et al. (2015), Pitt et al. (2012)
and Doucet et al. (2015) showed that optimal performance is gained when N is chosen
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such that the standard deviation of the estimated log-likelihood is between 1 and 4.
A superior alternative approach is the correlated pseudo-marginal (CPM) method of
Deligiannidis et al. (2018) (see also Dahlin et al. (2015)). Tran et al. (2016) introduced
a variation of the CPM method called the block pseudo-marginal (BPM) approach.

Correlated Pseudo-Marginal

At any given iteration of the PMMH algorithm (Algorithm 2), the likelihood ratio is
p(y1:T | θ∗,u∗)/p(y1:T | θ,u), where θ∗ and u∗ are the proposed values and θ and u
are the current values. Deligiannidis et al. (2018) show that the mixing of the chain is
greatly improved by correlating p(y1:T | θ∗,u∗) and p(y1:T | θ,u). This helps to vastly
reduce the variance of the log of the ratio of the estimated likelihoods (14), without
having to reduce the variance of each of the individual likelihood estimates.

The correlated pseudo-marginal (CPM) approach does this by making u and u∗

highly correlated. Assuming the random numbers are normally distributed, Deligianni-
dis et al. (2018) use the Crank-Nicolson proposal to induce a correlation of ρ

qθ,u({θ∗,u∗} | {θ,u}) = qθ(θ
∗ | θ)qu(u∗ | u)

= qθ(θ
∗ | θ)N (u∗; ρu, (1− ρ2)INu).

If the particle filter depends on non-normal random numbers, transformation to nor-
mality is applied. Deligiannidis et al. (2018) derive some optimality results to tune the
parameters of the CPM method. In particular, they use the variance of the estimated
log-likelihood ratio around the mode of the posterior to tune ρ for a given number of
particles N .

The block pseudo-marginal (BPM) approach induces correlation by updating u in
blocks or subsets (Tran et al., 2016); the vector of random numbers u is divided into B
blocks, and a single block is updated at each iteration while the remaining B − 1 are
held constant. The resulting correlation between the logs of the likelihood estimates is
approximately 1−1/B and is induced much more directly than in CPM. No assumption
about the form or distribution of u is required. Tran et al. (2016) uses the variance of the
log-likelihood estimator to tune N for each group or block. Given that B is sufficiently
large, they derive the optimal variance for both Monte Carlo and randomised quasi-
Monte Carlo (RQMC) log-likelihood estimators.

Relative to standard PMMH, CPM and BPM are able to tolerate significantly more
variance in the log-likelihood estimates, such that less particles are needed for the chain
to mix well. The increase in computational efficiency gained from this typically out-
weighs the overhead associated with storing the vector of random numbers u.

Conditional Particle Filter

The particle Gibbs (PG) algorithm of Andrieu et al. (2010), requires a variation of the
generic particle filter (Section 3.1) called the conditional particle filter (CPF). The CPF
differs from the generic particle filter by holding a single path xk

1:T invariant throughout
the iterations.
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The ancestral lineage Bk
1:T of the invariant path contains the index of each state

xk
t ∈ xk

1:T relative to all other states x1:N
t for t = 1, . . . , T . For example, if N = 4 and

Bk
1:3 = {4, 1, 2}, then

x1:N
t=1 = {x1

1, x
2
1, x

3
1, x

k
1}�,

x1:N
t=2 = {xk

2 , x
2
2, x

3
2, x

4
2}�,

x1:N
t=3 = {x1

3, x
k
3 , x

3
3, x

4
3}�.

Once a weighted sample is obtained, a new invariant path and associated ancestral
lineage may be drawn using the backwards sampling method of Whiteley (2010) and
Lindsten and Schön (2012). See Algorithms 3 and 4 for more details.

Algorithm 3: The conditional particle filter.

Input : data y1:T , number of particles N , initial states x1:N
0 , static parameters

θ, invariant path xk
1:T and associated ancestral lineage Bk

1:T .

Output : new path xk
1:T and associated ancestral lineage Bk

1:T

Notation: We use the convention that index (n) means ‘for all n ∈ {1, . . . , N}’
and index (n �= k) means ‘for all n ∈ {1, . . . , k − 1, k + 1, . . . , N}’

1 Initialise x
(n �=Bk

1 )
1 = x

(n �=Bk
1 )

0 , W
(n)
1 = 1

N , w
(n)
1 = 1

N π1(x
(n)
1 , y1 | θ),

Ẑ =
∑N

n=1 w
(n)
1

2 Set x
Bk

1:T

1:T = xk
1:T

3 for t = 2 to T do

4 Sample parent indices A
(n �=Bk

t )
t−1 ∼ F(· | W (n)

t−1) /* resample */

5 Sample x
(n �=Bk

t )
t ∼ q(· | xA

(n �=Bk
t )

t−1

t−1 ,θ) /* move */

6 Calculate weights w
(n)
t =

πt(x
(n)
t ,yt|x(n)

t−1,θ)

N ·q(x(n)
t |x(n)

t−1,θ)

7 Normalize weights W
(n)
t =

w
(n)
t∑N

i=1 wi
t

8 end

9 Run Algorithm 4 to obtain new ancestral lineage Bk
1:T

10 Use Bk
1:T to determine new path xk

1:T

The matrix An
t−1 gives the parent indices of the particles at time t − 1. The relationship between the

ancestral lineage and the matrix of parent indices is A
Bk

t
t−1 = Bk

t−1, where Bk
T = k.

Particle Gibbs

PMMH uses the unbiased estimate of the likelihood computed by the particle filter.
In particle Gibbs, the latent states are updated using a conditional particle filter, i.e.
x1:T is approximately sampled from p(x∗

1:T | y1:T ,x1:T ,θ) (see Algorithms 3 and 5).
The parameters θ are updated using Gibbs sampling if the full conditional posterior is
available, or a Metropolis-Hastings step otherwise.
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Algorithm 4: Backward Sampling.

Input : particles x1:N
1:T , particle weights w1:N

1:T and normalised particle weights
W 1:N

T

Output : new ancestral lineage B1:T

Notation: We use the convention that index (n) means ‘for all n ∈ {1, . . . , N}’
1 Draw k ∼ F(· | W 1:N

T )
2 Set BT = k
3 for t = T − 1 to 1 do

4 Sample W
(n)
(t|T ) = w

(n)
t

fθ

(
x
Bt+1
t+1 |x(n)

t

)
∑N

i=1 wi
tfθ

(
x
Bt+1
t+1 |xi

t

)
5 Draw Bt ∼ F(· | W 1:N

(t|T ))

6 end

Since a new path x1:T is simulated at each iteration, PG does not suffer from the
same mixing problem as PMMH; it is significantly less sensitive to the number of par-
ticles used. PG also has the advantage that more efficient updating schemes for θ can
be used, such as the Metropolis-adjusted Langevin algorithm (MALA) or Hamiltonian
Monte Carlo (HMC). While this method has a number of advantages over PMMH, it is
not as general as it requires a closed form transition density to update θ.

