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Dynamic Regression Models for Time-Ordered
Functional Data

Daniel R. Kowal*

Abstract. For time-ordered functional data, an important yet challenging task
is to forecast functional observations with uncertainty quantification. Scalar pre-
dictors are often observed concurrently with functional data and provide valuable
information about the dynamics of the functional time series. We develop a fully
Bayesian framework for dynamic functional regression, which employs scalar pre-
dictors to model the time-evolution of functional data. Functional within-curve
dependence is modeled using unknown basis functions, which are learned from
the data. The unknown basis provides substantial dimension reduction, which is
essential for scalable computing, and may incorporate prior knowledge such as
smoothness or periodicity. The dynamics of the time-ordered functional data are
specified using a time-varying parameter regression model in which the effects
of the scalar predictors evolve over time. To guard against overfitting, we de-
sign shrinkage priors that regularize irrelevant predictors and shrink toward time-
invariance. Simulation studies decisively confirm the utility of these modeling and
prior choices. Posterior inference is available via a customized Gibbs sampler,
which offers unrivaled scalability for Bayesian dynamic functional regression. The
methodology is applied to model and forecast yield curves using macroeconomic
predictors, and demonstrates exceptional forecasting accuracy and uncertainty
quantification over the span of four decades.

Keywords: Bayesian methods, factor model, forecasting, shrinkage, yield curve.

1 Introduction

In business, science, and industrial applications, data are commonly measured over a
continuous domain, such as time, space, or wavelength. Functional data analysis treats
these data as a single realization of an underlying function, and seeks to model the
associations among distinct functional observations. Functional data present significant
challenges for modeling and prediction: the data are usually highly-correlated, high-
dimensional, and often unevenly-spaced over the domain. We address the setting of
time-ordered functional data, where the primary goal is to forecast future functional
observations with uncertainty quantification. Examples of time-ordered functional data
include yearly sea surface temperature as a function of time-of-year (Besse et al., 2000),
daily pollution curves as a function of time-of-day (Damon and Guillas, 2002; Aue et al.,
2015), yearly mortality rates as a function of age (Hyndman and Ullah, 2007), and yearly
disease counts as a function of time-of-year (Kowal, 2019).

Forecasting and inference for functional time series data require adequate modeling
of both the functional within-curve dependence and the dynamic between-curve depen-
dence. Simultaneous identification of prominent functional features together with their
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temporal behaviors provides a recipe for understanding and predicting function-valued
time series. To assist in this challenging task, scalar predictors are commonly recorded
concurrently with functional data, and may provide information about the time evolu-
tion of the functional data. The utility of scalar predictors for modeling functional data
has been demonstrated extensively in many instances of function-on-scalars regression
(Ramsay and Silverman, 2005; Montagna et al., 2012; Morris, 2015; Chen et al., 2016;
Barber et al., 2017; Fan and Reimherr, 2017; Kowal and Bourgeois, 2019). However, lim-
ited attention has been given to dynamic regression models for time-ordered functional
data, in particular with the primary goal of forecasting functional data.

For scalar time series data, time-varying parameter (TVP) regression models have
shown the ability to produce accurate forecasts with precise uncertainty quantification
(Dangl and Halling, 2012; Korobilis, 2013; Belmonte et al., 2014; Kowal et al., 2019). In
TVP regression, the scalar response is linearly associated with scalar predictors, such
that the linear associations evolve dynamically over time. For financial and economic
data in particular, the time-variation is essential: abrupt changes in regulations and
policies, as well as gradual changes in market sentiments and the broader macroeconomy,
may drive an evolving relationship between the predictors and the response (Dangl and
Halling, 2012). TVP regression is a special case of a dynamic linear (or state space)
model (West and Harrison, 1997), and benefits from the computational and inferential
capabilities of these models.

Despite the impressive gains offered by TVP regression models, functional data
present new and unique challenges. Model complexity—and risk of overparametrization
—is greatly increased: each time-varying parameter is now a time-varying function.
Function estimation implicitly requires regularization, usually via smoothness or spar-
sity, which must be combined with the simultaneous shrinkage of irrelevant predictors
and extraneous time-variation. Equally important, the data dimensionality in the func-
tional data setting presents a significant challenge for Bayesian computing, and therefore
impedes access to the forecasting distribution.

To address these challenges, we develop a dynamic Bayesian model for functional
regression and forecasting. We extract prominent functional features by modeling each
functional observation using unknown basis functions, which are learned from the data.
The unknown basis provides a lower-dimensional space in which to model the time-
variation of the functional data and greatly improves computational scalability. The
dynamics of the time-ordered functional observations are modeled using a TVP re-
gression with autoregressive innovations, which incorporates both predictor-driven and
latent dynamics. The resulting model allows the scalar predictors to inform the time-
evolution of the functional response, specifically corresponding to the learned functional
features, with time-variation in the key parameters for greater adaptability. Shrinkage
priors are included to simultaneously (i) ensure smoothness of the basis functions, (ii)
regularize irrelevant predictors, (iii) shrink toward time-invariance for model parsimony,
and (iv) reduce sensitivity to the dimension of the unknown basis. Full posterior infer-
ence and multi-step forecasting distributions are available via an efficient Gibbs sampler.
Simulation studies confirm the importance of these modeling choices, and in particu-
lar the model for the basis functions, the time-variation of model parameters, and the
shrinkage priors.
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The proposed methodology is applied to model and forecast U.S. yield curve data.
For a given currency and level of risk of a debt, the yield curve describes the interest
rate at a given time as a function of the length of the borrowing period, or time to matu-
rity, and evolves over time. The yield curve is observed concurrently with financial and
macroeconomic predictor variables, which may assist in constructing point and interval
forecasts of the yield curve. While a variety of techniques are available for yield curve
modeling, to the best of our knowledge there is no existing framework that simultane-
ously includes (i) a nonparametric regression model for unknown basis functions, (ii)
dynamic regression coefficients, and (iii) Bayesian shrinkage priors for regularization.
We evaluate the proposed framework for yield curve modeling and forecasting over the
span of four decades, and demonstrate substantial gains in forecasting accuracy and
uncertainty quantification relative to state-of-the-art and benchmark competitors.

The remainder of the paper is organized as follows: we introduce the model in Sec-
tion 2; the unknown basis function model is in Section 3; the shrinkage priors are in
Section 4; the MCMC algorithm is in Section 5; a simulation analysis is in Section 6; the
yield curve forecasting comparison is in Section 7; and we conclude in Section 8. Sup-
plementary files include R code and a document with additional details on the MCMC
algorithm, the basis expansions, and the simulations (Kowal 2020).

2 Dynamic function-on-scalars regression

Let {Y;}L | be a time-ordered sequence of functions on a compact index set 7 C R”
with D € Z*. Each function is observed at a discrete set of points 7; € 7,5 =1,..., M,
which are fixed across all times ¢ only for notational convenience. The observed data
are noisy realizations of each Y; at these observation points:

Yje = Ye(mj) + €5, Eleje) =0, (1)

where €;,¢ represents observation or measurement error. Since the functions Y; are typi-
cally modeled as smooth in 7, the errors ¢;, account for non-smoothness of the observed
data. Notably, omission of observation error for time-ordered functional data can induce
misspecified dynamics for {¥;} (Kowal et al., 2017b). We assume conditionally Gaussian
observation errors with time-varying variance, [¢; |02 ] ~ N(0, 0?2 ), with alternative dis-
tributional assumptions in Lemma 2. The dynamic variance O’?t allows the variability
about Y; to change over time, and is essential for constructing precise and accurate yield
curve forecasting intervals (see Section 7).

Suppose that at each time ¢, the functional data y; = (y1.4,...,Ynm.)" are observed
concurrently with time-ordered predictors, ; = (x14,...,2p+)’. Note that we do not
require p < M. Our goal is to leverage these dynamic predictors x; to produce superior
forecasting distributions for y;, and to construct inferential summaries of the associ-
ations between x; and Y;. For time-ordered data, it is likely that associations among
variables change over time. Failure to incorporate such time-variation will produce infe-
rior forecasts and unreliable inference. It is also expected that some predictors may not
be useful in forecasting Y;, while others may only provide predictive power for certain
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features or subdomains of {Y;}. Consequently, it is important to include mechanisms
for regularization of irrelevant predictor variables.

Motivated by these considerations, we propose the following dynamic function-on-
scalars regression (DFOSR) model:

K

Vi) =3 s, TET (2)
k=1
P
Bk),t :Hk+zxj,t04j,k,t+'7k,tv k= 17"'5K7 (3)
j=1

A5kt = Ok t—1 +Wj,k,t7 .7 = 17"'7p7 k= 17"‘7K7 (4)
Vet = PkVepg—1 T k=1,..., K (5)
fort =1,...,T. The functions Y; are decomposed into a linear combination of K loading

curves {fi(7)}_, and dynamic factors {Bj+}1_,. The basis expansion (2) is a core
component of many functional data models. In Section 3, we develop a nonparametric
regression approach for modeling each fi as unknown. As a result, the functional basis
{fx} is data-adaptive, with each fj learning an essential functional feature of {Y;}.

The dynamic factors {8y} model the time dependence among the functions {Y;},
and specifically correspond to the functional features defined by each fj. Naturally,
modeling the dynamics of {8k} is fundamental for constructing accurate forecasts of
the functional time series data y;. We incorporate the dynamic predictors x; into the
model for By ; via (3)—(4), which includes an intercept py, dynamic regression coefficients
{ajk,+}, and an error term ~y ; for each factor k. Note that dynamics on the intercept pu,
are not needed, since these effects appear in ;. The regression coefficients {a; . +} are
time-varying for each predictor j and factor k in (4), which implies time-variation for
the functional regression model. The regression model also features an autoregressive
time series model for the error terms in (5), which accounts for time-variation in {Y;}
that is not fully explained by the predictors x;.

