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Abstract: In this work we study estimation of signals when the number of
parameters is much larger than the number of observations. A large body
of literature assumes for these kind of problems a sparse structure where
most of the parameters are zero or close to zero. When this assumption
does not hold, one can focus on low-dimensional functions of the parameter
vector. In this work we study one-dimensional linear projections. Specifi-
cally, in the context of high-dimensional linear regression, the parameter of
interest is β and we study estimation of aTβ. We show that aT β̂, where β̂
is the least squares estimator, using pseudo-inverse when p > n, is minimax
and admissible. Thus, for linear projections no regularization or shrinkage
is needed. This estimator is easy to analyze and confidence intervals can
be constructed. We study a high-dimensional dataset from brain imaging
where it is shown that the signal is weak, non-sparse and significantly dif-
ferent from zero.
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1. Introduction

This research emerged from analysis of a high-dimensional dataset obtained from
brain imaging. The data belongs to a study of cortical thickness of adults who
had a diagnosis of attention deficit/hyperactivity disorder (ADHD) as children
(Proal et al., 2011). The dataset consists of cortical thickness measurements for
about 80000 cortical voxels, obtained from magnetic resonance imaging (MRI)
scans, as well as demographic and behavioral measurements, for each of 139
individuals. In this study, it had been noticed by Reiss et al. (2012) that z-
scores corresponding to the voxelwise relationship between cortical thickness and
ADHD diagnosis did not follow the theoretical standard normal distribution.
Instead, the distribution of z-scores exhibited a substantial shift away from zero,
indicating a possible widespread cortical thinning over the brain for individuals
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with ADHD. It is unclear, however, whether those results could have been caused
by correlation between voxels rather than by a real relationship with clinical
diagnosis (Azriel and Schwartzman, 2015).

Fig 1. Histogram of the z-scores of the real data (a) and of the simulated data (b,c), where in
(b) there is no signal and in (c) there is. The red line illustrates the standard normal density.

Figure 1 shows histograms of (a) the actual z-scores (standardized to be dis-
tributed N(0, 1) under the global null hypothesis) and (b,c) the z-scores in sim-
ulated data sets; see Section 2.2 below for exact definitions. In (b) the response
variable is simulated independently (no signal) whereas in (c) the regression coef-
ficients are not zero (simulated from a normal distribution). In all cases, there is
a clear departure from the global null, but in (b) the departure is caused only by
the correlation structure and in (c) it can be attributed to a true signal. In case
(a) it is not clear if there is a signal or not. The fact that the correlation structure
can cause shifted z-scores can also be seen in the brain maps in Figure 2; (a) cor-
responds to Figure 1(a), showing the observed widespread positive z-values,
while (b) corresponds to Figure 1(b), showing the simulated widespread nega-
tive z-values. Thus, as originally pointed out by Efron (2007) (and later made
more precise by Schwartzman (2008) and Azriel and Schwartzman (2015)), even
when the theoretical null model is correct, the empirical distribution of the test
statistics can be different from the theoretical null distribution simply because
of the correlation structure. In this work, we aim at estimating such departures
and detecting whether the departure is due to correlation, or to true signal.

In our motivating dataset, there are two groups: 59 adults in whom ADHD
had been established in childhood, along with 80 controls. Previous works (Proal
et al., 2011; Reiss et al., 2012) considered the resulting multiple hypotheses prob-
lem (voxel-wise) and used the FDR criterion to detect areas in the cortical region
where the null is rejected. As discussed below, this approach has low power to
detect signals that are weak and non-sparse. As an alternative perspective, we
set up here the problem as a regression of the response on the cortical thick-
ness measurements as predictors, and attempt to find linear projections of the
regression coefficients that will indicate a spatial distribution of the signal. In
Azriel and Schwartzman (2015) we studied the distribution of the z-scores under
the global null hypothesis accounting for the correlation structure. This allows
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Fig 2. Brain maps of the z-scores of the real data (a) and of the simulated data (b).

us to test the global null, as we show here (in Section 5.2), but not to estimate
the signal, which is the interest of the current work.

Consider the linear regression model, Y = Xβ + ε where ε = (ε1, . . . , εn)
T

is i.i.d. with mean zero and variance σ2 and X is a fixed n× p matrix. While in
many cases, including the brain imaging dataset mentioned above, X is in fact
random, in this work we adopt the conditionality principle (Birnhaum, 1962) and
treat it as fixed since it is ancillary to the parameter of interest. Here we focus on
the high-dimensional case p > n. In this context, the Lasso estimator suggested
by Tibshirani (1996) has gained much popularity and many extensions were
suggested. That line of research is related to sparsity assumptions where most
of the parameters are assumed to be zero or close to zero. Those assumption
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are violated in many datasets including the one that motivated our study, as
demonstrated by the histogram of Figure 1. Dicker (2014) and Janson et al.
(2017) studied inference of signal-to-noise ratio, and of σ2 in the non-sparse case.
For multiple comparisons, the Benjamini-Hochberg (BH) procedure (Benjamini
and Hochberg, 1995) is guaranteed to choose the non-zero parameters with
controlled error rate, but in our dataset, no significant voxels (at the level of
α = 0.05) are found by BH. Indeed, the BH estimator is highly variable under
strong dependence (Owen, 2005; Schwartzman and Lin, 2011) and has low power
when there are many non-zero parameters but all have still small values.

To answer the question of whether a non-sparse signal is present, we aim
at estimating θ = aTβ (when it is identifiable) for a predetermined vector a.
When a is sparse, θ corresponds to a small subset of β that is of interest,
while for non-sparse a, θ is a global measure of the signal. We show that the

estimator θ̂ = aT
(
XTX

)−
XTY, where

(
XTX

)−
denotes the Moore-Penrose

pseudo-inverse, is unbiased, admissible and minimax. Moreover, its distribution
is easily derived and therefore one can construct confidence intervals and perform
hypothesis testing. We also study the asymptotic behavior of this estimator and
show that it is consistent in certain cases. Even if it is not consistent, a confidence
interval can be constructed, it just does not shrink to zero.

Our estimator is a linear function of the z-scores, which are defined in Section
2. We first study estimation of linear combinations of the expectation vector of
the z-scores in Section 3 and then return to the problem of estimation of θ in
Section 4. We analyze the motivating dataset in Section 5. Section 6 concludes
with final remarks. The proofs of the theoretical results and additional results
are given in the appendices.

2. The use of z-scores

In high-dimensional regression problems, it is common to reduce the data to
univariate z-scores, computed from univariate regressions of the outcome on
each predictor. In our situation, univariate z-scores are a useful tool not only
for data analysis but as a theoretical tool for deriving the desired estimator.

2.1. Model

The brain imaging dataset we study consists of n = 139 subjects with informa-
tion on p = 81924 vertices per subject. Let Yi denote the behavioral assessment

of the i-th subject and let X
(j)
i to be the cortical thickness in the j-th vertex of

the i-th subject. We consider the regression model

Y = Xβ + ε, (1)

where the i, j-th entry of X is X
(j)
i , Y = (Y1, . . . , Yn)

T , β is a p-dimensional
vector of unknown coefficients and the ε’s are i.i.d with mean zero and variance
σ2. Here both the response and the covariates are assumed centered so that there
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is no need for an intercept in the model, and so the matrix X characterizes the
substantive predictors. For simplicity, we ignore the weak dependence induced
by the centering of the response.