Algorithm 5: The particle Gibbs algorithm.

Input : data y1:T , initial values θ
0, initial path x0

1:T and associated ancestral
lineage B0

1:T , and number of iterations I
Output : posterior samples θ1:I and x1:I

1:T with associated ancestral lineage B1:I
1:T

1 Initialise θ1 = θ0 and x1
1:T = x0

1:T and B1
1:T = B0

1:T

2 for i = 1 to I − 1 do

3 Update θi+1 conditional on θi and xi
1:T

4 Run Algorithm 3 to sample xi+1
1:T and Bi+1

1:T conditional on θi+1,xi
1:T and

Bi
1:T .

5 end

4 Methods

We are interested in parameter inference for the state-space SDEMEM described in
Section 2.2. For a single individual m, with observations taken at t = 0, . . . , T − 1, the
sequence of distributions (11) traversed by the particle filter (see Section 3.1) is

πt(xm,0:t | ym,0:t,ηm, σ,φX) ∝g(ym,0|xm,0, σ)f(xm,0 | ηm,φX)

t∏
j=1

g(ym,j |xm,j , σ)f(xm,j | xm,j−1,ηm,φX).
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This particle filter returns an estimate of p(ym | ηm, σ,φX), which can be used to
estimate the conditional likelihood for all individuals,

p̂(y1:M | η1:M , σ,φX) =

M∏
m=1

p̂(ym | ηm, σ,φX).

Since the likelihood estimator for each individual is unbiased and independent, the
product of the estimators is also unbiased,

E

(
M∏

m=1

p̂(ym | ηm, σ,φX)

)
=

M∏
m=1

E (p̂(ym | ηm, σ,φX)) .

If the solution of the SDE is unavailable, the transition density is approximated using
the Euler-Maruyama discretisation (EMD), so the target distribution is exact only up to
discretisation error of the SDE. This error can be made arbitrarily small by increasing
the level of discretisation at the expense of increased computation (see Section 2.3).

4.1 Individual-Augmentation Pseudo-Marginal

Our first method is Individual-Augmentation Pseudo-Marginal (IAPM), named for the
additional auxiliary variables required to estimate the likelihood for each individual.
Here, the likelihood estimate is,

p̂(ym | θ) =
∫

p̂(ym | ηm, σ,φX)p(ηm | φη)dηm, θ = (σ,φX ,φη),

≈ 1

L

L∑
l=1

p̂(ym | η(l)
m , σ,φX)p(η

(l)
m | φη)

g(η
(l)
m | θ)

, η(l)
m ∼ g(ηm | θ)

using the importance distribution g(ηm | θ) within a PMMH algorithm (Algorithm 2);
see Algorithms 6 and 7 for more details.

The variability of p̂(ym | θ) for a given g(ηm | θ) is controlled by the number of
particles N , as well as the number of random effects draws L. The choice of importance
distribution g(· | θ) has an important impact on both of these quantities. A naive
choice is g(ηm | θ) = p(ηm | θ). While this simplifies the likelihood calculation, it
can be very inefficient if p̂(ηm | ym,θ) and p(ηm | θ) are not similar. We propose
instead to use a Laplace approximation of a distribution over ηm that is proportional to
p(ym | x̂m,θ)p(ηm | θ), where x̂m is an approximation of xm. We present two choices
for x̂m. The first uses the solution of the ODE given by the drift of the SDEMEM
(4), dX̂m,t = μ(X̂m,t,φX ,ηm)dt. The second approximates xm with the mean of the
modified diffusion bridge (see Section 2.3), with Δk = Δt = ξm,t+1 − ξm,t, such that

x̂m,t+1 = x̂m,t + μMDB(x̂m,t)Δt = x̂m,t +
μtσ

2 + vt(ym,t+1 − x̂m,t)

vtΔt + σ2
Δt.

We refer to these importance distributions as Laplace-ODE and Laplace-MDB respec-
tively.
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Algorithm 6: The individual-augmentation pseudo-marginal method.

Input : data y1:M , initial values θ0, and number of iterations I
Output : posterior samples θ1:I

1 initialise θ1 = θ0

2 Draw u ∼ p(·)
3 Run Algorithm 7 to obtain likelihood estimate p(y1:M | θ1,u)
4 for i = 2 to I do

5 Draw θ∗ ∼ q(· | θi−1) and u∗ ∼ p(·)
6 Run Algorithm 7 to obtain likelihood estimate p(y1:M | θ∗,u∗)
7 Calculate the acceptance probability

α = min

(
1,

p(y1:M | θ∗,u∗)p(θ∗)q(θi−1 | θ∗)

p(y1:M | θi−1,u)p(θi−1)q(θ∗ | θi−1)

)

8 Draw a ∼ U(0, 1)
9 if a < α then

10 Set θi = θ∗ and u = u∗

11 else

12 Set θi = θi−1

13 end

14 end

Algorithm 7: Estimating the likelihood for the IAPM algorithm.

Input : data y1:M , parameter values θ, number of random effects draws L,
number of particles N and vector of random numbers u†

Output : likelihood estimate p̂(y1:M | θ)
1 for m = 1 to M do
2 for l = 1 to L do
3 Draw ηl

m ∼ g(· | θ)
4 Run Algorithm 1 with N particles with ηl

m to obtain the likelihood

estimate Zl
m

5 Correct for the importance distribution Zl
m =

Zl
m

g(ηl
m|θ)

6 end

7 Calculate p̂(ym | θ) = 1
L

∑L
i=1 Z

i
m

8 end

9 Calculate p̂(y1:M | θ) =
∏M

m=1 p̂(ym | θ)
†The random numbers in u are used implicitly in steps 3 and 4. For notational simplicity, indexing of
and dependence on u is omitted.
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Randomised quasi-Monte Carlo (RQMC) can be used to draw η
(l)
m (step 2 of Al-

gorithm 7) as a variance reduction technique. See L’Ecuyer (2016) for an overview of
RQMC.

Section 3.2 describes a correlated version of PMMH using block pseudo-marginal,
which can also be applied to IAPM (cIAPM). We now briefly outline how to do this. Let
u = (uRE,uPF), where uRE and uPF are the random numbers used to draw the random
effects and those used in the particle filter respectively. At each iteration of the chain,
new random numbers for individual m, 1 ≤ m ≤ M are proposed, while the rest are
held constant. This induces a correlation of approximately 1− 1/M between successive
log-likelihood estimates (Tran et al., 2016). RQMC is straightforward to use within
cIAPM as the random numbers are independent when using BPM; while correlated
RQMC random numbers are possible, they are very difficult to implement effectively
(see Gunawan et al., 2016).