The DFOSR has an equivalent representation which makes explicit the association
between the factor-specific parameters in (3)—(5) and the functions Y;. Let GP(c,C)
denote a Gaussian process with mean function ¢ and covariance function C. By sub-
stituting (3)—(5) into (2), the DFOSR model implies the dynamic functional regression
model

Yi(r) = f(r) + > @jubu(m) + Aulr) TET, (6)
j=1

:)/t (T> = /é(T, u)'?tfl(u) du + ﬁt(7)7 ﬁt() i"r(i@p g'P(O, Cm), (7)

&j.0(T) = Agur(7) + @(7), @54() " GP(0,C, ), (8)

where each functional term is a linear combination of the {fi}, or explicitly, fi(T) :=

2 Sy a5a(r) = 3 fe(T) ke, () = 2 fe(T) ke, d(Tou) =
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Yo Je(T) fe(w)dr, () = Do) fu(T)0ie, @je(T) == D4 fu(T)wj ke, with covariance
functions Cy, (T, u) := ", fk:(T)fk(u)a-%k,t and Cy; , (T,u) =), fk(“')fk(“)au%j,k,t'

The predictors z;; are directly associated with the functional time series Y;(7)
via the dynamic regression coefficient functions &;.(7) := >, fr(7)aj k. The error
term 4;(7) models both functional dependence in T and dynamic dependence via a
functional autoregressive model in (7), which has been shown to offer strong forecasting
performance in the absence of predictors (Kowal et al., 2017b). Note that the auto- and
cross-covariance functions of Y;(7) are available as a special case of Propositions 1 and 2
in Kowal (2019), and do not require separability in 7 and .

The DFOSR model is highly flexible: the dynamic regression coefficients are per-
mitted to change at every time ¢, while each functional feature fj is associated with
predictors @, via (3) and has distinct idiosyncratic dynamics via g, (5). However,
without adequate regularization, there is a risk of overparametrization: it is unlikely
that every predictor z;, is associated with every factor 8., and that this association
changes substantially at each time ¢. Overparametrization is a particular concern for
forecasting, and can lead to increases in both bias and variance. In Section 4, we in-
troduce Bayesian shrinkage priors which simultaneously regularize against irrelevant
predictors, unnecessary time-variation, and sensitivity to the dimension K of the un-
known basis. These priors are represented as conditionally Gaussian distributions for
the innovations wj ¢ and 7y, which preserves computational scalability of the state
space model (2)—(5).

Note that our setting is similar to, but distinct from, longitudinal functional data
analysis (Greven et al., 2011; Chen and Miiller, 2012; Park and Staicu, 2015). Longitu-
dinal functional data are time-ordered functional data, but typically include replicates
of each functional time series (e.g., time-ordered functions are observed for each of many
subjects).

3 Modeling the loading curves

The loading curves { f} provide the foundation for functional modeling and forecasting
of ¥;. The dynamics of the DFOSR model are determined by S ¢ in (3)—(5), while each
Bk is mapped to the functional domain 7 € 7T via the corresponding fi(7) in (2).
Clearly, any functional features that are not effectively captured by {fz} cannot be
forecasted accurately by the DFOSR and inferentially cannot be linked to the predic-
tors. Therefore, it is essential that the loadings {f} adequately capture the functional
dependence among the {Y;}.

There is an unavoidable tradeoff between flexibility of the basis and parsimony. As
the dimension K increases, the model accounts for more functional features, yet the
TVP regression model in (3)-(5) becomes more heavily parametrized. Furthermore,
computational scalability of the DFOSR model—which may be expressed as a state
space model in {ay j+, vk} (see Section 5)—is limited by K. Methods that use a fixed
basis expansion in (2), such as splines (Laurini, 2014) or wavelets (Morris and Carroll,
2006), require a large K for adequate modeling flexibility, and therefore produce heavily
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parametrized and computationally infeasible models when combined with the dynamics
of (3)-(5). An appealing solution is to model the basis functions {fi} as unknown,
which allows the curves {fx} to be optimized for each functional dataset. However,
we must be careful to ensure that the uncertainty regarding the unknown {fx} is not
ignored.

3.1 Priors and full conditional distributions for the loading curves

We propose a model for the loading curves {fj} that simultaneously (i) treats {fx} as
unknown, which produces a data-adaptive basis and minimizes the number of necessary
basis functions K; (ii) accounts for the inherent uncertainty in {fi}; (iii) is scalable in
the number of observation points, M; and (iv) is well-defined for 7 C R” with D € Z*.
Identifiability constraints are enforced on { fi} to preserve interpretability of the loading
curves { fi. } and factors {8 . } in (2). These constraints, which are detailed in Section 3.2,
are designed to simplify posterior sampling for the factor-specific parameters in (3)—(5),
which greatly improves computational scalability.

A common approach in nonparametric regression is to represent each unknown
function—here, each fy—as a linear combination of known basis functions, and then
model the corresponding unknown basis coefficients. Let fx(7) = b'(7)r, where
o'(1) := (bi(7),...,br,, (7)) is an Lps-dimensional vector of known basis functions
and )y is an Ljs-dimensional vector of unknown basis coefficients. We use low-rank
thin plate splines (LR-TPS), which are smooth, flexible, and well-defined for 7 c R”
with D € Z™. However, modifications for other bases such as wavelets, Fourier expan-
sions, and Gaussian processes are straightforward and follow the same construction as
below. Given functional data observations y; := (y1,1,---,Ynm,:), we consolidate (1)—(2)
to relate the unknown coefficients {1} to the observed data y;:

K
inde
Yy = E FrBrs + €, € NpN(OMTiIM% 9)
=1

where fi == (fi(m1),..., fu(ar)) = By, B = (b(11),...,b(rn))" is the M X Ly
basis matrix, and €; := (e1,4,...,em.1)’

To encourage smoothness of fi, LR-TPS accompany the basis expansion with a
roughness penalty. In the case of D = 1, the penalty is of the form P(f%) f{fk (1)}2dr
for fk the second derivative of fi; for D > 1, derivatives are replaced by gradients (see
Wood, 2006 for details). For Bayesian 1mplementat10ns7 the penalty corresponds to a
prior distribution on the basis coefficients 1, or equivalently, the implied function fj.
Consider the conditionally Gaussian prior

WelAn] ST N0, k=1, K, (10)

where Ay, > 0 is a prior precision parameter and €2, is a penalty matrix with (¢, ¢')
entry [0 = fbg bg/( )d7. The implied log-posterior distribution for {f;} is then

~2logp(fi.- ... Ficl{ui}, Za wakt] +2Afk/{fk (r)}2dr, (11)
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which is a penalized least squares criterion, for which the precisions Ay, are smooth-
ing parameters for each f; (and = denotes equality up to a constant). Details on the
construction of B and €2, and the choice of Lj; for LR-TPS are provided in the sup-
plement. The generalized inverse in (10) is standard for Bayesian splines, since €2, has
rank Ljs — 2 and is not invertible. In our implementation (see the supplement), which
diagonalizes €2, and orthogonalizes B, the improper prior is replaced with a proper
prior to ensure propriety of the posterior.

For posterior inference, we design a Bayesian backfitting algorithm that iteratively
draws from the full conditional distribution of each fi. The iterative approach is use-
ful for enforcing the identifiability constraints in Section 3.2, and leads to straight-
forward full conditional distributions: [tbg|---] ~ N(Q;Ijﬁwk,Q;kl), where Q, =
(B'B) Y1, (B7.0/02) + Ap S and Ly, = B' S0, {(But/02) (ye — Lo febBes) }-
Note that the full conditional distribution of fi = B, clearly depends on the dy-
namic factors {fx:}, which are learned simultaneously based on model (3)—(5). The
prior precision Ay, is modeled on the standard deviation scale, /\Jfkl/ SN Uniform(0, 10%)
(Kowal et al., 2017a). By assigning a prior distribution to each Ay, , we allow the data
to inform the degree of smoothness for each fr—without needing a cross-validation
step—while incorporating the uncertainty about Ay, into the posterior distribution.

Existing methods for learning { f} generally fall into two categories: functional prin-
cipal components analysis (FPCA) and Bayesian reduced rank models. In FPCA, the
basis functions {fj} are estimated in advance of model-fitting (Goldsmith and Kitago,
2016). However, this approach implicitly requires a multi-step estimation procedure,
whereby the FPCs are estimated separately from—and without utilizing—the remain-
der of the model in (3)—(4). Dynamic FCPA (Hérmann et al., 2015) incorporates tempo-
ral structure, but is primarily designed for dimension reduction rather than forecasting
or regression. When pre-computed FPCs are treated as fixed and known, the ignored
uncertainty is often nontrivial: Goldsmith et al. (2013) demonstrate that FPC-based
methods can substantially underestimate total variability, even for densely-observed
functional data. Bayesian reduced-rank functional data models such as Montagna et al.
(2012) and Suarez et al. (2017) are similar to FPCA, yet incorporate the uncertainty
of {fr} into the posterior distribution. Unfortunately, these approaches have limited
computational scalability, and are not designed to incorporate the dynamic regression
model (3)—(5) or produce forecasts of y;.

3.2 Simplifying the likelihood via identifiability constraints

We enforce identifiability constraints on the loading curves, { f}, which primarily serves
two purposes. First, identifiability is necessary to interpret { 3} and the k-specific model
parameters in (3) and (4). Second, our particular choice of constraints provides computa-
tional improvements for sampling the dynamic parameters in (3) and (4). We constrain
F'F = Ik, where F := (f1,..., fi) is the M x K matrix of loading curves evaluated at
the observation points 71, ..., Ty and Ik is the K x K identity matrix. This constraint,
combined with a suitable ordering constraint on k = 1,..., K (see Section 4), is suffi-
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cient for identifiability (up to sign changes, which in our experience are not problematic
in the MCMC sampler).

While various identifiability constraints are available, the following result illustrates
the utility of the proposed approach:

Lemma 1. Under the identifiability constraint F'F = I'x and model (9), the joint full
conditional distribution for {B .} is proportional to

P(Bly. ) < pB)p(yl-) o< p(B)exp { = 3 o (1817~ 28180 } < p(B)i(@1-), (12)

t=1

where Y, := (1.4, ..., JK,t)" for Gus = fl.y: and p(y|—) is the working likelihood defined
by

~ indep

Tt = Bt + €ty ot~ N(0,02). (13)

For sampling the dynamic parameters in (3)—(5), the full functional data likelihood
under model (9) is unnecessary, and may be replaced by the simpler working likelihood
under model (13). Consequently, all computations involving these parameters depend on
M only via the projection gy = fiy;, which is a one-time cost per MCMC iteration.
These simplifications facilitate the inclusion of complex dynamics in (3)—(4) without
sacrificing computational feasibility.