2.2. z-scores

Consider the simple linear regression estimates β̂(j) =
∑n

i=1 X
(j)
i Yi/sjj , where

sjk :=
∑n

i=1 X
(j)
i X

(k)
i , and define the z-scores

Z̃j =
β̂(j)

se(β̂(j))
=

∑n
i=1 X

(j)
i Yi√

sjjσ
.

Then we have E(β̂(j)) = β(j) +
∑

k �=j sjkβ
(k)/sjj and V ar(β̂(j)) = σ2/sjj , so

that

E(Z̃j) =
√
sjj

β(j)

σ
+

1

σ
√
sjj

∑
j �=k

sjkβ
(k), V ar(Z̃j) = 1,

Cov(Z̃j , Z̃k) =
sjk√

sjj
√
skk

.

Letting D be a diagonal matrix with Djj =
√
sjj , we can rewrite in matrix form

as
Z̃ = D−1XTY/σ (2)

with respective expectation and covariance matrix

μ̃ = Σ̃Dβ/σ, Σ̃ = D−1XTXD−1. (3)

Let A− denote the pseudo-inverse of matrix A. For any vector a such that
θ = aTβ is identifiable, we show in Proposition 3 below that there exists a

vector ã = σD
(
XTX

)−
a such that aTβ = ãT μ̃, mapping the estimation of

linear functions of β to linear functions of μ̃. Conversely, for any ã, we can
define a = DΣ̃ã/σ such that ãT μ̃ = aTβ, mapping linear functions of μ̃ to
linear functions of β.

Notice that the pairwise correlations between the z-scores are the pairwise
correlations between the cortical thickness measurements at each vertex. Be-
cause the regression is conditional on the vertexwise measurements, we take the
pairwise correlations as fixed and known. Note too that the definition of Z̃ in-
volves σ, which is unknown. Estimation of σ2 is discussed in Section 5; for now
it is considered as a known constant.

2.3. The natural estimator

Writing θ = ãT μ̃, the natural estimator is θ̂ = ãT Z̃. As simple as this estimator
is, it turns out it is not a bad one. It is unbiased, and we show in Section 3



180 D. Azriel and A. Schwartzman

that, under Model (1) when assuming that the ε’s are normal, it is minimax
and admissible.

If we write this estimator in terms of the representation θ = aTβ we obtain

the elegant form θ̂ = aT
(
XTX

)−
XTY (Section 4.2). In order to investigate

the properties of this estimator we first study the general problem of estimating
θ = ãTμ using Z, which is a vector with mean μ and finite variance. This is
done in the next section. We return to the regression problem in Section 4.

3. Properties of the natural estimator

In this section we study the general model where Z is a vector of mean μ and
covariance matrix Σ. Our interest is in estimation of θ = ãTμ and we study
the properties of the natural estimator ãTZ. The basic setting and notation is
described in Section 3.1. Section 3.2 shows that the natural estimator is minimax
and admissible.

3.1. Dimension reduction

Suppose that Z := (Z1, . . . , Zp) is a vector of mean μ and covariance matrix Σ.

Our interest is in estimating θ = ãTμ and the natural estimator is θ̂ = ãTZ. We
will suppress in the notation the dependence on p when there is no confusion.

Let Γ be the matrix whose columns are the eigenvectors of Σ, denoted by
γ1, . . . ,γp, and let Λ be the diagonal matrix with the corresponding eigenvalues,
denoted by λ1 ≥ · · · ≥ λp, in the diagonal. When the rank of Σ, denoted by r, is
smaller than p (as in our motivating dataset), then Σ has r positive eigenvalues
and the rest p−r eigenvalues are 0. In this case, we define Λ to be r×r diagonal
matrix with the r positive eigenvalues in the diagonal and we define Γ to be
p × r matrix with the r corresponding eigenvectors in the columns. We have
that Σ = ΓΛΓT .

It is convenient to work with the following dimension reducing transformation
W = Λ−1/2ΓTZ. The length of W is r ≤ p and

E(W) = Λ−1/2ΓTμ := η, Cov(W) = Ir×r.

Hence, W is an uncorrelated, low dimensional representation of Z. Similar to
principal components analysis (PCA), W and η can be thought of as the expres-
sions of Z and μ in the canonical coordinate system defined by the covariance
matrix Σ.

When Σ is of full rank, we can write in this coordinate system, θ = bTη,
where b = Λ1/2ΓT ã. This can be generalized to the degenerate case r < p as
stated in the following proposition, which also shows that there is a one-to-one
correspondence between Z (of length p) and W (of length r). That is, even
though Z belongs to R

p, it lies in a r-dimensional sub-space. This implies that
θ can be estimated using either Z or W and both ways are equivalent.

Proposition 1. Suppose that r < p.
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(I) Let Γ⊥ be the p × (p − r) matrix whose columns are the eigenvectors
orthogonal to Γ. Then ΓT

⊥Z = ΓT
⊥μ is a deterministic known vector, and

therefore we can assume without loss of generality that it equals 0.
(II) If ΓT

⊥μ = 0, then the same relation as in the full-rank case holds, namely,

θ = bTη with b = Λ1/2ΓT ã.
(III) If ΓT

⊥μ = 0, then the dimension reduction transformation is one-to-one

and we can write Z = ΓΛ1/2W.

3.2. Minimaxity and admissibility of the natural estimator

The natural estimator is θ̂ = ãTZ = bTW. We have that E(θ̂) = θ and that

V ar(θ̂) = ãTΣã = bTb. Hence, the squared-error loss E(θ̂−θ)2 = ãTΣã = bTb
does not depend on θ. Also, when Z is normal, as shown in the proof of the result
below, θ̂ is a limit of Bayes rules. These properties imply that θ̂ is minimax
and admissible. The result it stated below, and the formal proof is given in
Appendix D.

Theorem 1. Let Z ∼ N(μ,Σ) and consider the natural (maximum likelihood)

estimator θ̂ = bTW = ãTZ.

(I) (Minimaxity) The natural estimator is minimax for every p; i.e., for all

estimators θ̃, supη∈Rr E(θ̃ − θ)2 ≥ bTb = supη∈Rr E(θ̂ − θ)2.
(II) (Admissibility) The natural estimator is admissible for every p; i.e., there

exists no estimator θ̃ such that E(θ̃−θ)2 ≤ bTb for all η ∈ R
r with strict

inequality for some η.

In Appendix A an asymptotic analysis of the variance of the natural estimator
is presented. Specifically, it is shown that under some regularity conditions,
when the natural estimator is inconsistent, then so is every other estimator.
Yet, even if the variance of θ̂ does not go to zero, a confidence interval can still
be constructed; it just does not shrink.

4. High-dimensional regression

In this section we study estimation of linear projections of β, which is mean-
ingful only when those linear projections are identifiable. Section 4.1 provides a
sufficient and necessary condition for identifiability of θ. The results of Section
3.2 are applied to the regression setting in Section 4.2. The natural estimator is
compared to the ridge regression estimate in Section 4.3 and a simulation study
is reported in Section 4.4. Section 4.5 introduces an asymptotic analysis of the
estimator’s variance.

