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In various fields, data recorded continuously during a time interval and
curve data, such as spectral data, become common. These kinds of data can
be interpreted as functional data. In this paper we have studied binary clas-
sification from only positive and unlabeled functional data (PU classification
for functional data). Our first contribution is to present a simple classification
algorithm for this problem. The key feature of the algorithm is that it is not
required an estimation of the unknown class prior (or the constant probability
that a positive object is labeled). It is worth noting that the idea of our method
can be applied to kernel linear discriminant analysis for general data. Our
second contribution is to prove that, under mild regularity conditions similar
to those in a supervised context, the proposed algorithm can achieve perfect
asymptotic classification in the context of PU classification. In fact, we show
that the proposed algorithm works well not only in numerical experiments but
also for real data examples. Moreover, as an important practical application,
we have used the proposed algorithm to identify handball players at risk for
anterior cruciate ligament (ACL) injury based on ground reaction force data.

1. Introduction. Functional data analysis (FDA) is commonly used in various fields
such as chemometrics, sports medicine and biology. For example, it is often the case in the
real data fields that data is recorded intermittently during a time interval, but the recorded time
points could not be the same among objects. In this case we cannot directly apply the usual
time series models. On the other hand, in FDA we consider a hidden stochastic process on
the time interval, and we can deal with a variety of situations, including the above case, in a
unified manner. For a general introduction to FDA, see Ramsay and Silverman (2002, 2005),
and Wang, Chiou and Miiller (2016). For the theoretical aspects of FDA, we refer the reader
to Ferraty and Vieu (2006), Horvath and Kokoszka (2012) and Hsing and Eubank (2015).

Classifying functional data is one of the most important tasks in FDA. A number of clas-
sification methods for functional data have been proposed, and Section 4.2 of Wang, Chiou
and Miiller (2016) provides a helpful overview of these methods. From the Karhunen—Log¢ve
expansion of a random function, we can see the intrinsic high dimensionality of functional
data. Focusing on this feature of functional data, we can obtain an interesting property of
functional discriminant analysis. Delaigle and Hall (2012), Delaigle and Hall (2013) provide
simple linear and quadratic functional discriminant methods (FLDA and FQDA) and show
that, in the supervised classification problem for functional data, asymptotic perfect classifi-
cation can often be achieved by using these methods.

In the standard binary classification problem for functional data, a training data {(X1, Y1),
..., (X, Y,)} is obtained, where X; is a curve on a compact interval Z, which is a feature
of the ith object and Y; is the group label of the ith object. The main purpose is to construct
a classifier from the training data that can correctly predict the class label of a new curve
whose class label is unknown. However, in some practical situations we cannot obtain the
complete label information for the training data. For example, in the sports medicine field it
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F1G. 1. GRF data of subjects 8 and 15 who ruptured their right ACL.

is important to identify players who are at risk for career-threatening injuries based on the
various functional data reflecting individual motor dynamics. Here, we consider the problem
to identify handball players who are at risk for anterior cruciate ligament (ACL) injury based
on ground reaction force (GRF) data. The detailed description of this problem is described
in Section 6. Figure 1 and Figure 2 show the GRF curves of injured subjects and those of
noninjured subjects, respectively.

In the classical classification approach for this problem, to create the training data, each
curve of injured players is assigned to the at-risk class (say positive class), and each curve
of other players is assigned to the nonrisk class (say, negative class). Then, the usual binary
classification method is applied for this training data. However, not all at-risk players need
to have a serious injury during the experimental period. Whereas the injured players can be
considered at-risk players, other players cannot be considered nonrisk players. Thus, we only
have positive and unlabeled data in this situation, and the usual classification methods seem
not to be appropriate.

The classification problem from only positive and unlabeled data is called PU learning
or PU classification. This problem is the important issue in the various application fields,
and PU classification recently has drawn much attention in the machine learning community
(Blanchard, Lee and Scott (2010), du Plessis, Niu and Sugiyama (2014), du Plessis, Niu
and Sugiyama (2015), du Plessis and Sugiyama (2014), Elkan and Noto (2008), Menon et
al. (2015), Scott and Blanchard (2009)). A good survey of other practical situations of PU
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FI1G. 2. Randomly chosen 40 curves from GRF data of other subjects.
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FI1G. 3. [Images of training data (two-dimensional data) in three classification problems (Positive samples: White
triangle; Negative samples: White square; Unlabeled samples: Filled circle).

classification can be found in du Plessis, Niu and Sugiyama (2015). In Appendix A of the
Supplementary Material (Terada, Ogasawara and Nakata (2020)), we briefly introduce the
PU classification in a general setting (not only for functional data).

In this paper we consider the binary classification problem from only positive and unla-
beled functional data. We refer to this classification problem as PU classification for func-
tional data or functional PU classification. Here, we note that, in the usual semisupervised
classification problem in FDA (e.g., Kawano (2013)), both positive and negative curves are
available as labeled data and that the existing techniques cannot be applied for this prob-
lem. Figure 3 shows the differences in the training data among three classification problems.
Now, we provide an illustrative example to see why the PU classification is required (why the
supervised methods are not enough for the context of PU classification).

EXAMPLE 1. With the real data example we show the problem of the supervised classi-
fication method in the context of PU classification. We use the near-infrared spectral data of
wheat samples with actual moisture content in Kalivas (1997). We describe the details about
this data in Section 5. The wheat samples with moisture content less than 15% are consid-
ered negative samples, and other samples are considered positive samples. These labels are
considered as the true labels in this example. To see the generalized performance of FLDA,
we randomly select 10 samples as test samples, and the remaining samples (training data) are
used to construct the classifiers. If we have fully labeled training data, FLDA often provides
near perfect performance. In fact, Figure 4(b) shows the result of FLDA for the fully labeled
training data. We see that FLDA can clearly classify positive and negative samples without
any error.