Applying Lemma 1 to model (3)—(4), the TVP functional regression simplifies:

~ At ~
= prp+ (x 1 ) 4 e, 14
=t (1) (3) 4 (1)
oy, ¢ I, 0 Qg1 Wit
it , 4 ’ 15
<7k,t> ( 0 ¢k) <'7k,t1) (W,t) (15)
fork=1,...,K, where oy := (1 kt,--.,p k) and the errors €, , and (wfm, Nk,t) are

mutually independent and conditionally Gaussian (see Section 4). Model (14)—(15) is a
dynamic linear model (West and Harrison, 1997) in the state variables (o}, ;, V&)’ From
Lemma 1, the joint full conditional distribution of the dynamic variables7{ak7t, Vit Lot
using (14)—(15) is identical to that based on the functional data likelihood (9) with
model (3)—(4). However, model (14)—(15) is much simpler, with a lower-dimensional
data vector in (14) compared to (9), which offers massive computational improvements
for sampling the state variables {ou ¢, vk, }x,¢. Generalizations of the evolution equa-
tion (15), such as a non-diagonal evolution matrix, are straightforward within the pro-
posed framework.

As an empirical illustration, Table 1 gives computation times for simulated data from
Section 6 for the proposed DFOSR model compared to Kowal et al. (2017a) (referred
to as DFOSR-NIG in Section 6). In particular, Kowal et al. (2017a) use a similar model
for {fx}, but do not use the identifiability constraint F'F = Ik and cannot apply
Lemma 1. The improvements are substantial, particularly for the larger sample size.

This approach may be generalized to account for alternative dependence structures
in the observation error, €;:
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MCMC Algorithm | T =50, M =20 | T =200, M = 100
Proposed DFOSR 48 seconds 3 minutes
Kowal et al. (2017Db) 15 minutes 74 minutes

Table 1: Computing times per 1000 MCMC iterations (implemented in R on a MacBook
Pro, 2.7 GHz Intel Core i5). In all cases, p = 15 and K = 6.

Lemma 2. For model (9) with the generalization [e;|o? , %] nlcr N(0,023%,), the

€4

simplification in Lemma 1 remains valid under the modified constraint F'S;7'F = I .

Most importantly, Lemma 2 accommodates within-curve dependence of the errors
€:(T;) 1= €j4, such as autoregressive or non-smooth dependence in 7. Unlike the func-
tions Y; in (2), the error functions e;(7)—and therefore the functional data realizations
y¢(T;) := y;,+—are not restricted to be low rank. However, the errors €; remain condi-
tionally independent across time t =1,...,T.

Proceeding under the setting of Lemma 1, we decompose the orthonormality con-
straint for each f; into two sets of constraints: the linear constraints f;fi, = 0 for
¢ # k and the unit-norm constraint, ||fx||*> = 1. The sampler in Section 3.1 condi-
tions on {fs}exk, so the linearity constraint is fixed for each f; = Buy. Given the
full conditional distribution [tg|---] ~ N(Q;gﬁd,k,Q;g) from Section 3.1, we en-
force the linear orthogonality constraint by conditioning on Cyfr = 0, where Cj =
(f1,--s fr—1, frt1s-- -, fx)'. Conditioning on the constraint is a natural Bayesian ap-
proach, and produces desirable optimality properties for constrained penalized regres-
sion (see Theorem 1 of Kowal et al., 2017a). Given an orthogonally-constrained sample
fi = B}, which is obtained via Theorem 1 below, we rescale to enforce the unit-norm
constraint: fr = f/||fi]|, and similarly rescale 1. This rescaling does not change the
shape of the loading curve fj, and can be counterbalanced by an equivalent rescaling
of the corresponding factor, i.e., Bi: < Bl fil|. By applying this procedure itera-
tively for k = 1,..., K, the constraint F'F = I is satisfied for every MCMC iteration,
which is required to obtain the computational simplifications of Lemma 1. Alternative
approaches for directly sampling F' on the Stiefel manifold are promising, but require
customized algorithms (Jauch et al., 2019).

More generally, we may condition on any linear constraints Cyfx = 0 for each
k=1,...,K. For example, the constraint fi(71) = fx(7a) ensures a periodic curve f,
while the constraints f(7*) = 0 for 7* € T* restrict the support of f;, to a subdomain of
T* C T. Incorporating constraints, when appropriate, reduces variability and enhances
interpretability of the loading curves { f }. Within the proposed framework, conditioning
on the linear constraints produces several important properties:

Theorem 1. Let Cy be a J x M matriz of rank J. Denote ¥} ~ N(Q;klfwk,Q;kl)

with f := B and define vy := ) — Q;,jB’C,;(CkBQ;:B’C,;)‘1CkB¢,2 with
fr =By fork=1,..., K. The following properties hold:

1. f 4 [fP|Cr S = 0];
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2. P(Crfr=0)=1fork=1,...,K;

3. If Cy, = C for all k, then CE(y;) = E(Cy;) = CY; =0 forallt =1,...,T under
model (9), where Yy = (Yi(11,) ..., Yi(7m)).

Proof. Denote ff ~ N(ppo,Bypo) with pgo := BQy £y, and By := BQ ' B’ the
full conditional distribution of the (unconstrained) loading curve. Since f? is Gaus-
sian, so is Ci fy, and consequently [fP|Cyf = 0] ~ N(pys,,Xy,) with py, := Bso —
Zf]gC,’C(CkE‘f]gC,’C)_leufg and Xy, = X0 — EfgC,’C(CkEfgC,’C)_IEfg. Direct calcu-
lation shows that fi has the same mean and covariance. Lastly, we simplify E(Cy;) =
CE(y:) =CY; = C Y0, fibhs = b (Cfi)Brs =0 foreach t = 1,...,T. O

Theorem 1 provides a recipe for generating constrained loading curves { f; } based on
a draw from the unconstrained full conditional distribution. The resulting fy is a sample
from the requisite full conditional distribution restricted to the linear (orthogonality)
constraint. Since the constraint holds almost surely, it follows that C} fi = 0 for each
draw of f, and therefore f;fi, = 0 for ¢ # k at every MCMC iteration.

The final property of Theorem 1 is broadly useful, since it provides a mechanism for
applying constraints simultaneously to the loading curves {f;} and the expected func-
tional data response, Y;. For example, the proposed modeling framework is applicable for
periodic functional data, such as daily pollution curves (Damon and Guillas, 2002; Aue
et al., 2015), by constraining fi(71) = fx(7ar), which guarantees that Y; (1) = Yi(7ar)
for all ¢. The unknown basis functions { f} are still learned from the data, yet the pos-
terior distribution properly accounts for the pre-specified structure implied by C'f, = 0
and consequently C'Y; = 0.

4 Shrinkage priors

While the DFOSR model provides substantial dynamic modeling flexibility, there is also
a risk of overparametrization. The model may contain irrelevant predictors or unnec-
essary time-variation, and may be sensitive to the dimension K of the unknown basis.
We introduce regularization via Bayesian shrinkage priors. In (non-functional) TVP re-
gression, shrinkage priors offer improvements in prediction (Korobilis, 2013; Belmonte
et al., 2014) and provide narrower posterior credible intervals (Kowal et al., 2019). Im-
portantly, these effects are confirmed in the functional data setting for both simulated
and real data (see Sections 6 and 7): the shrinkage priors improve forecast accuracy,
point estimation accuracy, and calibration and precision of posterior uncertainty quan-
tification.

Since many shrinkage priors may be expressed as conditionally Gaussian distribu-
tions (Polson and Scott, 2010, 2012; Kowal et al., 2019), we consider priors of the form

inde inde:
[wikelod, ] "~ N©,02, ) Il ] N(0,07, ) (16)

Wi, k,t P T Wy kLt )TNkt
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for all j, k,t. Importantly, the conditional Gaussianity in (16) maintains computational
scalability of fully Bayesian inference for the DFOSR model (see Section 5). The priors

on the variances azj o and U%k , will determine the shrinkage effects for w; x; and 7 ;.

The innovations wj ,; control the time-variation in the regression coefficients oy
when |wj x| is small, the change |a; k¢ — ¢ k1—1| is small, so that the regression co-
efficients remain approximately constant at time ¢. In the absence of definitive ev-
idence for time-variation of ¢, the more parsimonious locally static model with
lwjkt| = |kt — ajri—1] = 0 is preferred. Similarly, if predictor z;; is irrelevant for
factor By ., the prior should globally shrink each |w; x| and the initial state |a; 0| to
zero, which effectively removes x;; from the model for 5y ;.

To achieve both local (in time t) and global (for factor k, predictor j) shrinkage
of a1+, we propose nested horseshoe priors, which extend the horseshoe prior of Car-
valho et al. (2010) to the functional time series setting. By design, the horseshoe prior
aggressively shrinks small (absolute) values toward zero, while large (absolute) values
receive minimal shrinkage. The horseshoe prior has demonstrated broad success in ap-
plications, simulations, and theory (Polson and Scott, 2010; Datta and Ghosh, 2013; van
der Pas et al., 2014). We apply shrinkage at multiple levels with the following hierarchy
of half-Cauchy distributions:

Guyre CTO,N0), A ®OH0,0:), A CH0, M),
Ao Xt (0,1/V/T = 1). (17)

First, 0w, , = 0 implies that |wj,k,t| ~ 0, 50 ok =~ o k,—1 is locally constant. Each
o 1+ for predictor j and factor k may vary at any time ¢, but the prior encourages most
changes to be approximately negligible, which implies fewer effective parameters in the
model. The shrinkage parameters A;; and A; are common for all times ¢, and provide
factor- and predictor-specific shrinkage: for each predictor j, A;x allows some factors &
to be nonzero, while A; operators as a group shrinkage parameter that may effectively
remove predictor j from the model. Lastly, the global shrinkage parameter Ag controls
the global level of sparsity, and is scaled by 1/4/T — 1 following Piironen and Vehtari
(2016). In the case of the non-dynamic FOSR and FOSR-AR models, we simply remove

one level of the hierarchy: w; k.t ~ N(0,A% ).

To reduce sensitivity to the dimension K of the basis, we introduce ordered shrinkage
across k = 1,..., K for both the innovations 7+ and the intercepts py in (3). For this
purpose, we use multiplicative gamma process (MGP) priors (Bhattacharya and Dunson,
2011), which assign increasing shrinkage toward zero for larger values of k. MGP priors
are a popular choice among Bayesian models with unknown rank K, including factor
models (Bhattacharya and Dunson, 2011) and functional regression models (Montagna
et al., 2012; Kowal and Bourgeois, 2019). The MGP prior for the intercept terms is
given by pp ~ N(0,07, ) with 0,2 = ], 0y, for 6,, ~ Gamma(a,,,1) and 6,, ~
Gamma(a,,, 1) when ¢ > 1. Selecting a,, > 0 and a,, > 2 produces stochastic ordering
among the implied variances aﬁk (Bhattacharya and Dunson, 2011; Durante, 2017),
which also satisfies the ordering requirement for model identifiability. Similarly, for

the innovations g ¢ ~ N(O,J%M)7 let agw = 07, [En, With 0,2 = [Tock Ones Oy ~
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Gamma(ay,,1), d,, ~ Gamma(ay,,,1) for £ > 1, and §,,, ~ Gamma(v,/2,v,/2). The
rate of ordered shrinkage is determined by the data separately for {ur} and {n:}
using the hyperpriors a,,,au,,ay,,a,, ~ Gamma(2,1). Finally, the hyperprior v, ~
Uniform(2, 128) for the degrees of freedom parameter incorporates the possibility of
heavy tails in the marginal distribution for ny ;.

