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Abstract: The Wishart distribution defined on the open cone of positive-
definite matrices plays a central role in multivariate analysis and multi-
variate distribution theory. Its domain of parameters is often referred to
as the Gindikin set. In recent years, varieties of useful extensions of the
Wishart distribution have been proposed in the literature for the purposes
of studying Markov random fields and graphical models. In particular, gen-
eralizations of the Wishart distribution, referred to as Type I and Type
II (graphical) Wishart distributions introduced by Letac and Massam in
Annals of Statistics (2007) play important roles in both frequentist and
Bayesian inference for Gaussian graphical models. These distributions have
been especially useful in high-dimensional settings due to the flexibility
offered by their multiple-shape parameters. Concerning Type I and Type
II Wishart distributions, a conjecture of Letac and Massam concerns the
domain of multiple-shape parameters of these distributions. The conjecture
also has implications for the existence of Bayes estimators corresponding
to these high dimensional priors. The conjecture, which was first posed in
the Annals of Statistics, has now been an open problem for about 10 years.
In this paper, we give a necessary condition for the Letac and Massam
conjecture to hold. More precisely, we prove that if the Letac and Massam
conjecture holds on a decomposable graph, then no two separators of the
graph can be nested within each other. For this, we analyze Type I and
Type II Wishart distributions on appropriate Markov equivalent perfect
DAG models and succeed in deriving the aforementioned necessary condi-
tion. This condition in particular identifies a class of counterexamples to
the conjecture.
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1. Introduction

Inference for graphical models is an important topic of contemporary interest
[20], and in this regard, various tools for inference have been proposed in the
statistics literature, including establishing sufficient and/or necessary conditions
for existence of high dimensional estimators. One important contribution in the
area are the families of Type I and Type II Wishart distributions introduced
by Letac and Massam (LM, henceforth) [19]. Type II Wishart distributions
of Letac-Massam have the distinct advantage of being conjugate priors for the
scale parameter of Gaussian graphical models and have the strong hyper Markov
property (see Appendix A.2 for the definition). Type I Wishart distributions are
weak hyper Markov, a property parallel to the weak hyper Markov property of
the hyper Wishart distribution [19]. Both Type I and II Wishart distributions
have multiple-shape parameters, in contrast with the classical Wishart distribu-
tion which has just one shape parameter that is restricted to the one dimensional
Gindikin set: Δ =

{
1
2 ,

2
2 ,

3
2 , . . . ,

p−1
2

}
∪
(
p−1
2 ,+∞

)
. The LM conjecture is closely

related to generalizations of the Gindikin set and the Gindikin conjecture on the
parameter set for Riesz distributions. A complete description of positive Riesz
distributions on homogeneous cones was given in [14].

These multiple-shape parameter Wishart distributions are useful for flexi-
ble high dimensional inference [21], and have been used for objective Bayesian
model selection in Gaussian graphical models [4]. Since the domain of parame-
ters of these high dimensional priors is not fully identified, it is not clear when
these distributions yield well-defined and proper priors. The Letac and Massam
conjecture (the LM conjecture, henceforth) aims to address this question for-
mally. The LM conjecture is critical for understanding when these priors lead
to well-defined Bayes estimators, since the existence of such estimators is not
always guaranteed in high dimensional settings with the sample size n � p.
This is due to the fact that, for n < p, being a proper posterior probability
is determined by specific choice of parameters (see [19, Corollary 4.1]). In this
sense resolving the LM conjecture can be viewed as a Bayesian analogue of
the frequentist problem of identifying sufficient and necessary conditions for the
existence of the maximum likelihood estimator for Gaussian graphical models.
The LM conjecture is also relevant to statistical applications of these Wishart
distributions as prior distributions. A reason is that in simulations and MCMC
methods our knowledge of the parameter space gives us leverage in exploring
the space and selecting the desirable parameters. Our main contribution in this
paper is to give a necessary condition for the LM conjecture to hold and con-
sequently identify a large subclass of decomposable graphs on which the LM
conjecture does not hold.

In what follows, we shall employ the notation introduced in the work of
LM [19]. The Type I and Type II Wishart distributions are defined on two
cones. These cones, respectively denoted by QG and PG , correspond to spaces
of covariance and inverse-covariance matrices of the Gaussian graphical model
over a decomposable graph G, that is, an undirected graph that has no induced
cycle of length greater than or equal to four. The cone PG , a sub-cone of positive
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definite matrices, is simply the space of inverse-covariance matrices and QG is
the space of incomplete covariance matrices. Incomplete, in the sense that only
entries along the edges (including the loops) of G are specified and the rest
are unspecified. When G is complete, that is, for the saturated Gaussian model
where no conditional independence assumption is imposed, Type I and Type II
Wishart distributions are identical to the classical Wishart and inverse-Wishart
distributions. Also, by restricting the multiple-shape parameter to a specific one
dimensional space, these distributions reduce to the hyper Wishart distribution
introduced by Dawid and Lauritzen [7] and the G-Wishart distribution defined
by Roverato in [22] respectively (see [19] for more details).

By having multiple-shape parameter, Type I and Type II Wishart distribu-
tions are more flexible than aforementioned prior distributions, but there is a
trade-off: for general decomposable graphs, except for homogeneous graphs and
paths, the (multiple-shape) parameter spaces are not fully identified. In case of
a non-homogeneous decomposable graph G, LM in [19] attempt to identify the
parameter spaces by first fixing a perfect order P of G and identify two corre-
sponding subsets AP and BP of the corresponding parameter spaces. By taking
the union of AP and BP over all perfect orders of G, they conjecture that they
can fully cover, and thus identify, the parameter spaces. They prove that the
conjecture holds when G is the path A4, that is, v1 − v2 − v3 − v4 (this is the
simplest non-homogeneous decomposable graph). More recently, Graczyk et al.
in [11] prove that the conjecture also holds for Type I Wishart distribution on
QAn , the cone of partial positive definite matrices on paths of length n ≥ 4.

In this paper, we approach the LM conjecture in an appropriate perfect DAG
setting. To this end, we first transform the Type I and Type II Wishart distri-
butions to distributions that correspond to appropriate perfect DAG models.
By analyzing the LM conjecture on the corresponding domains we derive a
necessary condition for the the LM conjecture to hold. This in return leads to
identifying a large subclass of decomposable graphs that are counterexamples
to the LM conjecture.

The organization of the paper is as follows. In §2 we recall some basic def-
initions and concepts for graphical models, in general, and Gaussian graphical
models, in particular. In §3 we provide the reader with definition of Type I and
Type II Wishart distributions and formally state the LM conjecture. In §4 we
prove the main result of the paper, Theorem 4.1, in which we identify a class
of counterexamples to the LM conjecture, via a simple constructive procedure.
The proof of this theorem is accomplished after introducing some new notation
and concepts and proving several key lemmas.

2. Preliminaries

2.1. Matrix notation

For a finite set V , let |V | denote the cardinality of V . Let RV and RV×V denote
respectively the linear spaces of |V |-dimensional vectors x = (xi| i ∈ V ) and
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|V | × |V | real matrices A = (Aij)i,j∈V . The spaces of |V | × |V | symmetric and

positive definite matrices are respectively denoted by SV (R) and PDV (R). When
V = {1, . . . , p}, the aforementioned spaces are denoted by Rp, Rp×p, Sp(R) and
PDp(R). A positive definite matrix is sometimes denoted by Σ � 0. For a, b ⊆ V ,
let xa denote the subvector (xi| i ∈ a) and let Aab denote the |a|× |b| submatrix
(Aij)i∈a,j∈b ∈ Ra×b. For simplicity, Aaa is often denoted by Aa. When b = V \a,
the Schur complement of Aa is defined as Abb|a = Ab−Aba(Aa)

−1Aab, assuming
that Aa in invertible.

