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Bayesian Inference of Spatio-Temporal Changes
of Arctic Sea Ice∗

Bohai Zhang† and Noel Cressie‡

Abstract. Arctic sea ice extent has drawn increasing interest and alarm from
geoscientists, owing to its rapid decline. In this article, we propose a Bayesian
spatio-temporal hierarchical statistical model for binary Arctic sea ice data over
two decades, where a latent dynamic spatio-temporal Gaussian process is used to
model the data-dependence through a logit link function. Our ultimate goal is to
perform inference on the dynamic spatial behavior of Arctic sea ice over a period
of two decades. Physically motivated covariates are assessed using autologistic di-
agnostics. Our Bayesian spatio-temporal model shows how parameter uncertainty
in such a complex hierarchical model can influence spatio-temporal prediction.
The posterior distributions of new summary statistics are proposed to detect the
changing patterns of Arctic sea ice over two decades since 1997.

Keywords: binary data, forecasting, hierarchical statistical model, latent
Gaussian process, MCMC.
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1 Introduction

Arctic sea ice extent has drawn increasing interest and alarm from geoscientists, owing
to its rapid decline, particularly in the Boreal summer and early fall. This is driven by
more rapid warming in the Arctic compared with other regions, a phenomenon known
as the Arctic amplification (Cohen et al., 2014). The declining sea ice directly affects
the biogeochemical cycle and animals in the Arctic region such as the polar bear and
seabirds (Meier et al., 2014). Furthermore, the changes of Arctic sea ice can lead to
changing climates in other regions of the world. For example, recent studies show that
the decline of Arctic sea ice can cause extreme weather in mid-latitude regions (e.g.,
increasing the chance of cold Eurasian winters: Screen and Simmonds, 2013; Cohen
et al., 2014; Mori et al., 2014) and influence rainfall in the state of California (e.g.,
Cvijanovic et al., 2017). Critically, the declining sea ice will result in an albedo–ice
feedback effect (e.g., Kumar et al., 2010; Screen et al., 2013; Pistone et al., 2014), where
a darker Earth surface due to less sea ice leads to additional melting.

Therefore, monitoring the spatio-temporal dynamics of Arctic sea ice is a critical
component of the study of climate change. There could also be commercial interest:
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The loss of summer sea ice may open new shipping lanes, providing a new passage
between Earth’s major oceans.

In this article, we consider Arctic sea-ice-extent data obtained from a database of
Arctic sea-ice concentrations (proportion of sea ice in a grid cell) produced by the
National Oceanic and Atmospheric Administration (NOAA) as part of their National
Snow & Ice Data Center’s (NSIDC) Climate Data Record (CDR). The data are based
on passive microwave remotely sensed data provided by the Nimbus 7 satellite and the
F8, F11, and F13 satellites of the Defense Meteorological Satellite Program (Parkinson
et al., 1999; Parkinson, 2014a), and they are projected onto approximately 25km×25km
grid cells (or pixels). A 15% cut-off is the standard used to determine whether a pixel
is water (< 15%) or ice (≥ 15%), and Arctic sea ice extent (SIE) is defined as the total
area of ice pixels in the Arctic region. (e.g., Parkinson et al., 1999; Zwally et al., 2002;
Meier et al., 2007; Parkinson, 2014a).

The resulting binary (0 = water and 1 = ice) data are available monthly from
November, 1978; here we focus on the month of September for the two decades 1997–
2016, since the Arctic sea-ice cover is typically least in that month of the year (Parkinson,
2014a). Based on the September data from 1997–2016, Figure 1 shows a time series plot
of the SIE in millions of km2 for the Arctic region.

Figure 1: September Arctic sea ice extent (SIE, in units of millions of km2) from 1997
to 2016. Arctic SIE is the total area of ice pixels in the Arctic region. The dashed line
shows an ordinary-least-squares fit.

Previous analyses of Arctic sea ice by geoscientists have focussed mainly on the
temporal aspect or the spatial aspect, without considering both simultaneously (e.g.,
Parkinson, 2014a,b; Parkinson and DiGirolamo, 2016). Notably, uncertainty measures
for the summary statistics presented in their studies are either absent or not appropriate,
given the dependence in the data. Related research on calibrating spatial binary outputs
from computer models of Antarctic ice sheets can be found in Chang et al. (2016a,b).
More recently, Olson et al. (2019) proposed a new method for assessing the dependence
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of Arctic sea ice on climate variables (in the form of output from climate models), for
the purpose of forecasting the Arctic sea ice. In contrast to these papers, the article
by Director et al. (2017, 2019) takes a decidedly statistical approach, using a spatio-
temporal statistical model to forecast selected contours of sea-ice concentration.

In this article, we use a Bayesian statistical approach for inference on Arctic sea ice
based on interpretable spatial summaries for the months of September spanning two
decades from 1997–2016. Specifically, we use a spatio-temporal hierarchical generalized
linear mixed model (ST-GLMM) framework, where a latent Gaussian process (GP) is
introduced to model the (spatio-temporal) dependence in the data, linked to the non-
Gaussian (binary) observations through a logit link. Recall that the sea-ice-extent data
are defined on spatial pixels of a nominal area of 25km× 25km, and hence these pixels
can be treated as Basic Areal Units (BAUs) for modeling the spatial data (e.g., Nguyen
et al., 2012; Zammit-Mangion and Cressie, 2020), and their centroids are used as the
spatial locations of the BAU-level data. We carry out Bayesian inference on areal-based
quantities for the observation period, in contrast to Director et al. (2017, 2019), who
forecast selected sea-ice-concentration contours beyond their observation periods.

Our statistical model is motivated by Diggle et al. (1998), who analyzed spatial-only
binary data. When the data set is very large, which is often the case for spatio-temporal
geophysical data, inference on the latent GP in a ST-GLMM is very expensive and
quickly becomes prohibitive. Then the modeling strategy of using low-rank or sparse-
matrix approximations can be applied to facilitate the inference. This has proved to be
very effective for Gaussian spatial data (e.g., Furrer et al., 2006; Banerjee et al., 2008;
Cressie and Johannesson, 2008; Rue et al., 2009; Sang and Huang, 2012; Nychka et al.,
2015; Datta et al., 2016; Katzfuss, 2017). The approach has been adapted to analyze
large non-Gaussian spatial and spatio-temporal data by inter alia Sengupta and Cressie
(2013), Sengupta et al. (2016), Holan and Wikle (2016), Bradley et al. (2016), Guan
and Haran (2018), Bradley et al. (2018), and Linero and Bradley (2018).

In this article, we use physical knowledge supported by data to build a scientifically
motivated latent process that is Gaussian on the logistic scale. Then we put prior dis-
tributions on the ST-GLMM model parameters and use a Bayesian hierarchical model
(BHM) to obtain the joint posterior distribution of parameters and the latent GP given
the binary SIE data. In an earlier paper, an empirical hierarchical modeling (EHM)
approach was taken by Zhang and Cressie (2019) to analyze the binary SIE data with
a single covariate given by distance to the North Pole.