5 MCMC sampling algorithm

We develop an efficient Gibbs sampling algorithm for the DFOSR model based on
four essential components: (i) the loading curve sampler for {f;} with the identifia-
bility constraint F'F = I; (ii) the projection-based simplification of model (9) from
Lemma 1; (iii) a state space simulation smoother for the dynamic regression parameters
in (3) and (4); and (iv) parameter expansions for the variance components in (16). For
sparsely-observed functional data, in which the functions are observed only at a small
subset of {Tj}jj\il at each time ¢, a sampling-based imputation step is included. An
overview of the sampling algorithm is provided here, with details for the full sampling
algorithm in the supplement.

Since model (14)—(15) is a dynamic linear model in the state variables (o}, ;, k),

the dynamic parameters {c s, v+ i, are sampled jointly across all t = 1,..., T from
their full conditional posterior distribution using an efficient simulation smoothing algo-
rithm (Durbin and Koopman, 2002). These samplers are also valid for FOSR-AR with
ajpt = ;. Note that the model (14)—(15) may be aggregated across k = 1,..., K
to produce a jointly sampler with respect to k; in our experience, however, doing so
increases computation time without improving MCMC efficiency. A single draw of all
dynamic regression coefficients and autoregressive regression error terms {am, Vit Lot
has computational complexity O(KTp?). For a small to moderate number of predic-
tors p < 30, the algorithm is efficient; for sufficiently small K, the sampler is nearly
equivalent to the analogous non-functional TVP regression model.

In addition to the loading curve sampler for {f;} in Section 3 and the state space
simulation sampler for {o ¢, it }i,e via (14)—(15), the Gibbs sampler proceeds by iter-
atively sampling the intercepts {uy}, the autoregressive coefficients {¢y }, and the vari-
ance components o?ﬁ, U%k_t, and Ugiyk’t—as well as any relevant hyperparameters—f{rom
their full conditional distributions (see the supplement). Stationarity on 7y, is imposed
by the prior on the autoregressive coefficients: we set {(¢r + 1)/2} ~ Beta(5,2), which
ensures that P(|¢x| < 1) = 1. This prior on ¢y is weakly informative and encourages
positive autocorrelation: P(¢, > 0) ~ 0.9 and P(¢; > 0.5) ~ 0.45. For the yield curve
data in Section 7, we estimate P(¢; > 0.5|y) ~ 1 for each k, so there is posterior
learning which does not contradict the prior. Posterior inference is available for these
quantities as well as the TVP regression functions &;(7) := Zszl fu(T)oj ks and the

fitted curves Yy (1) := Z§=1 Ji(7)Bre.t-
To generate samples from the h-step forecasting distribution of ypip, we lever-

age the state space construction in (14)—(15). Specifically, we draw from the h-step
forecasting distribution of the state variables in (15), [ak,17+h, Ve, r+1|Y, —], and sub-

sequently sample [yrin|y, —] ~ N(ZkK:1 fkﬂk,T+h7052T+hIM)7 where By rin = pr +
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Z§:1 T T+h0G k, T+h + Yk, T+h- Note that U?THL must be sampled from the forecasting
distribution of the stochastic volatility model (see Section 7). If only point estimates are
N K 5 A . .
needed, we use grin = Y_p_y fiBr,r+n, Where By rin = fir + D5 @m0 +
Ak, m+h and &; , 74p and g 74 p, are the conditional expectations of (g 74, Ve, 741 |Y,—]-
The estimator g, reduces Monte Carlo error, and may be more accurate in some
cases. These forecasting computations remain unchanged for various modifications of
the DFOSR model, for example by using a known basis in place of { fx} or an alternative
prior distribution for the innovations in (16).

6 Simulation study

The DFOSR model features several important components: (i) the model for {f;} from
Section 3, (ii) the dynamic regression coefficients in (4), and (iii) the nested horseshoe
and ordered shrinkage priors for the innovations (16) from Section 4. In concert, these
features comprise the proposed DFOSR model (denoted DFOSR-HS in the subsequent
figures). Naturally, these assumptions may be relaxed and modified to produce simpler
models within the same modeling framework. It is therefore important to determine
which of the DFOSR model features are necessary to produce reliable forecasts, esti-
mates, and inference.

The following simulation study assesses the relative importance of these modeling
choices. Specifically, we are interested in evaluating forecasts of the functional time series
y and estimates of the dynamic regression coefficient functions &;.(7), as well as the
empirical coverage and precision of the accompanying posterior forecasting and credible
intervals. We consider simulation designs with dynamic and non-dynamic regression
coeflicients, and compare the proposed methods to state-of-the-art and benchmark al-
ternatives for functional regression.

6.1 Simulation design

The synthetic data-generating process is based on model (1)—(4), but with some notable
differences. There are two sources of sparsity in the regression: (i) some predictors are
not associated with the functional response Y;(7) and (ii) some predictors are associated
with Y;(7) exclusively via a small number of factors. Let pg = 10 regression coefficients
be exactly zero (for all times t), and let p; = 5 be nonzero, resulting in p = pg+p; = 15
regression coefficients plus an intercept, which is fixed at p} := 1/k. For each nonzero
predictor j = 1,...,p; = 5, uniformly sample pj factors to be nonzero, where p; ~
Poisson(1) truncated to [1, K*]. For dynamic regression coefficients, the nonzero factors
k for predictor j are drawn from a Gaussian random walk with randomly selected jumps:
QG gy = Zro + ngt Zy sIi.s where Zy; ~ N(0,0.75%=1) and Ij; ~ Bernoulli(0.01),
which results in time-varying yet locally constant regression coefficients a7 ; ,. For non-
dynamic regression coefficients, let o , :=aj , ~ N (0,0.75%~1). The regression errors
are vy, = 0.8, +nj, with i, ~ N(0, 0.75*71[1 — 0.82]), which are autocorrelated
yet stationary with unconditional variance 0.75*~!. Finally, each time-ordered predictor
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{x; .}, is simulated from a Gaussian AR(1) model with autoregressive coefficient 0.8,
unconditional mean zero, and unconditional variance one for j =1,...,p.

For M equally-spaced points T € [0, 1], the true loading curves are f; (1) :=1/vVM
and for k = 2,..., K* =4, f}! is an orthogonal polynomial of degree k. Given true factors
Bit = 1k +Z§=1 105 1.+, and loading curves fi/(7), the true curves are Y;*(7) :=
Zi:l [ (7)B; ¢ and the functional data are simulated from y,(7) = Y*(7) + 0% ¢ (7),
where € (7) ~ N(0,1). After selecting a root-signal-to-noise ratio (RSNR), the observa-
tion error standard deviation is o* := \/(TM— 1)1t EZ;I Zjle(Yt*(T]) - Y*)Q/RSNR
where Y* is the sample mean of {Y;*(7;)};+. We select RNSR = 5, which produces
moderately noisy functional data, and use 7" = 200 time points with M = 25 functional
observations points. Results for M = 100 are included in the supplement with similar

conclusions.

6.2 Methods for comparison

We implement several competing methods within the dynamic Bayesian framework
of (1)—(5), which in each case utilizes the same general MCMC approach of Section 5
with small modifications as needed. First, let DFOSR-NIG denote the DFOSR model
with normal-inverse-gamma priors on the innovations, similar to Kowal et al. (2017a),
instead of the nested horseshoe priors from Section 4. Next, replace the loading curves
{fr} with functional principal components (FPCs) estimated a priori using Xiao et al.
(2013), where K is selected to explain 90% of the variability in {y; }+. For the FPC-based
modifications, we consider both the nested horseshoe priors from Section 4 (DFPCA-
HS) and the aforementioned normal-inverse-gamma prior (DFPCA-NIG). The compar-
ative performance of these methods—DFOSR, DFOSR-NIG, DFPCA-HS, and DFPCA-
NIG—illustrates the gains of including (i) shrinkage priors and (ii) a Bayesian model
for {fi}. Lastly, omit the dynamic regression coefficients, o, = «;, reducing to a
function-on-scalars regression with autoregressive errors (FOSR-AR). The FOSR-AR
model is identical to the full DFOSR with the exception of (4), and therefore isolates
the utility of the time-variation of {a; k¢ }.

For benchmark comparisons, we also include non-Bayesian and non-dynamic re-
gression models. First, we include a functional regression model which estimates the
regression coefficient functions using generalized least squares (FOSR-LS; Reiss et al.,
2010). FOSR-LS is similar to fitting separate linear regression models of y;; on x; for
each j = 1,..., M, but adds smoothness in 7; for the regression coefficients and in-
corporates covariance among the errors €;; with respect to j = 1,..., M. Next, we
include a FOSR model which attaches a group lasso penalty to each regression func-
tion to provide variable selection (FOSR-Lasso). Both FOSR-LS and FOSR-Lasso are
implemented using the refund package in R (Goldsmith et al., 2016). Note that these
methods do not account for time-varying regression coefficients or autocorrelated errors
(with respect to time).
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6.3 Evaluation criteria

Forecasting ability is evaluated using root mean squared forecast errors, RMSFE =
\/ Zﬁl{YTﬂ (1e) —Yri1 (1¢) }2 /M for forecast Y71, and mean forecast interval widths,

MFIW = Zé\il{ﬂgﬂ(n) — 9% 1(7¢)}/M for forecast interval (9%, (7¢), 99,1 (7¢)), £ =
1,..., M. While RMSFE measures point forecast accuracy, MFIW assesses precision of
the forecasting intervals. Narrower forecast intervals—and therefore smaller MFITW—are
preferable among intervals that attain the nominal empirical coverage. The empirical
coverage is Zévil 9%, 1 (7¢) < yrs1(me) < 9%, (1)} /M. We consider 90% intervals for
all simulations.