2.2. Graph theoretic notation and terminology

We now introduce some preliminaries on graph theory and graphical models.
This section closely follows the notation and exposition given in [3]. A graph G is
a pair of objects (V,E), where V and E are two disjoint finite sets representing,
respectively, the vertices and the edges of G. An edge e ∈ E is said to be
undirected if e is an unordered pair {i, j}, or directed if e is an ordered pair
(i, j) for some i, j ∈ V . A graph is said to be undirected (directed) if its edges
are all undirected (directed). A directed edge (i, j) ∈ E is denoted by i → j.
When i → j and i 
= j we say that i is a parent of j, and j is a child of i. The
set of parents of i is denoted by pa (i), and the set of children of i is denoted by
ch (i). The family of i is fa (i) = pa (i) ∪ {i}. For an undirected edge {i, j} ∈ E
the vertex i is said to be a neighbor of j, or j a neighbor of i, if i 
= j. The
set of all neighbors of i is denoted by ne (i). In general two distinct vertices
are said to be adjacent, denoted by i ∼ j, if there exists either a directed or
an undirected edge between them. A loop in G is an ordered pair (i, i), or an
unordered pair {i, i} in E. For ease of notation, in this paper, we shall always
assume that the edge set of each graph contains all the loops; however, we draw
the graph without the loops.

A graph G′ = (V ′, E′) is (more precisely, induced) subgraph of G = (V,E),
if V ′ ⊆ V and E′ = V ′ × V ′ ∩ E. For a set A ⊆ V , the subgraph GA =
(A,A×A ∩ E) is said to be the graph induced by A. A graph G is said to be
complete if every pair of vertices are adjacent. A subset A ⊆ V is said to be
a clique if the induced subgraph GA is complete and is not contained in any
other complete subgraphs of G. A path in G of length n ≥ 1 from a vertex i
to a vertex j is a finite sequence of distinct vertices i0 = i, . . . , in = j in V
such that (it−1, it) or {it−1, it} are in E for each t = 1, . . . , n. A path is said
to be directed if at least one of the edges is directed. We say that i leads to
j, denoted by i → · · · → j, if there is a directed path from i to j. A graph
G = (V,E) is said to be connected if for any pair of distinct vertices i, j ∈ V
there exists a path between them. An n-cycle in G is a path of length n ≥ 3
with the additional requirement that the end points are identical. A directed
n-cycle is defined accordingly. A graph is acyclic if it does not have any cycles.
An acyclic directed graph, denoted by DAG, is a directed graph with no directed
cycles.
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Notation. Henceforth in this paper, we denote an undirected graph by G =
(V,E) and a DAG by D = (V, F ). In addition, otherwise stated, we always
assume that the vertex set V is {1, 2, . . . , p}.

The undirected version of a DAG D = (V, F ), denoted by Du = (V, F u),
is the undirected graph obtained by replacing all the directed edges of D by
undirected ones. An immorality in D is an induced subgraph of the form i →
j ← k. Moralizing an immorality entails adding an undirected edge between the
pair of parents that have the same children. The moral graph of D, denoted
by Dm = (V, Fm), is the undirected graph obtained by first moralizing each
immorality of D and then making the undirected version of the resulting graph.

Given a DAG, the set of ancestors of a vertex i, denoted by an (i), is the set
of those vertices j such that j → · · · → i. Similarly, the set of descendants of a
vertex i, denoted by de (i), is the set of those vertices k such that i → · · · → k.
The set of non-descendants of i is nd (i) = V \ (de (i) ∪ {i}). A set A ⊆ V is
said to be ancestral when A contains the parents of its members. The smallest
ancestral set containing a set B ⊆ V is denoted by An (B).

2.3. Decomposable graphs, homogeneous graphs and perfect DAGs

Let G = (V,E) be a decomposable graph. Here we employ some common no-
tations and definitions from Lauritzen [18]. The order (C1, . . . , Cr) of cliques
of G is said to be perfect if, for every t > 1, St = (C1 ∪ · · · ∪ Ct−1) ∩ Ct is a
separator. Every decomposable graph admits a perfect order of its cliques. Let
(C1, . . . , Cr) be one such perfect order (of the cliques) of G. With this perfect
order we associate:

• the histories Ht = C1 ∪ C2 ∪ · · · ∪ Ct, for t = 1, . . . , r,
• the separators St = Ht−1 ∩ Ct, for t = 2, . . . , r,
• the residuals R1 = C1 \ S2 and Rt = Ct \Ht−1 for t = 2, . . . , r.

Let C denote the set of cliques and let S denote the set of separators of a
decomposable graph G. Let r′ ≤ r− 1 denote the number of distinct separators
and ν (S) denote the multiplicity of S, that is, the number of t such that St = S.

A graph G is said to be homogeneous if it is decomposable and does not
contain the path A4, as an induced subgraph. Alternatively, a graph G is homo-
geneous if and only if for any two adjacent vertices i, j we have

cl(j) ⊆ cl(i) or cl(i) ⊆ cl(j), (2.1)

where, cl(j) = ne (j) ∪ {j} is the closure of j (see [19, Theorem 2.2]). The
reader is referred to [19, 15, 14] for all the common notions and properties of
homogeneous graphs.

Decomposable graphs have a deep connection to perfect DAGs. A DAG D =
(V, F ) is perfect if it has no immoralities, that is, the parents of all vertices are
adjacent, or equivalently if the set of parents of each vertex induces a complete
subgraph of D. If G = (V,E) is decomposable, then there exists a DAG version
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D = (V, F ) of G that is perfect. On the other hand, the undirected version of a
perfect DAG is necessarily decomposable [18].

Remark 2.1. In mathematical graph theory, homogeneous graphs are also known
as cographs. These graphs can be recognized in linear time algorithms [5, 6].

2.4. Gaussian graphical models

Let G = (V,E) be an undirected graph with the vertex set V = {1, . . . , p}. The
Gaussian graphical model over G, denoted by N (G), is the family of p-variate
(non-singular) Gaussian distributions Np (0,Σ) that are Markov with respect to
G. A simple characterization of Np (0,Σ) ∈ N (G) is that

(
Σ−1

)
ij

= 0 when-

ever {i, j} 
∈ E (a simple proof of this well-known fact is found in [18, sec-
tion 5.1]). Let Ω = Σ−1 denote the inverse-covariance matrix (also said to be
the precision or concentration matrix). Let Ω � 0 denote that Ω is positive
definite. The space of inverse-covariance matrices for the Gaussian distribu-
tions in N (G) is PG = {Ω � 0 : Ωij = 0 whenever {i, j} /∈ E}. The space of
covariance matrices, denoted by PDG , is the inverse of the elements of PG . It
is thus natural to parametrize N (G) over PG or PDG . The space of covari-
ance matrices PDG has a complicated structure, but it can be identified with
a simpler space, specifically, its image, denoted by QG , under the projection
mapping Σ �→ ΣE := (Σij : {i, j} ∈ E). By the Grone’s result in [12], an ele-
ment (Aij : {i, j} ∈ E) ∈ QG is described as a partial matrix (or an incomplete
matrix), where the entries along the edge set E are specified and the rest are un-
specified, with the property that for each clique C of G the |C|×|C|matrix AC =
(Aij : i, j ∈ C) is positive definite. Under this specification, each element of QG
can be completed to a unique positive definite matrix in PDG . Grone et al. [12,
Theorem 4] explicitly provide the bijective mapping (ΣE �→ Σ) : QG → PDG .
Now by composing this mapping with the mapping

(
Σ �→ Σ−1

)
: PDG → PG ,

we obtain the bijective mapping
(
ΣE �→ Σ−1

)
: QG → PG . The inverse of this

mapping is
(
Ω �→ Ω−1

E

)
: PG → QG , using the notation Ω−1

E for
(
Ω−1

)
E
. We

emphasize that these mappings are explicit when G is decomposable. We shall
frequently invoke these mappings in subsequent sections.