4.1. Identifiability

Recall the regression setting described in Section 2. The full vector β is not
identifiable: if Xβ = Xβ′ then β and β′ are indistinguishable. Here we are
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interested in estimation of θ = aTβ. Proposition 2 below provides a necessary
and sufficient condition for identifiability of θ. To state the result, we use the
eigendecomposition notation of Section 3.1 for Σ = XTX/n = ΓΛΓT .

Proposition 2. Let θ = aTβ and define the r × 1 vector α = ΓTa. Consider
the orthogonal decomposition a = Γα+Γ⊥α⊥; then θ is identifiable iff α⊥ = 0.

The proposition indicates that θ is identifiable iff ΓT
⊥a = 0, i.e., iff a belongs

to the subspace spanned by the columns of Γ. Another way to understand
Proposition 2 is that it specifies the part of θ that is estimable. If we write
θ = aTβ = αT (ΓTβ)+αT

⊥(Γ
T
⊥β) by the orthogonal decomposition of a, we see

that θ contains the portion ΓTβ of β that projects β onto the subspace spanned
by the columns of X and the portion orthogonal to it. The former is accessible
through the observations (linear model) but the latter is not and therefore not
estimable. We will see this phenomenon in the data analysis (Section 5.4).

Proposition 2 implies that θ = aTβ is identifiable when a ∈ R
p belongs to a

subspace of dimension r. Since r ≤ n, when p > n, then for “most” a’s, θ = aTβ
is not identifiable. In practice, there are two ways to proceed. First, for a given
a one can consider instead of a the closest identifiable vector, i.e.,

arg min
ã∈{Γα:α∈Rr}

‖ã− a‖2,

which by standard linear algebra is ΓΓTa. Second, one can consider all possible
directions, γ1, . . . ,γr (the columns of Γ) and adjust for multiplicity. These two
ways are demonstrated in our motivating dataset, as described in Section 5.4.

4.2. Estimation of θ

We are interested in estimating θ = aTβ. Assuming that θ is identifiable, Propo-
sition 2 implies that a = Γα. The natural estimator of θ is given by the following
result. Recall the definitions of the z-score vector Z̃ and its expectation μ̃ given
by (2) and (3).

Proposition 3. Assume that θ is identifiable. Let ã = σ
nDΓΛ−1ΓTa =

σD
(
XTX

)−
a, where A− denotes the pseudo-inverse of matrix A.

(I) The parameter of interest θ = aTβ is equal to θ = ãT μ̃.

(II) The natural estimator of θ is ãT Z̃ = aT
(
XTX

)−
XTY. Its variance is

σ2aT
(
XTX

)−
a.

Interestingly, the form of the natural estimator is very similar to that of the
usual linear regression estimate in low dimensions, except that here the pseudo-
inverse is used because the matrix XTX is not invertible. The form of the
variance is a generalization of the variance of aT β̂, when β̂ is the least squares
estimate. Regarding the quality of the natural estimator, Theorem 1 applies and
we have the following corollary.
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Corollary 1. Assume Model (1) where ε ∼ N(0, σ2I) and consider estimation

of θ = aTβ when it is identifiable. The natural estimator, θ̂= aT
(
XTX

)−
XTY,

is minimax and admissible among all estimates that depend on Y through XTY.

4.3. Comparison to Ridge

To illustrate the admissibility and minimaxity of the natural estimator, consider
the ridge regression estimate

β̂
R

λ =
(
XTX+ λI

)−1
XTY,

for a tuning parameter λ. The corresponding estimate of θ is aT β̂
R

λ ; it coincides

with the natural estimator when λ = 0. The mean square error of ΓT β̂
R

λ is
(Farebrother, 1976)

(Λ+ λI)−1(σ2Λ+ λ2ΓTβTβΓ)(Λ+ λI)−1,

and therefore the mean square error of aT β̂
R

λ = αT Γ̃
T
β̂
R
is

αT (Λ+ λI)−1(σ2Λ+ λ2ΓTβTβΓ)(Λ+ λI)−1α

= αT (Λ+ λI)−1σ2Λ(Λ+ λI)−1α+αT (Λ+ λI)−1λ2ΓTβTβΓ(Λ+ λI)−1α;

the first summand is the variance and the second is the squared bias. The latter

is not bounded in β and therefore aT β̂
R

0 , which is the natural estimator, is

minimax. When λ is sufficiently small then the mean square error of aT β̂
R

λ is

smaller than that of aT β̂
R

0 (Farebrother, 1976). However, the optimal λ depends

on unknown quantities and hence the natural estimator, which is aT β̂
R

0 , is still
admissible.

4.4. Comparison to Ridge and Lasso via simulations

To illustrate the theoretical results, we compared the natural estimator to the
Lasso and Ridge estimates in a simulation study. For Lasso and Ridge esti-
mates, the tuning parameter λ was chosen using cross-validation (computed
by the ‘parcor’ package in R). We chose n = 100 and p = 500. Each row

Xi = (X
(1)
i , . . . , X

(p)
i ) was sampled from a multivariate normal distribution with

mean 0 and exchangeable correlation structure with ρ = 0.7 (see Appendix B
for exact definitions); X is fixed across all simulations. For each simulated data
sets we sampled ε1, . . . , εn ∼i.i.d N(0, 1). We repeated the above procedure 1000
times and considered model (1) under three scenarios:

• Full β: βj = 1/
√
500 for j = 1, . . . , 500,

• Half-full β: βj =

{
2/

√
500 j = 1, . . . , 250
0 j = 251, . . . , 500

,
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• Sparse β: βj =

{
1/

√
5 j = 1, . . . , 5

0 j = 6, . . . , 500
;

under all three scenarios ||β|| = 1. For all scenarios we considered estimation of
θ = aTβ for a = ΓΓT1, which is the closest vector (in L2 sense) to 1 spanned by
the eigenvectors corresponding to positive eigenvalues, yielding an identifiable θ.

The simulation average and standard deviation of the mean square error
(MSE) are reported in Table 1. It is shown that the risk of the natural estimator
is constant across all scenarios. For the full and half-full β scenarios, the risk of
the natural estimator is smaller than both Lasso and Ridge. Under the sparse
scenario the risk of the natural estimator and ridge is about the same. Lasso
under-performs in all three scenarios but it has the advantage of identifying the
non-zero entries of β in the sparse scenario. Overall, the results agree with our
theoretical findings: the natural estimator estimates θ well in a minimax sense.

Table 1

Simulation average (standard error) of the MSE.