Next, let us see how FLDA performs in the context of the PU classification. The labeled
samples (40% of positive samples) are selected randomly from positive ones in the training
data. We may consider unlabeled samples as negative ones to apply the supervised classi-
fication method for this partly labeled training data. In this way we forcibly apply FLDA
for this training data consisting of only positive and unlabeled data. Figure 5(a) shows the
classification result of FLDA with the projected data onto the discriminant subspace. From
this result we can see that FLDA tried to distinguish positive labeled samples and unlabeled
samples. However, since unlabeled data contains the positive samples in this setting, there
are many misclassification samples not only for the training data but also for the test data. On
the other hand, Figure 5(b) shows the result of the functional PU classification method (the
proposed method) with the projected data. We can see that, by treating unlabeled samples
appropriately, the PU learning detects an appropriate discriminant subspace in which we can
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FIG. 4. The NIR spectra training data of wheat samples used in Example 1 and the result of FLDA in the
context of the supervised classification in which all training samples are labeled. In both (a) and (b), the positive
and negative samples are colored in black and grey, respectively.

distinguish the underlying groups clearly. Here, we note that the true percentage (40%) of
labeled samples in the positive training data is an unknown parameter and is not used in PU
learning.

Throughout the paper we consider the setting introduced by Elkan and Noto (2008): only
positive curves are labeled, and labeled positive curves are chosen completely randomly from
all positive curves. Let = be the unknown class prior and A be the constant probability that
a positive curve is labeled. It is known that the PU classification problem can be solved by
cost-sensitive learning between positive and unlabeled data if we know (or can consistently
estimate) the values of A or 7 (Appendix A of the Supplementary Material; du Plessis, Niu
and Sugiyama (2014)). Thus, A (or ) plays a key role in general PU classification problems.
Although several methods for estimating A or 7w have been proposed (Blanchard, Lee and
Scott (2010), du Plessis and Sugiyama (2014), Elkan and Noto (2008), Jain et al. (2016),
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FIG. 5. Projected data of NIR spectra of wheat samples. The black line is the classification boundary in each
method. The points are colored by the true labels (Class 1: Black; Class —1: Grey).
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Menon et al. (2015)), it is still difficult to construct a consistent estimator for A or 7 in gen-
eral. Most PU learning methods focus on multivariate data analysis (i.e., data space X C R?).
Note that the estimation framework of Blanchard, Lee and Scott (2010) can be applied to a
general PU classification problem in theory. However, Blanchard, Lee and Scott (2010) men-
tion that the empirical risk minimization algorithm described in Section 4 of their paper is
computationally infeasible, and thus they employe a plug-in kernel density estimation classi-
fier in their experiments. The kernel density estimation on R? cannot directly be applied to
functional data. Therefore, it is difficult that these methods are applied to functional data in
general.

In this paper, based on the idea of linear discriminant analysis, we develop a new simple
classification algorithm for the functional PU classification problem which utilizes the in-
trinsic high dimensionality of functional data. The proposed algorithm does not require an
estimation of the unknown class prior 7 or the probability A that a positive object is labeled.
Moreover, we show that, even in the PU classification problem for functional data, asymp-
totic perfect classification can often be achieved using the proposed method. The proposed
algorithm worked well not only in numerical experiments but also for real data examples. It
is worth noting that the idea of our method can be applied to the PU learning problem for
multivariate data. In fact, we describe the details about the kernel discriminant PU classifi-
cation method for multivariate data in Appendix G of the Supplementary Material (Terada,
Ogasawara and Nakata (2020)).

2. Preliminaries. Let (Y, R, X) and (Y;, R;, X;) (i =1, ..., n) be independent and iden-
tically distributed data triples, where Y; is a class label taking the values —1 or 1, R; is the
response indicator for label Y;, that is, R; = 1 if ¥; is observed; otherwise, R; = 0, and X;
is a random function defined on a compact interval Z. Here, as in many studies of functional
data analysis, it is assumed that a sample of random functions is observed in the continuum
and without measurement noise. In practice, however, functional data are observed discretely
on a grid or at randomly distributed points, and substantial smoothing is used to convert
these discrete data points into functions. The main theoretical property in this paper holds
even without assuming that a sample of random functions is observed in the continuum and
without measurement noise. This assertion is based on Theorem 1 in Hall, Miiller and Wang
(2006) and the results of Zhang and Wang (2016).

As done by Elkan and Noto (2008), we assume the following missing mechanism: P(R =
11X, Y=0=0andA:=P(R=1|X,Y=1)=P(R=1|Y =1) > 0. The population is a
mixture of subpopulations I1_1 and IT; corresponding to ¥; = —1 and Y; = 1, respectively.
Let v be the probability that a data curve comes from subpopulation I1;, and assume 7 > 0.
We write Xj; (1 <i <ny) for the ith function among functions for which the corresponding
label equals k, and then n =n_; 4+ n1. We denote by ngps = Y 7_; 1(R; = 1) the number of
labeled positive objects. Suppose that Xi; is a second-order measurable process, and denote
by cx(u, v) := Covi(X (1), X (v)) the covariance function of ITy.

Henceforth, we assume the following general assumption: E[X | Y =1] =0, E[X | Y =
—1] = u # 0 and that the covariance functions c_; and c¢; are continuous, strictly positive
definite and uniformly bounded. Let & := E[X] = (1 — w)u. We can consistently estimate
the mean function of the positive class from the labeled functions. Hence, the assumption
E[X | Y = 1] = 0 does not essentially affect the results presented in the following section.
Note that, even in the setting of du Plessis, Niu and Sugiyama (2014), our method works, and
the theoretical properties described in the following sections are still hold.