Here, the covariates that are used to model the Arctic SIE data include the averaged
Arctic surface temperature anomalies in the previous summer season and in the previous
winter season, in order to forecast the presence/absence of sea ice in the following
September. The effects of longitude and distance to the coastline are also found to be
important covariates. While generic hierarchical modeling uses Bayes’ Theorem, the
model becomes fully Bayesian when all parameters have prior distributions put on
them. In contrast to this BHM approach, an EHM approach involves “plugging in” the
parameter estimates into the hierarchical model.

In this article, our BHM is in fact a hybrid (e.g., Wikle et al., 2019, Ch. 1), where
priors were put on all but one parameter. Our simulations in Section S1 of the Sup-
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plementary Material (Zhang and Cressie, 2020) demonstrated an inherent difficulty
of carrying out Bayesian inference for this (fine-scale) variance parameter, so we sub-
stituted its expectation-maximization (EM, Dempster et al., 1977) estimate into the
hierarchical model. We carried out a sensitivity study on inference from the proposed
hierarchical statistical model under different plug-in values of σ2

ξ , and we found that the
inference was not very sensitive to its misspecification. Our simulations in Section S1
also allowed us to do some comparisons between the EHM and our (hybrid) BHM, and
we found that BHM is preferred over EHM when making predictions in gaps of the
spatial domain where no nearby observations are available.

It is worth emphasizing that the sea-ice-extent data are obtained from the sea-ice
concentrations, which are observed areal proportions that are noisy (especially for lower
concentration percentages). Here, we have proposed a Bayesian spatio-temporal model
for the binary SIE data, from which the predictive distribution of the underlying process
on the probability scale is less uncertain than the observed proportions. The statistical
dependencies due to spatial proximity and through time are modeled explicitly, and
Bayesian inferences account for them naturally and coherently. Simple summaries based
on an empirical approach cannot capture the spatio-temporal variations simultaneously
with proper uncertainty quantification, due to statistical dependencies in space and time.

A new aspect of our article is the choice of various functionals of the latent GP.
These summary statistics feature the process dynamics and, through their predictive
distributions, they illustrate the changing patterns of Arctic sea ice between the earlier
decade and the recent decade. For example, we consider boxplots of the posterior means
of the latent GP on the original scale (and on the probability scale), empirical temporal
semivariograms, Arctic-region Hovmöller diagrams, and spatial animations, which offer
different “views” of the changing spatio-temporal patterns of Arctic sea ice. Two func-
tionals that lend themselves to animation are the ice-to-water transition probabilities
and the water-to-ice transition probabilities (Zhang and Cressie, 2019), which are given
in Section S5 of the Supplementary Material.

Figure 2 shows boxplots of the posterior means of the latent probability of ice,
denoted as {pt(s)}, where the boxplots are taken at times t = 2001, 2006, 2011, and
2016, for s ranging over the latitude bands centered at lat0 = 75◦N, 80◦N, and 85◦N.
The effects of climate change in the recent decade is seen in different ways, at different
latitudes: For lat0 = 75◦N, the boxplot averages (denoted by a dot) decrease over
time, dropping well below 0.5 (the cut-off where there are more water pixels than ice
pixels) during the recent decade. The high variability in the earlier decade, as captured
by the size of the boxes, indicates a process in transition before collapse of the sea
ice in the recent decade at that latitude. At 80◦N, there is also a difference of the
average posterior-mean pt(s)-values between the earlier decade and the recent decade,
and noticeably the variabilities are strikingly different. The high variability in the recent
decade may precede a collapse as it did at 75◦N. For the very high latitude of 85◦N, all
the average posterior-mean pt(s)-values are very close to 1 with very small variability,
due to still-dominant ice cover at very high latitudes. Other useful functionals based
on the predictive distribution of {pt(s)} are given in Section 4, including temporal
semivariograms that are able to detect a periodicity in the latent process at 85◦N.
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Figure 2: Boxplots of {E(pt(s)|data) : s = (lon, lat) and lat ∈ (lat0 −Δ, lat0 +Δ)} for
three latitude bands and for years t = 2001, 2006, 2011, 2016, where the width of the
latitude band is 2Δ = 1◦. The dashed line indicates the value of 0.5.

The rest of the article is organized as follows. In Section 2, we introduce a spatio-
temporal hierarchical model for binary data, which is used for analyzing the Arctic sea-
ice-extent (SIE) data. This consists of a data model, a process model that is dynamic,
and a parameter model (or prior). An important part of the process model that we
build is the large-scale variation captured by covariates in the process model; Section 2
also contains a detailed description of how the covariates were selected. In Section 3,
we discuss Bayesian inference of model parameters and the prediction/forecasting pro-
cedure of the BHM. A Bayesian analysis of 20 years of binary Arctic SIE data is given
in Section 4, where several summary statistics and their predictive distributions are
used to detect the changing patterns of Arctic sea ice from 1997–2016. In Section 5, a
summary and discussion of our results are given. The article also contains five sections
of Supplementary Material, to support our work presented in the main paper.

2 Spatio-Temporal Hierarchical Modeling

In this section, we introduce a spatio-temporal hierarchical statistical model for the
binary Arctic SIE data introduced in Section 1. Let zt(s) ∈ {0, 1} be a binary datum
observed at a spatial location s ∈ Dt and a time point t ∈ T , where Dt is the spatial
domain of interest and t is a discrete time point in T ≡ {1, 2, . . . , T}. We assume there
is a latent process {yt(s)} that is used to define the probability that zt(s) equals 0 or 1,
as follows. Following Diggle et al. (1998), we model {zt(s)} as conditionally independent
Bernoulli random variables given the latent process {yt(s)}. That is, we model

zt(s)|yt(s) ∼ Ber(pt(s)), (2.1)
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independently for all s ∈ Dt and t ∈ T , where Ber(p) is a binary random variable
on {0, 1} and equals 1 with probability p. In (2.1), yt(s) = g(pt(s)) and g(·) is a link
function; here we choose the logit link such that yt(s) = g(pt(s)) = log(pt(s)/(1−pt(s))).
Equation (2.1) above defines the so-called “data model.”