Scenario Natural estimator Lasso Ridge
Full β 0.020 (0.0009) 0.421 (0.0054) 0.040 (0.0015)

Half-full β 0.020 (0.0009) 0.396 (0.0054) 0.028 (0.0011)
Sparse β 0.021 (0.0009) 0.024 (0.0011) 0.020 (0.0009)

4.5. Consistency

We now study the asymptotic behavior of θ̂. For the asymptotic analysis, we
assume the following regularity conditions (recall that here Σ = XTX/n):

The diagonal elements of Σ are bounded from above (4)

The positive eigenvalues of Σ are bounded from below (5)

γT
j β

γT
j′β

is bounded for every j, j′ ∈ {1, . . . , r}. (6)

V ar(Y ) and σ2 are O(1). (7)

Condition (4) is natural and is also assumed in the asymptotic analysis in Ap-
pendix A. Condition (5) guarantees that Σ does not become degenerate on
the subspace spanned by the columns of Γ (which is the relevant subspace; see
Proposition 2). This means that the columns of X are bounded away from being
linearly dependent. By (6), β is “equally spread out” over all the eigenvectors
that correspond to the positive eigenvalues, i.e., β is not concentrated on only
part of the subspace. This means that β is not sparse in the coordinate system
defined by Γ (although it could be sparse in the original coordinate system).
When (7) holds true, then the signal-to-noise ratio is of order of a constant.

Conditions (4) and (5) can be easily verified since Σ is fixed. In our motivat-
ing dataset, the maximal diagonal element of Σ is 0.71 and the minimal positive
eigenvalue is 2.80. In contrast, conditions (6) and (7) depend on unknown param-
eters and cannot be checked directly. While condition (7) is natural, condition
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(6) is less so. However, Proposition 4 below gives an asymptotic approxima-

tion to V ar(θ̂), which depends on these conditions. Thus, in practice, one can

compute V ar(θ̂) exactly and compare it to the approximation. We do so in the
data analysis in Section 5.4 and find the fit between the theoretical and actual
variances to be good.

The following proposition states the order of magnitude of the variance of θ̂
for two cases of a.

Proposition 4. Assume Model (1) and consider estimation of θ = aTβ when
it is identifiable. Suppose that θ = O(1), and that (4)–(7) hold true. Consider
two cases of α (recall that a = Γα):

• Global average: αj = cαO(1) where cα depends on p, n and the O(1)
term is bounded uniformly over all j = 1, . . . , r (i.e.,

αj

cα
is bounded uni-

formly). Then V ar(θ̂) equals O(1) p
nr2

∑r
j=1

1
λj
.

• Single entry: α = cαej for a scalar cα and where

ej := (0, . . . , 0, 1︸︷︷︸
jth place

, 0, . . . , 0).

Then V ar(θ̂) equals O(1) p
nλj

.

The variance of θ̂ in the global average case depends on the asymptotic be-
havior of p and

∑r
j=1

1
λj
. For high-dimensional X (p > n), we have that r = n.

In this setting suppose that there are K eigenvalues of order p (spike model) and
all the remaining eigenvalues are of the same order. Because

∑
j>K λj = O(p),

that order must be p/n, and then
∑n

j=1
1
λj

= O(n2/p). As a consequence,

the variance is O(1/n) and θ̂ is consistent. Also when X is low-dimensional
(p = o(n)), then r = p. Because all λj are bounded from below (Condition (5)),

then
∑p

j=1
1
λj

≤ O(p) and therefore θ̂ is consistent.

For the single entry case, consistency depends on the eigenvalue λj and the
rate of grow of p. For high-dimensional X (p > n), when λj is “large”, i.e., of

order of p, then θ̂ is consistent. When X is low-dimensional (p = o(n)), θ̂ is
consistent (using condition (5) that λj is bounded from below).

As before, regardless of the consistency of θ̂, a confidence interval for θ can
still be constructed; it just may not shrink.

5. Analysis of the data

We now return to the brain imaging dataset, which was described in Section 2.

5.1. Estimation of σ2

In order to calculate the z-scores, σ2 needs to be estimated. Estimation of σ2

when β is non-sparse is a topic of two recent papers (Dicker, 2014; Janson
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et al., 2017). They work under the framework of random X and require rather
restrictive assumptions on the distribution ofX. Here we use the simple estimate
σ̂2 = 1

n

∑n
i=1(Yi − Ȳ )2, which is consistent for V ar(Y ). The latter is an upper

bound since V ar(Y ) ≥ V ar(Y |X) = σ2. Therefore, the resulting confidence
intervals are conservative. The upper bound is tight in the null case when β = 0.

5.2. Testing for the global null in the brain imaging dataset

In Azriel and Schwartzman (2015) we studied the empirical cumulative distri-
bution of a large number of correlated normals. We also analyzed the above
dataset assuming the global null holds true, i.e., that β = 0.

Consider the z-scores (denoted by Z̃) and its correlation matrix (denoted
by Σ̃) defined in (2) and (3). Roughly speaking, we showed that if K is the
number of “large” eigenvalues of Σ̃, i.e., of order p, then there exists a vector ξ =
(ξ1, . . . , ξK)T , where ξ1, . . . , ξK ∼i.i.d N(0, 1), such that Z̃|ξ is weakly correlated
(i.e., the Frobenius norm of the correlation matrix divided by p converges to
zero). Let m̃i := E(Z̃i|ξ), i = 1, . . . , p, then we have that under the global null∑p

i=1 m̃
2
i ∼

∑K
j=1 λjξ

2
j where ξ1, . . . , ξK ∼i.i.d N(0, 1).

In the above dataset we found that K = 2 works quite well. When K = 2 we
have that

∑p
i=1 m̃

2
i = 132018.9. The two large eigenvalues are λ1 = 23995.7 and

λ2 = 6959.6. Thus, for T = λ1ξ
2
1 + λ2ξ

2
2 we have that P (T > 132018.9) = 0.023

(computed by simulations), i.e., the p-value for the above test is 0.023, indicating
that the global null is rejected at the α = 0.05 level. We repeated the above
computation with K = 3, . . . , 10 and the resulting p-values were all smaller than
0.03. This result seems to imply that β �= 0. Since β is a large vector, it cannot
be estimated. Instead, below we study its low-dimensional projections.

5.3. Estimation of ãT μ̃

Consider now the mean of the z-scores μ̃ = E(Z̃) defined in (3). We first estimate

θ = 1
p

∑p
j=1 μ̃j (ã = 1/p). Here θ̂ = ãT Z̃ = 1.173 and ãT Σ̃ã = 0.264. The latter

can be efficiently computed by
∑r

j=1 α
2
j λ̃j , where λ̃j ’s are the eigenvalues of Σ̃,

computed as the squared singular values of XD−1; in this dataset the rank is
r = 136. Therefore a confidence interval for θ based on two standard deviations
is (0.144, 2.201); notice that it does not include 0. To interpret the result in more
natural units, by (19) (see Appendix C), an estimate of the average correlation

is 1
p

∑p
j=1

Z̃j√
n

= θ/
√
n = 0.099; a confidence interval based on two standard

deviations is (0.012, 0.187). This indicates that the average correlation between
the outcome and the cortical thickness over the brain is somewhat small, but is
still significantly different from zero.

While we get a significant result, the confidence interval for the average θ
does not shrink with increasing p. In fact, the confidence interval stabilizes al-
ready for relatively small p. For example, taking a random sample of voxels of
size p = 2000 gives a point estimate of 1.185 and a confidence interval of (0.154,
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Fig 3. (a) Plot of (λ̃1, . . . , λ̃r)/p. (b) Plot of
ˆ̃
dj for j = 1, . . . , r; a confidence interval is given

in dashed lines and the case j = 1 is colored in red.