2.1. Karhunen—Loéve expansion and intrinsic high dimensionality of functional data.
Let (6kj, ¢rj) denote the eigenvalue and eigenfunction pairs of the integral operator with
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TABLE 1
Essential differences between usual high-dimensional data and the intrinsic high dimensional nature of
functional data

High dim. Functional
Dimensionality Goes to infinity Infinity
Correlation Not zero Zero
Variances Nondegenerate Degenerate
Variables Observed Latent

kernel cg, where 01 > 6> > --- > 0. From Mercer’s theorem (cf. Lemma 3.1 of Bosq
(2000) or Theorem 4.6.5 of Hsing and Eubank (2015)), ¢; has the following representation:
cr(u,v) = Zﬁl OkjPrj (u)drj(v). Since cy is uniformly bounded, we have 2?021 Okj < 00.
Moreover, from the Karhunen—Loe¢ve theorem (cf. Theorem 1.5 of Bosq (2000) or Theorem
7.3.5 of Hsing and Eubank (2015)), we have the following expansion (KL expansion) for a
sample curve X from subpopulation IT:

2.1 Xp ) = @) + > N Os Zicsres ),

s=1

where ni = Ei[X ,/{] and Zj, are real-valued random variables satisfying E¢[Zs] = 0 and
Ex[Zks Zks] = 85,1 for s, t € N. Since ¢y is strictly positive definite so that {¢;}jen is a com-
plete orthonormal system (CONS), we can write 1 (1) = Z?’; 1 MkjPrj (u) for the generalized
Fourier decomposition of 7; with respect to the CONS {¢;}jen. Combining these results,
we can write

(2.2) X () =) Wiseyj(u),

s=1

where Wis = nis + +/OksZis. Here, we have Ei[Wis] = nis, Varg(Wig) = i, and
Covk (Wis, Wir) =0 (s # 1) for s, € N. We can thus see that functional data X is es-
sentially constructed using high-dimensional data W,(Coo) = (Wy;) jen. However, in contrast
to high-dimensional data, Var;(Wj;) degenerates with increasing j, and we cannot observe
the value of Wy;. Moreover, we have Z?‘; 1 n,%j < o0 and n,% — 0 as p — o0o. We summarize
in Table 1 the essential differences between the usual high-dimensional data and the intrin-
sic high dimensional nature W,({OO) of functional data. Since the variance can be the amount
of information the variable contains, functional data can be interpreted as an intermediate
between finite-dimensional data and high-dimensional data.

3. PU classification for functional data. Since most existing methods focus on PU clas-
sification problem for multivariate data, it is difficult to estimate the missing probability A (or
the class prior ) from functional data. As a simple approach for PU classification prob-
lem for functional data, we may consider the method to identify curves which are near to
positive label curves (or the mean curve of the positive class) in the sense of L»-distance.
The advantage of this approach is that neither an estimation of A nor an estimation of 7 is
required. However, there are many situations in which the appropriate functional classifica-
tion methods, such as Delaigle and Hall (2012), Delaigle and Hall (2013), perform well, but
the methods based on the L;-distance do not. Roughly speaking, the methods based on the
L,-distance work only when there is a visually clear difference between the mean curves
of two classes. For example, there is no visually clear difference between two classes in the
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near-infrared reflectance (NIR) spectra data of wheat samples, described in Example 1 and
Section 5.2, and the methods using the L»-distance do not work well. In Appendix B of the
Supplementary Material (Terada, Ogasawara and Nakata (2020)), we describe the theoretical
reason why the L, distance is not appropriate for the PU classification problem of functional
data. Thus, at first, we propose a new distance function which is more appropriate for the
functional PU classification problem. Next, we describe the PU classification algorithm for
functional data based on the proposed distance.

3.1. New distance function for PU classification. In the supervised classification prob-
lem, Delaigle and Hall (2012) show that the projection of functional data is useful to extract
the intrinsic high dimensionality of functional data. This high dimensionality leads to an ex-
cellent classification performance, as shown in Figure 4(b). If we can construct the projection
function of FLDA in the context of PU classification, then we can obtain a discriminant sub-
space in which hidden two groups can be clearly distinguished. The main part of the proposed
method is to construct such an appropriate projection function from only positive and unla-
beled samples. Since the negative samples are not labeled in the context of PU classification,
it seems to be impossible. Surprisingly, we will show that, by focusing on the scale indetermi-
nacy of the projection function, it is possible to construct an appropriate projection function
or the discriminant subspace of FLDA in the context of PU classification.

Let X and X’ be two independent sample curves from IT1; and IT1_j, respectively. We
temporarily assume that the covariance functions of two classes are the same, that is,
c—1 = c1. Here, we note that this assumption is not necessary to achieve good performance
but is needed for only describing the main idea simply. In Section 4 we will prove that good
performance can be achieved by the proposed method without this assumption. First, we
consider an optimal projection of functional data into R for the binary classification problem.
For a function ¢ defined on Z, we consider the difference between the projected objects on

R by ¥,
d*(X, X' |9) = (X — X"y,

where (f, g) := [ f(u)g(u) du is the inner product of two functions f and g. Here, we have a
question which v is best for distinguishing X and X’. By a simple calculation the expectation
of the squared distance can be decomposed into the following two terms:

E[d>(X, X" | ¥)] = (1w, v)> + E[(X — X', v)*],

where X’ = X’ — E[X’]. The first term and the second term can be considered the between-
class dissimilarity (the mean difference) and the within-class dissimilarity (the within-class
variance), respectively. Thus, we consider the following criterion of the separability:

()
E[(X — X', 9)’]
This criterion is commonly used as the objective function of the linear discriminant analysis.
A large value of the separability Q (i) means that two groups are well separated in the
subspace spanned by .