The “process model” is underneath the data model in the hierarchy of conditional
models. Here, the model for {yt(s)}, conditional on the parameters, is a spatio-temporal
linear mixed model with a vector autoregressive model of order 1 (VAR(1)) for the
coefficients of a relatively small set of basis functions (e.g., Wikle et al., 2001; Cressie
et al., 2010; Katzfuss and Cressie, 2011; Bradley et al., 2015):

yt(s) = xt(s)
′β + St(s)

′ηt + ξt(s),

ηt = Htηt−1 + ζt, (2.2)

ζt ∼ Gau(0,Ut) and η1 ∼ Gau(0,K),

where at time t ∈ T and s ∈ Dt, xt(s) is a p-dimensional vector of covariates at spatial
location s; β is the p-dimensional vector of regression coefficients associated with xt(s);
St(s) is an r-dimensional basis-function vector evaluated at s; ηt is a vector of random
coefficients of St(s); ξt(s) is a random variable that models the fine-scale variation at s
not captured by St(s)

′ηt; and Gau(μ, σ2) denotes a Gaussian distribution with mean μ
and variance σ2. The parameters in (2.2), upon which the process model is conditioned,
are: β, the p-dimensional vector of regression coefficients; and {Ht : t = 2, . . . , T}
and {Ut : t = 2, . . . , T}, the r × r propagator and r × r innovation matrices, respec-
tively. We further assume that ξt(s) in (2.2) follows Gau(0, σ2

ξ ) distribution, {ξt(s)}
are independent of each other over both space and time, and they are also indepen-
dent of the random vectors {ηt : t = 1, . . . , T}. Hence, spatio-temporal variability in
the data is captured through the fixed-effects term, xt(s)

′β (large-scale variation), and
the random-effects term, St(s)

′ηt (small-scale variation), and (2.2) represents a spatio-
temporal GP.

For a fixed time point t, the number of observations can be very large; that is,
{yt(s) : s ∈ Dt} forms a high-dimensional vector when evaluated at all the observation
locations. By fixing the number of basis functions r to be a relatively small number (say
a few hundred), the latent process, {yt(s)−xt(s)

′β}, is represented by a low-dimensional
basis-function vector, allowing fast computations to be achieved (e.g., Wikle et al., 2001;
Cressie and Johannesson, 2006, 2008; Kang et al., 2010; Zammit-Mangion and Cressie,
2020). There are many types of basis functions that could be used in this setting, such as
wavelets, splines, Wendland functions, and bisquare functions. In this article, we focus
on the compactly supported bisquare functions, since they have been successfully used
to model very large Gaussian and non-Gaussian spatial and spatio-temporal data (e.g.,
Cressie and Johannesson, 2008; Sengupta and Cressie, 2013; Zhang and Cressie, 2019).
In addition, specifying multi-resolution basis functions has proven to be effective in
capturing spatial dependence at different scales (e.g., Wikle et al., 2001; Katzfuss and
Cressie, 2011; Nychka et al., 2015; Katzfuss, 2017). Hence, we adopt a multi-resolution
class.
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For j = 1, . . . , ri basis functions of the i-th resolution, we define the bisquare basis
function in d-dimensional Euclidean space R

d as,

S
(i)
j (s) ≡

⎛
⎝1−

(
‖s− c

(i)
j ‖

φi

)2
⎞
⎠

2

I(‖s− c
(i)
j ‖ < φi); s ∈ R

d, (2.3)

where ri is the number of basis functions at the i-th resolution, c
(i)
j is the center of the

j-th basis function S
(i)
j (·) at the i-th resolution, ‖ · ‖ is the Euclidean norm, φi is the

radius of its spatial support (sometimes called the aperture), and I(·) is an indicator
function. In practice, φi is specified to be 1.5 times the minimum distance between basis-
function centers of the same resolution (e.g., Cressie and Johannesson, 2008). Note that
in Section 4, we replace the Euclidean norm with the great-circle distance in (2.3), and
it is easy to see that this type of modification could be made on any manifold equipped
with a norm.

The propagator matrix Ht captures the temporal covariances between the elements
of ηt and ηt−1, for t = 2, . . . , T . Here we treat Ht and Ut as unknown parameters,
but we assume that they are constant for a fixed time period; that is, Ht ≡ H and
Ut ≡ U, for t = 2, . . . , T . In practice, they will be allowed to vary from time-period to
time-period (e.g., Katzfuss and Cressie, 2011; Zhang and Cressie, 2019). When modeling
the Arctic SIE data, we allow the two matrices to change in successive five-year periods
over the two decades of data.

Although the propagator matrix Ht may be considered as an r × r parameter ma-
trix, a parsimonious representation for it can improve inference and allow for physical
interpretations of its entries (Wikle et al., 2001). Alternatively, Bradley et al. (2015)
proposed a class they called the Moran’s I class of propagator matrices in order to
avoid confounding between {ηt} and the covariates. Here we specify Ht for the multi-
resolution basis functions by assigning a different propagator parameter for each resolu-
tion. For example, for a two-resolution design with r1 Resolution-1 (coarse resolution)
basis functions and r2 Resolution-2 (fine resolution) basis functions, Zhang and Cressie
(2019) parameterized Ht as follows: For t = 2, . . . , T ,

Ht ≡ H ≡
(

λ1Ir1 0
λ3R λ2Ir2

)
, (2.4)

where λ1, λ2, λ3 ∈ (−1, 1), and R is an r2×r1 matrix encoding the possible dependence
from the coarse Resolution 1 to the fine Resolution 2. Specifically, for i = 1, . . . , r2
and j = 1, . . . , r1, R(i, j) = 1 if the i-th Resolution-2 basis function is a neighbor of
the j-th Resolution-1 basis function, and R(i, j) = 0 otherwise. If the model is used
for forecasting, we would need to check the eigenvalues of H for possible “explosive”
behavior.

The parameters for the data model given by (2.1) and the parameters for the process
model given by (2.2) are θ ≡ {β, σ2

ξ ,K,H,U}. For Bayesian inference, we need to assign

a prior to θ: For variance-covariance parameters K, U, and σ2
ξ , we used Inverse-Wishart
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distributions for conditional conjugacy; for the regression coefficients β, we specified an
improper non-informative prior π(β) ∝ 1; and for each of the {λi} of H given by (2.4),
we specified independent Unif(−1, 1) distributions. In the simulation setting given in
Section S1 of the Supplementary Material, we found that a single parameter, σ2

ξ , that
is better handled through EM estimation than through assigning it a prior, and hence
we do likewise for analyzing the Arctic SIE data.

2.1 Specification of Covariates for the Arctic Sea-Ice-Extent Data

In this subsection, we discuss how to select covariates for modeling the spatio-temporal
Arctic SIE data in the month of September for each year spanning the two decades from
1997–2016. September is chosen as a time when Arctic sea ice is least, and it avoids
modeling the within-year seasonal variation (Parkinson et al., 1999); consequently, we
are not able to detect changes in seasonal variation over the years. Henceforth Dt ≡ D,
a region defined by pixels whose latitudes are greater than or equal to 60◦N that we
call the Arctic region.