2.216), not far from the results for the full dataset with p = 81924. The reason
for this, as suggested by the theory, is correlation between the voxels. To assess
this, the eigenvalues of Σ̃ are plotted in Figure 3(a). The first two eigenval-
ues are much larger than the rest, and it can be checked that in the variance
decomposition

∑r
j=1 α

2
j λ̃j , the first term captures 99.2% of the variance. This

heterogeneity among the eigenvalues is caused by strong correlation; if the voxels
were independent, then the eigenvalues would be much more homogeneous.

As a point of reference, if the entries of the matrix X were i.i.d. N(0, 1), then
the range of eigenvalues would be that of the Marchenko-Pastur distribution
(Paul and Aue, 2014). For n = 139 and p = 81924, the Marchenko-Pastur
range is (1±

√
p/n)2 = (541.8, 638.9). In contrast, in our data the range of the

eigenvalues is (λ̃1, λ̃p) = (33.4, 23995.7); see also Figure 4 (b). In addition, we

compared the eigenvalues of Σ̃ to a spiked covariance model (Johnstone, 2001),
where each row in X is sampled from independent mean zero normals with

variances (λ̃1, . . . , λ̃K , c, . . . , c) for c =
p−

∑K
j=1 λ̃j

p−K (so the sum of variances is p).
That is, the first K eigenvalues are the same as in Σ and the rest are equal. For a
literature review on spiked models see Paul and Aue (2014). The parameter K is
the number of large eigenvalues of the model. Figure 4 compares the eigenvalues
λ̃1, . . . , λ̃20 to the empirical eigenvalues of 200 simulations of the spiked model
with K = 2 and K = 10 and also to 200 simulations of i.i.d. N(0, 1). Although
the first K eigenvalues fit, more or less, the empirical ones, the gap between λ̃K

and λ̃K+1 is much smaller than in the spiked model. Therefore, while the spiked
model compares better to data than the Marchenko-Pastur distribution, there
is still non-negligible difference between model’s prediction and the observed
eigenvalues of X. It looks like that the eigenvalues of the real covariance matrix
decay slower than the variances in the spiked model.

Linear combinations of μ̃ other than the average are also of interest. Since
μ̃ is by definition spanned by the columns X, consider the representation of
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Fig 4. Boxplots of 200 simulations of the first 20 eigenvalues of X under the spiked model with
K = 2 (a) and K = 10 (b). The eigenvalues of the observed X, i.e., λ̃1, . . . , λ̃20, are denoted
by red ‘x’. In Figure (b) boxplots of 200 simulations of i.i.d. N(0, 1) are plotted in blue. Note
that the distribution of the eigenvalues, where it appears constant, it actually decays but very
slowly.

μ̃ with respect to the eigenvector space, i.e., we write μ̃ =
∑r

j=1 γ̃j d̃j , where

d̃j = γ̃T
j μ̃/p are the coefficients of μ̃ with respect to the eigenvectors γ̃1, . . . , γ̃136

of Σ̃. Figure 3(b) plots the estimates of d̃j and the associated confidence inter-

vals. We find that
ˆ̃
d1 = 1.268 and a confidence interval based on two standard

deviations is (0.186, 2.351). Note that these values are similar to the estimate
and confidence interval for θ = 1

p

∑p
j=1 μ̃j calculated above. This is not a co-

incidence; the first eigenvector is very close to the averaging constant vector
ã = 1/p with a correlation of 0.938 between the two. For illustration, Figure 5
shows a brain map of the first eigenvector, which is indeed almost constant over
the brain.

Back in Figure 3(b), the rest of the
ˆ̃
dj ’s for j > 1 are much closer to 0. This

suggests that most of the signal is contained in the subspace spanned by the first

eigenvector γ̃1. However, the variance of d̂1 is also higher than the other
ˆ̃
dj ’s.

The variance of
ˆ̃
dj is γ̃T

j Σ̃γ̃j = λ̃j/p; indeed, the first eigenvalue is much larger

than the other eigenvalues as illustrated in Figure 3(a). If we consider d̃j for
large j, then the signal seems to be weaker, but also the variance is smaller. As
indicated in Proposition 5 in Appendix A, when ã is orthogonal to the “large”
eigenvectors, the variance is small.

Not only the average signal is significantly different from zero, but one can
test the global null hypothesis μ̃ = 0 using the linear projections d̂j ’s. Let Tj =
ˆ̃
dj/sd(

ˆ̃
dj) = γ̃T

j Z̃, then T1, . . . , T136 are i.i.d N(0, 1), under the null (assuming
normality). Therefore, under the null, maxj=1,...,136 |Tj | is distributed as the
maximum absolute value of 136 i.i.d normals. In this case, maxj=1,...,136 |Tj | =
3.3, which yields a p-value of 0.064 (computed by simulation).

To sum up, our findings indicate that most of the signal μ̃ is in the direction of
the first eigenvector. However, since in this direction the variance is also higher,
it is difficult to determine the level of the signal in this direction, although the
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confidence interval does not cover zero. This is consistent with the theory given
in Appendix A, where it is shown that if ã is not orthogonal to the eigenvectors
corresponding to large eigenvalues, then the variance of θ̂ does not shrink to
zero.

Fig 5. Brain maps of the values of the first eigenvector.

5.4. Estimation of aTβ

We now consider estimation of θ = aTβ. As in Proposition 4 we study two
cases: global average and single entry. Starting with the former, ideally, we wish
to estimate the global average 1

p

∑p
j=1 βj = 1Tβ/p. Unfortunately, however, the

vector 1 is not spanned by the columns of Γ and as a consequence the average is
not identifiable. We can see this in terms of Proposition 2. Taking the expansion
1 = Γα+ Γ⊥α⊥, we have that

‖Γ⊥α⊥‖2
‖1‖2 =

‖1− Γα‖2
‖1‖2 = 0.0178.

The orthogonal component Γα⊥ is not zero, as required by Proposition 2 for
identifiability. However, its norm is small relative to the vector 1.

As a result, we consider instead the identifiable portion, determined by the
vector a = ΓΓT1/

√
n, and estimate θ = aTβ. The vector a is the closest vector

(in L2 sense) to 1/
√
n spanned by the columns of Γ, with a correlation with

it of 0.991, so again, the loss in estimation is small. The normalizing constant
gives ||a||2 = p/n and makes it consistent with the normalization of Proposi-
tion 4.



190 D. Azriel and A. Schwartzman

For such a we obtain θ̂ = aT
(
XTX

)−
XTY = 1.685. The variance of the

estimator is
∑r

j=1 α̃jλj = 1.627. Therefore, a confidence interval based on two
standard deviations is (−0.866, 4.236), which contains 0. In contrast, the confi-
dence interval of the estimate of 1

p

∑p
j=1 μj did not contain 0. In this dataset,

estimating the average β is harder than estimating the average μ. According to
Proposition 4, V ar(θ̂) is of the same order as p

n3

∑r
j=1

1
λj
. In this dataset the

latter expression is 0.47, which is not close to zero.