3. The Letac-Massam Wishart type distributions for decomposable
graphs

3.1. Markov ratios and corresponding measures on QG and PG

Henceforth in this paper, we assume that G = (V,E) is a decomposable graph
and the vertices are labeled 1, 2, . . . , p. The primary goal of this section is to
provide the reader with an overview of the families of Wishart-Type I and
Wishart-Type II distributions introduced in [19]. At the end of this section, we
shall formally state the LM conjecture concerning the domain of multiple-shape
parameters of these distributions.
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Let C1, . . . , Cr be a perfect order of G and let (S2, . . . , Sr) be the correspond-
ing sequence of separators, with possible repetitions. For each α ∈ Rr, β ∈ Rr−1

and ΣE ∈ QG , the Markov ratio HG (α, β,ΣE) is defined as follows:

HG (α, β,ΣE) =

∏r
t=1 det (ΣCt)

αt∏r
t=2 det (ΣSt)

βt
, (3.1)

where βi = βj whenever Si = Sj , so essentially (α, β) are restricted to an
(r + r′)-dimensional subspace of Rr × Rr−1, where r′ is the number of distinct
separators.

Let c = (c1, . . . , cr) and s = (s2, . . . , sr) where ct = |Ct| and st = |St|,
respectively. Moreover, let dΣE denote Lebesgue measure on QG . Then

μG (dΣE) = HG (− (c+ 1) /2,− (s+ 1) /2,ΣE) dΣE (3.2)

is a measure on QG . The image of μG under the mapping ΣE �→ Σ−1 : QG → PG
is a measure on PG given by

νG (dΩ) = HG
(
(c+ 1) /2, (s+ 1) /2,Ω−1

E

)
dΩ, (3.3)

where dΩ is Lebesgue measure on PG [19].

3.2. Type I & Type II Wishart distributions

The Type I and Type II Wishart distributions were introduced in [19]. The Type
I Wishart distribution is defined on the cone QG . The non-normalized density
of this distribution is given by

ωQG (α, β, UE , dΣE) = exp
{
−tr
(
ΣU−1

)}
HG (α, β,ΣE)μG (dΣE) ,

where (α, β) ∈ Rr×Rr−1 denotes the multiple-shape parameter and UE ∈ QG is
the scale parameter. Let A denote the set of (α, β) such that for every UE ∈ QG∫

QG

ωQG (α, β, UE , dΣE) < ∞ and (A1)

∫
QG

ωQG (α, β, UE , dΣE) /HG (α, β, UE) is functionally independent of UE .

(A2)
The normalized version of ωQG , denoted by WQG , is then defined for (α, β) ∈ A.
In similar fashion, the Type II Wishart distribution is defined on the cone PG
with the non-normalized density

ωPG (α, β, UE , dΩ) = exp {−tr (ΩU)}HG
(
α, β,Ω−1

E

)
νG (dΩ) .

Let B be the set of (α, β) such that for every UE ∈ QG∫
PG

ωPG (α, β, UE , dΩ) < ∞ and (B1)
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PG

ωPG (α, β, UE , dΩ) /HG (α, β, UE) is functionally independent of UE .

(B2)
The normalized version of ωPG , denoted by WPG , is defined for (α, β) ∈ B.

3.3. The LM conjecture for identifying A and B

An important goal of LM in [19] after defining the Type I and II Wishart
distributions is to identify their parameter spaces A and B, respectively. When
the underlying graph G is homogeneous both A and B are fully identified in
[19] (see Appendix A.3), but when G is not homogeneous, these spaces are only
partially identified. More precisely, LM in [19] identify a subset of A and a
subset of B as follows.

Let P = (C1, · · · , Cr) be a given perfect order of G and (S2, · · · , Sr) the
corresponding sequence of separators. For each separator S ∈ S let J (P , S) =
{t : St = S}. A set associated with P and A, denoted by AP , is the set of
(α, β) ∈ Rr × Rr−1 such that:∑

t∈J(P,S)

αt − ν (s)β (S) = 0, (A1)

for each S 
= S2 (where ν (S) is the multiplicity of S);

αt − (ct − 1) /2 > 0, for each t = 2, . . . , r; (A2)

α1 − δ2 > (s2 − 1) /2, where δ2 =
∑

t∈J(P,S2)

αt − ν (S2)β2. (A3)

Similarly, a set associated with P and B, denoted by BP , is the set of (α, β)
such that:∑

t∈J(P,S)

(αt + (ct − st) /2)− ν (S)β (S) = 0, for each S 
= S2; (B1)

− αt − (ct − st − 1) /2 > 0, (B2)

for each t = 2, . . . , r and −α1 − (c1 − s2 − 1) /2 > 0 ;

− α1 − (c1 − s2 + 1) /2− η2 > (s2 − 1) /2, (B3)

where η2 =
∑

t∈J(P,S2)

(αt + (ct − s2) /2)− ν (S2)β2.

Theorems 3.3 and Theorem 3.4 in [19] prove that if G is a non-complete
decomposable graph, then AP ⊆ A and BP ⊆ B. Therefore,

⋃
P AP ⊆ A and⋃

P BP ⊆ B, where the subscript P runs through all perfect orders of G. Except
in case of homogeneous graphs in which

⋃
P AP 
= A and

⋃
P BP 
= B, LM in [19]

conjecture that for non-homogeneous decomposable graphs these are equalities.
Their detailed computations [19, Corollary 3.1] show that the conjecture holds
on the path A4. More recently Graczyk et al. in [11] show that for every path
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An of length n ≥ 4, the conjecture holds for Type I Wishart distributions (that
is, Part (I) below when G = An).

The LM Conjecture. Let G be a non-homogeneous decomposable graph and
let Ord(G) denote the set of perfect orders of G. Then⋃

P∈Ord(G)
AP = A, (I)

⋃
P∈Ord(G)

BP = B. (II)

Remark 3.1. For each perfect order P = (C1, . . . , Cr) of the cliques of a decom-
posable graph G, the sets AP and BP , as manifolds, are of dimension r + 1.
Therefore, the LM conjecture does not hold if we can show that there is a non-
homogeneous decomposable graph G such that both A and B contain a manifold
of dimension greater than r + 1.

4. A general class of counterexamples to the LM conjecture

4.1. The main theorem

In this section, we prove the main result of this paper that produces a class of
counterexamples to the LM conjecture. The main idea is to express WQG and
WPG as distributions with respect to a particular perfect DAG version of G.
This turns out to be very useful for analyzing A and B, the spaces of multiple-
shape parameters for Type I and II Wishart distributions. Before we state the
theorem, we introduce the following notation.

Notation 4.1. Let G be a decomposable graph and let D be a DAG version of
it. Then S D denotes the set of all separators of G which are ancestral in D,
and rD denotes the size of S D.

Theorem 4.1. Suppose G is a decomposable graph with two nested separators,
that is, one separator contained in another separator. Then there exists a perfect
DAG version D of G such that rD ≥ 2 and both A and B contain a manifold of
dimension greater than or equal to r+rD. If, in addition, G is not homogeneous,
then the LM conjecture fails on G.