Recall that in Zhang and Cressie (2019), the only covariate used was the distance of
any spatial location in D to the North Pole, which is a proxy for surface temperatures in
the Arctic region; its coefficient was allowed to vary with t ∈ T in order to detect climate
change. In this article, we consider the Arctic surface temperatures directly and use the
GISTEMP surface-temperature-anomaly data to obtain covariates. Specifically, we use
the previous year’s summer-average and winter-average surface-temperature anomalies
to define two covariates that allow for temporal variation as well as spatial variation.
In addition, for some spatial pixels that are close to coastlines but far from the North
Pole, we observe the presence of sea ice (e.g., see the left panel of Figure 3). Hence,
we use the distance of spatial location to the nearest coastline to define a covariate
that models local spatial effects. Finally, an exploratory data analysis based on a simple
logistic-regression model showed that longitude played a role in modeling these data,
probably due to the different dynamics in different regions of the Arctic (Section S2 of
the Supplementary Material).

Based on preliminary data analyses that included use of standard logistic regressions,
we fitted the following mean function for the hidden spatio-temporal GP:

xt(s)
′β = β0 + x̄su

t−1β1 + x̄wi
t−1β2 + (xsu

t−1(s)− x̄su
t−1)β3 + (xwi

t−1(s)− x̄wi
t−1)β4

+cos(πs1/180)β5 + sin(πs1/180)β6 + xpl(s)β7 + xcs(s)β8, (2.5)

where s ≡ (s1, s2)
′ ∈ D, and s1 and s2 are the longitude and latitude of s; x̄su

t−1 and
x̄wi
t−1 are the spatially averaged (i.e., over D) Boreal summer (averaged over Jun, Jul,

Aug) and winter (averaged over Dec, Jan, Feb) surface-temperature anomalies each
indexed by the year (t−1) in which the first month falls. The components of the spatial
averages xsu

t−1(s) and xwi
t−1(s) at the spatial location s and the previous year (t− 1) are

used to capture the regional effects of changes of surface temperatures. That is, summer
(winter) in year (t− 1) corresponds to the three-month season starting in Jun (Dec) in
year (t − 1). These first four covariates aim to characterize the effects of the previous
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Figure 3: September Arctic SIE data at t = 2016 (binary, left panel) and the GLM-
fitted logistic regression fitted to the 2016 data (using the covariates in (2.5)) on the
probability scale (right panel). The white circle around the North Pole in both panels
represents a region not covered by the sensor due to remote sensing limitations.

year’s surface-temperature anomalies on forming the sea ice in September in the current
year.

The remaining four covariates are purely spatial: xpl(s) is the distance between s
and the North Pole and was the only covariate included in the hidden spatio-temporal
GP of the EHM fitted by Zhang and Cressie (2019); the covariates based on longitude
represent periodic spatial heterogeneity, analogous to modeling a linear trend on the
real line; and xcs(s) is a more local spatial effect accounting for short distances to the
coast (less than 50km). Let dcs(s) denote the great-circle distance from s to the nearest
coastline. Our exploratory data analysis based on logistic regression showed that the
coefficients of xpl(s) are larger for data close to the coastline than for data far away
from the coastline. Then we define xcs(s) ≡ xpl(s) × I(dcs(s) < 50km) to provide
adjustments for the effect of distance to the coast. The right panel of Figure 3 shows
the logistic-regression fit of (2.5) for the Arctic sea-ice-extent data for t = 2016.

In summary, we shall use the eight covariates in (2.5) to model the GP’s fixed
effects in Section 4, and the remaining spatio-temporal variability in the GP is modeled
statistically with random effects given in (2.2).

3 Fully Bayesian Inference

In this section, we discuss the Bayesian inference of model parameters for the hier-
archical statistical model given by (2.1) and (2.2). Let Do

t ≡ {sot,1, sot,2, . . . , sot,Nt
} be

the spatial locations with observed data at time t ∈ {1, . . . , T}. For each time t,
we stack the data into a column vector, Zo

t ≡ (zt(s
o
t,1), . . . , zt(s

o
t,Nt

))′, and we define
ξot ≡ (ξt(s

o
t,1), . . . , ξt(s

o
t,Nt

))′ to be the fine-scale-variation vector evaluated at Do
t . Let

Zo ≡ (Zo′

1 , . . . ,Zo′

T )′, ξo ≡ (ξo
′

1 , . . . , ξo
′

T )′, and η ≡ (η′
1, . . . ,η

′
T )

′; then the data likelihood
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is:

L(θ;Zo) =

∫
η

∫
ξo

p(Zo|η, ξo,β)× p(η|K,H,U)× p(ξo|σ2
ξ )dξ

odη

=

∫
η

∫
ξo

T∏
t=1

Nt∏
i=1

(1 + exp(−(2zot,i − 1)yot,i))
−1

×(2π)−r/2|K|−1/2 exp(−η1
′K−1η1/2)

×(2π)−(T−1)r/2|U|−(T−1)/2
T∏

t=2

exp(−(ηt −Hηt−1)
′U−1(ηt −Hηt−1)/2)

×
T∏

t=1

(2πσ2
ξ )

−Nt/2 exp(−ξo
′

t ξot/(2σ
2
ξ ))dξ

odη,

where p(·|·) represents the appropriate conditional-probability density; under this no-
tation, p(Zo|η, ξo,β) is a product of Bernoulli densities, p(η|K,H,U) is a multivariate
Gaussian density, and p(ξo|σ2

ξ ) is a product of univariate Gaussian densities. For nota-
tional simplicity, we define zot,i ≡ zt(s

o
t,i), and yot,i ≡ yt(s

o
t,i). Since the integration above

does not have a closed form due to the nonlinearity of the data model, Zhang and Cressie
(2019) modified the spatial-only methodology given in Sengupta and Cressie (2013) and
developed an EM algorithm to estimate model parameters, θ, for spatio-temporal data
Zo. Then they substituted the resulting estimate θ̂ into the hierarchical model, resulting
in an EHM. In this article, our approach is Bayesian, and (with the exception of one
parameter, σ2

ξ ) we put prior distributions on the elements of θ, resulting in a BHM and
a joint posterior distribution of θ, η, and ξo.

In real-world applications, some of the parameters may be fixed by the modeler
at physically meaningful values or at estimates, and the remaining parameters could
have priors put on them. This results in what might be called a hybrid hierarchical
model that is not an EHM but not quite a BHM either (e.g., Wikle et al., 2019, Ch.1).
When analyzing the Arctic SIE data, σ2

ξ was very difficult to infer from a fully Bayesian
analysis. This may be because it is hard to identify separately the small-scale variation
and the fine-scale variation from the total variation observed on binary data, particularly
when K is an arbitrary r × r positive-definite matrix. However, we found the situation
unimproved by making parametric assumptions about K and, more fundamentally, this
may be because not all the covariance parameters are identifiable under fixed-domain
asymptotics (Zhang, 2004).

In Section 4, we plug in the EM estimate of σ2
ξ , resulting in a hybrid BHM, although

we continue to call the model a BHM. However, in the rest of Section 3, we present a
fully Bayesian methodology that includes a prior on σ2

ξ , noting that the algorithms

simplify a little when we fix σ2
ξ .