Example (SDEMEM with constant drift and diffusion). For the SDEMEM in (6), the
IAPM approximation of p(ym | θ) with importance distribution g(ηm | θ) is given by

1

L

L∑
l=1

p̂(ym | β(l)
m , σ, γ)N (β(l)

m ;μβ , σ
2
β)

g(β(l)
m | θ)

, β(l)
m ∼ g(ηm | θ),

where p̂(ym | β(l)
m , σ, γ) is the particle filter estimate of p(ym | β(l)

m , σ, γ).

4.2 Component-Wise Pseudo-Marginal

This section defines a component-wise pseudo-marginal (CWPM) method, where the
random effects η1:M are updated along with θ leading naturally to the parameter blocks
η1:M , {σ,φX} and φη. Denote θX = {σ,φX}; the joint posterior is of the form

p(θX ,φη,η1:M | y1:M ) ∝ p(y1:M | η1:M ,θX)p(η1:M | φη)p(θX)p(φη),

and the full conditional posteriors for each of the parameter blocks are

p(ηm | y1:M ,θX , φη) ∝ p(y1:M | η1:M ,θX)p(η1:M | φη),

p(θX | y1:M ,η1:M ) ∝ p(y1:M | η1:M ,θX)p(θX),

p(φη | η1:M ) ∝ p(η1:M | φη)p(φη). (15)

A particle filter estimate of p(y1:M | η1:M ,θX) is used when updating η1:M and θX
(Algorithm 1). The parameter φη is updated directly however, since (15) is tractable.
See Algorithm 8 for more details. This method is generally faster than IAPM as the
particle filter is called 2M times per MCMC iteration (with the above configuration),
instead of LM times as in IAPM. However, the CWPM chain may mix poorly if there
is a high correlation between η1:M and θ.

A correlated version of CWPM (cCWPM) may be implemented using BPM. Again,
only the random numbers for a single individual are updated at each iteration while the
rest are held constant.
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Example (SDEMEM with constant drift and diffusion). For the SDEMEM in (6),

the parameters are updated in the following blocks, ηm = {βm}, θX = {σ, γ, x0} and

φη = {μβ , σβ}.

Algorithm 8: The component-wise pseudo-marginal (CWPM) method.

Input : data y1:M , initial values η0
1:M , θX

0 and φη
0, and number of

iterations I
Output : posterior samples η1:I

1:M , θX
1:I and φη

1:I

1 initialise η1
1:M = η0

1:M , θX
1 = θX

0 and φη
1 = φη

0

2 Draw u ∼ p(·)
3 Run Algorithm 1 to obtain the likelihood estimate p(y1:M | η1

1:M ,θX
1,u)

4 for i = 2 to I do

5 Draw η∗
1:M ∼ q(· | ηi−1

1:M ) and u∗ ∼ p(·)
6 Run Algorithm 1 to obtain the likelihood estimate p(y1:M | η∗

1:M ,θX
i−1,u∗)

7 Accept η∗
1:M and u∗ with probability

α = min

(
1,

p
(
y1:M | η∗

1:M ,θX
i−1,u∗) p (η∗

1:M | φη
i−1

)
q
(
ηi−1
1:M | η∗

1:M

)
p
(
y1:M | ηi−1

1:M ,θX
i−1,u

)
p
(
ηi−1
1:M | φη

i−1
)
q
(
η∗

1:M | ηi−1
1:M

) )

8 Draw θ∗
X ∼ q(· | θX i−1) and u∗ ∼ p(·)

9 Run Algorithm 1 to obtain the likelihood estimate p(y1:M | ηi
1:M ,θ∗

X ,u∗)
10 Accept θ∗

X and u∗ with probability

α = min

(
1,

p
(
y1:M | ηi

1:M ,θ∗
X ,u∗) p (θ∗

X

)
q
(
θX

i−1 | θ∗
X

)
p
(
y1:M | ηi

1:M ,θX
i−1,u

)
p
(
θX

i−1
)
q
(
θ∗
X | θX i−1

))

11 Draw φ∗
η ∼ q(· | φη

i−1)

12 Accept φ∗
η with probability

α = min

⎛⎝1,
p
(
ηi
1:M | φ∗

η

)
p
(
φ∗

η

)
q
(
φη

i−1 | φ∗
η

)
p
(
ηi
1:M | φη

i−1
)
p
(
φη

i−1
)
q
(
φ∗

η | φη
i−1

)
⎞⎠

13 end

For the correlated version, new random numbers are only drawn for a single block in steps 4 and 7, not
the whole vector.

4.3 Mixed Particle Method

Our final method is a variation of the PMMH+ PG algorithm of Gunawan et al. (2018a).

We use a combination of PMMH and PG to update the parameters η1:M , σ,φX and
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φη, depending on the form of the full conditional distributions,

p(η1:M | y1:M , σ,φX ,φη) ∝ p(y1:M | η1:M , σ,φX)p(η1:M | φη), (16)

p(σ | y1:M ,x1:M ) ∝ p(y1:M | x1:M , σ)p(σ),

p(φX | y1:M ,η1:M , σ,φX) ∝ p(y1:M | η1:M , σ,φX)p(φX), (17)

p(φη | η1:M ) ∝ p(η1:M | φη)p(φη).

At each iteration, the invariant path x1:M is updated using a conditional particle filter
(Algorithm 3). Where the density p(y1:M | η1:M , σ,φX) is required, i.e. (16) and (17),
a particle filter estimate is used (PMMH step). The full conditionals for σ and φη are
tractable as they only depend on the observation density, and the priors for the random
effects and the fixed common parameters (θ), all of which are known. Hence, σ and φη

can be updated directly. It is important that the likelihood estimate is updated once a
new value of σ is accepted; this must be done with the same u that was used to estimate
the previous likelihood. See Algorithm 9 for more details. As with CWPM (Section 4.2),
mixing of the Markov chain can be poor if high correlation exists between η1:M and θ
and/or x1:M and σ.

Similarly to IAPM and CWPM, a correlated version of MPM (cMPM) can be im-
plemented using BPM, where u is divided into M blocks based on the individuals
m = 1, . . . ,M .

Example (SDEMEM with constant drift and diffusion). For the SDEMEM in (6), the
parameters are updated in the following blocks, ηm = {βm}, φX = {γ, x0}, φη =
{μβ , σβ} and σ.