Theorem 4.1 now provides a convenient mechanism for constructing graphs
that are counterexamples to the LM conjecture. The graphs given by Figure
1(a) and Figure 1(b) are two examples of such graphs. In Figure 1(a), the
nested separators are {2} and {2, 5} and in Figure 1(b) the nested separators
are {4} ⊂ {3, 4} and {5} ⊂ {5, 6}. In Appendix A.4 we show how in general one
can construct counterexamples from any homogeneous graph H that has two or
more separators.
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Fig 1. Two counterexamples to the LM conjecture.

Remark 4.1. Recall that the Markov ratio HG (α, β,ΣE) in Equation (3.1) is de-
fined for (α, β) in an (r+r′)-dimensional subspace of Rr×Rr−1, thus dimension
of A and B are at most r+r′. In Lemma 4.1 we prove that for any decomposable
graph G there exists an induced DAG version D such that rD ≥ 1. Therefore,
Theorem 4.1 implies that dimension of A and B is greater than or equal to r+1,
which are also implied by Theorem 3.3 and Theorem 3.4 in [19]. Theorem 4.1
also implies that when G is a non-complete homogeneous graph both A and B
are of dimensions r + r′. This follows from the fact that, by Remark 4.2, there
exists a DAG version D of G such that rD = r′. This agrees with Theorem 3.1
and Theorem 3.2 in [19] which fully describe A and B.

The proof of Theorem 4.1 will be given in subsection 4.3. First, we proceed
to introduce tools that will allow us to relate a decomposable graph to a specific
perfect DAG version of it.

The proof of Theorem 4.1 heavily relies on the properties of certain perfect
DAG versions of decomposable graphs. We proceed to describe such perfect
DAG versions.

4.2. Induced perfect DAGs

First, we introduce a definition.

Definition 4.1. Let P = (C1, . . . , Cr) be a perfect order of G. A DAG version
D of G is said to be induced by P if the histories H1, . . . , Hr are all ancestral in
D.

Lemma 4.1. Let G be a non-complete decomposable graph and let P =
(C1, . . . , Cr) be a perfect order of G. Then every DAG version of G induced
by P is a perfect DAG. Moreover, there always exists a perfect DAG version D
of G induced by P such that S2 is ancestral in D, thus rD ≥ 1.

Proof. Suppose, to the contrary, that D is not perfect. Let t be the smallest
integer such that DHt , the induced DAG on Ht, is not perfect. It is clear that
1 < t ≤ r. Let i → k ← j be an immorality in DHt . This, in particular, implies
that there are two distinct, cliques Ct1 and Ct2 , with subscript t1, t2 ≤ t, such
that they contain i, k and k, j, respectively. Since t1 and t2 are distinct at least
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one of them say t1 ≤ t − 1. However, since Ht−1 is ancestral and j is a parent
of k ∈ Ht−1 we must have j ∈ Ht−1. This contradicts the fact that the induced
DAG on Ht−1 is perfect.

Now we show that in particular there exists a DAG D induced by P such that
S2 is ancestral in D. First, consider the case where there are only two cliques.
We start with relabeling the vertices in S2, H1 \ S2 and R2, respectively, in a
decreasing order. Let D be the DAG version of G induced by this order, that
is, an edge {i, j} ∈ E is converted to a directed edge i → j if i > j. By this
construction, then S2 and H1 are ancestral in D. Now suppose that such a DAG
version exists for any decomposable graph with number of cliques less than
r ≥ 3. By the mathematical induction, there exists a DAG version D′ of GHr−1

such that S2, H1, . . . , Hr−2 are ancestral in D′. Without loss of generality, we
can assume that the vertices in D′ are labeled from p, . . . , p− |Rr|. Let us label
the vertices in Rr from 1, . . . , |Rr| and let D be the DAG version of G induced
by this order. One can easily check that D has the desired properties.

Below we state and prove a more particular version of Lemma 4.1 that is
required.

Proposition 4.1. Let G be a non-homogeneous decomposable graph that has
two nested separators S′ � S. Then there exists a perfect order P of G such
that for the perfect DAG induced by P the separator S2 is ancestral in D and
furthermore rD ≥ 2.

Proof. First, we choose a perfect order P such that the separator S2 = S. Now
we slightly modify the construction of D in the second paragraph of the proof
of Lemma 4.1 by relabeling the vertices in S′ ⊂ S2 in a decreasing order. By
this labeling, S′ as well as S will be ancestral in D.

Remark 4.2. When H = (V,E) is a non-complete homogeneous graph there
always exists a perfect DAG version D of H such that rD is equal to r′, the
number of (distinct) separators ofH. To construct D, we direct each edge (i, j) ∈
E either as i → j if cl(j) ⊂ cl(i) or j → i if cl(i) ⊂ cl(j) (in case of cl(j) = cl(i)
arbitrarily we choose one of these directed edges). First note that i → k ← j
implies that cl(i) = cl(j), therefore either i → j or j → i. Also by construction
D is transitive, that is, i → j → k implies i → k. This in particular implies:

(1) D is acyclic. Since i1 → · · · → iν → i1 implies that {i1, . . . , iν} is a clique
of H that does not intersect any other clique, which is impossible unless
H is complete or disconnected.

(2) Every separator ofH is ancestral in D. On the contrary, suppose that there
exists a separator S and a directed path i → · · · → j ∈ S. By transitivity,
then i → j. Let C be a clique containing i and j. Since S is a separator
there is another clique C ′ that contains it. However, cl(j) ⊂ cl(i) implies
that C ′ ⊂ C, which is a contradiction.
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4.3. Two key lemmas

We proceed with two lemmas essential to the proof of Theorem 4.1. The first
lemma yields an expression for the Markov ratio HG(−(c + 1)/2,−(s + 1)/2,
ΣE), defined by Equation (3.1), in terms of a perfect DAG version of G.

Lemma 4.2. Suppose that D is a perfect DAG version of the decomposable
graph G. For a vertex j let paj denote |pa(j)|. Then

HG

(
−c+ 1

2
,−s+ 1

2
,ΣE

)
=

∏
C∈C det (ΣC)

− |C|+1
2∏

S∈S det (ΣS)
− |S|+1

2

=
∏
j∈V

(
Σjj|pa(j)

)− paj+2

2 det
(
Σpa(j)

)− 1
2 , (4.1)

where for a positive definite matrix Σ,

Σjj|pa(j) = Σjj − Σj,pa(j)(Σpa(j))
−1Σpa(j),j .

Proof. We shall proceed by the method of mathematical induction. Suppose this
is true for any decomposable graph with number of vertices less than p and we
prove the lemma for |V | = p. The equality trivially holds when p = 1. Let us
therefore assume that p > 1. As before, let r be the number of the cliques and
consider the following cases.

1) Suppose that r = 1, that is, G is complete. This implies that pa(1) =
V \ {1}, therefore det(Σ) = Σ11|pa(1) det(Σpa(1)). Thus, we can write

∏
C∈C det (ΣC)

− |C|+1
2∏

S∈S det (ΣS)
− |S|+1

2

= det (Σ)
− p+1

2

=
(
Σ11|pa(1) det

(
Σpa(1)

))− p+1
2

=
(
Σ11|pa(1)

)− pa1+2
2 det

(
Σpa(1)

)− 1
2 det

(
Σpa(1)

)− p
2

=
(
Σ11|pa(1)

)− pa1+2
2 det

(
Σpa(1)

)− 1
2

p∏
j=2

(
Σjj|pa(j)

)− paj+2

2 det
(
Σpa(j)

)− 1
2 ,

where the last equality uses the induction hypothesis for the induced graph
Gpa(1).