3.1 Parameter Inference

Let π(·) denote a generic prior distribution. The joint posterior distribution, p(η, ξo,
θ|Zo), is proportional to the product of the complete likelihood, p(Zo,η, ξo|θ), and the
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prior distribution, π(K,H,U,β, σ2
ξ ). For H parameterized as in (2.4) and IW(ν,Φ)

denoting an Inverse Wishart distribution with parameters ν and Φ, we put π(K) ∼
IW(νK ,ΦK), π(U) ∼ IW(νU ,ΦU ), π(λi) ∼ Unif(−1, 1) independently for i = 1, 2, 3,
and π(β, σ2

ξ ) ∝ (σ2
ξ )

−1/2. Then we can integrate out K and U and sample {η, ξo,β,
{λi}, σ2

ξ} from

p(η, ξo,β, {λi}, σ2
ξ |Zo) ∝ p(Zo|β,η, ξo)× |η1η

′
1 +ΦK |−

νK+1

2 × (σ2
ξ )

−(N+1)/2 × e
− ξo′ξo

2σ2
ξ

× |
T∑

t=2

(ηt −Hηt−1)(ηt −Hηt−1)
′ +ΦU |−

νU+T−1

2 , (3.1)

where N =
∑T

t=1 Nt. Note that we do not integrate out σ2
ξ , because we would like to

sample each ξot,i individually such that the computations are parallelizable (and we note

that ultimately we fix σ2
ξ at its EM estimate in Section 4). The posterior samples of K

and U can be sampled from the following full conditionals:

p(K|·) ∼ IW(νK + 1,η1η
′
1 +ΦK), (3.2)

p(U|·) ∼ IW

(
νU + T − 1,

T∑
t=2

(ηt −Hηt−1)(ηt −Hηt−1)
′ +ΦU

)
, (3.3)

where “·” denotes conditioning on all other parameters (and of course on the data).
In order to make {ηt : t = 1, . . . , T} well constrained in the prior when modeling the
Arctic SIE data, we chose the Inverse Wishart parameter νK = 2r. This makes the prior
distribution more informative; then ΦK = (3r + 1)K̂ and ΦU = (3r + 1)Û, to make

the priors of K and U concentrate around their respective EM estimates, denoted as K̂
and Û.

For β, {λi}, η, and ξo, whose full conditionals do not have a closed form, we used
a Metropolis-Hastings algorithm within the Gibbs sampler (Gelfand and Smith, 1990;
Gelman et al., 2014) to draw their posterior samples. Following Zhang and Cressie
(2019), we generated the posterior samples of {ηt} successively; for ξo, we generated
the posterior samples of {ξot,i} individually. Details of the Markov chain Monte Carlo
(MCMC) sampling algorithm and convergence diagnostics for the Arctic SIE data are
given in Section S3 of the Supplementary Material.

3.2 Prediction and Forecasting

Let Du
t ≡ {sut,1, sut,2, . . . , sut,mt

} be the spatial locations specified for prediction at time t ∈
{1, . . . , T}, and let Yu

t ≡ (yt(s
u
t,1), . . . , yt(s

u
t,mt

))′ denote the vector at those prediction
locations. Note that the prediction-location set Du

t and the observation-location set Do
t

may have a non-empty intersection. If Du
t and Do

t overlap, which is our interest here
when modeling the Arctic SIE data, then for location sot,i ∈ Do

t , we plug in the posterior
samples of ηt, ξt(s

o
t,i), and θ into the process-model equation, yt(s

o
t,i) = xt(s

o
t,i)

′β +
St(s

o
t,i)

′ηt + ξt(s
o
t,i), to obtain the samples from the predictive distribution of yt(s

o
t,i),
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from which summaries (e.g., mean, variance, and quantiles) of yt(s
o
t,i) can be readily

obtained.

Now consider the scenario that the prediction-location set Du
t and the observation-

location set Do
t do not overlap, which is the case when predicting in the region around

the North Pole where no observations are available. Now samples from the predictive
distribution can be obtained based on the posterior samples of η and θ. Since

p(Yu
t |Zo) =

∫
p(Yu

t |ηt,θ,Z
o)× p(ηt,θ|Zo)dηtdθ

=

∫
p(Yu

t |ηt,θ)× p(ηt,θ|Zo)dηtdθ, (3.4)

the predictive samples of Yu
t can be drawn by the method of composition: Having drawn

the posterior samples of ηt and θ, Yu
t is drawn from p(Yu

t |ηt,θ), which is a Gaussian
distribution. The predictive mean and predictive variance of Yu

t are then obtained from:

E(Yu
t |Zo) = E(E(Yu

t |ηt,θ)|Zo) = Xu
t E(β|Zo) + Su

t E(ηt|Zo),

var(Yu
t |Zo) = E(var(Yu

t |ηt,θ)|Zo) + var(E(Yu
t |ηt,θ)|Zo)

= E(σ2
ξ |Zo)Imt + var(Xu

t β + Su
t ηt|Zo),

where Imt is the mt × mt identity matrix, Xu
t ≡ (xt(s

u
t,1), . . . ,xt(s

u
t,mt

))′, and Su
t ≡

(St(s
u
t,1), . . . ,St(s

u
t,mt

))′.

Given the predictive samples of Yu, then for Zu
t ≡ (zt(s

u
t,1), . . . , zt(s

u
t,mt

))′, its pre-
dictive samples are drawn from

p(Zu
t |Zo) =

∫
p(Zu

t |Yu
t ,Z

o)× p(Yu
t |Zo)dYu

t =

∫
p(Zu

t |Yu
t )× p(Yu

t |Zo)dYu
t , (3.5)

again by the method of composition, using the posterior samples of Yu
t . The predictive

mean and predictive variance of Zu
t are

E(Zu
t |Zo) = E(E(Zu

t |Yu
t )|Zo) = E(g−1(Yu

t )|Zo),

var(Zu
t |Zo) = E(var(Zu

t |Yu
t )|Zo) + var(E(Zu

t |Yu
t )|Zo)

= E(diag{g−1(Yu
t )(1− g−1(Yu

t ))}|Zo) + var(g−1(Yu
t )|Zo),

where diag{a} denotes a diagonal matrix with its diagonal entries given by the vector
a, and recall that g(·) is the logit link function.

When t = T + 1, that is, when forecasting one-year ahead, we use the fact that
p(ηT+1,θ|Zo) =

∫
p(ηT+1|ηT ,θ) × p(ηT ,θ|Zo)dηT , and equation (3.4), to obtain the

one-step-ahead forecast of Yu
T+1. Using equation (3.5), Zu

T+1 can be similarly obtained.