For the regression coefficient functions &;(7), we similarly compute root mean
squared errors, RMSE = \/Zj o(@e(me) — a7 4 (10))?/(pT M), where a;,,(7) is the es-

timated regression coefficient for predictor j at time ¢t and observation point 7, and

aj () = Zsz*l fi(me)a , , is the true regression coefficient, and mean credible inter-
val widths, MCIW = Zj,t,z{dg{t(n) —af,(1e)}/(pT M), for pointwise credible intervals
(ak(7¢),a¥ (7). Nominal empirical coverage for the intervals is also reported. We
present RMSE, MCIW, and empirical coverage separately for the true nonzero coeffi-
cients (signals), {j : & ,(7) # 0 for some ¢, £}, and the true zero coefficients (noise),

{j:aj () =0forall t,£}.

6.4 Simulation results

The results from the dynamic regression setting are in Figures 1 and 2 for the fore-
casting and estimation comparisons, respectively. Similar figures for the non-dynamic
regression setting, in which &7 ,(m) = &j(7v) is time-invariant for all j,¢, are in Fig-
ures 3 and 4. The RMSFE and MFIW are reported in terms of the percent reduction
relative to DFOSR-NIG, which provides standardization among the forecasting met-
rics. Specifically, for each method j we compute 100(RMSFE; — RMSFE)/RMSFE,
and 100(MFIW; — MFIW,)/MFIW, for each of 100 simulated datasets, where j = 0
denotes the reference model. The DFOSR-NIG is an appropriate reference model: it
includes the model for unknown {fj} from Section 3 but does not include the nested
horseshoe prior of Section 4. Methods with values above zero demonstrate improvements
in forecasting performance relative to DFOSR-NIG.

Figure 1 shows the relative forecasting results for the dynamic regression simula-
tions. The inclusion of the nested horseshoe priors (DFOSR-HS) provides more accu-
rate point forecasts with narrower forecasting intervals compared to DFOSR-NIG, which
demonstrates the utility of these shrinkage priors. At the same time, the performance
of DFPCA-HS, which uses the same shrinkage priors but fixes f; at the FPC estimates,
is underwhelming, and is often outperformed by DFOSR-NIG. In concert, these results
demonstrate that inclusion of both the model for {f;} and the nested horseshoe prior
produces more accurate point forecasts and more precise forecast intervals. However, the
time-variation in (4) is equally important: FOSR-AR omits these dynamics, and clearly
produces less accurate point forecasts and forecast intervals with insufficient coverage.
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Figure 1: Forecasting in the dynamic regression model. Performance is evaluated relative to
DFOSR-NIG. The proposed models are in light blue.

Figure 2 presents the results for the regression coefficient functions, again for the
dynamic regression simulations. Among the true nonzero coefficients (signals), it is most
notable that the proposed DFOSR-HS offers significantly more accurate estimation and
narrower credible intervals which maintain the correct nominal coverage. By comparison,
the methods that do not include both the time-varying parameters and the model for
{fx} fail to attain the correct nominal coverage. As anticipated, the shrinkage priors are
comparatively more important among true zeros, where the non-dynamic FOSR-AR is
clearly the best while DFOSR-HS, DFPCA-HS, and FOSR-Lasso perform similarly.

The forecasting and estimation results for the non-dynamic regression simulations
are in Figures 3 and 4. As expected, FOSR-AR performs exceptionally well, since
it corresponds to the true data-generating process. Again, the proposed DFOSR-HS
significantly outperforms the dynamic competitors in both forecasting and inference.
Interestingly, even though FOSR-AR and the non-Bayesian methods FOSR-LS and
FOSR-Lasso all (correctly) assume non-dynamic coefficients, the FOSR-AR provides
substantially more accurate estimates for both signal and noise coefficients.

To characterize the sensitivity of the proposed DFOSR model to our choice of priors,
we considered a variation of DFOSR-HS in which the autoregressive coefficients each
received a flat prior restricted to stationarity, ¢y ~ Uniform(—1,1), and the MGP
hyperparameters were fixed at a,, = a,, = 2, ay, = a,, = 3, and v, = 3 instead of
using the hyperpriors from Section 4. The results are quite similar to those in Figures 1-4,
with some attenuation of the gains offered by DFOSR-HS. Therefore, we recommend the
weakly informative priors for the autoregressive coefficients ¢; and the MGP hyperpriors
from Section 4.

7 Forecasting yield curves using macroeconomic
variables

The yield curve describes the time-varying term structure of interest rates: at each
time ¢, the yield curve Y;(7) characterizes how interest rates vary over the length of



D. R. Kowal 475
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Figure 2: Root mean squared errors (top) and mean credible intervals widths with empirical
coverage (bottom) for &;:(7) in the dynamic setting separated into true nonzeros (left) and
true zeros (right). The proposed models are in light blue. DFOSR-HS offers clear gains for
estimation and inference on the signals, while competing methods fail to attain the correct
nominal coverage.

the borrowing period, or maturity, 7. Yield curves are an essential component in many
economic and financial applications: they provide valuable information about economic
and monetary conditions, inflation expectations, and business cycles, and are used to
price fixed-income securities and construct forward curves (Bolder et al., 2004). Con-
nections between yield curves and macroeconomic variables are of particular interest,
both for understanding the interplay of various components of the economy (Diebold
et al., 2006; Aguiar-Conraria et al., 2012) and for producing improved forecasts of key
economic and financial variables (Monch, 2008; Koop, 2013).

We are interested in leveraging macroeconomic variables to produce more accu-
rate yield curve forecasts with reliable uncertainty quantification. There is accumu-
lating evidence to support the inclusion of macroeconomic variables in a yield curve
forecasting model (Coroneo et al., 2016; Altavilla et al., 2017). Among the most suc-
cessful forecasting approaches, a noteworthy feature is the use of time-varying param-
eters for modeling the associations between macroeconomic variables and the yield
curve (Bianchi et al., 2009; Mumtaz and Surico, 2009; Byrne et al., 2017). However,
all of the models referenced above—with or without time-varying parameters—rely
on the Nelson-Siegel basis expansion (Nelson and Siegel, 1987). The Nelson-Siegel
approach uses a similar construction as (2), but with K = 3 parametric functions:
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Figure 3: Forecasting in the non-dynamic regression model. Performance is evaluated relative
to DFOSR-NIG. The proposed models are in light blue. The FOSR-AR performs the best,
while the proposed DFOSR-HS performs the best among the dynamic models.

the level fi1(7;\) = 1, the slope fo(T;\) = {1 — exp(—7\)}/(7A), and the curvature
fa(m;A) = {1 — exp(—=7A)}/(TA) — exp(—7)). Although some approaches estimate the
parameter A > 0 (Laurini and Hotta, 2010; Cruz-Marcelo et al., 2011), it is more com-
mon to fix A a priori, such as A = 0.0609 (Diebold and Li, 2006; Bianchi et al., 2009;
Mumtaz and Surico, 2009; Coroneo et al., 2016; Byrne et al., 2017; Altavilla et al.,
2017).

The Nelson-Siegel basis provides a convenient simplification of the functional depen-
dence, but faces several limitations. First, it is clearly inadequate for other functional
datasets, many of which have no known parametric structure. Second, the common
choice of A = 0.0609 may be inappropriate for other term structure data or non-US
yield curves, yet relaxation of this assumption is challenging due to the resulting non-
linearities in the model. A more subtle difficulty is that the parametric biases of the
Nelson-Siegel basis may be undetected or understated among methods that are evalu-
ated using the popular yield curve dataset from Giirkaynak et al. (2007). Giirkaynak
et al. (2007) employ a Svensson model for smoothing (Svensson, 1994), which is an
augmented Nelson-Siegel model with one additional nonlinear term. Consequently, the
Nelson-Siegel-based models that use this dataset (Aguiar-Conraria et al., 2012; Altavilla
et al., 2017; Byrne et al., 2017) are likely to show inflated performance relative to other
yield curve datasets that do not pre-smooth using Nelson-Siegel or Svensson models.

The DFOSR model offers an appealing alternative: the basis functions {fx} are
modeled nonparametrically, while time-varying regression coefficients are included for
the macroeconomic variables x; via (4). Existing nonparametric regression approaches
for yield curve modeling include Hays et al. (2012) and Jungbacker et al. (2013), which
similarly model {f} as unknown and incorporate a state space framework for {8},
yet do not provide the uncertainty quantification, TVP regression, and shrinkage capa-
bilities of the DFOSR model. The shrinkage priors of the DFOSR model are particularly
important, since it is a priori unclear whether any individual macroeconomic variable
is important for forecasting and which, if any, corresponding regression coefficients are
time-varying.



D. R. Kowal

RMSEs: Regression Coefficient Functions (Signals)

477
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Figure 4: Root mean squared errors (top) and mean credible intervals widths with empirical
coverage (bottom) for &;,:(7) in the non-dynamic setting separated into true nonzeros (left)
and true zeros (right). The proposed models are in light blue. FOSR-AR demonstrates the
most accurate estimation, while the proposed DFOSR-HS provides the best credible intervals
for nonzero regression coefficients (signals).

More generally, it is of interest to assess (i) whether including macroeconomic pre-
dictors can improve forecasting performance and (ii) whether alternative models for
{fr}—such as FPCs or the Nelson-Siegel basis—are competitive. The benefits of in-
cluding macroeconomic predictors may depend on whether or not the model allows
for time-varying regression coefficients. Therefore, we consider two special cases of the
DFOSR model: FOSR-AR, which omits the time-variation in (4), and the functional
dynamic linear model (FDLM) of Kowal et al. (2017a) with predictors omitted entirely.
In each case, we use K = 4 factors, although results are similar for K = 6. We include
two variations of each of the FOSR-AR and the FDLM by modifying the model for
{fx}: first, using the Nelson-Siegel basis with (NS-X) and without (NS) predictors, and
second, using the FPC basis with (FPC-X) and without (FPC) predictors. All compet-
ing models may be written in the form of (1)—(5), with forecast estimates and intervals
computed using the same MCMC algorithm of Section 5.

For each model, we include a stochastic volatility model for Uft to incorporate volatil-
ity clustering:
iid
he = pun + On(he—1 + pn) + 1, v ~ N(0,07), (18)
where hy log O'St is the log-volatility. Sampling the log-volatility proceeds using a
Gaussian mixture approximation similar to Kim et al. (1998) and Omori et al. (2007).