4.4 Likelihood Estimation

Three particle MCMC methods are introduced: IAPM, CWPM and MPM; each relies
on a particle filter to calculate an unbiased estimate of the intractable likelihood. Tuning
parameters for this calculation are the level of discretisation D (if the exact transition
density is unknown), the number of particles N and, for IAPM, the number of random
effects draws L.

The likelihood estimator in PMMH is typically tuned such that the variance of
the log-likelihood ratio is between 1 and 4 (Sherlock et al., 2015; Pitt et al., 2012;
Doucet et al., 2015). This optimizes the trade-off between statistical and computational
efficiency, i.e. the number of particles versus the computation time. Tuning is usually
done through experimentation at a central location of the posterior, which is often
obtained using pilot runs. Deligiannidis et al. (2018) and Tran et al. (2016) also utilise
this approach for their correlated likelihood estimators.

Deligiannidis et al. (2018) use trial-and-error to tune the correlation of the random
numbers such that the standard deviation is approximately 1.4. Tran et al. (2016)
derives the optimal standard deviation of the log-likelihood ratio when Monte Carlo and
randomised quasi-Monte Carlo random numbers are used to estimate the likelihood.
For the latter, they obtain 0.82/(1 − ρ2)1/2, where ρ = 1 − 1/B is the approximate
correlation between the log-likelihoods and B is the number of blocks. Thus, for a
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Algorithm 9: Mixed particle method (MPM) algorithm.

Input : data y1:M , initial values η0
1:M , σ0, φX

0, φη
0, and x0

1:M , initial path
x0
1:M and associated ancestral lineage b1:T , and the number of

iterations I
Output : posterior samples η1:I

1:M , σ1:I , φX
1:I , φη

1:I , and x1:I
1:M

1 Initialise η1
1:M = η0

1:M , σ1 = σ0, φX
1 = φX

0, φη
1 = φη

0, and x1
1:M = x0

1:M

2 Draw u ∼ p(·)
3 Run Algorithm 1 to obtain the likelihood estimate p(y1:M | η1

1:M , σ1,φX
1,u)

4 for i = 2 to I do

5 Draw η∗
1:M ∼ q(· | ηi−1

1:M ) and u∗ ∼ p(·)
6 Run Algorithm 1 to obtain the likelihood estimate

p(y1:M | η∗
1:M , σi−1,φX

i−1,u∗)
7 Accept η∗

1:M and u∗ with probability

α = min

(
1,

p(y1:M | η∗
1:M , σi−1,φX

i−1,u∗)p(η∗
1:M | φη

i−1)q(ηi−1
1:M | η∗

1:M )

p(y1:M | ηi−1
1:M , σi−1,φX

i−1,u)p(ηi−1
1:M | φη

i−1)q(η∗
1:M | ηi−1

1:M )

)

8 Draw σ∗ ∼ q(· | σi−1)
9 Accept σ∗ with probability

α = min

(
1,

p(y1:M | xi−1
1:M , σ∗)p(σ∗)q(σi−1 | σ∗)

p(y1:M | xi−1
1:M , σi−1)p(σi−1)q(σ∗ | σi−1)

)
10 Run Algorithm 1 to update the likelihood estimate

p(y1:M | ηi
1:M , σi,φX

i−1,u)
11 Draw φ∗

X ∼ q(· | φX
i−1) and u∗ ∼ p(·)

12 Run Algorithm 1 to obtain the likelihood estimate p(y1:M | ηi
1:M , σi,φ∗

X ,u∗)
13 Accept φ∗

X and u∗ with probability

α = min

(
1,

p̂(y1:M | ηi
1:M , σi,φ∗

X)p(φ∗
X)q(φX

i−1 | φ∗
X)

p̂(y1:M | ηi
1:M , σi,φX

i−1)p(φX
i−1)q(φ∗

X | φX
i−1)

)

14 Draw φ∗
η ∼ q(· | φη

i−1)

15 Accept φ∗
η with probability

α = min

(
1,

p(ηi
1:M | φ∗

η)p(φ
∗
η)q(φη

i−1 | φ∗
η)

p(ηi
1:M | φη

i−1)p(φη
i−1)q(φ∗

η | φη
i−1)

)

16 Run Algorithm 3 with xi−1
1:M and bi−1

1:M to obtain a new path xi
1:M and bi1:M

17

The random effects η1:M and parameters φX are updated using PMMH. The latent states X1:M are
updated using PG and σ and φη are updated directly. For the correlated version, new random numbers
are only drawn for a single block in steps 4 and 10, not the whole vector.
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Tuning Parameters description Simplifying assumption

D† level of discretisation for the SDE –
N number of particles –
L∗ number of random effects draws L = N

Table 1: Tuning parameters for IAPM, CWPM and MPM. †Unnecessary if the exact
transition density is known. ∗Only applicable to IAPM.

correlation between 0.8–0.99 (5–100 blocks), the target or optimal standard deviation is
between 1.37–5.81. Tran et al. (2016) also use a different number of particles to estimate
the likelihood for each block.

Following this general approach, we use

σΔ = std

(
log

p(y1:M | θ̄,u∗)

p(y1:M | θ̄,u)

)
,

to tune N and L for IAPM and

σΔ = std

(
log

p(y1:M | θ̄, η̄1:M ,u∗)

p(y1:M | θ̄, η̄1:M ,u)

)
,

for CWPM and MPM, where θ̄ and η̄1:M are central values of θ and η1:M , u∗ is the
proposed set of random numbers and u is the current set of random numbers. We aim
for 1.4 ≤ σΔ ≤ 1.8.

The simplifying assumption that L = N is made for IAPM. The number of particles
for each of our methods can then be tuned through experimentation, by selecting N such
that 1.4 ≤ σΔ ≤ 1.8. A fixed value of the level of discretisation D is used throughout. In
many cases, it is possible to select a reasonable value of D based only on the model. To
simplify the tuning process, the same number of particles is used across all individuals;
however efficiency gains are possible if this value is allowed to vary between subjects.
Table 1 shows the tuning parameters for all methods. Assumptions to simplify the
tuning process are provided where available.