A simulation study comparing parameter estimation and prediction performance of
the EHM and the BHM is given in Section S1 of the Supplementary Material. From the
simulation results, we found that when there are a limited number of observations, the
EM estimates of the regression coefficients can have a large bias, but these parameters
were estimated reasonably well by the BHM. We also found that the BHM yielded a
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considerably smaller prediction error than that of the EHM when predicting in spatial
gaps where no nearby observations are available. Also in Section S1, a sensitivity study
on the inference of the proposed BHM was conducted for different plug-in values of σ2

ξ .
We observed that the inference results were very similar and, for the different plug-in
values, the 95% credible intervals of the model parameters covered their respective true
values.

4 Bayesian Analysis of the Arctic Sea-Ice-Extent Data

In this section, we fitted the spatio-temporal hierarchical statistical model developed in
Section 2 and Section 3.1 to Arctic sea-ice-extent data obtained from remote sensing
from 1997 to 2016 (20 years in total). The temporal domain is t = 1997, . . . , 2016, which
indexes the sea-ice data in the month of September for each of the 20 years. The original
data are on a 304×448 longitude-latitude grid, involving 136, 192 monthly observations.
Since the grid cells (pixels) with latitude smaller than 60◦N are always water pixels in
the month of September, we focus on the spatial domain that covers the observation
locations with latitude 60◦ and above, resulting in the Arctic region from the south end
of Greenland to the North Pole; see the left panel of Figure 3. In total, there are 26, 342
observation locations, and these spatial locations stay the same over time (i.e., Dt ≡ D).

We partitioned the entire 20 years into four time periods: 1997–2001, 2002–2006,
2007–2011, and 2012–2016, in order to allow the dimension-reduced propagator matrix
H and the corresponding innovation matrix U to vary over different time periods. That
is, we fitted the BHM (2.1)–(2.5) with priors given in Section 3.1, but σ2

ξ was estimated
(EM estimation) from the data in each time period separately and substituted into
the BHM. Note that the end year of the previous time period was used to initialize
the analysis of the current time period: Specifically, Kt = HKt−1H

′ + σ2
ξINt , for t =

2, . . . , T , where K1 ≡ K,H, and σ2
ξ were obtained from the previous time period. This

helps to avoid artificial abrupt transitions when inferring {yt(s)}.
The surface-temperature-anomaly data that were used to define covariates xt(s) in

(2.5) come from the Goddard Institute for Space Studies Surface Temperature Analysis
(GISTEMP) project (e.g., Hansen et al., 2010; GISTEMP-Team, 2018). This data set is
on a 2◦ × 2◦ longitude-latitude grid, and hence its resolution is coarser than the spatial
grid of the Arctic SIE data, which has a resolution of approximately 25km× 25km. To
each sea-ice-observation location (i.e., center of the grid cell), we assigned its surface-air-
temperature-anomaly value to be the closest surface-air-temperature-anomaly datum in
the GISTEMP data set. Recall that we use eight covariates in (2.5) for modeling the
fixed-effects term for the latent process {yt(s)}, all of which are defined at all observation
locations by this interpolation method. Further discussion of the covariates is given in
the next subsection.

4.1 BHM Fitting

Following Zhang and Cressie (2019), we used a two-resolution design for the basis func-
tions. We defined r1 = 45 Resolution-1 basis-function centers and r2 = 172 Resolution-2
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basis-function centers on regularly spaced geodesic grids on the polar cap. Some basis-
function centers were placed outside the study domain to account for boundary effects
(Cressie and Kang, 2010). Specifically, the Matlab function GridSphere (Laven, 2015)
was used to generate basis-function centers of two resolutions, where the great-circle
radii of the Resolution-1 and Resolution-2 basis functions are 881.71km and 440.86km,
respectively. The bisquare basis functions in (2.3) were used to form {St(s)

′ηt}, the
small-scale-variation component of {yt(s)}, and the basis-function matrices are St ≡ S
for each time period. We then fitted the proposed dimension-reduced Bayesian ST-
GLMM to the Arctic SIE data for Periods 1–4, with the fine-scale variance σ2

ξ in each
given period fixed at its EM estimate.

Parameter Period 1 Period 2 Period 3 Period 4
β0 −1.298 (−1.392,−1.205) −2.284 (−2.339,−2.226) −3.416 (−3.483,−3.349) −2.748 (−2.811,−2.686)
β1 −0.026 (−0.114, 0.059) −1.572 (−1.714,−1.430) 0.735 (0.595, 0.879) −1.545 (−1.745,−1.339)
β2 0.892 (0.764, 1.018) −0.225 (−0.326,−0.116) 0.159 (−0.032, 0.322) −0.949 (−1.077,−0.821)
β3 0.543 (0.493, 0.589) −0.011 (−0.058, 0.040) 0.209 (0.162, 0.255) 0.195 (0.150, 0.238)
β4 −0.461 (−0.511,−0.410) 0.089 (0.043, 0.134) 0.503 (0.452, 0.557) 0.052 (0.009, 0.095)
β5 −3.593 (−3.661,−3.525) −2.056 (−2.125,−1.982) −1.192 (−1.254,−1.131) −0.925 (−0.988,−0.863)
β6 −2.626 (−2.686,−2.566) −2.453 (−2.530,−2.378) −2.545 (−2.609,−2.481) −2.920 (−2.989,−2.857)
β7 −7.286 (−7.404,−7.170) −5.893 (−6.010,−5.778) −4.970 (−5.072,−4.875) −4.605 (−4.709,−4.507)
β8 1.393 (1.248, 1.534) 1.050 (0.901, 1.187) 0.723 (0.598, 0.856) 0.645 (0.525, 0.759)
λ1 0.590 (0.587, 0.592) 0.492 (0.489, 0.495) 0.691 (0.690, 0.694) 0.558 (0.555, 0.560)
λ2 0.400 (0.398, 0.403) 0.473 (0.470, 0.476) 0.525 (0.523, 0.527) 0.441 (0.438, 0.443)
λ3 0.010 (0.010, 0.011) 0.019 (0.019, 0.020) −0.028 (−0.028,−0.027) −0.013 (−0.014,−0.013)
σ2
ξ 0.393 (fixed) 0.430 (fixed) 0.341 (fixed) 0.352 (fixed)

Table 1: Posterior means and 95% credible intervals (in parentheses) for scalar param-
eters from fitting a BHM to the Arctic SIE data. The fine-scale variance σ2

ξ is fixed at
its EM estimate in each time period.

Figure 4: The posterior means of ave{xt(s)
′β : s = (lon, lat), and lat ∈ (lat0 −Δ, lat0 +

Δ)} and ave{yt(s) : s = (lon, lat), and lat ∈ (lat0 − Δ, lat0 + Δ)}, where the target
latitude value is lat0 = 75◦N and 2Δ = 1◦ is the bandwidth. The ends of Period 1,
2, 3, and 4 are 2001, 2006, 2011, and 2016, respectively, and are shown with a vertical
dashed line.