478 Dynamic Regression Models for Time-Ordered Functional Data

7.1 Forecasting design

We consider 40 years of monthly data from 1970-2009 using the unsmoothed Fama and
Bliss (1987) US government bond yields provided by Van Dijk et al. (2014). These yield
curve data are available for maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72,
84, 96, 108 and 120 months (M = 17), and importantly are not pre-smoothed using
the Nelson-Siegel or Svensson model. To accompany the yield curve data, we include
the macroeconomic variables in Table 2, which are provided by the Federal Reserve and
retrieved from the FRED data download website. We consider two sets of predictors:
a small set of p = 3 variables and medium set of p = 12 predictors, which are trans-
formed according to Table 2 and lagged by one month for forecasting. These variable
sets are similar to those used in Koop (2013). While it is possible to incorporate con-
current (non-lagged) predictors in the DFOSR model, this requires augmentation of the
dynamics in (15) and produces a more complex state space model with accompanying
computational challenges.

Variable Code | Description

FEDFUNDS? 0 Effective Federal Funds Rate

CPIAUCSL? 1 Consumer Price Index

GDP* 1 Gross Domestic Product

INDPRO' 1 Industrial Production Index

M2SLf 1 M2 Money Stock

TCUT 0 Capacity Utilization: Total Industry

UNRATE! 0 Civilian Unemployment Rate

Mi1SLT 1 M1 Money Stock

PAYEMS' 1 All Employees: Total Nonfarm

HousT? 1 Housing Starts: Total New Privately Owned Housing Units
Started

AHETPI' 1 Average Hourly Earnings of Production and Nonsupervisory

Employees: Total Private
TWEXBMTH' 1 Trade weighted U.S. Dollar Index: Broad

Table 2: Predictor variables included in the small (1) and medium (1) sized models. The
code denotes the transformation: 0 = no transformation, 1 = year-over-year growth
rate. The variable names correspond to the FRED series.

7.2 Forecasting results

Point and 95% interval forecasts were computed for each month from 1990-2009, totaling
227 months for evaluation. Methods are compared using RMSFE and MFIW defined in
Section 6, which are reported relative to the FDLM. We select the FDLM as the baseline
because it incorporates some, but not all, of the proposed features in the DFOSR: it
includes the model for {f;} from Section 3, but omits predictors and consequently does
not include the time-variation in (4) or the shrinkage priors of Section 4.

To illustrate the challenge of the forecasting exercise, Figure 5 provides examples
of the DFOSR yield curve forecasts in 2006 and 2008. There is considerable month-
to-month time-variation in both the yield curve level and shape over the previous 24
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months. Nonetheless, the DFOSR point and interval forecasts are accurate, and the
interval forecasts are sufficiently precise that they include the realized yield curves while
excluding many of the previous yield curve observations.

Yield Forecast: 2006-06-01 Yield Forecast: 2008-01-01
©
0
0
< 4
~< 1 —
o® k=] x X *
] 9] x
2 Qa1
IR > XHAHHHK X =
1 ar ©1 A~ Y;
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Maturity (months) Maturity (months)

Figure 5: One-month-ahead yield forecast (cyan line) with 95% forecast intervals (gray
bands) on June 1, 2006 (left) and January 1, 2008 (right) for p = 3 predictors. The
crosses indicate the realized values yp41, while the connected points give the previous
24 months of yield curves (from dark to light, oldest to most recent).

Figure 6 displays the forecasting results for the small set of predictors (p = 3) in
Table 2. All models achieve the correct nominal empirical coverage, yet each method is
overconservative. Comparing methods with and without the macroeconomic variables,
we identify a small decrease in forecast interval width, which suggests that predictors
provide slightly more precision in the forecasting intervals. Most notable, however, is
the performance of the DFOSR, which provides substantial reductions in forecasting
interval widths relative to all competitors. In particular, it is clear from comparing the
FDLM, the FOSR-~AR, and the DFOSR that (i) including the macroeconomic predictors
produces narrower forecasting intervals, and (ii) this effect is heightened for time-varying
regression coefficients. The DFOSR also provides the most accurate point forecast, albeit
with smaller improvements relative to competing methods.

The forecasting results for the medium set of predictors (p = 12) are in Figure 7.
The larger set of predictors is more challenging for the TVP regressions, especially in
the functional data setting. Nonetheless, the DFOSR, again performs exceptionally well:
the model for {f} from Section 3 provides substantial gains in forecasting performance
relative to the Nelson-Siegel and FPC bases, while the time-variation of the DFOSR
model offers consistent improvements relative to the non-dynamic FOSR-AR model.

To further illuminate the differences between dynamic and non-dynamic regression
coefficient functions, we plot the posterior expectations of &; () for each predictor j
as a function of maturity 7 across times ¢ from 1970-2009 in Figure 8. We include the
posterior expectations under both the DFOSR and FOSR-AR models for comparison.
Many of the regression coefficient functions exhibit substantial time-variation in both
shape and magnitude, which cannot be modeled by non-dynamic regression coefficient
functions. The improvements in forecasting performance of the DFOSR relative to the
FOSR-AR suggest that the time-variation in the regression coefficient functions is an
important feature of the model.
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Figure 6: For p = 3 predictors, the percent reduction in mean forecast interval widths
(left) and root mean squared forecast error (right) relative to the FDLM of Kowal et al.
(2017a) excluding predictors. The proposed models are in light blue. The empirical
coverage of the 95% forecast intervals is also given.
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Figure 7: For p = 12 predictors, the percent reduction in mean forecast interval widths
(left) and root mean squared forecast error (right) relative to the FDLM Kowal et al.
(2017a) excluding predictors. The proposed models are in light blue. The empirical
coverage of the 95% forecast intervals is also given.

8 Discussion

The proposed dynamic function-on-scalars regression (DFOSR) model features several
essential components: (i) a nonparametric regression model for the unknown basis func-
tions, (ii) time-variation in the regression parameters, and (iii) shrinkage priors that reg-
ularize irrelevant predictors and shrink toward time-invariance. These model features are
synthesized within a fully Bayesian framework, with posterior inference available via an
efficient Gibbs sampling algorithm. Simulation studies demonstrate the utility of these
modeling choices, in particular for constructing precise forecasting intervals and esti-
mating time-varying regression coefficient functions. The proposed model is evaluated
empirically for modeling and forecasting yield curves using macroeconomic predictor
variables. Compared to models that exclude time-variation in the regression coefficients
and models that exclude the macroeconomic predictors altogether, the DFOSR fore-



D. R. Kowal 481

FEDFUNDS INDPRO UNRATE HOUST

0.2

05 10 15
0.0

-0.2

-0.4

T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 "0 20 40 60 80 100

< M2SL M1SL AHETPI
S
3 ~ -
o~
o ~ 1
; o +
o
= - 4
T T T T T T ' T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
GDP TCU PAYEMS TWEXBMTH
I 3 3 o
o - S
2 2 5]
w0
S
0 | =]
© -
= | ) Pl
S — - — - —- =
— T ——T———7—1 ¢ T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Figure 8: Posterior expectations of &; () for each predictor j as a function of ma-
turity 7 (in months) across times ¢ from 1970 (dark) to 2009 (light). The dashed line
indicates zero and the solid black line is the posterior mean of &;(7) under the FOSR-
AR model with time-invariant parameters. For many of the variables, there is notable
time-variation in both magnitude and shape.

casts are more accurate, and in particular provide narrower forecasting intervals that
attain the correct nominal coverage.

The DFOSR model is a natural extension of existing functional regression and func-
tional time series models. When x; = 0 for all ¢, i.e., there are no predictors, the
DFOSR model is a reduced-rank functional factor model with autocorrelated factors,
which is useful for modeling and forecasting functional time series data (Hays et al.,
2012; Aue et al., 2015; Kowal et al., 2017a). When the regression coefficients a; r + = ok
are non-dynamic and the autoregressive coefficients vanish with ¢ = 0, we obtain a
Bayesian FOSR model (Montagna et al., 2012; Kowal and Bourgeois, 2019). Similarly,
constraining ;. ; = o, but allowing ¢, # 0 produces a Bayesian FOSR model with
autoregressive errors. Fach of these special cases was compared with the full DFOSR
model on both simulated and real data in Sections 6 and 7, respectively.

Future work will extend model (2)—(5) for other important dependence structures,
such as dynamic functional predictors X;.(u) for w € U, possibly with different do-
mains U # T. The key simplification of the likelihood from Lemma 1 only requires the
functional data likelihood (9) and the identifiability constraint F'F = Ik. Alternative
models for the factors {8y} in (3), including joint state space models for forecasting
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Y; and x;, may leverage the simplifications from Lemma 1 to achieve computational
scalability in other modeling frameworks. Lastly, the ability to incorporate constraints
for {fx} in Theorem 1, although not applicable for the yield curve models, offers a
promising approach for modeling unknown yet a priori constrained basis functions in
functional and spatial data analysis.

Supplementary Material

Supplementary Material to “Dynamic Regression Models for Time-Ordered Functional
Data” (DOI: 10.1214/20-BA1213SUPPa; .pdf).

Supplementary Material to “Dynamic Regression Models for Time-Ordered Functional
Data” (DOI: 10.1214/20-BA1213SUPPb; .zip). Supplementary materials include
(i) a document with the MCMC algorithm details, the thin plate spline construction,
and additional simulation results, (ii) R scripts for the yield curve analysis and the
simulation studies, and (iii) an R package which implements the proposed model and
all competing models from Sections 6 and 7.

Acknowledgments

We thank David Scott for providing feedback on an early version of the manuscript. We also
thank the associated editor and two referees for their time and helpful comments, which have
improved the readability of the manuscript.