Fig 6. Plot of d̂j for j = 1, . . . , r; a confidence interval is given in dashed lines; j = 132 is
colored in red.

As in Section 5.3, we are also interested in estimating dj = γT
j β (which is

identifiable). This is the single entry case of Proposition 4. The estimates and
confidence intervals are presented in Figure 6. Here, unlike d̃j above, the variance
of dj is large for large j, since the eigenvalues appear in the denominator of the
expression of the variance p/(nλj). Also unlike above, the signal does not seem
to be very strong on the first eigenvectors. For some j’s, however, the estimator
of dj is significantly different from zero; for example, when j = 132, d̂j/sd(d̂j) =

3.47. Here the test for the maximum of d̂j/sd(d̂j) yields p-value of 0.035. For
illustration, Figure 7 shows a brain map of the eigenvector γ132. Note that, in
contrast with the first eigenvector γ1 shown in Figure 5, the eigenvector γ132 is
much more concentrated spatially. While j = 132 gives the strongest effect, the
vector β seems to have smaller components in other eigenvectors as well.

5.5. Summary of the data analysis and significance

We have seen that the vector μ̃ is mostly related to the first eigenvector γ1, while
the vector β is not. The relationship between these two vectors is expressed in
(3). Writing that relation as μ̃ = Σ̃Dβ/σ = nD−1ΓΛΓTβ/σ, we see that the
vector β is mapped to μ̃ through the eigenvalues of X. In particular, in this
dataset, the first eigenvalue λ1 is large, causing μ̃ to be highly aligned with
the first eigenvector γ1. The fact that the average μ̃ (or its projection onto the
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Fig 7. Brain maps of the values of the γ132.

first eigenvector) appears to be non-zero, is indicative of the vector β being
non-zero, with its effect amplified by the first eigenvalue. The vector β itself is
hidden from the z-scores, yet some linear combinations of it can be estimated
by the methods proposed here.

For the vector β we found that γT
j β̂ is largest when j = 132, which is

a relatively spatially concentrated eigenvector as presented in Figure 7. This
finding might be used to identify areas in the cortical region that are correlated
with the behavior assessed in the study.

6. Final remarks

The motivation for this study came from a dataset from brain imaging relating
cortical thickness at each voxel to a global behavioral measurement. We aim at
estimating one-dimensional linear projections of the coefficient vector β without
assuming sparsity. In fact, the resulting signal μ̃ contained in the voxelwise z-
scores does not seem to be sparse and traditional high-dimensional methods that
aim at identifying the small number of non-zero parameters are not useful. The
challenge is to distinguish between real signal and a seemingly high signal due to
a correlation effect. Our theoretical results imply that for certain projections and
correlation structures these two situations cannot be distinguished consistently.

For a given high-dimensional regression model, the general proposed approach
is to estimate γT

j β for all identifiable j’s. The results can be used for two types
of inference: a global test to check whether β = 0 and identification of significant
one-dimensional projections of β.
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Interestingly, regularization does not play a role in the estimation of linear
projections. In the classical setting Z ∼ N(μ, I), the famous work of Stein (1956)
showed that Z is inadmissible for μ. A better estimate can be obtained by using
shrinkage, or equivalently a certain kind of regularization. However, we have
shown that ãTZ is admissible and minimax for ãTμ. Thus, when the interest
is in the entire vector of μ, regularization is warranted, but for estimation of
linear projections of μ no regularization is required.

In this paper we investigated linear functions of β and necessary conditions
for when a consistent estimator to θ = aTβ exists. Other non linear functions are
also of interest. For example, in many applications it is desired to estimate the
number of non-zero entries of β (Chen, 2018) or the squared norm of β (Dicker,
2014). We hope that a future study will suggest procedures to estimate such
quantities and indicate when consistent estimates exists for non-linear functions
of β.

Appendix A: Consistency results for the natural estimator of
Section 3

To state our asymptotic results, we need some more notation. Recall that λ1 ≥
. . . ≥ λr are the positive eigenvalues of Σ and γ1, · · · ,γr are the corresponding
eigenvectors. Define λi = lim infp

λi

p , and λ̄i = lim supp
λi

p ; since the variances

are assumed bounded, then λ̄i is finite for every i. Further, let

K =

∞∑
i=1

Ki with Ki =

{
1 if λi > 0
0 if λi = 0

, i = 1, 2, . . . ,

and

K̄ =
∞∑
i=1

K̄i with K̄i =

{
1 if λ̄i > 0
0 if λ̄i = 0

, i = 1, 2, . . . .

By definition we have that K ≤ K̄. Notice that K could be infinity and that if
K < ∞ then Ki = 1 for i ≤ K and Ki = 0 otherwise; the same for K̄. Define
αi := ãTγi, i = 1, . . . , p; we have that ||α|| = ||ã||. Let αi = lim infp

√
p|αi| and

ᾱi = lim supp
√
p|αi|. The assumption that ||ã||2 = O(1/p) implies that ᾱi is

finite since p|αi|2 ≤ p||α||2 = p||ã||2 = O(1).

The variance of θ̂ is bTb = ãTΣã. The following proposition provides results
on the limiting behavior of ãTΣã and of b.

Proposition 5. Assume that Z is a vector with mean μ and covariance matrix
Σ and consider the natural estimator θ̂ = ãTZ. Suppose that ||ã||2 = O(1/p)
and the variances of Z are bounded.

(I) If K̄ > 0 and K̄ < ∞, then

(a) We have that lim supp ã
TΣã =

∑K̄
i=1 λ̄iᾱ

2
i and lim infp ã

TΣã =∑K
i=1 λiα

2
i .
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(b) For i ≤ K, lim infp bi =
√

λiαi and for i ≤ K̄, lim supp bi =
√
λ̄iᾱi.

(c) We have that lim infp
∑r

i=K+1 b
2
i = 0 and lim supp

∑r
i=K̄+1 b

2
i = 0.

(II) If K = ∞ and there exists i0 such that αi0
> 0 then

lim sup
p→∞

ãTΣã ≤
i0∑
i=1

λ̄iᾱ
2
i + λ̄i0+1p||ã||2 and lim inf

p→∞
ãTΣã ≥

i0∑
i=1

λiα
2
i .

(8)

Part (I) shows that lim supp ã
TΣã can be written as a sum of K̄ summands:∑K̄

i=1 λ̄iᾱ
2
i . By definition, λ̄i > 0 for i ∈ {1, . . . , K̄}; therefore lim supp ã

TΣã

goes to zero iff ᾱi = 0 for i ∈ {1, . . . , K̄}. In other words, Proposition 5 implies

that θ̂ is consistent iff ã is (asymptotically) orthogonal to the eigenvectors that
correspond to the largest K̄ eigenvalues. When K = ∞, then ãTΣã is an infinite
sum, but it could be bounded by a finite sum. The proof of Proposition 5 implies
that if there are no large eigenvalues, i.e., if K̄ = 0, then consistency of θ̂ follows
as stated in the following corollary.

Corollary 2. If K̄ = 0, ||ã||2 = O(1/p) and the variances of Z are bounded,

then lim supp ã
TΣã = 0 and θ̂ is consistent.