Table 1 gives the parameter-inference results for our proposed BHM, where both
posterior means and corresponding 95% credible intervals of parameters are reported.
The covariates contribute in different ways, depending on the time period. To visualize
the spatio-temporal variability that they capture, Figure 4 shows a time series plot of
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the posterior mean of ave{xt(s)
′β} as well as the corresponding time series plot of the

posterior mean of ave{yt(s)}, where in each case s is averaged over a 1◦ latitude band
centered on lat0 = 75◦N. From the scales on the vertical axis in Figure 4, the covariates
are less important than the spatio-temporal variability in the random effects.

Figure 5: Year t = 2016. Top left: Posterior mean of the y-process. Top right: Posterior
mean of the fixed-effects component of the y-process. Bottom left: Posterior mean of the
small-scale component of the y-process. Bottom right: Posterior mean of the fine-scale
component of the y-process. Adding these three components results in the posterior
mean of the y-process, shown top left. (Note that the scales are different and the small-
scale variation’s contribution to the y-process dominates.)

For the propagator matrix H, the within-resolution covariance parameters λ1 and λ2

have a dominant magnitude, and the correlations for Resolution-1 and Resolution-2 basis
functions between t and t − 1 are always positive. The between-resolution covariance
parameter λ3 has a very small magnitude, where it is positive for the first two periods
and then becomes negative for the latter two periods. The changing sign of λ3 implies
that the autoregressive structure of {ηt} changes from the earlier decade to the recent
decade, something we see in a striking way when we compare temporal semivariograms
between the two decades (Section 4.2).

Figure 5 shows the posterior mean of the latent process {y2016(s)}, along with
its fixed-effects and its random-effects components. The detailed spatial variations are
mainly captured by the small-scale-variation component, {S(s)′η2016}, while the am-
plitude of the fine-scale-variation component is tiny and mostly located around the
ice–water boundaries.

Figure 6 and Figure 7 show the posterior means and posterior standard deviations
of {yt(s) : t = 2001, 2006} and {pt(s) : t = 2001, 2006}, respectively; the 0.05 and 0.95
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Figure 6: The posterior means (left panels) and posterior standard deviations (on the log
scale; right panels) of the logit-transformed process {yt(s)}. (a) t = 2001; (b) t = 2016.

posterior quantiles of {pt(s)} are also displayed. We observe that on the logit scale (y-
scale), large uncertainties typically appear at locations where process values have large
magnitudes. On the probability scale (p-scale), large uncertainties occur at the ice–
water boundary locations, as expected. It is clear that the Arctic sea ice has decreased
substantially from the end year of Period 1 (2001) to the end year of Period 4 (2016).

4.2 Evolution of Arctic Sea Ice

In this subsection, we first consider the spatial variability of the latent process (on
the y-scale) in different latitude bands for the end years of Periods 1–4. Specifically, at
t = 2001, 2006, 2011, 2016, we compare the five-number boxplots of {E(yt(s)|Zo)} within
the three latitude bands around 75◦N, 80◦N, and 85◦N. Figure 8 shows the boxplots
augmented with the average (denoted by a dot); by varying s = (lon, lat) within the
given latitude band (lat0−Δ, lat0+Δ) for 2Δ = 1◦, we obtain the boxplot. Because on
the y-scale, the value 0 corresponds to 0.5 on the probability scale, which is a natural
cut-off value that says the potential for ice and water is the same, we feature the value
0 in the boxplots on the y-scale. By looking across the columns, we see the evolution of
Arctic sea ice over the two decades of data, at time points five years apart. The earlier



B. Zhang and N. Cressie 621

Figure 7: (a) and (c): The posterior means (left panel) and posterior standard deviations
(right panel) of the probability process {pt(s)}. (b) and (d): Posterior 0.05 quantile (left
panel), and posterior 0.95 quantile (right panel) of pt(s). The year t = 2001 is shown in
(a) and (b), and the year t = 2016 is shown in (c) and (d).
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Figure 8: Boxplots of {E(yt(s)|Zo) : s = (lon, lat), and lat ∈ (lat0 − Δ, lat0 + Δ)} for
three latitude bands and for years t = 2001, 2006, 2011, 2016, where the width of the
latitude band is 2Δ = 1◦. The dashed line indicates the value of zero for yt(s) (which
corresponds to 0.5 on the probability scale).

decade is characterized by the behavior at t = 2001 and 2006, and the recent decade by
the behavior at t = 2011 and 2016.

The evolution is clear at lat0 = 75◦N and 80◦N: The central tendencies decrease
over time (more water and less ice). At 85◦N, the sea ice appears to be in equilibrium
over the period of observation, but a more refined (temporal semivariogram) analysis
below, shows oscillatory behavior in the recent decade.

Figure 2 shows similar boxplots on the p-scale in different latitude bands, which
provide a clearer contrast between the earlier and the latest decade. A detailed discussion
is given in Section 1, where attention is directed towards a possible future collapse of
the sea ice at latitude 80◦N.

The yearly temporal dynamics of the latent process {yt(s)} (as well as that of
{pt(s)}) can be visualized through Hovmöller diagrams (e.g., Cressie and Wikle, 2011,
Section 5.1.2). Figure 9 shows the Hovmöller diagrams of the posterior means of both
{yt(s)} and {pt(s)}, where the horizontal axis is the great-circle distance of s to the
North Pole in units of km, and the vertical axis is time in units of year. Specifically, for
each distance x and year t, we obtained the spatially averaged posterior mean of yt(s)
as ȳt(x) = ave{E(yt(s)|Zo) : ‖s − s∗‖ ∈ (x − h, x + h)}, where s∗ is the North Pole,
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Figure 9: Hovmöller diagrams showing the posterior means of the spatial averages,
{ȳt(x)} (left panel) and {p̄t(x)} (right panel), for each year, where the average is taken
over all pixels at distance x± h from the North Pole. The horizontal axis is in units of
km, and the vertical axis is in units of year. The right panel also shows the 0.9 and 0.5
contours from left to right.

2h = 75km is a distance bandwidth, and ‖s − s∗‖ computes the great-circle distance
between two spatial locations. An analogous quantity on the p-scale, denoted by p̄t(x),
is obtained and can be interpreted as the potential for sea ice at (x, t). These are plotted
as a function of (x, t) in Figure 9.

The 0.9 and 0.5 contours plotted on the p-scale show that in the second decade the
potential for sea ice at distances 1000 km or more has decreased substantially. Section S2
of the Supplementary Material shows, through Hovmöller diagrams in different regions
of the Arctic, that this decrease is not uniform. The regional Hovmöller diagrams in
Section S2 provide a very effective way of assessing where the sea ice is most sensitive
to a warming climate.