References

Aguiar-Conraria, L., Martins, M. M., and Soares, M. J. (2012). “The yield curve and
the macro-economy across time and frequencies.” Journal of Economic Dynamics and
Control, 36(12): 1950-1970. MR2982962. doi: https://doi.org/10.1016/j.jedc.
2012.05.008. 475, 476

Altavilla, C., Giacomini, R., and Ragusa, G. (2017). “Anchoring the yield curve
using survey expectations.” Journal of Applied Econometrics, 32(6): 1055-1068.
MR3714393. doi: https://doi.org/10.1002/jae.2588. 475, 476

Aue, A., Norinho, D. D., and Hormann, S. (2015). “On the prediction of stationary func-
tional time series.” Journal of the American Statistical Association, 110(509): 378-
392. MR3338510. doi: https://doi.org/10.1080/01621459.2014.909317. 459,
468, 481

Barber, R. F., Reimherr, M., and Schill, T. (2017). “The function-on-scalar LASSO
with applications to longitudinal GWAS.” Electronic Journal of Statistics, 11(1):
1351-1389. MR3635916. doi: https://doi.org/10.1214/17-EJS1260. 460

Belmonte, M. A., Koop, G., and Korobilis, D. (2014). “Hierarchical shrinkage in
time-varying parameter models.” Journal of Forecasting, 33(1): 80-94. MR3148281.
doi: https://doi.org/10.1002/for.2276. 460, 468


https://doi.org/10.1214/20-BA1213SUPPa
https://doi.org/10.1214/20-BA1213SUPPb
https://www.ams.org/mathscinet-getitem?mr=2982962
https://doi.org/10.1016/j.jedc.2012.05.008
https://doi.org/10.1016/j.jedc.2012.05.008
https://www.ams.org/mathscinet-getitem?mr=3714393
https://doi.org/10.1002/jae.2588
https://www.ams.org/mathscinet-getitem?mr=3338510
https://doi.org/10.1080/01621459.2014.909317
https://www.ams.org/mathscinet-getitem?mr=3635916
https://doi.org/10.1214/17-EJS1260
https://www.ams.org/mathscinet-getitem?mr=3148281
https://doi.org/10.1002/for.2276

D. R. Kowal 483

Besse, P. C., Cardot, H., and Stephenson, D. B. (2000). “Autoregressive forecasting
of some functional climatic variations.” Scandinavian Journal of Statistics, 673—687.
459

Bhattacharya, A. and Dunson, D. B. (2011). “Sparse Bayesian infinite factor models.”
Biometrika, 291-306. MR2806429. doi: https://doi.org/10.1093/biomet/asr013.
469

Bianchi, F., Mumtaz, H., and Surico, P. (2009). “The great moderation of the term
structure of UK interest rates.” Journal of Monetary Economics, 56(6): 856-871.
475, 476

Bolder, D., Johnson, G., and Metzler, A. (2004). An empirical analysis of the Canadian
term structure of zero-coupon interest rates. Bank of Canada. 475

Byrne, J. P., Cao, S., and Korobilis, D. (2017). “Forecasting the term structure of
government bond yields in unstable environments.” Journal of Empirical Finance,
44: 209-225. 475, 476

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for
sparse signals.” Biometrika, 465-480. MR2650751. doi: https://doi.org/10.1093/
biomet/asq017. 469

Chen, K. and Miller, H-G. (2012). “Modeling repeated functional observations.”
Journal of the American Statistical Association, 107(500): 1599-1609. MR3036419.
doi: https://doi.org/10.1080/01621459.2012.734196. 463

Chen, Y., Goldsmith, J., and Ogden, R. T. (2016). “Variable selection in function-on-
scalar regression.” Stat, 5(1): 88-101. MR3478799. doi: https://doi.org/10.1002/
sta4.106. 460

Coroneo, L., Giannone, D., and Modugno, M. (2016). “Unspanned macroeconomic fac-
tors in the yield curve.” Journal of Business & Economic Statistics, 34(3): 472-485.
MR3523788. doi: https://doi.org/10.1080/07350015.2015.1052456. 475, 476

Cruz-Marcelo, A., Ensor, K. B., and Rosner, G. L. (2011). “Estimating the term struc-
ture with a semiparametric Bayesian hierarchical model: an application to corpo-
rate bonds.” Journal of the American Statistical Association, 106(494). MR2866969.
doi: https://doi.org/10.1198/jasa.2011.ap09764. 476

Damon, J. and Guillas, S. (2002). “The inclusion of exogenous variables in functional
autoregressive ozone forecasting.” Environmetrics, 13: 759-774. 459, 468

Dangl, T. and Halling, M. (2012). “Predictive regressions with time-varying coeffi-
cients.” Journal of Financial Economics, 106(1): 157-181. 460

Datta, J. and Ghosh, J. K. (2013). “Asymptotic properties of Bayes risk for the horse-
shoe prior.” Bayesian Analysis, 8(1): 111-132. MR3036256. doi: https://doi.org/
10.1214/13-BA805. 469

Diebold, F. X. and Li, C. (2006). “Forecasting the term structure of government bond
yields.” Journal of Econometrics, 130(2): 337-364. MR2211798. doi: https://doi.
org/10.1016/j.jeconom.2005.03.005. 476


https://www.ams.org/mathscinet-getitem?mr=2806429
https://doi.org/10.1093/biomet/asr013
https://www.ams.org/mathscinet-getitem?mr=2650751
https://doi.org/10.1093/biomet/asq017
https://doi.org/10.1093/biomet/asq017
https://www.ams.org/mathscinet-getitem?mr=3036419
https://doi.org/10.1080/01621459.2012.734196
https://www.ams.org/mathscinet-getitem?mr=3478799
https://doi.org/10.1002/sta4.106
https://doi.org/10.1002/sta4.106
https://www.ams.org/mathscinet-getitem?mr=3523788
https://doi.org/10.1080/07350015.2015.1052456
https://www.ams.org/mathscinet-getitem?mr=2866969
https://doi.org/10.1198/jasa.2011.ap09764
https://www.ams.org/mathscinet-getitem?mr=3036256
https://doi.org/10.1214/13-BA805
https://doi.org/10.1214/13-BA805
https://www.ams.org/mathscinet-getitem?mr=2211798
https://doi.org/10.1016/j.jeconom.2005.03.005
https://doi.org/10.1016/j.jeconom.2005.03.005

484 Dynamic Regression Models for Time-Ordered Functional Data

Diebold, F. X., Rudebusch, G. D., and Aruoba, B. S. (2006). “The macroeconomy
and the yield curve: a dynamic latent factor approach.” Journal of Econometrics,
131(1): 309-338. MR2276003. doi: https://doi.org/10.1016/j.jeconom.2005.01.
011. 475

Durante, D. (2017). “A note on the multiplicative gamma process.” Statistics & Prob-
ability Letters, 122: 198-204. MR3584158. doi: https://doi.org/10.1016/j.spl.
2016.11.014. 469

Durbin, J. and Koopman, S. J. (2002). “A simple and efficient simulation smoother
for state space time series analysis.” Biometrika, 89(3): 603-616. MR1929166.
doi: https://doi.org/10.1093/biomet/89.3.603. 470

Fama, E. F. and Bliss, R. R. (1987). “The information in long-maturity forward rates.”
The American Economic Review, 680—692. 478

Fan, Z. and Reimherr, M. (2017). “High-dimensional adaptive function-on-scalar regres-
sion.” Econometrics and Statistics, 1: 167-183. MR3669995. doi: https://doi.org/
10.1016/j.ecosta.2016.08.001. 460

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). “Corrected confidence bands for
functional data using principal components.” Biometrics, 69(1): 41-51. MR3058050.
doi: https://doi.org/10.1111/3j.1541-0420.2012.01808.x. 465

Goldsmith, J. and Kitago, T. (2016). “Assessing systematic effects of stroke on
motor control by using hierarchical function-on-scalar regression.” Journal of the
Royal Statistical Society: Series C (Applied Statistics), 65(2): 215-236. MR3456686.
doi: https://doi.org/10.1111/rssc.12115. 465

Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean,
M. W., Swihart, B., Xiao, L., Crainiceanu, C., and Reiss, P. T. (2016). refund:
Regression with Functional Data. R package version 0.1-16. URL https://CRAN.
R-project.org/package=refund 472

Greven, S., Crainiceanu, C., Caffo, B., and Reich, D. (2011). “Longitudinal functional
principal component analysis.” In Recent Advances in Functional Data Analysis and
Related Topics, 149-154. Springer. MR2815575. doi: https://doi.org/10.1007/
978-3-7908-2736-1_23. 463

Girkaynak, R. S., Sack, B., and Wright, J. H. (2007). “The US Treasury yield curve:
1961 to the present.” Journal of Monetary Economics, 54(8): 2291-2304. 476

Hays, S., Shen, H., and Huang, J. Z. (2012). “Functional dynamic factor models with
application to yield curve forecasting.” The Annals of Applied Statistics, 6(3): 870—
894. MR3012513. doi: https://doi.org/10.1214/12-A0AS551. 476, 481

Hoérmann, S., Kidziriski, L., and Hallin, M. (2015). “Dynamic functional principal com-
ponents.” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
77(2): 319-348. MR3310529. doi: https://doi.org/10.1111/rssb.12076. 465

Hyndman, R. J. and Ullah, M. S. (2007). “Robust forecasting of mortality and fertil-
ity rates: a functional data approach.” Computational Statistics & Data Analysis,


https://www.ams.org/mathscinet-getitem?mr=2276003
https://doi.org/10.1016/j.jeconom.2005.01.011
https://doi.org/10.1016/j.jeconom.2005.01.011
https://www.ams.org/mathscinet-getitem?mr=3584158
https://doi.org/10.1016/j.spl.2016.11.014
https://doi.org/10.1016/j.spl.2016.11.014
https://www.ams.org/mathscinet-getitem?mr=1929166
https://doi.org/10.1093/biomet/89.3.603
https://www.ams.org/mathscinet-getitem?mr=3669995
https://doi.org/10.1016/j.ecosta.2016.08.001
https://doi.org/10.1016/j.ecosta.2016.08.001
https://www.ams.org/mathscinet-getitem?mr=3058050
https://doi.org/10.1111/j.1541-0420.2012.01808.x
https://www.ams.org/mathscinet-getitem?mr=3456686
https://doi.org/10.1111/rssc.12115
https://CRAN.R-project.org/package=refund
https://CRAN.R-project.org/package=refund
https://www.ams.org/mathscinet-getitem?mr=2815575
https://doi.org/10.1007/978-3-7908-2736-1_23
https://doi.org/10.1007/978-3-7908-2736-1_23
https://www.ams.org/mathscinet-getitem?mr=3012513
https://doi.org/10.1214/12-AOAS551
https://www.ams.org/mathscinet-getitem?mr=3310529
https://doi.org/10.1111/rssb.12076

D. R. Kowal 485

51(10): 4942-4956. MR2364551. doi: https://doi.org/10.1016/j.csda.2006.07.
028. 459

Jauch, M., Hoff, P. D., and Dunson, D. B. (2019). “Monte Carlo simulation on the
Stiefel manifold via polar expansion.” arXiv preprint arXiv:1906.07684. 467

Jungbacker, B., Koopman, S. J., and van der Wel, M. (2013). “Smooth dynamic factor
analysis with application to the US term structure of interest rates.” Journal of Ap-
plied Econometrics. MR3233733. doi: https://doi.org/10.1002/jae.2319. 476