2) Suppose that r ≥ 2. By Lemma 4.1 we can assume that D is induced
by some perfect order P = (C1, . . . , Cr). This, in particular, implies that
a vertex in Rr has no child. Without loss of generality, we label a such
vertex as 1 ∈ Rr. We now consider two cases:
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a) If the residual Rr = {1}, then (C1, . . . , Cr−1) and DV \{1} are, respec-
tively, a perfect order and a perfect DAG version of GV \{1}. Moreover,
Sr = pa(1). Now it follows that

∏r
t=1 det (ΣCt)

− ct+1
2∏r

t=2 det (ΣSt)
− st+1

2

=

∏r−1
t=1 det (ΣCt)

− ct+1
2∏r−1

t=2 det (ΣSt)
− st+1

2

det
(
ΣRr|Sr

) cr+1
2 det (ΣSr)

sr−cr
2

=

p∏
j=2

(
Σjj|pa(j)

)− paj+2

2 det
(
Σpa(j)

)− 1
2
(
Σ11|pa(1)

)− pa1+2
2 det

(
Σpa(1)

)− 1
2

=

p∏
j=1

(
Σjj|pa(j)

)− paj+2

2 det
(
Σpa(j)

)− 1
2 .

b) If the residual Rr has more than one element, then (C1, . . . , Cr−1,
Cr \{1}) is a perfect order of GV \{1} with associated separators S2, . . . , Sr.
Using the induction hypothesis we obtain

p∏
j=1

Σ
− paj+2

2

jj|pa(j) detΣ
− 1

2

pa(j) = Σ
− pa1+2

2

11|pa(1) detΣ
− 1

2

pa(j)

p∏
j=2

Σ
− paj+2

2

jj|pa(j) detΣ
− 1

2

pa(j)

= Σ
− cr+1

2

11|Cr\{1} det
(
ΣCr\{1}

)− 1
2 det

∏r−1
j=1 det (ΣCt)

− ct+1
2∏r

j=2 det (ΣSt)
− st+1

2

det
(
ΣCr\{1}

)− cr
2

=

∏r−1
j=1 det (ΣCt)

− ct+1
2∏r

j=2 det (ΣSt)
− st+1

2

det (ΣCr )
− cr+1

2

=

∏r
j=1 det (ΣCt)

− ct+1
2∏r

j=2 det (ΣSt)
− st+1

2

Remark 4.3. The Markov ratio in Equation (4.1) is the square root of the
Jacobian of the inverse mapping

(
ΣE �→ Σ−1

)
: QG → PG (see [19, Theorem

2.1]).

Example 4.1. Let us illustrate the result of Lemma 4.2 for the decomposable
graph G and its perfect DAG version D given in Figure 2(a) and Figure 2(b).
Consider the perfect order

P = (C1 = {3, 5, 6} , C2 = {4, 5, 6} , C3 = {2, 6} , C4 = {1, 4}) .

The separators of G are S2 = {5, 6}, S3 = {6} and S4 = {4}. Recall the
notation fa(j) = pa(j) ∪ {j}. Using the relationships between the vertices in
D we have C1 = fa(3), C2 = fa(4), C3 = fa(2), C4 = fa(1), S2 = pa(3),
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Fig 2. A counterexample to the LM conjecture II.

S3 = pa(2) and S4 = pa(1). Now we can write the Markov ratio as∏4
t=1 detΣ

− ct+1
2

Ct∏4
t=2 detΣ

− st+1
2

St

=
detΣ−2

fa(3) detΣ
−2
fa(4) detΣ

−3/2
fa(2) detΣ

−3/2
fa(1)

detΣ
−3/2
pa(3) detΣ

−1
pa(2) detΣ

−1
pa(1)

=
Σ−2

33|pa(3) detΣ
−2
pa(3)Σ

−2
44|pa(4) detΣ

−2
pa(4)Σ

−3/2
22|pa(2) detΣ

−3/2
pa(2)Σ

−3/2
11|pa(1) detΣ

−3/2
pa(1)

detΣ
−3/2
pa(3) detΣ

−1
pa(2) detΣ

−1
pa(1)

= Σ−2
33|pa(3) detΣ

−1/2
pa(3)Σ

−2
44|pa(4) detΣ

−1/2
pa(4)Σ

−3/2
55|pa(5) detΣ

−1/2
pa(5)Σ

−3/2
22|pa(2)

× detΣ
−1/2
pa(2)Σ

−3/2
11|pa(1) detΣ

−1/2
pa(1)Σ

−1
66

=

6∏
j=1

Σ
− paj+2

2

jj|pa(j) detΣ
−1/2
pa(j).

The second key lemma we require in the proof of Theorem 4.1 is as follows.

Lemma 4.3. Let D be a DAG version of the decomposable graph G induced
by the perfect order P. Then for each j = 2, . . . , r we have det

(
ΣRt|St

)
=∏

i∈Rt
Σii|pa(i).

Proof. Let Kt = Ht \ Ct for each j = 2, . . . , r. Consider partitioning of ΣHt as

ΣHt =

⎛⎝ ΣRt ΣRtSt ΣRtKt

ΣStRt ΣSt ΣStKt

ΣKtRt ΣKtSt ΣKt

⎞⎠ .

Now for each t = 2, . . . , r, by Corollary A.1 in Appendix A.1, we have ΣHt ∈
PDGHt

, and St separates Rt from Kt. By Lemma 5.5 in [18] we have

det (ΣHt) =
det (ΣCt) det

(
ΣHt−1

)
det (ΣSt)

.

By rewriting this and using Lemma A.4 we obtain

det
(
ΣRt|St

)
= det (ΣHt) det

(
ΣHt−1

)−1
=
∏
k∈Rt

Dkk,

where, for an index j, Djj denotes Σjj|pa(j) (we refer the reader to Lemma A.4
in Appendix for another usage of this notation).
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4.4. Proof of Theorem 4.1

Let P be a perfect order of G. By using either Proposition 4.1 or Remark 4.2,
there exists a perfect DAG version D of G induced by P such that S2 is ancestral
in D and rD ≥ 2. We proceed to prove that the dimension of A and B is greater
than or equal to r + rD.

A) We show that the dimension of A is greater than or equal to r + rD as
follows. For this, first we use Lemma 4.2 to rewrite the density of the Type I
Wishart distribution.

HG (α, β,ΣE) =

∏r
t=1 det (ΣCt)

αt∏r
t=2 det (ΣSt)

βt

= det
(
ΣR1|S2

)α1
det (ΣS2)

α1

r∏
t=2

det
(
ΣRt|St

)αt

r∏
t=2

det (ΣSt)
αt−βt

= det
(
ΣR1|S2

)α1

r∏
t=2

det
(
ΣRt|St

)αt
∏

S∈S D

det(ΣS)
ηS

×
r∏

S/∈S D

det (ΣS)
∑

(αt:t∈J(P,S))−ν(S)β(S)
, (4.2)

where ηS is a number determined by S, α and β. By Lemma 4.3 and Part (ii)
of Lemma A.4 in Appendix A.1, each term such as det

(
ΣRt|St

)
and det (ΣS),

for each S ∈ S D, is products of Σjj|pa(j) for some j ∈ V . Let

ÃP =
{
(α, β) ∈ Rr × Rr−1 :

∑
(αt : t ∈ J (P , S))− ν (S)β (S) = 0,

∀S /∈ S D}.
Then for every (α, β) ∈ ÃP , Equation (4.2) is written as

HG (α, β,ΣE) =
(
Σjj|pa(j)

)λj
, (4.3)

where λj = λj (α, β) is a linear combination of the components of α and β.