The sea-ice extent plotted in Figure 1 and the potential for sea ice (p-scale) plotted
in Figure 9(b) indicate a slower and deeper oscillatory behavior in the recent decade.
We investigate the temporal-dependence structure for the two decades by using the em-
pirical temporal semivariogram computed for the detrended latent process for different
latitude bands: For h = 1, . . . ,M ,

γ̄(h; lat0) ≡
1

2
ave{(δt(s)− δt+h(s))

2 : s = (lon, lat), and lat ∈ (lat0 −Δ, lat0 +Δ)},

where δt(s) ≡ St(s)
′ηt + ξt(s) is the random-effect component obtained from a sample

from the posterior distribution, s ≡ (lon, lat)′, lat0 is the target latitude, 2Δ = 1◦ is the
width of the latitude band, and the upper temporal lag, M , is half the range of possible
lags rounded up (e.g., Cressie, 1988). Then we obtained the five-number boxplots of the
posterior distribution of γ̄(h; lat0) as well as E(γ̄(h; lat0)|Zo) (denoted by a dot) from
the MCMC samples from the posterior distribution of {δt(s)} for the earlier decade,
1997–2006, and for the recent decade, 2007–2016, where in both cases M = 	9/2
 = 5.
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Figure 10: The boxplots and the average (indicated by the solid black dot) of samples
from the posterior distribution of temporal semivariograms, {γ̄(h; lat0) : h = 1, . . . , 5},
for the three latitude bands, around 75◦N, 80◦N, and 85◦N, where the width of the
latitude band is 2Δ = 1◦.

Figure 10 shows these for lat0 = 75◦N, 80◦N, and 85◦N, and it should be noted from
the boxplots that our posterior inference is very precise. There are several remarkable
features that indicate differences between the two decades. At lat0 = 75◦N, the sill is
much smaller for the recent decade, yet the sill is much larger for the recent decade at
lat0 = 85◦N (and about the same at lat0 = 80◦N). Thus, the contrast in the evolution
of the sea ice has flipped when comparing higher latitudes to lower latitudes. In the
recent decade, the consistent “dip” at lag 4 of the semivariograms for lat0 = 75◦N and
lat0 = 85◦N indicates a periodicity that is reflected in the substantial oscillations around
the trend line seen in Figure 1. That it appears at high latitudes indicates the need to
monitor the sea ice for evolutionary changes both away from and close to the North Pole.

The empirical semivariograms have added to our understanding of the temporal
behavior of Arctic sea ice, already obtained from boxplots and Hovmöller diagrams. Of
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concern is a possible scenario in the future where the polar ice cap collapses in a matter
of years not decades.

5 Conclusion

In this article, we develop a Bayesian hierarchical model (BHM) for the binary Arctic
sea-ice-extent (SIE) data, where the 0–1 observations are modeled using a logistic link
function in the data model and a spatio-temporal linear mixed-effects model in the
process model. Compared with the empirical hierarchical model (EHM) in Zhang and
Cressie (2019), the BHM accounts for parameter uncertainties and, in Section S1 of the
Supplementary Material, we show in a simulation study that a BHM can yield better
prediction accuracy than an EHM in spatial gaps where there are no nearby data. Fur-
thermore, the BHM allows the uncertainties of parameters such as regression coefficients
and covariance parameters to be directly obtained from MCMC samples, which allows
proper statistical interpretation of the effects of covariates and the data-dependence
structure. In contrast, parameter uncertainties from the EM algorithm require numeri-
cal differentiations (e.g., Meng and Rubin, 1991; Jamshidian and Jennrich, 2000). When
constructing the ST-GLMM for the latent process, several physically motivated covari-
ates were used for the fixed-effects component. The BHM yields credible intervals for
the coefficients of these covariates, and they are almost all substantially different from
zero.

When modeling the Arctic SIE data, we assume Ht stays the same in each five–year
time period. This can be extended to the case where Ht varies over time by putting a
prior on the distribution of Ht (e.g., Berliner et al., 2000). Further parameterization of
K increases the degrees of the freedom and would lead to better estimation of both K
and σ2

ξ . For example, K may be parameterized using a parametric covariance function,
where the basis-function centers are the spatial locations (e.g., Katzfuss and Cressie,
2009). Alternatively, the neighborhood information of the basis-function centers may be
used to form a known baseline covariance matrix K0 (Bradley et al., 2015) or a known
baseline precision matrix Q0 (e.g., Reich et al., 2006; Hughes and Haran, 2013). Then
let K = σ2

KK0 or K−1 = τ2KQ0, which involves only one unknown parameter σ2
K (or

τ2K) to be estimated.

The focus of our paper is to propose useful functionals that characterize the space-
time changes of Arctic sea ice, particularly between an earlier decade and a recent
decade. The boxplots of the posterior means of {pt(s)} in Figure 2 in intermediate
latitude bands show an obvious declining tendency over two decades. We also used
Hovmöller diagrams to visualize the temporal dynamics of the posterior means of the
latent processes, {yt(s)} and {pt(s)}, both for the whole Arctic region (Section 4.2)
and regionally (Section S2 of the Supplementary Material). We found that for the en-
tire Arctic, the 0.5-probability contour of the posterior mean of the latent probability
process, {pt(s)}, which represents an important boundary of the sea–ice potential, has
moved northwards over time. Not surprisingly, this behavior is more obvious for years
when substantially smaller Arctic SIE was observed (e.g., 2007 and 2012). Furthermore,
we made a comparison of the empirical temporal semivariograms between the earlier
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decade before 2007 and the recent decade from 2007 at different latitudes, and we found
that their temporal-dependence structures were very different. Our results demonstrate
the importance of monitoring sea ice at high latitudes as well as at latitudes where the
sea–ice boundary occurs, and they propose summaries of the data that detect changes
in the sea ice. We have also observed and summarized highly oscillatory behavior in the
recent decade, noting the possibility of substantial changes in a matter of years rather
than decades.

A change in Arctic sea ice can impact the weather in other regions, which indicates
that future research should focus on teleconncections of the effects of Arctic forcing
on other environmental variables (e.g., surface temperature and precipitation) in other
regions (Cohen et al., 2014). Another important research project would be the albedo–ice
feedback of the Arctic region, which could be studied using a bivariate spatio-temporal
statistical model of sea-ice concentrations and albedo.

Supplementary Material

Bayesian spatio-temporal modeling of Arctic sea ice extent. Supplementary Material
(DOI: 10.1214/20-BA1209SUPP; .pdf). The Supplementary Material contains a sim-
ulation study that compares the inference performance of the empirical hierarchical
model (EHM) and the Bayesian hierarchical model (BHM) in Section S1; a detailed
discussion of the dynamics of sea ice in different regions of the Arctic in Section S2;
details of the MCMC sampling algorithm and convergence diagnostics for the Arctic
sea-ice-extent data in Section S3; the classification accuracy of the Bayesian inference
in Section S4; and visualization of the ice-to-water and water-to-ice transition probabil-
ities in Section S5.
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