It is necessary to also specify a proposal function for the particle filter and the
importance density for IAPM. Section 2.3 describes three different ways to simulate
from an SDE: the Euler-Maruyama discretisation (EMD), the modified diffusion bridge
(MDB) and the residual bridge (RB). Any of these can be used to move particles within a
particle filter. Section 4.1 also proposes the Laplace-ODE and Laplace-MDB importance
densities for IAPM. The optimal choice of the proposal function and the importance
density is problem specific and may have a large impact on the efficiency of the likelihood
estimate. In general, it is possible to choose the importance density based on the proposal
function, i.e. EMD + Laplace-ODE (or L-ODE) and MDB/RB + Laplace-MDB. Recall
that the Laplace-ODE approximates the underlying states using the ODE specified
by the drift of the SDEMEM; the feasibility of this importance density relies on how
quickly the solution of the ODE is computed. As with D, exploration of the model
may indicate a sensible choice of proposal function. Table 2 shows the implementation
choices for IAPM, CWPM and MPM, as well as the recommended default choices.
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Implementation choice Options Recommended default

correlate the log-likelihood
estimates using BPM

1. use BPM
2. do not use BPM

1

proposal function
1. Euler-Maruyama discretisation
2. modified diffusion bridge
3. residual bridge

2

importance density∗
1. prior
2. Laplace-ODE
3. Laplace-MDB

3

Table 2: Implementation choices for IAPM, CWPM and MPM. ∗Only applicable to
IAPM.

For CWPM and MPM, we recommend using more efficient proposals for φη and σ
(MPM) if possible, e.g. those based on MALA or HMC.

5 Tumor Xenography Study

5.1 Data

We apply our methods to real data from a tumour xenography study on mice obtained
from Picchini and Forman (2019). The study had 4 treatment groups and 1 control
group, and each group had 7–8 mice. Measurements were taken every Monday, Wednes-
day and Friday for six weeks; however, the majority of the mice were euthanized before
the end of the study, once their tumour volumes exceeded 1000 cubic mm.

We focus specifically on group 5 (the control group). There are 7 mice in this group,
with 2–14 observations per mouse and 34 observations in total. Only one mouse in this
group survived longer than 11 days, being euthanized on day 32 of the study. Figure 1
plots this data.

Figure 1: Plot of real tumour volume data.
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5.2 Model

To fit the data, we consider an adaptation of the SDEMEM used by Picchini and Forman
(2019) for unperturbed growth. There are m = 1, . . . ,M subjects, with measurements
taken at discrete times ξt, t = 1, . . . , Tm, where Tm is the number of observations for
subject m. The model is,

dVm,t =

(
βm +

γ2

2

)
Vm,tdt+ γV ρ

m,tdBm,t, Vm0 = vm0, (18)

where Vm,t is the volume of subject m at time ξt. The underlying ODE model has
solution Vm,t = vm0 exp(βmt), which is the general exponential growth model. The
random effects for this model are the parameters βm and Vm0, which are assigned the
prior distributions

log(Vm0) ∼ N (log(Vm0);μV 0, σ
2
V 0),

log(βm) ∼ N (log(βm);μβ , σ
2
β).

Since both βm and Vm0 are constrained to be positive, they are updated on the log
scale. The observations are modelled as

Ym,t = log(Vm,t) + εm,t, εm,t ∼ N (εm,t; 0, σ
2). (19)

Since the data is observed on the log scale, the transformation Xm,t = log(Vm,t) can be
applied to (18) and (19) using Itô’s lemma. The full model is then given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ym,t = Xm,t + εm,t, εm,t ∼ N (0, σ2),

dXm,t =
(
βm + γ2

2 (1− e2(ρ−1)Xm,t)
)
dt+ γe(ρ−1)Xm,tdBm,t,

Xm0 ∼ N (Xm0;μX0, σ
2
X0),

log(βm) ∼ N (log(βm);μβ , σ
2
β).

(20)

The likelihood is intractable since model (20) does not have a closed form solution for
Xm,t. The following prior is assigned to θ = (μX0, σX0, μβ , σβ , γ, σ, ρ)

�

p(θ) = N (μX0; 3, 4
2)HN (σX0; 5

2)N (μβ ; 0, 4
2)HN (σβ ; 5

2)HN (γ; 52)

×HN (σ; 52)N (ρ; 1, 0.52),

where HN (σ2) refers to the half-normal distribution with mean zero and scale param-
eter σ.

Note that taking ρ = 1 gives model (7), which is the original SDEMEM used by
Picchini and Forman (2019). We add the parameter ρ which allows for both a more
flexible variance and renders the transition density intractable. We test this model on
the dataset introduced in Section 5.1. To ensure numerical stability when simulating
from the SDE, we scaled the observation times by the maximum time observed. In
addition to the real data, we also apply our methods to synthetic data simulated from
model (20) using θ = (μX0, σX0, μβ , σβ , γ, σ, ρ)

� = (3, 1,−1, 1, 1, 0.5, 1)�.
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Figure 2: Plot of all simulated datasets. Sim(M,H) refers to the size of the subset,
where M is the number of subjects and H is the number of hours between observations.
The full dataset is denoted by sim(1000, 1).

For the synthetic data, we assumed 1000 mice with 457 observations each – this
corresponds to a measurement every hour for 19 days following the initial measurement.
We used 9 subsets of this dataset with all combinations of 10, 100 and 1000 subjects and
an observation every 24 hours (20 observations), 12 hours (39 observations) and 1 hour
(457 observations). We refer to these datasets as sim(M,H), where M is the number
of subjects (10, 100, or 1000) and H is the number of hours between observations (24,
12 or 1). For example, the subset of 100 subjects with an observation every 12 hours
is denoted sim(100, 12), while the full dataset is denoted sim(1000, 1). When M is left
blank, we refer to all datasets with the specified value of H, e.g. sim(, 1) represents
sim(10, 1), sim(100, 1) and sim(1000, 1). Similarly, when H is left blank, we refer to
all datasets with the specified value of M , e.g. sim(1000,) represents sim(1000, 24),
sim(1000, 12) and sim(1000, 1). The performance of our methods on these datasets
indicates their scalability with respect to the density of the time series and number of
subjects. Figure 2 plots this data.

6 Likelihood Estimation Results

All code is implemented in MATLAB. Vectorisation and parallelisation are applied
where possible; e.g. in the particle filter we vectorise the particle operations and paral-
lelise over the subjects. Parallelisation is only applied if the average number of obser-
vations per subject is greater than 10, and it is not used for CWPM and MPM on the
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sim(10, 24) dataset as it increased the computation time. For IAPM we also parallelise
over the random effects draws when running the importance sampler. Our results are
produced using 8 cores. Resampling is done at every iteration in the conditional particle
filter, but we use adaptive resampling when estimating the likelihood (resampling when
ESS < N/2). For block pseudo-marginal, we use B = min(M, 100) blocks and update
them systematically.

We first consider the efficiency of the likelihood estimation. For each of the three
methods, all possible combinations of proposal function and importance density (IAPM)
are tested. We define the naive combination as the IAPM algorithm with the prior
as importance density and the Euler-Maruyama discretisation (EMD) as the proposal
function in the particle filter. The naive method is the uncorrelated version of this
combination.