Therefore, if (α, β) is restricted to ÃP , then Equation (4.1) and Equation (4.3)
together imply that

ωQG
(α, β, UE , dΣE)

= exp
{
−tr
(
ΣU−1

)} p∏
j=1

Σ
λj

jj|pa(j)

p∏
j=1

Σ
− paj+2

2

jj|pa(j) detΣ
− 1

2

pa(j)dΣE . (4.4)

Now the integral of the right-hand side expression in Equation (4.4) is finite,
over QG , if and only if λj > paj/2 for each j = 1, . . . , p (see [1, section 7]).
Furthermore, if this condition is satisfied, then we have∫

QG

exp
{
−tr
(
ΣU−1

)} p∏
j=1

Σ
λj

jj|pa(j)

p∏
j=1

Σ
− paj+2

2

jj|pa(j) detΣ
− 1

2

pa(j)dΣE ∝
p∏

j=1

U
λj

jj|pa(j)

for λj > paj/2.
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Therefore, for each (α, β) ∈ ÃP and λj > paj/2, Equation (A1) is satisfied.

It is clear that Equation (A2) is also satisfied, because for each (α, β) ∈ ÃP

by Equation (4.3) we have HG (α, β, UE) =
∏p

j=1

(
Ujj|pa(j)

)λj
, which implies

that the proportionality constant is not a function of the hyper-parameter U .
This shows that both (A1) and (A2) are satisfied on a manifold of dimension
≥ r + rD, the dimension of ÃP .

B) We proceed to show that the dimension of B is also larger than or equal
to r+rD. By using Equation (4.1) and Equation (4.2), we write the the Markov
ratio that appears in the density of WPG as

H

(
α+

c+ 1

2
, β +

s+ 1

2

)
=

∏r
t=1 det (ΣCt)

αt+
ct+1

2∏r
t=2 det (ΣSt)

βt+
st+1

2

= det
(
ΣR1|S2

)α1+
c1+1

2

r∏
t=2

det
(
ΣRt|St

)αt+
ct+1

2
∏

S∈S D

det(ΣS)
ηS+

|S|+1
2

×
r∏

S/∈S D

det (ΣS)
∑(

αt+
ct−|S|

2 :t∈J(P,S)
)
−ν(S)β(S)

=

p∏
j=1

D
γj

jj

r∏
S/∈S D

det (ΣS)
∑(

αt+
ct−|S|

2 :t∈J(P,S)
)
−ν(S)β(S)

, (4.5)

where each γj is an affine combination of the components of α and β. Conse-
quently, if (α, β) is restricted to the set

B̃P = {(α, β) ∈ Rr×Rr−1 :
∑

t∈J(P,S)

(αt+
ct − |S|

2
)−ν (s)β(S) = 0, ∀S /∈ S D}.

Then, ωPG , the non-normalized version of the Type II Wishart distribution,
is written as

ωPG (α, β, UE , dΩ) = exp {−tr (ΩU)}
p∏

j=1

D
γj

jj dΩ for every (α, β) ∈ B̃P .

(4.6)

Now in Appendix A.5 we have shown that if we set

π̂D(α, β, U, dΩ) = exp

{
−1

2
tr (ΩU)

} p∏
i=1

D
− 1

2ηj+paj+2
jj dΩ, (4.7)

then

∫
PG

π̂PD (η, U, dΩ) =

p∏
j=1

Γ
(ηj

2 − paj

2 − 1
)
2

ηj
2 −1 (

√
π)

paj det
(
Upa(j)

) ηj
2 − paj

2 − 3
2

det
(
Ufa(j)

) ηj
2 − paj

2 −1
,
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for ηj > paj +2. If the exponents −1
2ηj + paj +2 in Equation (4.7) are replaced

by γj , and U is replaced by 2U , then we conclude that∫
PG

exp {−tr (ΩU)}
p∏

i=1

D
γj

jj dΩ =

p∏
j=1

Γ
(
−γj +

paj

2 + 1
)
(
√
π)

paj

U
−γj+

paj
2 +1

jj|pa(j) det
(
Upa(j)

) 1
2

, (4.8)

for γj < paj/2+1. Using Equation (4.6) and Equation (4.1) for each (α, β) ∈ B̃P
and γj < paj/2 + 1, we have∫

PG

ωPG (α, β, UE , dΩ) ∝ U
γj−

paj
2 −1

jj|pa(j) det
(
Upa(j)

)− 1
2

= U
− paj

2 −1

jj|pa(j) det
(
Upa(j)

)− 1
2

p∏
j=1

U
γj

jj|pa(j)

×
r∏

S/∈S D

det (ΣS)
∑(

αt+
ct−|S|

2 :j∈J(P,S)
)
−ν(S)β(S)

= H

(
−c+ 1

2
,−s+ 1

2
, UE

)
H

(
α+

c+ 1

2
, β +

s+ 1

2
, UE

)
= H (α, β, UE) .

From these we now conclude that Equation (B1) and Equation (B2) are
satisfied on a set of dimension larger than or equal to r + rD. The rest of the
proof now follows from Remark 3.1 since we have shown that A and B contain
a set of dimension ≥ r + rD > r + 1.

Remark 4.4. The proof of Theorem 4.1 shows that we can modify the definition
of AP and BP by reducing the number of equality constraints in (A1) and
(B1) by removing constraints with S ∈ S D. This identifies larger subsets of A
and B of dimensions r + rD. However, the following example shows that this
modification is not enough to fully describe A and B since the dimension of the
latter sets can be even larger than r + rD.

Example 4.2. Consider the graph G given in Figure 1(a) and its DAG version
given in Figure 3(b). Note that D is induced by the perfect order

P = {C1 = {4, 7, 8}, C2 = {3, 7, 8}, C3 = {6, 8}, C4 = {2, 5, 6}, C5 = {1, 5, 6}} .

First note that the only ancestral separators in this DAG version of G are
S2 = {7, 8} and S3 = {8}, thus Theorem 4.1 guarantees that the dimension of
A and that of B are larger than or equal to 7. However, a similar proof as that
of Theorem 4.1 shows that these dimensions are in fact greater than or equal to
8. For this, let us rewrite the Markov ratio as:

∏5
j=1 det

(
ΣCj

)αj−
cj+1

2∏5
j=2 det

(
ΣSj

)βj−
sj+1

2
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Fig 3. Another counterexample to the LM conjecture. In this graph, the dimension of A and
B is ≥ 8.

=
det (Σ�4�)

α1 det (Σ�3�)
α2 det (Σ�6�)

α3 det (Σ�2�)
α4 det (Σ�1�)

α5

det (Σ≺3�)
β2 det (Σ≺6�)

β3 det (Σ≺5�)
β4 det (Σ≺1�)

β5

× det (Σ�4�)
−2

det (Σ�3�)
−2

det (Σ�6�)
− 3

2 det (Σ�2�)
−2

det (Σ�1�)
−2

det (Σ≺3�)
− 3

2 det (Σ≺6�)
−1

det (Σ≺5�)
−1

det (Σ≺1�)
− 3

2

=
Dα1

44D
α1
77D

α1
88D

α2
33D

α2
77D

α2
88D

α3
66D

α3
88D

α4
22D

α4
55Σ

α4
66D

α5
11D

α5
55Σ

α5
66

Dβ2

77D
β2

88D
β3

88Σ
β4

66D
β5

55Σ
β5

66

×
8∏

j=1

(
Σjj|≺j�

)− paj+2

2 det (Σ≺j�)
− 1

2

= Dα5
11D

α4
22D

α2
33D

α1
44D

α4+α5−β5

55 Dα3
66D

α1+α2−β2

77 Dα1+α2+α3−β2−β3

88 Σα4+α5−β4−β5

66

×
8∏

j=1

Σ
− paj+2

2

jj|≺j� detΣ
− 1

2
≺j�, (4.9)

where

paj =

⎧⎪⎨⎪⎩
2 for j = 1, 2, 3, 4,

1 for j = 5, 6, 7,

0 for j = 8.