Now, we will find an optimal function i which maximizes the separability Q (). We
recall that the eigenfunctions {¢;};en are a complete orthonormal system. Using {¢;}en,
a function can be expressed in the form of Z?‘;l aj¢;. We denote by ¥ = Z?O:] aj¢; the
generalized Fourier series expansion of ¢ and by ¢, := Z;:l aj¢; the truncated expansion
for each r € N. Then, we have

QW) =

oo 2
(w, ¥)? = (Z u,»a,-)
j=1
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and

E[(X — X', y)*] = Var[(X, )] + Var[(X', )] =2 i 0;a3.

—

By choosing the eigenfunctions as a CONS, the separability Q () can be rewritten as

(290—1 mja j)2
QW) =0({a)}) = —L—5.
Here, we note that the representation of Q(v) with the generalized Fourier coefficients
is more complicated if we choose the other CONS to expand . Since we cannot deal
with infinitely many parameters in practice, we consider only the truncated function ¥, =
j=149j-

From the proof of Theorem 1 in Delaigle and Hall (2012), we can maximize Q () with
respect to ¥, by taking a; = b x 9]'_1Mj (j=1,...,r) for any nonzero constant b € R \ {0}.
The important point to note here is that an optimal function has an indeterminacy of scale.
That is, for an optimal function 1//r(1) = Z;:l 9]._1 wj¢;, functions wr(b) =b X Z;ZI Hj_l wid;
with b # 0 are also optimal. Thus, substituting (1 — ) for a constant b, we notice that the
following function is also optimal:

r r r
Ur=(=m) 307 wjdy =3 607 (L —mmjgj =3 67 L.
j=1 j=1 j=1

If we can estimate the eigenvalues and eigenfunctions {(6;, ¢ j)};.:1 of the covariance and
the function (1 — ), then we can construct an optimal v, empirically. Here, we recall that,
in the context of PU classification, (6, ¢;) can be estimated by using functional principal
component analysis (FPCA) for the labeled data, and i = (1 — ) can be estimated by
averaging all curves. Therefore, we can empirically construct an optimal v, even in the
context of PU classification.

To obtain deeper insight into why the projection by v is useful, we focus on the optimal
value of Q(yr) which is given by

I ,12
maxQ(xm:EZle,- wi-
j:

We recall that Z?‘;l 0j < 00,50 60; \(0as j — oo and also recall that the mean difference
between the two groups is denoted by . Even when the mean difference || wl? = ;’-';1 ,u% <
oo takes a small value, the maximum value max Q(¥,) = %Z;-:l Gj_lug may diverge to

infinity or may take a large value as » — co. Focusing on the term 2;21 9j_1,u§, we can see
that the projection by ¢ amplifies the difference between two groups. (The squared mean
difference ,u? is amplified by multiplying 9]-_1.) Since a large value of Q(y,) means that
two groups are well separated in the subspace spanned by v, this implies that the projected
data by v, may be clearly separated, even if there is only a small difference in the sense
of the L, distance. Thus, we can extract the intrinsic high dimensionality of functional data
effectively by using the projection. We can expect a good classification performance in the
single-dimensional subspace with the optimal ..

Based on these ideas, we propose a new distance between two functions for PU classifica-
tion.
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DEFINITION 1. For r € N, the (truncated) PU distance between two functional objects
X; and X is defined as

El

dr(Xi, Xj) :=|(Xi — X}, ¥y)

where ¥, ==Y {_,; Ql_sl/llsqﬁls, fis = [ (u)¢1s () du, and i = (1 — ) is the mean func-
tion of the population 714 4+ (1 —)I1_;.

Obviously, this distance function satisfies the axioms of distance. The following proposi-
tion shows the fundamental property of this distance function:

PROPOSITION 3.1.  For sample curves X; and X j (i # j), we have
V20| R| ifYi=Y; =k
ke xa}, +a,R'| ifYi#Y;,

where R and R’ are random variables satisfying E[R] = E[R'] = 0 and Var(R) = Var(R') =
1, respectively, k := 1/(1—n),a? :=a? | +ai andal, =32 Ok (s, ¥r)? (k= —1,1).

dr(Xi, Xj) =

PROOF. See Appendix C of the Supplementary Material (Terada, Ogasawara and Nakata
(2020)). O

Here, we note that, in the proposition, we do not assume that two covariance functions
c_1 and c4 are the same. Since the term o, monotonically increases with r, we expect that
oz%r > ay, and thus d. (U, V) > d,(V, V') for random functions U ~ Iy and V, V' ~ I,
(k,l =—1,1; k #1). That is, with increasing r, the PU distance d, between two curves from
different classes may take a much larger value than the PU distance between two curves in the
same class. Thus, we can expect that two classes are distinguished clearly using the clustering
method with the PU distance d, .

3.2. PU classification algorithm based on PU distance. From the above discussion, it
is expected that the projected data (X;, ) (i =1,...,n) are well separated in accordance
with class labels. In practice, 01, ¢1; and 11, are unknown and must be estimated from the
data to construct the estimator of .. Let {(él qul j)};:1 be the estimator of {(6;, ¢ j)}.’/.:1
obtained by FPCA of the labeled data. We can estimate i by

I N
==Y (X;— ),
n -
i=1
where (1] = > R;=1 Xi/nobs. In addition, ji1; also can be estimated by using

fj = [ i, du.