As outlined in Section 4.4, the tuning parameters are set such that 1.4 ≤ σΔ ≤ 1.8.
Measurements are calculated from a minimum of 1000 log-likelihood estimates at a fixed
value of θ and η1:M (CWPM). For the real data, we use θ = (4, 1, 2, 1, 1.6, 0.05, 1), which
is obtained from a few preliminary MCMC runs (low values of N,L and D are sufficient
for this). For the simulated data, we use the true value θ = (3, 1,−1, 1, 1, 0.5, 1). The
random effects η1:M are determined similarly, using preliminary runs for the real data
and the true values for the synthetic data.

We define the level of discretisation (D) as the number of intermediate timepoints
between each observation. The results seem insensitive to this value, so D is fixed at
10 for all methods. Computation is stopped if the computation time for a single log-
likelihood estimate exceeds 15 minutes or require more than 150 GB of RAM.

This section uses the notation ‘importance density + proposal function’ to refer
to a particular combination of the two, e.g. prior + RB. All combinations are tuned
to roughly the same statistical efficiency (based on σΔ), such that the most efficient
method has the lowest computation time. Further mention of statistical efficiency refers
to the value of the tuning parameters N and L.

6.1 IAPM

Of the three methods, IAPM is the most difficult and time-consuming to tune. As-
suming L = N simplifies the tuning process, but is sub-optimal. Depending on the
implementation of the code, having a larger/smaller N or L can significantly improve
the computation time.

Once we started testing combinations, we found that the variance of the Laplace-
ODE importance density approaches 0 for at least one of the random effects, such that
the draws for that random effect are approximately equal. This is solved by setting
the covariance to a diagonal matrix of the prior variances scaled by 0.5; the altered
importance density is denoted as L-ODE.

Tables 3–5 summarize the log-likelihood results for all datasets. Dashed lines indicate
that the computation time exceeds the 15 minute time limit per likelihood estimate. All
combinations exceed this limit on the sim(1000, 1) dataset. Likewise, for the sim(1000,



I. Botha, R. Kohn, and C. Drovandi 599

Prior L-ODE Lap-MDB
PF Cor. L,N time (s) L,N time (s) L,N time (s)

EMD No 200 0.21 60 0.12 28 0.11
Yes 90 0.11 30 0.10 19 0.09

MDB No 180 0.36 35 0.11 4 0.05
Yes 65 0.12 16 0.10 3 0.04

RB No 180 0.38 35 0.11 4 0.05
Yes 65 0.13 16 0.11 3 0.04

Table 3: Log-likelihood results for the IAPMmethod on the real dataset. The highlighted
rows show the combinations which gave the best computation time. Notation: PF =
proposal function used in particle filter, Cor. = indicates whether likelihood estimates
are correlated or not.

sim(10, 24) sim(10, 12) sim(10, 1) sim(100, 24)
IS PF Cor. L,N time (s) L,N time (s) L,N time (s) L,N time (s)

Prior EMD No 250 1.69 370 6.29 530 134.1 500 52.78
Yes 115 0.54 130 1.13 335 52.58 95 3.28

MDB No 220 3.06 220 5.84 570 373.3 300 49.71
Yes 95 0.86 100 1.63 250 80.02 45 2.88

RB No 220 3.07 220 6.14 570 385.9 320 60.60
Yes 95 0.87 100 1.79 250 87.62 45 3.07

L-ODE EMD No 220 1.31 950 35.9 – – – –
Yes 60 0.32 120 0.99 370 62.71 155 7.51

MDB No 145 1.57 800 55.75 – – – –
Yes 20 0.22 50 0.78 310 118.0 100 8.13

RB No 145 1.62 800 60.45 – – – –
Yes 20 0.21 50 0.81 310 126.7 100 8.75

Lap-MDB EMD No 40 0.20 55 0.45 150 14.22 130 5.55
Yes 45 0.25 75 0.57 290 38.61 65 2.42

MDB No 8 0.12 16 0.23 120 26.22 30 2.12
Yes 4 0.10 10 0.21 190 52.18 4 0.63

RB No 8 0.12 16 0.25 120 29.70 30 2.53
Yes 4 0.11 10 0.25 190 53.87 4 0.68

Table 4: Log-likelihood results for the IAPM method on the sim(10,) and sim(100, 24)
datasets. The highlighted rows show the combinations which give the best computation
time. The number of observations for each dataset (from left to right): 200, 390, 4,570,
2,000. Notation: PF = proposal function used in particle filter, IS = importance density
used for the importance sampling step, Cor. = indicates whether likelihood estimates
are correlated or not.

24) and sim(1000, 12) datasets, results can only be obtained for the Laplace-MDB

importance density within the time limit. On these datasets, we find that the variance

of the estimated σΔ is very high for the correlated versions of the prior and L-ODE

combinations.
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sim(100, 12) sim(100, 1) sim(1000, 24) sim(1000, 12)
IS PF Cor. L,N time (s) L,N time (s) L,N time (s) L,N time (s)

Prior EMD No 500 105.7 – – – – – –
Yes 110 8.3985 300 419.8 – – – –

MDB No 390 154.0 – – – – – –
Yes 45 6.16 200 556.8 – – – –

RB No 390 174.0 – – – – – –
Yes 45 6.05 200 584.8 – – – –

L-ODE EMD No – – – – – – – –
Yes 370 76.64 – – – – – –

MDB No – – – – – – – –
Yes 230 57.27 – – – – – –

RB No – – – – – – – –
Yes 230 65.51 – – – – – –

Lap-MDB EMD No 140 11.70 – – 350 285.5 400 701.2
Yes 80 5.26 300 417.7 65 24.95 80 50.76

MDB No 50 7.48 – – 90 71.46 145 292.2
Yes 10 1.53 200 532.1 4 6.50 10 15.65

RB No 50 7.92 – – 90 77.83 145 315.3
Yes 10 1.71 200 587.6 4 7.20 10 16.63

Table 5: Log-likelihood results for the IAPM method on the sim(100,12), sim(100,1),
sim(1000,24) and sim(1000,12) datasets. The highlighted rows show the combinations
which give the best computation time. The number of observations for each dataset
(from left to right): 3,900, 45,700, 20,000, 39,000. Notation: PF = proposal function
used in particle filter, IS = importance density used for the importance sampling step,
Cor. = indicates whether likelihood estimates are correlated or not.

Correlating the log-likelihoods generally increases the statistical efficiency. This in-

crease is significant on the larger datasets, as is the corresponding reduction in com-

putation time. Interestingly, for all sim(10, ) datasets, the uncorrelated Laplace-MDB

+ EMD is more statistically efficient than the correlated version. This is also true for

Laplace-MDB + MDB and RB on the sim(10, 1) dataset.