Let λj be the exponent of Djj in Equation (4.9) for each j = 1, . . . , 8. If we
set α4 + α5 − β4 − β5 = 0, then we obtain∫

QG

ωQG (α, β, U, dΣE)

=

∫
QG

exp {−tr (ΣU)}
8∏

j=1

D
λj

jj

8∏
j=1

(
Σjj|pa(j)

)− paj+2

2 det
(
Σpa(j)

)− 1
2 dΣE .

(4.10)

The integrand in the right-hand-side of Equation (4.10) corresponds to the
non-normalized density of the generalized Riesz distribution on QD and has a
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finite integral if and only if λj > paj/2 for each j = 1, . . . , 8. Furthermore, under
these conditions, we have

∫
QG

exp {−tr (ΣU)}
8∏

j=1

D
λj

jj

8∏
j=1

(
Σjj|pa(j)

)− paj+2

2 det
(
Σpa(j)

)− 1
2 dΣE

∝
p∏

j=1

(
Ujj|pa(j)

)λj
. (4.11)

See [1, §6] for details. By very similar calculations as those who led to Equation
(4.9) we can show that

HG (α, β, U) =

p∏
j=1

(
Ujj|pa(j)

)λj
Uα4+α5−β4−β5

66 .

Therefore from Equation (4.11), for any (α, β) satisfying λj (α, β) > paj/2
and α4 + α5 − β4 − β5 = 0 we conclude that∫

QG

ωQG (α, β, U, dΣE) /HG (α, β, U) < ∞,

and the proportionality constant is not a function of the hyper-parameter U .
Consequently, A contains a manifold of dimension greater than or equal to 8.
We leave it to the reader to show that the dimension of B is also greater than
or equal to 8.

In this example, the main difficulties in fully identifying A, and similarly B,
arise in integrating (4.9) in the presence of the term Σα4+α5−β4−β5

66 (associated
with the non-ancestral separator S = {6}) and then checking whether conditions
(A2) and (B2) are satisfied. Here, we simply eliminate this term by equating
α4+α5−β4−β5 = 0. This may be necessary, but more involved calculations are
required to prove it. When G is an arbitrary decomposable graph we encounter
a similar problem in Equation (4.2) and Equation (4.5) in the presence of the
terms like

∏
S �∈S D ΣνS

S .

Remark 4.5. In Theorem 4.1 we have proved that a necessary condition for the
LM conjecture to hold for a decomposable graph is that the graph should not
have nested separators. An open question is that whether this condition is also
sufficient. More generally, giving sufficient and necessary conditions for decom-
posable graphs on which the LM conjecture holds remains an open problem.
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Appendix

A.1. Gaussian DAG models

Let D = (V, F ) be DAG. Without loss of generality, we can assume that the
vertices are parent ordered, that is, for each i, j ∈ V if i → j, then i > j. The
Gaussian DAG model over D, denoted by N (D), is the family of Gaussian
distributions Np (0,Σ) which are (directed) Markov with respect to D. A simple
observation in [2] shows that a random vector X = Np(0,Σ) is directed Markov
with respect to D if and only if Σ � 0 and

Σpr(j),j = Σpr(j),pa(j)

(
Σpa(j)

)−1
Σpa(j),j for every j ∈ V , (A.12)

where pr(j) = {i : i ∈ nd (j) and i > j}. Therefore, the space of covariance ma-
trices for N (D) is

PDD =
{
Σ � 0 : Σpr(j),j = Σpr(j),pa(j)

(
Σpa(j)

)−1
Σpa(j),j , ∀j ∈ V

}
. (A.13)

For a DAG D, we define QD = QDu . It is clear that if D is a perfect DAG
version of a decomposable graph G, then QD = QG .

Here we state and prove the following lemma and its corollary, which we will
need in Subsection 4.3.

Lemma A.4. Let D be a DAG and let X ∼ Np (0,Σ) ∈ N (D). Let Σ−1 =
Ω = LD−1L	 be the modified Cholesky decomposition of Σ−1, which means D
is a diagonal matrix and L is a unit lower triangular matrix.

Part (i) For each i, j ∈ V if i ∈ pa (j), then Lij = −βji, where βji is the
partial regression coefficient of Xi in the linear regression of Xj on
Xpa(i) and Dkk = Σjj|pa(k).
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http://www.ams.org/mathscinet-getitem?mr=2341706
http://www.ams.org/mathscinet-getitem?mr=3889064
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http://www.ams.org/mathscinet-getitem?mr=0600984
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Part (ii) If A is an ancestral subset of V , then (ΣA)
−1

= LAD
−1
A L	

A. In par-
ticular, det (ΣA) =

∏
k∈A Dkk (see [17] for a related result).

Proof. Part (i) follows from Equation (A.12) (see [3, 23] for details). We proceed
to prove Part (ii). Since A is ancestral in D, by using Equation (A.13), one can

easily show that XA ∼ N|A| (0,ΣA) ∈ N (DA). Now let (ΣA)
−1

= KΛ−1K	 be

the modified Cholesky decomposition of (ΣA)
−1

. Part (i) and the fact that A is
ancestral imply that for each i ∈ pa (j), Kij = −βij = Lji and Λjj = Σjj|pa(j) =
Djj . This implies that K = LA and Λ = DA

Corollary A.1. Let D be a perfect DAG version of G and let Σ ∈ PDG. If A
is an ancestral subset of V (in D), then ΣA ∈ PDGA .

Proof. Let Σ = LD−1L	 be the modified Cholesky decomposition of Σ. If A is
an ancestral subset of V , then (ΣA)

−1
= LAD

−1
A L	

A by Part (ii) of Lemma A.4.

Using this fact one can easily check that (ΣA)
−1
ij = 0 whenever {i, j} 
∈ A.

A.2. Hyper Markov properties

Let {Pθ : θ ∈ Θ} be a family of identifiable distributions that are Markov with
respect to a decomposable graph G = (V,E). Suppose X ∼ Pθ. For A ⊂ V , let
θA denote the parameter involved in the marginal distribution of XA. Similarly,
for A,B ⊂ V , let θB|A be the parameter involved in the conditional distribution
of XB|XA (at any value XA = xA). Note that the mapping θ �→ (θA, θA|B) is a
bijection [7, Lemma 3.1]. Recall that (A,B) is said to be a decomposition of G
if A ∪B = V and A ∩B separates A from B.

Definition A.2. Let L denote the law of a fixed probability distribution on
Θ. The law L is said to be weak hyper Markov with respect to G if for any
decomposition (A,B) of G, under the mapping θ �→ (θA, θA|B),

θA ⊥⊥ θB |θA∩B.

The law L is said to be strong hyper Markov with respect to G if for any
decomposition (A,B) of G,

θA ⊥⊥ θB|A.