Hence, we can construct an estimator of i, as follows:

-
Yr = 291}1111]'%]'-
j=1
By the construction of the estimator @r, the projected data {(X;, 1},)}1’.’:1 should be sim-
ilar to the projected data of FLDA with fully labeled training data. In fact, Figure 6 shows
the comparison between the (Procrustes-adjusted) projected data by FLDA with fully labeled
training data and the projected data by the proposed method with only positive and unla-
beled data in Example 1. This figure shows that the discriminant subspace constructed by
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FIG. 6. The comparison between the (Procrustes-adjusted) projected data by FLDA with fully-labeled data and
the projected data by functional PU classification (the proposed method). The points are colored by the true labels
(Class 1: Black; Class —1: Grey).

the proposed method is reasonably similar to the discriminant subspace of FLDA with fully
labeled training data. Here, we again emphasize that the proposed method uses incompletely
labeled training data (only positive and unlabeled data), whereas FLDA uses completely la-
beled training data in this experiment. Thus, we see that an appropriate discriminant subspace
can be constructed from only positive and unlabeled data.

Let us denote by ci, (-, ») the estimated PU distance by Iﬁr. The PU classification based on
the estimated PU distance can be described as Algorithm 1. It is worth noting that the idea of
our method can be applied to (kernel) linear discriminant analysis (LDA) for multivariate PU
learning problems. For the details about the PU classification algorithm based on kernel LDA,
see Appendix G of the Supplementary Material (Terada, Ogasawara and Nakata (2020)).

In the proposed algorithm we need to choose r first, and the performance is affected
by choice of r. To choose an appropriate r, empirically, we suggest using the leave-m la-
beled data-out cross-validation described below. We randomly create p partitions of the

labeled data. For s = 1, ..., p, each partition splits the labeled data into two subsamples,
{Xiss - Xy and (XG4 gyooeoo, XG0 ), where {XT, ..., X} denote a random permu-

Algorithm 1 PU classification based on PU distance
1: Set r to number of principal components constructing ..
2: Compute i1 =Y g.—1 Xi/nobs and ft =327 (X; — f11)/n.
3: Apply FPCA to the labeled data and obtain (élj, $1j) (j=1,...,r).
4: Compute i1; = [ ()1 (1)dt (j=1,...,r).
5: Compute Z; = (X, 1},) (i=1,...,n) where

.
V= Zel_jl,alj¢lj-
j=1
6: Use conventional clustering algorithm (e.g., Ward’s clustering) for Z, ..., Z, to divide
all objects into two clusters.
7: Assign positive label Y; = 1 if unlabeled object Z; is in the cluster containing more
labeled objects than the other cluster; assign negative label Y; = —1 otherwise.
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tation of the labeled data. Then, we estimate the classification error using

. 1 P Nobs R
err(r) = DO (Y (X[ ) #£1),
PTtobs —j i
where ¥_(X* | r) denotes the label of X estimated using {X (m1)se -+ Xngpes - Then, we

choose r by minimizing err(r).

4. Theoretical properties. In this section we establish the theoretical properties of the
proposed classification algorithm in which we construct the estimator of v, empirically. The
following theorem provides the theoretical guarantee for the performance of the proposed
algorithm with conventional hierarchical clustering such as Ward’s method. Note that we do
not assume that two covariance functions, c_1 and c 1, are the same in the following theorem:

THEOREM 4.1. We assume the general assumption introduced in Section 2. In addition,
we suppose that:

(@) sup,er Ex[|X (0)|*] < oo fork=—1and k=1,
(b) there are no ties among the eigenvalues 0y ; and

©
r 2 00
(Z ijlﬂ%j) / (Z Ok (i vmz) — 00
j=1 =1

asr > oo fork=—1landk=1.

Let {ny}neN be a decreasing sequence such that n,, — 0 and nng — 00 as n —> 0. Let
R,+1:=inf{j e N| élj — él,j+1 < n,} and ry, be an increasing sequence such that r, — 00
and r;, < Ién Then, for any random functions U ~ T and V, V' ~Ty(k,l = —1,1; k #1),

P(d,, (U, V)>d,,(V,V')) =1 asn— .
Moreover, if we assume the following condition instead of condition (a):
@) IM >0, P(I X[ < M) =1;
then,

4.1) P(&?j dr,(Xi, Xj) > 1?1?; ?;élln dy, (X, Xl)> —1 asn— oo,

Y=Y

and thus the probability that there are no misclassified curves converges to one.

PROOF. See Appendix D of the Supplementary Material (Terada, Ogasawara and Nakata
(2020)). O

This theorem ensures that perfect asymptotic classification is often possible using the pro-
posed method even in the PU classification context. Condition (a’) is simply for mathematical
convenience. If we take 7, as nn,sl = Q(n'/?), then condition (a’) can be replaced by con-
dition (a) even for (4.1). Assumption (c) requires that the covariance functions of the two
classes not be much different. For detailed discussions about the conditions of Theorem 4.1,
see Appendix E of the Supplementary Material (Terada, Ogasawara and Nakata (2020)).

We recall that the proposed method constructs the discriminant subspace of FLDA with
fully labeled data, approximately. Hence, at least when two covariances are the same, the
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performance of the proposed method cannot be better than the performance of FLDA with
fully labeled data. This is one of the limitations of the proposed method. Moreover, we can
use only the positive labeled data to estimate the eigenvalues and eigenfunctions. When the
sample size of the positive labeled data is too small (e.g., ngps less than 10), the proposed
method fails to construct an appropriate subspace. In other words, whenever FLDA with
fully labeled training data can provide good performance and the sample size is moderately
large, the proposed method also can provide a comparable performance from only positive
and unlabeled data.