Kim, S., Shephard, N., and Chib, S. (1998). “Stochastic volatility: likelihood inference
and comparison with ARCH models.” The Review of Economic Studies, 65(3): 361—
393. 477

Koop, G. M. (2013). “Forecasting with medium and large Bayesian VARs.” Journal
of Applied Econometrics, 28(2): 177-203. MR3045863. doi: https://doi.org/10.
1002/jae.1270. 475, 478

Korobilis, D. (2013). “Hierarchical shrinkage priors for dynamic regressions with
many predictors.” International Journal of Forecasting, 29(1): 43-59. MR3137689.
doi: https://doi.org/10.1002/for.2268. 460, 468

Kowal, D. R. (2019). “Integer-valued functional data analysis for measles forecasting.”
Biometrics, 75(4): 1321-1333. MR4041833. doi: https://doi.org/10.1111/biom.
13110. 459, 463

Kowal, D. R. (2020). “Supplementary Material of “Dynamic Regression Models for
Time-Ordered Functional Data”.” Bayesian Analysis. doi: https://doi.org/10.
1214/20-BA1213SUPP. 461

Kowal, D. R. and Bourgeois, D. C. (2019). “Bayesian function-on-scalars regression for
high-dimensional data.” Journal of Computational and Graphical Statistics. Forth-
coming. 460, 469, 481

Kowal, D. R., Matteson, D. S., and Ruppert, D. (2017a). “A Bayesian multivariate
functional dynamic linear model.” Journal of the American Statistical Association,
112(518): 733-744. MR3671766. doi: https://doi.org/10.1080/01621459.2016.
1165104. 465, 466, 467, 472, 477, 480, 481

Kowal, D. R., Matteson, D. S., and Ruppert, D. (2017b). “Functional autoregression
for sparsely sampled data.” Journal of Business & Economic Statistics, 1-13. 461,
463, 467

Kowal, D. R., Matteson, D. S., and Ruppert, D. (2019). “Dynamic shrinkage pro-
cesses.” Journal of the Royal Statistical Society: Series B (Statistical Methodology).
MR3997101. doi: https://doi.org/10.1111/rssb.12325. 460, 468

Laurini, M. P. (2014). “Dynamic functional data analysis with non-parametric
state space models.” Journal of Applied Statistics, 41(1): 142-163. MR3291206.
doi: https://doi.org/10.1080/02664763.2013.838663. 463

Laurini, M. P. and Hotta, L. K. (2010). “Bayesian extensions to Diebold-Li term struc-
ture model.” International Review of Financial Analysis, 19(5): 342-350. 476


https://www.ams.org/mathscinet-getitem?mr=2364551
https://doi.org/10.1016/j.csda.2006.07.028
https://doi.org/10.1016/j.csda.2006.07.028
https://www.ams.org/mathscinet-getitem?mr=3233733
https://doi.org/10.1002/jae.2319
https://www.ams.org/mathscinet-getitem?mr=3045863
https://doi.org/10.1002/jae.1270
https://doi.org/10.1002/jae.1270
https://www.ams.org/mathscinet-getitem?mr=3137689
https://doi.org/10.1002/for.2268
https://www.ams.org/mathscinet-getitem?mr=4041833
https://doi.org/10.1111/biom.13110
https://doi.org/10.1111/biom.13110
https://doi.org/10.1214/20-BA1213SUPP
https://doi.org/10.1214/20-BA1213SUPP
https://www.ams.org/mathscinet-getitem?mr=3671766
https://doi.org/10.1080/01621459.2016.1165104
https://doi.org/10.1080/01621459.2016.1165104
https://www.ams.org/mathscinet-getitem?mr=3997101
https://doi.org/10.1111/rssb.12325
https://www.ams.org/mathscinet-getitem?mr=3291206
https://doi.org/10.1080/02664763.2013.838663

486 Dynamic Regression Models for Time-Ordered Functional Data

Monch, E. (2008). “Forecasting the yield curve in a data-rich environment: A no-
arbitrage factor-augmented VAR approach.” Journal of Econometrics, 146(1): 26-43.
MR2459641. doi: https://doi.org/10.1016/j.jeconom.2008.06.002. 475

Montagna, S., Tokdar, S. T., Neelon, B., and Dunson, D. B. (2012). “Bayesian la-
tent factor regression for functional and longitudinal data.” Biometrics, 68(4): 1064—
1073. MR3040013. doi: https://doi.org/10.1111/j.1541-0420.2012.01788.x.
460, 465, 469, 481

Morris, J. S. (2015). “Functional regression.” Annual Review of Statistics and Its Ap-
plication, 2: 321-359. 460

Morris, J. S. and Carroll, R. J. (2006). “Wavelet-based functional mixed models.” Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2): 179-199.
MR2188981. doi: https://doi.org/10.1111/j.1467-9868.2006.00539.x. 463

Mumtaz, H. and Surico, P. (2009). “Time-varying yield curve dynamics and monetary
policy.” Journal of Applied Econometrics, 24(6): 895-913. MR2750183. doi: https://
doi.org/10.1002/jae.1084. 475, 476

Nelson, C. R. and Siegel, A. F. (1987). “Parsimonious modeling of yield curves.” Journal
of Business, 60(4): 473. 475

Omori, Y., Chib, S., Shephard, N., and Nakajima, J. (2007). “Stochastic volatility
with leverage: Fast and efficient likelihood inference.” Journal of FEconometrics,
140(2): 425-449. MR2408914. doi: https://doi.org/10.1016/j.jeconom.2006.07.
008. 477

Park, S. Y. and Staicu, A.-M. (2015). “Longitudinal functional data analysis.” Stat,
4(1): 212-226. MR3405402. doi: https://doi.org/10.1002/sta4.89. 463

Piironen, J. and Vehtari, A. (2016). “On the hyperprior choice for the global shrinkage
parameter in the horseshoe prior.” arXiv preprint arXiv:1610.05559. 469

Polson, N. G. and Scott, J. G. (2010). “Shrink globally, act locally: sparse
Bayesian regularization and prediction.” Bayesian Statistics, 9: 501-538. MR3204017.
doi: https://doi.org/10.1093/acprof:0s0/9780199694587.003.0017. 468, 469

Polson, N. G. and Scott, J. G. (2012). “Local shrinkage rules, Lévy processes and
regularized regression.” Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology), 74(2): 287-311. MR2899864. doi: https://doi.org/10.1111/j.
1467-9868.2011.01015.x. 468

Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer. MR2168993.
460

Reiss, P. T., Huang, L., and Mennes, M. (2010). “Fast function-on-scalar regression
with penalized basis expansions.” The International Journal of Biostatistics, 6(1).
MR2683940. doi: https://doi.org/10.2202/1557-4679.1246. 472

Suarez, A. J., Ghosal, S., et al. (2017). “Bayesian estimation of principal components
for functional data.” Bayesian Analysis, 12(2): 311-333. MR3620735. doi: https://
doi.org/10.1214/16-BA1003. 465


https://www.ams.org/mathscinet-getitem?mr=2459641
https://doi.org/10.1016/j.jeconom.2008.06.002
https://www.ams.org/mathscinet-getitem?mr=3040013
https://doi.org/10.1111/j.1541-0420.2012.01788.x
https://www.ams.org/mathscinet-getitem?mr=2188981
https://doi.org/10.1111/j.1467-9868.2006.00539.x
https://www.ams.org/mathscinet-getitem?mr=2750183
https://doi.org/10.1002/jae.1084
https://doi.org/10.1002/jae.1084
https://www.ams.org/mathscinet-getitem?mr=2408914
https://doi.org/10.1016/j.jeconom.2006.07.008
https://doi.org/10.1016/j.jeconom.2006.07.008
https://www.ams.org/mathscinet-getitem?mr=3405402
https://doi.org/10.1002/sta4.89
https://www.ams.org/mathscinet-getitem?mr=3204017
https://doi.org/10.1093/acprof:oso/9780199694587.003.0017
https://www.ams.org/mathscinet-getitem?mr=2899864
https://doi.org/10.1111/j.1467-9868.2011.01015.x
https://doi.org/10.1111/j.1467-9868.2011.01015.x
https://www.ams.org/mathscinet-getitem?mr=2168993
https://www.ams.org/mathscinet-getitem?mr=2683940
https://doi.org/10.2202/1557-4679.1246
https://www.ams.org/mathscinet-getitem?mr=3620735
https://doi.org/10.1214/16-BA1003
https://doi.org/10.1214/16-BA1003

D. R. Kowal 487

Svensson, L. E. (1994). “Estimating and interpreting forward interest rates: Sweden
1992-1994.” Technical report, National Bureau of Economic Research. 476

van der Pas, S., Kleijn, B., and van der Vaart, A. (2014). “The horseshoe estimator:
Posterior concentration around nearly black vectors.” Electronic Journal of Statistics,
8(2): 2585-2618. MR3285877. doi: https://doi.org/10.1214/14-EJS962. 469

Van Dijk, D., Koopman, S. J., Van der Wel, M., and Wright, J. H. (2014). “Forecasting
interest rates with shifting endpoints.” Journal of Applied Econometrics, 29(5): 693—
712. MR3258059. doi: https://doi.org/10.1002/jae.2358. 478

West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. Springer.
MR1482232. 460, 466

Wood, S. (2006). Generalized Additive Models: An Introduction with R. CRC Press.
MR3726911. 464

Xiao, L., Li, Y., and Ruppert, D. (2013). “Fast bivariate P-splines: the sandwich
smoother.” Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 75(3): 577-599. MR3065480. doi: https://doi.org/10.1111/rssb.12007.
472


https://www.ams.org/mathscinet-getitem?mr=3285877
https://doi.org/10.1214/14-EJS962
https://www.ams.org/mathscinet-getitem?mr=3258059
https://doi.org/10.1002/jae.2358
https://www.ams.org/mathscinet-getitem?mr=1482232
https://www.ams.org/mathscinet-getitem?mr=3726911
https://www.ams.org/mathscinet-getitem?mr=3065480
https://doi.org/10.1111/rssb.12007

	Introduction
	Dynamic function-on-scalars regression
	Modeling the loading curves
	Priors and full conditional distributions for the loading curves
	Simplifying the likelihood via identifiability constraints

	Shrinkage priors
	MCMC sampling algorithm
	Simulation study
	Simulation design
	Methods for comparison
	Evaluation criteria
	Simulation results

	Forecasting yield curves using macroeconomic variables
	Forecasting design
	Forecasting results

	Discussion
	Supplementary Material
	References