A.3. The domain of parameters for Type I and Type II Wishart
distributions on homogeneous graphs

We consider the domain of parameters A and B for the Type I and II Wishart
distributions when the graph is homogeneous. For any homogeneous graph H,
let TH = (T,VH,�) be the Hasse tree of H (see [19, §2.2] for greater detail).
Note that a node in T is indeed an equivalent class ī ⊆ V for some node i ∈ V ,
where j ∈ ī if and only if cl (j) = cl (i). The relation j̄ � ī holds if and only if
cl(j) ⊆ cl(i) and defines a partial order on T . If t ∈ T is an internal node, that
is, a node that has a child, then Ct :=

⋃
{u ∈ T : u � t} is a clique of H. Also
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if q ∈ T is a leaf node, that is, has no child, then Sq :=
⋃

{u ∈ T : u � q} is a
separator of H. For each u ∈ T define

ρu (α, β) =
∑
u�t

α (Ct)−
∑
u�q

ν (Sq)β (Sq) ,

mu :=
∑
t�u

nt,

where nt is the number of the elements in the equivalent class t. By Theorem
3.1 and Theorem 3.2 in [19],

A =

⎧⎨⎩(α, β) : ρu(α, β) >
1

2

∑
u�t

nt −
1

2
, ∀u ∈ T

⎫⎬⎭ (A.14)

B =

⎧⎨⎩(α, β) : ρu(α, β) <
1

2
− 1

2

∑
u�t

nt, ∀u ∈ T

⎫⎬⎭ (A.15)

A.4. Constructing a decomposable graph with nested separators
from a homogenous graph

Let H be a homogeneous graph with two or more separators. Proposition 2.2
in [19] guarantees that H has at least two nested separators. Since H is not
complete it contains an induced path of length 2, say v1 − v2 − v3. Let us
augment H to obtain a graph G by adding a vertex v0 and an edge between
v0 and v1. It is clear that G is decomposable since this construction creates no
cycles. However, this addition creates the induced path v0 − v1 − v2 − v3, thus
G is not homogeneous. Moreover, G contains nested separators since two nested
separators in H remain nested separators in G.

A.5. Evaluating the integral in Equation (4.7)

Let D be a DAG and let ΘD denote the image of PD under the mapping Ω �→
(D,L), where (D,L) denotes the Cholesky factor of Ω, as defined in Appendix
A.1.

Proposition A.2. Let dL =
∏

(i,j)∈E,i>j dLij and dD =
∏p

i=1 dDii. Then for

any α = (α1, . . . , αp) and U � 0,

zD(U,α) =

∫
ΘD

exp

{
−1

2
tr(LD−1L	U)

} p∏
i=1

D
−αi/2
ii dLdD < ∞,

if and only if αi > pai + 2 for each i = 1, . . . , p. Furthermore, in this case

zD(U,α) =

p∏
i=1

Γ
(
αi

2 − pai

2 − 1
)
2αi/2−1(

√
π)pai det(Upa(i))

αi/2−pai/2−3/2

det(Ufa(i))αi/2−pai/2−1
.

(A.16)
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Proof. First, we integrate out the terms involving Dii’s.∫
exp

[
−1

2
tr
{(

LD−1L	)U}] p∏
i=1

D
−αi/2
ii dLdD

=

∫
exp

[
−1

2
tr
{
D−1

(
L	UL

)}] p∏
i=1

D
−αi/2
ii dLdD

=

∫
exp

{
−1

2

p∑
i=1

D−1
ii (L	UL)ii

}
p∏

i=1

D
−αi/2
ii dDdL

=

∫ [ p∏
i=1

∫
exp

{
−1

2
D−1

ii (L	UL)ii

}
D

−αi/2
ii dDii

]
dL

=

∫ p∏
i=1

Γ
(
αi

2 − 1
)
2αi/2−1

((L	UL)ii)
αi/2−1

dL (if and only if αi > 2 for each i = 1, 2, . . . , p)

=

∫ p∏
i=1

Γ
(
αi

2 − 1
)
2αi/2−1

((L·i)	UL·i)
αi/2−1

dL

=

∫ p∏
i=1

Γ
(
αi

2 − 1
)
2αi/2−1{(

1 L	
pa(i),i

)(
Uii Ui,pa(i)

Upa(i),i Upa(i)

)(
1

Lpa(i),i

)}αi/2−1
dL

=

p∏
i=1

∫
Rpai

Γ
(
αi

2 − 1
)
2αi/2−1{(

1 L	
pa(i),i

)(
Uii Ui,pa(i)

Upa(i),i Upa(i)

)(
1

Lpa(i),i

)}αi/2−1
dLpa(i),i.

(A.17)

We evaluate this integral by considering a more general form:∫
Rd

dx{(
1 x	)(λ b	

b A

)(
1
x

)}γ ,

where the block partitioned matrix, formed by λ ∈ R, b ∈ Rd and the (d− 1)×
(d− 1) matrix A, is positive definite. To simplify the integral above we proceed
in two steps.

1) When x ∈ R, by the formula provided on [8, page 16] we have the one
dimensional integral∫

R

dx

(1 + x2)γ
=

{√
πΓ(γ− 1

2 )
Γ(γ) γ > 1

2 ,

∞ otherwise.

The d-dimensional version of this integral by repeated application of the right-
hand-side formula is computed as∫

Rd

dx

(1 + x	x)
γ =

{
(
√
π)dΓ(γ− d

2 )
Γ(γ) γ > d

2 ,

∞ otherwise.
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2) Consider the general integral∫
Rd

dx{(
1 x	)(λ b	

b A

)(
1
x

)}γ .

Under the linear transformation y = A1/2x+A−1/2b, for γ > d
2 we have∫

Rd

dx{(
1 x	)(λ b	

b A

)(
1
x

)}γ =
1

det(A)1/2

∫
Rd

1

(y	y + a− b	A−1b)
γ dy

=
(
√
π)dΓ

(
γ − d

2

)
Γ(γ) det(A)1/2 (a− b	A−1b)

γ−d/2
.

(A.18)

By applying (A.18) to the integral in (A.17) we obtain

zD(U,α)

=

p∏
i=1

∫
Rpai

Γ
(
αi

2 − 1
)
2αi/2−1{(

1 L	
pa(i),i

)(
Uii Ui,pa(i)

Upa(i),i Upa(i)

)(
1

Lpa(i),i

)}αi/2−1
dLpa(i),i

=

p∏
i=1

Γ
(
αi

2 − pai

2 − 1
)
2αi/2−1(

√
π)pai det(Upa(i))

αi/2−pai/2−3/2

det(Ufa(i))αi/2−pai/2−1
,

where det(Upa(i)) = 1 whenever pa(i) = ∅. Thus zD(U,α) is finite if and only if
αi > pai + 2 for each i = 1, . . . , p.

Lemma A.5 ([22, 16]). The Jacobian of the mapping ψ : (D,L) �→
(
LD−1L	)

is
∏p

j=1 D
−(paj+2)
jj .

Corollary A.2. Let

π̂D(α, β, U, dΩ) = exp

{
−1

2
tr (ΩU)

} p∏
i=1

D
− 1

2ηj+paj+2
jj dΩ,

then∫
PD

π̂PD (η, U, dΩ) =

p∏
j=1

Γ
(ηj

2 − paj

2 − 1
)
2

ηj
2 −1 (

√
π)

paj det
(
Upa(j)

) ηj
2 − paj

2 − 3
2

det
(
Ufa(j)

) ηj
2 − paj

2 −1
,

for ηj > paj + 2.

Proof. The result is immediate by change of variables using Lemma A.5 and
then Proposition A.2.
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