5. Numerical experiments.

5.1. Simulated examples. The performance of the proposed algorithm was evaluated
through numerical experiments. We used the settings of the numerical examples in Delaigle
and Hall (2012). Let Z=1[0,1]. Fori =1, ...,n; (k= —1, 1), we took X;; = Z;%O:](T]kj +
@ Zj)p;j where ¢;(t) = \/Esin(n Jt). As Zijs, we generated independent standard nor-
mal random variables Zy; ~iiq. N (0, 1) or independent exponential variables Zy; — 1 ~j; 4.
Exp(1). In all settings we generated n curves from two subpopulations I1_; and I, and we
set n_; =n; =n/2 and ngps = n1/2. We completely randomly selected nqps curves as the
labeled objects from curves generated from subpopulation I1;. We used the following four
settings:

Setting 1. The Zi ;s were independently generated from the centered exponential distribu-
tion Exp(1), thatis, Z;; — 1 ~jiq. Exp(1). For j =1, ..., 40, we set 9,;‘/- = j_1 (k=-1,1),
for j > 6 we set ng; = 0(k = —1, 1) and we set ‘

M=1,1,M-1,2,1-1,3, N—1,4, 11,5, 1—1,6) = (0, —0.75,0.75, —0.15,1.4,0.1)
and (1,1, 71,2, 11,3, 11,4, 11,5, M,6) = (0, —=0.5, 1, 0.5, 1, =0.5).

Setting 2. We used the same settings for Setting 1, but, for the subpopulation I, we
replaced Qf‘j with 9{’} =1.5x Qilj.

Setting 3. We used the same settings for Setting 1, except for Xi; = Z‘}O:l(qubj +

/6 Z1j1,), Where ¢1j = v/2cos(j1).
Setting 4. Zyj ~iid. N(0,1).For j =1,...,40, we set

6f; =exp{—[2.1— (j — 1)/20]"} (k=—1,1),
nj =0and n_1; =0.75(=1)/11(j <3).

For each setting, B = 100 independent samples were generated. For each sample we ap-
plied the proposed algorithm with empirically chosen 7 = min, €rr(r) and the plug-in al-
gorithm with the true class-prior w described in Appendix F of the Supplementary Ma-
terial (Terada, Ogasawara and Nakata (2020)). We calculated the misclassification rate,
Pymiss = 100 x Y7, ]l(l}i # Y;)%, for the estimated labels of each method. Note that the
class prior is unknown in practice. Table 2 shows the means and standard deviations of the
values of Puiss-

Settings 1 to 3 are for the cases in which the curves are quite dispersed, but the mean
curves are not much different. The covariance functions of the two groups are clearly differ-
ent in Settings 2 and 3. In Figure 7 the first column illustrates an example of labeled data, and
the second column in Figure 7 shows an example of unlabeled data, colored in accordance
with the true label. Distinguishing the curves into two classes appears difficult. However, in
these cases, Z;-Zl 91_1.1“? is large even for small r, where 6;; is the jth eigenvalue of the
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TABLE 2
Percentage of misclassifications for simulated and real data examples: mean of Pyjiss With standard deviation of
Pyiss» calculated from B = 100 simulations

Error (Std)

Data set n Nobs/ M1 Proposed Plug-in
Setting 1 100 25/50 3.88% (3.46) 3.77% (2.22)
Setting 2 100 25/50 7.73% (4.39) 7.08% (3.09)
Setting 3 100 25/50 7.63% (3.84) 5.80% (3.22)
Setting 4.1 100 25/50 44.97% (6.97) 39.2% (7.64)
Setting 4.2 200 50/100 3.63% (4.52) 5.85% (2.23)
Wheat 100 25/59 1.54% (1.30) 3.72% (5.11)
Tecator 215 30/138 5.04% (4.53) 10.66% (4.92)

covariance operator of the positive class and j; is the projection, on the jth eigenfunction,
of the difference between the mean curves of the two classes. The first three rows of Ta-
ble 2 show that the proposed method provided nearly perfect classification results in these
three cases. Note that, although the covariance functions are not the same in Settings 2 and
3, the proposed method worked nicely. This result supports the theoretical property of the
proposed method in Theorem 4.1, empirically. It is worth noting that the performance of the
proposed algorithm is comparable with the performance of the plug-in algorithm, although
the proposed algorithm does not require the estimation of the class prior.

Settmg 4 is for the case in which Z’_l 0 ,u 7 is not large for small r. In this case we have

Zr -1 91 = 0 for r < 38. Since the proposed method is mainly based on FPCA for the
labeled data we need to estimate reasonably well the smallest 38th—40th eigenvalues and the
corresponding eigenfunctions to obtain good performance with the proposed method. That
is, in this setting the number of labeled curves must be somewhat larger than 40. Focusing
on the fourth row in Table 2 and the projected data in the second column in Figure 7, we see
that the proposed method did not work well when nqps = 25 (n = 100). On the other hand,

Labeled Data Unlabeled Data Projected Data by 1,
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FIG. 7. Results of numerical experiments: Labeled data, unlabeled data (colored in accordance with true la-

bel—Class +1: Black; Class —1: Grey) and data projected using @r for each numerical experiment.
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focusing on the fifth row in Table 2 and the projected data in the second column of Figure 7,
we see that the proposed method worked very well when nqps = 50 (n = 200).