Across all datasets, the Laplace-MDB importance density outperforms the prior

and L-ODE in terms of overall efficiency. Of the prior and L-ODE, the latter shows

the poorest performance. Results for the uncorrelated versions are only available for

the real, sim(10, 24) and sim(10, 12) datasets and these are also the only datasets with

L-ODE combinations that outperform the prior. Based on these results, the drift ODE

may not be a good approximation of the underlying states. A large diffusion coefficient

and/or measurement error can account for this.

The most efficient proposal function depends on the size of the dataset. In terms of

statistical efficiency, the modified diffusion bridge and residual bridge give nearly iden-

tical results and generally outperform the Euler-Maruyama discretisation. The latter is

the fastest however, and the residual bridge is the slowest. While this has little effect on
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real sim(10, 24) sim(10, 12) sim(10, 1) sim(100, 24)
PF Cor. N time (s) N time (s) N time (s) N time (s) N time (s)

EMD No 200 0.0044 450 0.0578 700 0.0915 3100 1.8672 6500 1.1254
Yes 60 0.0030 65 0.0559 85 0.0583 300 0.2773 120 0.1107

MDB No 1 0.0023 30 0.0490 110 0.0728 2100 3.1266 350 0.2385
Yes 1 0.0023 3 0.0470 10 0.0554 215 0.4922 3 0.1038

RB No 1 0.0024 30 0.0503 110 0.0743 2100 3.3687 350 0.2527
Yes 1 0.0024 3 0.0473 10 0.0578 210 0.54 3 0.1035

Table 6: Log-likelihood results for the CWPM method on the real, sim(10,) and
sim(100,24) datasets. The highlighted rows show the combinations which give the best
time. Notation: PF = proposal function used in particle filter, Cor. = indicates whether
likelihood estimates are correlated or not.

sim(100, 12) sim(100, 1) sim(1000, 24) sim(1000, 12)
PF Cor. N time (s) N time (s) N time (s) N time (s)

EMD No 9000 2.9294 – – – – – –
Yes 120 0.1536 360 2.783 90 0.4702 110 0.9162

MDB No 1200 1.0330 – – 3500 12.76 11000 78.72
Yes 11 0.1492 240 3.544 3 0.4504 12 0.8920

RB No 1200 1.13 – – 3500 13.91 11000 86.91
Yes 11 0.1523 240 4.019 3 0.4906 12 0.9433

Table 7: Log-likelihood results for the CWPM method on the sim(100,12), sim(100,1),
sim(1000,24) and sim(1000,12) datasets. The highlighted rows show the combinations
which give the best time. Notation: PF = proposal function used in particle filter, Cor.
= indicates whether likelihood estimates are correlated or not.

the smallest datasets, the time difference is significant on the larger ones. Correspond-
ingly, the Euler-Maruyama discretisation gives the best results on the sim(, 1) datasets,
while the diffusion bridges are more efficient for the rest.

On the datasets where results for the naive combination are available, a significant
increase in relative efficiency (from the naive combination to the best one) is obtained.
Interestingly, this improvement is less on the sim(10, 1) and sim(100, 1) datasets. For the
latter, the value of N is the same for the prior and Laplace-MDB importance densities.
On the real data, N reduces from 200 to 4 in the uncorrelated naive case, and from 90
to 3 in the correlated one. A corresponding 2.75-fold decrease in time is observed from
the correlated naive to the best combination.

6.2 CWPM

For CWPM, it is only necessary to select a proposal function and find a value for N .
Again, this is done through experimentation. Tables 6–7 show results for all datasets.
Dashed lines indicate that the memory limit of 150 GB of RAM per likelihood is ex-
ceeded. Due to this limit, no results could be obtained for the sim(1000, 1) dataset.
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For all datasets, the correlated versions give the best results. Since the correlation
induced is approximately 1 − 1/M , the relative gain in efficiency increases with the
number of subjects. In contrast, the number of particles needed for the standard versions
grows quickly with the size of the dataset.

As with IAPM, the most efficient proposal function depends on the number of ob-
servations per subject. MDB/RB, MDB and EMD gives the best results for the sim(,
24), sim(, 12) and sim(, 1) datasets respectively. For the latter, any benefit in statisti-
cal efficiency from the bridges is outweighed by the increase in computation time. The
MDB and RB also give the best results on the real data.

6.3 MPM

This method uses the same log-likelihood estimate as CWPM, so no extra tuning is
required. When N > 1, we use the same number of particles for the conditional particle
filter as for the standard. When N = 1, as for the real data (see Table 6), we add an
extra particle to account for the invariant path.

7 MCMC Results

We use the time per log-likelihood estimate from Section 6 to determine which methods
to run, i.e. ≤ 2 seconds for IAPM, ≤ 1 second for CWPM and ≤ 0.5 second for MPM.
The best proposal function and importance density (for IAPM) from Section 6 is also
used. Where the MDB and RB proposal functions give similar results, the MDB is
preferred. Due to the time constraints, the naive method (uncorrelated IAPM with
prior + EMD) is only run on the real and sim(10, 24) datasets. No results are obtained
for the sim(100,1) or sim(1000, 1) datasets.

Each of the methods are run for 100,000 iterations starting at the same value of θ
that was used in Section 6. We use random walk proposals for the parameters which
cannot be updated directly, i.e. those updated with a PMMH step. In CWPM and
MPM, we also use pre-conditioned MALA to update the random effects hyperparam-
eters {μX0, σX0, μβ , σβ}, and in MPM, we use a slice sampler to update σ. Tuning
parameters for these proposals include the random walk covariance (also used as the
MALA pre-conditioning matrix), and the stepsize for MALA. These values are tuned
through experimentation.

We compare the methods based on the multivariate effective sample size (multiESS)
(Vats et al., 2015) of θ and the computation time in minutes. A score for each method is
calculated as the approximate rate of independent samples per minute (multiESS/time).
Table 8 shows the score for each method. Table 1 in Appendix A shows the breakdown of
the multiESS for each update block. Tables 2 and 3 in Appendix A show the acceptance
rates (AR) for the three methods on all datasets and Figure 1 in Appendix A shows the
marginal posteriors of θ for all datasets. As expected, the marginal posteriors become
more precise as the size of the dataset grows (via more subjects and/or more densely
observed time series). The jagged marginal posteriors for the sim(1000, 12) dataset may
be due to Monte Carlo error as the multiESS for {γ, σ, ρ} is relatively small.
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real sim(10,24)
Naive IAPM CWPM MPM Naive IAPM CWPM MPM

MultiESS 802 733 1431 1719 2439 1289 3064 3371
time (min) 669 77 6 41 4802 142 180 448