Proposition 5 implies that when ||ã||2 is of order larger than O(1/p), then
limp ã

TΣã = ∞ and if ||ã||2 = o(1/p) then limp ã
TΣã = 0. Therefore, in the

former case, θ̂ is inconsistent for all correlation structures and in the latter case
it is always consistent as stated in the corollary below.

Corollary 3. Assume that the variances of Z are bounded and K > 0.

(I) If ||ã||2 is of order larger than O(1/p), and there exists i ∈ {1, . . . ,K}
(K can be infinity) such that α2

i > 0 then V ar(θ̂) → ∞.

(II) If ||ã||2 = o(1/p) then V ar(θ̂) → 0.

Parts (I)(b) and (I)(c) in Proposition 5 show that the vector b is sparse in
the sense that only the first K or K̄ entries are bounded away from zero, while
the rest of the entries are close to zero. Proposition 5 implies that when K̄ < ∞

lim sup
p

ãTΣã = lim sup
p

K̄∑
i=1

b2i and lim inf
p

ãTΣã = lim inf
p

K∑
i=1

b2i .

When K = ∞, ãTΣã can be bounded by finite sums as in (8). These finite sums
approximations are used below in the proof of Theorem 2, as it reduces the p
summands of ãTΣã to a bounded number of summands.

Theorem 2 (Inconsistency). Assume that Z is a vector with mean μ and co-
variance matrix Σ. Suppose that ||ã||2 = O(1/p), the variances of Z are bounded
and there exists i0 ∈ {1, . . . ,K} (K can be infinity) such that α2

i0
> 0. Then

there exists no estimator θ̃ that satisfies E(θ̃ − θ)2 → 0 for all η. (More pre-
cisely, there exists no sequence of estimators {θ̃p(Wp)}∞p=1 that satisfies for each
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sequence of parameters {ηp}∞p=1, that E{θ̃p(Wp) − θp(ηp)}2 →p→∞ 0, where

Wp ∼ Nr(ηp, I) and θp(ηp) = bT
p ηp.)

Theorem 2 implies that when θ̂ is inconsistent as in Proposition 5, then so
is every other estimator. The proof uses a result of Bickel (1981), who shows in
the context of estimation of the mean of a single normal observation, Z, when
the parameter space is bounded, that Z is “almost” minimax. In our context,
this implies that θ̂ is approximately minimax in the bounded case (it is exactly
minimax when the parameter space is unbounded). If a consistent estimator
existed, then it would be uniformly close to zero on bounded sets, contradicting
the approximated minimaxity of θ̂.

Appendix B: Exchangeable correlation

In this section we demonstrate the theory of Section 3 through a study of the
specific example of equal correlation. We also compare the natural estimate
to empirical Bayes estimator. Demonstrating the admissibility of the natural
estimator, it is shown that for some θ’s the empirical Bayes estimator is better
and for other θ’s the natural estimator is better, but there is no consistent way
to distinguish between the cases.

B.1. Exchangeable correlation model

Suppose that Z ∼ N(μ,Σ) has an exchangeable correlation structure, i.e., for
i �= j, Σij = Cov(Zi, Zj) = ρ for a constant ρ > 0 and Σii = V ar(Zi) = 1:

Σ =

⎛⎜⎜⎜⎝
1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ . . . ρ 1

⎞⎟⎟⎟⎠ . (9)

In this case, Z can be constructed as

Z = μ+
√
ρV 1+

√
1− ρε, (10)

where ε := (ε1, . . . , εp)
T , 1 = (1, 1, . . . , 1)T and V, ε1, . . . , εp are i.i.d N(0, 1).

Suppose further that we want to estimate 1
p

∑p
i=1 μi (i.e., ã = 1/p). The natural

estimate is θ̂ = ãTZ = 1
p

∑p
j=1 Zj . Multiplying (10) by ã yields θ̂ on the right

hand-side, and the left hand-side gives θ +
√
ρV +

√
1− ρε̄ which has the irre-

ducible variance ρ. On the other hand, if we choose ã that is orthogonal to the
1 vector, then θ can be estimated consistently since the term

√
ρV disappears.

B.2. Consistent and inconsistent estimates under exchangeable
correlation

Suppose that {Zi}∞i=1 is a sequence of exchangeable random variables with corre-
lation ρ ≥ 0, i.e., for each fixed p the covariance matrix Σ is (9). The eigenvalues
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of Σ are λ1 = ρp+ 1− ρ, with corresponding eigenvector equal to γ1 = 1/
√
p,

and λ2 = · · · = λp = 1 − ρ, hence, there is only one large eigenvalue, i.e.,
K = K̄ = 1, and λ̄1 = limp

λ1

p = limp
ρp+1−ρ

p = ρ = λ1. Consider the following
two cases for the vector ã.

Parallel case: If one is interested in estimating θ = μ̄ = 1
p

∑p
i=1 μi (i.e., ã = 1/p),

then α1 = ãTγ1 = 1/
√
p and ᾱ1 = α1 = 1. The natural estimator is θ̂ = 1

p

∑
i Zi

and

lim inf
p

V ar

(
1

p

p∑
i=1

Zi

)
= λ1α1 = ρ = λ̄1ᾱ1 = lim sup

p
V ar

(
1

p

p∑
i=1

Zi

)
,

as in the analysis of the previous subsection. That is, the variance of θ̂ converges
to ρ > 0 and therefore, by Theorem 2, no consistent estimator exists for μ̄ when
the correlation structure is (9).

Considering the representation of θ as bTη then,

b1 = λ
1/2
1 γT

1 ã =
√
ρp+ 1− ρ

1
√
p
1T1/p =

√
ρp+ 1− ρ

√
p

≈ √
ρ, (11)

and, bi = 0 for i ≥ 2, since γT
i ã = 0 for i ≥ 2. Also,

Z1 = λ
−1/2
1 γT

1 Z =

1√
p

∑p
i=1 Zi

√
ρp+ 1− ρ

=
1
√
ρ
Ȳ

{
1 +O

(
1
√
p

)}
and similarly

η1 =
1
√
ρ
μ̄

{
1 +O

(
1
√
p

)}
;

thus, θ̂ = b1Z1 = Ȳ and
θ̂ ∼ N(θ, b21) (12)

with b1 given by (11).

Orthogonal case: On the other hand, if one is interested in estimating
∑p

i=1 aiμi

with
∑p

i=1 ai = 0 (and ||ã||2 = 1/p) then ã is orthogonal to the leading eigen-
vector γ1, i.e., α1 = ãTγ1 = 0. Therefore,

V ar(θ̂) = V ar

(
p∑

i=1

aiZi

)
=

p∑
i=1

λiα
2
i =

p∑
i=2

λiα
2
i = (1− ρ)

p∑
i=2

α2
i

= (1− ρ)||ã||2 =
1− ρ

p
,

i.e., for this ã, θ̂ is
√
p-consistent.