5.2. Real-data examples. We applied the proposed algorithm and the plug-in algorithm
with the true class-prior to two chemometrics data sets. For each one we generated PU data by
randomly selecting nops curves from subsample I1;, and we applied the proposed algorithm
to the data with empirically chosen 7. Then, we evaluated the misclassification rate, Pyfiss =
100 x >, ]1(}% # Y;)%. For each data set, we generated PU data B = 100 times and then
calculated the B values of Puss. The means and standard deviations of these values are
shown in Table 2.

In the first example we use the near-infrared spectral data set described in Kalivas (1997).
It contained data on the near-infrared reflectance (NIR) spectra of 100 wheat samples with
known moisture content, measured in two nm intervals from 1100 to 2500 nm. Here, we refer
to this data set as Tecator data. This data set is available at fds-package (Shang and Hyndman
(2013)) of R. We used the moisture content to separate the data into two subpopulations, IT_;
(moisture content less than 15) and I1; (moisture content greater than 15). Here, n_; = 41
and n; = 59. We set nghs = 25. In accordance with the custom of chemometrics data analysis,
we used the derivative curves of the spectra which were estimated using the method described
in Ferraty and Vieu (2006). The first row of Figure 8 shows an example of the labeled and
unlabeled data and projected data (X;, V) of these curves. For the PU data in Figure 8,
7 = 10 was estimated. The average for 100 values of the misclassification rate was very small,
indicating that nearly-perfect classification was achieved from only positive and unlabeled
data.

In the second example, we used the NIR spectral data set described in Ferraty and Vieu
(2006). It contained data on the NIR spectra of 215 pieces of finely chopped meat, measured
in two nm intervals from 850 to 1050 nm. We also had the percentages of fat, water and
protein for each sample. This data set is available at fda . usc-package (Bande et al. (2014))
of R. We assigned a label to each spectrometric curve X; as follows: ¥; = —1, if the fat
content was less than 20; Y; = 1, if the fat content was greater than 20. Here, n_; = 77 and
n1 = 138. We also used the derivative curves of the spectra. Figure 9 shows the covariances of
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FI1G. 8. Results of real data examples: Labeled data, unlabeled data (colored in accordance with true label—-

Class +1: Black; Class —1: Grey) and data projected using @r for each real data example.
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FI1G. 9. The sample covariance functions of the positive and negative groups in Tecator data.

two groups, and we can see that there is a clear difference between in the covariance structures
of two groups. The number of observations, nobs, was 30. The second row in Figure 8 shows
an example of the labeled and unlabeled data and the data projected using v,. For these data,
7 = 6 was chosen. The average for 100 values of the misclassification rate was again very
small, confirming that the proposed method performs very well, even when two covariances
are different, as was shown theoretically.

In these real data examples the proposed method provides better performance than the
plug-in method. We recall that the clustering method is used in the classification step, whereas
the plug-in method is a centroid-based classifier. Thus, the proposed method sometimes out-
performs the plug-in method when the variances of two groups in the subspace of y, are
different.

6. Application: Identify players who are at risk for ACL injury. As a more practical
application, we have used our method to identify handball players at risk for anterior cruciate
ligament (ACL) injury based on ground reaction force data.

Subject. Twenty-two healthy female volunteers (age = 20.4 &= 1.3 yr, mass = 58.7 £ 5.6
kg, height = 163 £ 6.9 cm), with no history of orthopedic lower limb injury prior to six
months of the experiment, were recruited to this study. All the subjects were elite-level hand-
ball players belonging to the division-one category of western Japan. The local ethics board
approved the procedure of this experiment, and the written informed consent was obtained
from each subject before data collection.

Landing task. The experimental task was the single-legged drop landing task. Subjects
were asked to make a forward jump from a wooden platform of 0.2 m in height and land on
the force plate (Type9281B, Kistler, Switzerland) with the right leg. After landing, subjects
were required to keep single-legged standing as quiet as possible for at least eight seconds.
For all landings, subjects were instructed to put their arm crossed in front of their chest and
not to release throughout the trial to eliminate the effect of arm swinging. The trials that the
subject fell from the force plate or could not keep single-legged standing were regarded as
unsuccessful and were discarded from further analysis.

Measurement of ground reaction force. The ground reaction force (GRF) signal from the
force plate was amplified using the signal conditioner (Type 9865E1Y28, Kistler, Switzer-
land) and digitized with the data acquisition device (NI-USB6218 BNC, National Instru-
ments, U.S.) with the sampling frequency of 1000 Hz.
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Follow up of anterior cruciate ligament (ACL) injury. Within 24 months of follow-up
period, seven cases of noncontact type ACL injuries were reported. Five cases among them
occurred during handball practice or game with no physical contact from opponent players.
For each case, the rupture of ACL is diagnosed by an orthopedic surgeon via arthroscopy. The
mean number of days from experiment to injury was 360.1 &= 283 days. The shortest number
of days were 43 days, and the longest was 470 days.

Identifying at-risk players using the proposed algorithm. Here, we apply our proposed
algorithm to identify at-risk subjects based on the GRF data of the right leg landing task. As
input data, we used the vertical component of GRF data during the first 200 ms after the initial
foot impact. GRF data were normalized with the body mass for each subject to eliminate the
effect of body mass. ACL injured subjects were, No. 2, 4, 7, 8, 15, 19 and 20. Subjects 7,
8 and 15 ruptured their right ACL during the follow-up period, but another sport caused the
ACL injury of subject 7. Thus, GRF data of subjects 8 and 15 were labeled as positive, and
the data of other subjects were considered as unlabeled data in the PU classification context.
Figure 1 shows the GRF data of subjects 8 and 15 and Figure 2 shows randomly chosen
200 GRF curves of unlabeled data. For this positive and unlabeled GRF data, we applied the
proposed PU classification method and the supervised classification method of Delaigle and
Hall (2012). In both methods, we used empirically chosen 7 = min, érr(r). Note that in the
supervised classification based on Delaigle and Hall (2012), the GRF data of subjects 8 and
15 were considered positive, and others were forcibly considered negative In addition, we
randomly chose 50 GRF curves as test data from all GRF data.