MultiESS/time 1.20 9.48 242.90 41.82 0.51 9.11 17.00 7.53

sim(10,12) sim(10,1)
Naive IAPM CWPM MPM Naive IAPM CWPM MPM

MultiESS – 1504 3028 4503 – – 3197 5607
time (min) – 351 211 479 – – 2127 4786

MultiESS/time – 4.29 14.38 9.39 – – 1.50 1.17

sim(100,24) sim(100,12)
Naive IAPM CWPM MPM Naive IAPM CWPM MPM

MultiESS – 1174 3012 3663 – 1181 2485 3541
time (min) – 971 430 1088 – 2849 706 1634

MultiESS/time – 1.21 7.01 3.37 – 0.41 3.52 2.17

sim(1000,24) sim(1000,12)
Naive IAPM CWPM MPM Naive IAPM CWPM MPM

MultiESS – – 2742 3402 – – 1875 –
time (min) – – 1609 4644 – – 3158 –

MultiESS/time – – 1.70 0.73 – – 0.59 –

Table 8: MCMC results for all methods on all datasets. Results are calculated from
chains of length 100,000. Dashed lines indicate that the method was not computationally
feasible on that particular dataset.

There is a large increase in multiESS between IAPM, and CWPM and MPM on all
datasets. This is partly due to the higher multiESS for the X0 hyperparameters (see
Table 1 in Appendix A) and the more efficient proposals used for φη and σ (in MPM).
For both the real and synthetic data, MPM gives the highest multiESS, followed by
CWPM. Table 8 shows that CWPM has the largest score due to its relatively short
computation time. In general, CWPM runs much faster than the other two methods.

8 Discussion

We introduced three methods for simulation consistent parameter inference of state-
space SDEMEMs and outlined some strategies for improving the efficiency of the likeli-
hood estimate for these methods through the choice of importance density and proposal
function. The efficiency of the calculation is generally also increased by correlating suc-
cessive log-likelihood estimates.

Wiqvist et al. (July 23, 2019) concurrently and independently introduced a method
for SDEMEMs that is very similar to our CWPM method. They propose the same
update blocks for the parameters as in CWPM and give three variations of this approach;
namely naive Gibbs, blocked Gibbs and a correlated PMMH method. In the first, the
random numbers u are updated whenever the likelihood is estimated. In blocked Gibbs,
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u is updated with the random effects but kept fixed for the other parameter blocks.
Lastly, their correlated PMMH method uses the approach of Deligiannidis et al. (2018)
to correlate the likelihoods, i.e. by correlating the random numbers (see Section 3.2).

Our approach differs in that we use the block pseudo-marginal (BPM) method of
Tran et al. (2016). For mixed effects models, BPM has a number of advantages over
CPM: a) it is simple to implement; b) it induces more directly the correlation between
the estimates of the log-likelihood; c) it is much more straightforward to use with RQMC;
d) its efficient implementation only requires the random seed to be stored, which can
greatly reduce the computational storage requirements. A drawback of BPM is that
the correlation is limited by the number of subjects. If there are few subjects, then
CPM may be more effective at inducing correlation. An attractive option in this case is
to combine BPM with CPM, i.e. correlate the auxiliary variables in the current block,
while keeping the rest fixed. The feasibility of this approach is an area of future research.
Unlike Wiqvist et al. (2019), we have not explored different strategies to update the
random numbers; the approach we use in our example in Sections 5–7 most closely
follows their naive Gibbs approach.

To further improve efficiency, we exploit bridge proposals in the particle filter rather
than proposing directly from the (approximate) transition density as in the standard
bootstrap filter used by Wiqvist et al. (2019). By including the IAPM and MPM meth-
ods, our paper provides a more comprehensive suite of particle methods for application
to general state-space SDEMEMs. Wiqvist et al. (2019) allow the number of particles
to vary between individuals, which is also straightforward to implement in our methods;
see also Tran et al. (2013).

The IAPM, CWPM and MPM methods are much more efficient than the naive
method; for the majority of the simulated datasets, the naive approach is computa-
tionally infeasible. The best method to use greatly depends on the model and data;
IAPM is a good choice when there are few parameters, while CWPM and MPM may be
preferable when there are many parameters; see Gunawan et al. (2018a). These methods
are also flexible in the sense that they can be tailored to a specific model and used in
combination, e.g. by integrating over a subset of the random effects using IAPM, but
updating the rest using CWPM or MPM steps. Note that if IAPM is combined with
MPM, then the invariant path from the conditional particle filter may be used for x̂m in
the importance sampler. CWPM gives the best results for the example in Sections 5–7.
In general, this method has the shortest computation time and is the easiest to tune;
however, as noted before, care must be taken if high correlation exists between the
random effects and model parameters.

Tables 1 and 2 in Section 4.4 summarize our recommendations on how to set the
tuning parameters in the new sampling methods. The optimal selection of the tuning
parameters is beyond the scope of our article, and is the subject of our ongoing research;
we note as well that there are very few optimal results for tuning parameters in particle
Metropolis within Gibbs MCMC sampling schemes.

Appendix B applies our methods to an SDEMEM based on an Ornstein-Uhlenbeck
(OU) process and compares the exact posterior, i.e. one obtained without discretisation
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(as the OU process has a computable transition density) with the posterior obtained
by the Euler-Maruyama approximation using D = 10. Both versions give the same
marginal posteriors for all methods; however, the discretised versions take longer than
the exact ones. CWPM gives the best results here as well.

Lastly, zero-variance control variates (Mira et al., 2013; Friel et al., 2016; South
et al., 2019) may be used to further reduce the variance of any expectation estimated
from the chains, e.g. the expectation of the target with respect to the auxiliary variables.
Efficiency of the methods may also be increased through non-centered parameterisations
of the random effects η1:M (Papaspiliopoulos et al., 2007).

The new methods can be applied to a large number of SDEMEMs. The example in
Sections 5–7 applies the methods to monotonic data fitted using an SDEMEM based on
exponential growth. The example in Appendix B applies our methods to an Ornstein-
Uhlenbeck model on a simulated non-monotonic dataset. The choice of models in these
examples is ad-hoc; however, in practice, the performance of each of the sampling meth-
ods depends on both the properties of the underlying ODE as well as the methods. The
SDE can be viewed as a prior for the unknown signal; as such, the underlying ODE
should reflect key characteristics of the data, i.e. whether it is monotonic or has some
other features such as periodicity, e.g. see Ansley et al. (1993). While model selection is
outside the scope of this paper, it is an interesting area of future research.

Supplementary Material

Supplementary Material for “Particle Methods for Stochastic Differential Equation
Mixed Effects Models” (DOI: 10.1214/20-BA1216SUPP; .pdf). Appendix A contains
extra results for the example in Sections 5–7 and Appendix B gives a second example
of our methods applied to non-monotonic data.
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