Result. Figure 10 and Figure 11 illustrate the supervised classification and the results
of the proposed PU classification, respectively. In both figures the red markers denote the
positive data (from subjects 8 and 15). Note that the black markers denote unlabeled data in
Figure 11, whereas the black markers mean the negative data in Figure 10. In Figure 10 the
blue markers denote the test data in the supervised classification. In both figures the vertical
axes mean the projected data based on the estimated optimal @r, and horizontal axes show
each subject.

From the classification results of test data in Figure 10, we cannot find any at-risk play-
ers except with subjects 8 and 15. That is, the usual supervised classification just identifies
whether players are injured or not. Thus, the supervised classification is not appropriate to
identify at-risk players.

No.1 {No.2 | No.3| No.4 | No.5 | No.6 | No.7 | No.8,/ No.9 |No.10/No.11{ No.12{No.13/No.14{No.15/No.16/No.17 | No.18/No.19/N0.20 | No.21|No.22
s | | | | | | N | | | | | | | | | | | |

*
*

Projected data

FI1G. 10. The result of the supervised classification based on Delaigle and Hall (2012) (Red markers: positive
training data; Black markers: Negative training data; Blue markers: Test data). The horizontal dash line means
the discrimination boundary.
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F1G. 11. The result of the proposed PU classification algorithm (Red markers: positive data; Black markers:
Unlabeled data). The horizontal dash line means the discrimination boundary.

On the other hand, the result of the proposed method in Figure 11 suggests that subjects 4,
7, 11 and 22, who showed almost the same distribution as the positive data in the vertical axis,
were regarded as high risk. Actually, subjects 4 and 7 suffered from the left and right ACL
injuries, respectively, and, although not an ACL injury, subject 11 had a very severe ankle
sprain after data collection. Subject 22 had no lower limb injury in the follow-up phase.

Noncontact type lower limb injury, such as ACL injury, is considered to occur due to
dynamic postural control failure during sports play. Since the GRF signal during the landing
task reflects the subject-specific postural strategy, it is suggested that our proposed algorithm
successfully classified at-risk subjects through learning the signal component specific only
to the injured subject which was buried in the GRF signal. Other injured subjects (No. 19
and No. 20) were distributed the opposite side of positive data, and, seemingly, they were
safe. One of the possible reasons for this result is that subjects 19 and 20 ruptured their
left ACL, whereas we used the GRF data of right leg landing task. Meanwhile, we could
identify subject 4, who suffered from a left ACL injury, as an at-risk player in this result.
Combining these facts, we can conclude that the risk factor of noncontact ACL injury, which
reflective of the GRF signal, was not unique. It is wellknown in the clinical field that the
mechanism of ACL injury is multifactorial; therefore, it is natural that there are differences in
GRF components among the different individuals. It is suggested that our proposed algorithm
feasibly distinguishes the different types of postural strategies, which both could lead to the
ACL injury.

7. Conclusion. In this paper we provide a new simple classification algorithm for the
functional PU classification problem. The key feature of the proposed algorithm is that it
does not require the estimation of the unknown class prior nor the constant probability that
a positive object is labeled. In addition, it is worth noting that the idea of our method can
be applied to kernel linear discriminant analysis for general data including multivariate data.
Moreover, we demonstrated that, even in the PU classification problem for functional data,
asymptotic perfect classification can often be achieved with the proposed method.

The main idea of the proposed method is to construct the discriminant subspace of FLDA
with fully labeled data from only positive and unlabeled data. Thus, at least when the two
covariances are the same, the performance of the proposed method cannot be better than the
performance of FLDA with fully-labeled data. This is the first limitation of the proposed
method. In this sense we might think that neither FLDA nor the proposed method performs
well when the covariances of the two groups are not the same. However, as mentioned in
Delaigle and Hall (2013), (functional) linear discriminant analysis often outperforms (func-
tional) quadratic discriminant analysis in practice, unless the total sample size n is rather large
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(e.g., n > 1000) or the covariances of the two groups differ significantly. As with FLDA, the
proposed method also can provide good performance in many practical situations.

On the other hand, we should mention that, when the sample size of the positive labeled
data is too small (e.g., nops < 10), the proposed method fails to construct an appropriate
discriminant subspace. This is the second limitation of the proposed method. In fact, as shown
in Setting 3 in the numerical experiments, when the sample size is not enough to detect the
difference between the two groups, the performance of the proposed method is poor.

Overall, since FLDA (with fully labeled data) provides comparable performance with other
classification methods including FQDA and nonparametric methods in practice (see Delaigle
and Hall (2012) and Delaigle and Hall (2013)), we can expect that the proposed method with
a moderate sample size of positive labeled data can provide good classification performance
from only positive and unlabeled functional data. In fact, it worked well not only for nu-
merical experiments but also for real chemometrics data and an important task in the sports
medicine field. Since the proposed method can be easily implemented and has a low com-
putational cost, we believe the proposed method is one of the possible choices for the PU
classification of functional data.
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SUPPLEMENTARY MATERIAL

Proofs and discussions (DOI: 10.1214/20-A0AS1404SUPP; .pdf). We provide technical
details and additional discussions to the supplement (Terada, Ogasawara and Nakata (2020)).
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