B.3. Exchangeable correlation – two blocks

Suppose now that Σ consists of two blocks of the form (9), the first one of size
p1×p1 and the second of size p2×p2 with p1+p2 = p. We assume that there is a
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constant correlation between the two blocks ρB (which can be zero or negative).
Thus,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ1 ρ1

ρ1
. . . ρ1 ρB

ρ1 ρ1 1︸ ︷︷ ︸ 1 ρ2 ρ2

p1 ρ2
. . . ρ2

ρB ρ2 ρ2 1︸ ︷︷ ︸
p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Σ has two eigenvalues

λ1,2 =
ξ1 + ξ2

2
±
{(

ξ1 − ξ2
2

)2

+ p1p2ρ
2
B

}1/2

where ξj = 1 + ρj{pj − 1}, j = 1, 2, and the other p − 2 eigenvalues are either
1− ρ1 or 1− ρ2. For large p, positive semi-definiteness requires that ρ2B ≤ ρ1ρ2.
On the boundary, when ρ2B = ρ1ρ2, λ2 converges to a positive constant and
K = K̄ = 1.

We now concentrate on the case ρ2B < ρ1ρ2. Then,

λ1,2 = λ̄1,2

= lim
p

λ1,2

p
=

πρ1 + (1− π)ρ2
2

±
{(

πρ1 − (1− π)ρ2
2

)2

+ π(1− π)ρ2B

}1/2

,

(13)

i.e., λ1,2 are of order p and K = K̄ = 2. The corresponding eigenvectors are

(xj , . . . , xj︸ ︷︷ ︸
m1 times

, yj , . . . , yj︸ ︷︷ ︸
m2 times

)T , j = 1, 2,

where when ρB �= 0, xj and yj are given by

x1 =
−√

p2ρB√
(ξ1 − λ1)2 + p1p2ρ2B

, y1 =
(ξ1 − λ1)/

√
p2√

(ξ1 − λ1)2 + p1p2ρ2B
,

x2 =
(ξ2 − λ2)/

√
p1√

(ξ2 − λ2)2 + p1p2ρ2B
, y2 =

−√
p1ρB√

(ξ2 − λ2)2 + p1p2ρ2B
.

We have thus,

lim
p

√
px1 =

−
√
1− πρB√

(πρ1 − λ̄1)2 + π(1− π)ρ2B

,

lim
p

√
py1 =

(πρ1 − λ̄1)/
√
1− π√

(πρ1 − λ̄1)2 + π(1− π)ρ2B

,
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lim
p

√
px2 =

{(1− π)ρ2 − λ̄2}/
√
π√

{(1− π)ρ2 − λ̄2}2 + π(1− π)ρ2B

,

lim
p

√
py2 =

−√
πρB√

{(1− π)ρ2 − λ̄2}2 + π(1− π)ρ2B

. (14)

If one is interested in estimating θ = 1
p

∑p
i=1 μi (i.e., ã = (1/p, . . . , 1/p)),

then α1 = p1x1+p2y1

p , α2 = p1x2+p2y2

p and the limit is

α1 = ᾱ1 = π lim
p

√
px1 + (1− π) lim

p

√
py1 and

α2 = ᾱ2 = π lim
p

√
px2 + (1− π) lim

p

√
py2.

Therefore, ᾱ1 = 0 and ᾱ2 = 0, implies that

λ̄1 − πρ1 + πρB = 0 and, λ̄2 − (1− π)ρ2 + (1− π)ρB = 0. (15)

However, Proposition 6 below implies that there exists no set of parameters
(ρ1, ρ2, ρB , π) for which (15) is satisfied, and therefore μ̄ cannot be consistently
estimated for this correlation structure.

Suppose now that the interest is in estimating the difference between the
means of each block, i.e., θ = 1

p1

∑p1

i=1 μi − 1
p2

∑p2

i=1 μi. In this case, α1 = x1

and α2 = y2 and the limit is given by (14). Therefore, α1 = α2 = 0 iff ρB = 0
and in this case θ can be consistently estimated iff ρB = 0, i.e., the blocks are
independent.

Proposition 6. There exists no set of parameters (ρ1, ρ2, ρB , π) for ρB �= 0
that satisfies (15).

B.4. Empirical Bayes estimator under exchangeable correlation

Empirical Bayes (EB) estimators are found useful in many high-dimensional
situations (Efron, 2010) and therefore are potential candidates to improve the

natural estimator θ̂. However, Theorem 1 implies that EB estimates cannot
uniformly improve θ̂. Furthermore, it implies that there is no consistent way to
identify the cases where EB estimates are better. In this section we compare the
EB estimator to θ̂ under the exchangeable correlation structure (9).

To define the EB estimator, we start with the Bayesian estimator of θ = bTη,
where W ∼ N(η, I). If η1, . . . , ηp were i.i.d N(α, τ2) then the Bayes estimator

of θ would be the posterior expectation of θ, which is equal to bT η̂B , where

η̂B = (η̂B1 , . . . , η̂Bp ) for η̂Bi = α
τ2+1 + τ2Wi

τ2+1 . The EB estimator is θ̂EB = bT η̂EB ,

where η̂EB
i = α̂

τ̂2+1+
τ̂2Wi

τ̂2+1 , with α̂ = W̄ and τ̂2 = max
(
0, 1

p

∑p
i=1(Wi−W̄ )2−1

)
.

The mean square error

E(θ̂EB − θ)2 = E
[
bT (η̂EB − η)

]2
(16)
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may be evaluated as follows. Without any assumptions on the structure of η, we
may define α = η̄ and τ2 = 1

p

∑p
i=1(ηi−η̄)2, and we have that α̂−α = Op(1/

√
p)

and τ̂2−τ2 = Op(1/
√
p). Hence, to evaluate (16) we may use the approximation

η̂EB
i − ηi =

1

τ̂2 + 1
Z̄+

τ̂2

τ̂2 + 1
Wi− ηi =

1

τ2 + 1
η̄+

τ2

τ2 + 1
Wi− ηi+Op(1/

√
p)

=
1

τ2 + 1

{
τ2(Wi − ηi) + η̄ − ηi

}
+Op(1/

√
p). (17)

Suppose now the correlation structure (9) and the parallel case θ = μ̄. Then,

by (11), b1 =
√
ρ
{
1 + (1−ρ)/ρ

p

}1/2
and b2 = · · · = bp = 0. Therefore, in this case

θ̂EB = b1η̂
EB
1 . When α̂−α and τ̂ −τ are uniformly integrable, (17) implies that

the mean squared error (16) is

E(θ̂EB − θ)2 =
b21{τ4 + (η1 − η̄)2}

(τ2 + 1)2
+O(1/

√
p).

From (12), the mean squared error of θ̂ is b21. Therefore, θ̂
EB is better than θ̂

when

τ4 + (η1 − η̄)2 < (τ2 + 1)2 ⇐⇒ (η1 − η̄)2 < 2τ2 + 1. (18)

In practice, one cannot verify condition (18), since there is no consistent estimate

for η1 and η̄. In other words, there is no consistent way to know when θ̂EB

is better. On one extreme, if η1 = · · · = ηp, then the left hand-side of (18)

converges to 0, while the right hand-side converges to 1, so the risk of θ̂EB

converges to 0. On the other hand, if (η1 − η̄)2 is large, i.e., when η1 is distant

from the other η’s, then θ̂ is better.

To illustrate this point we simulated 1000 times two scenarios with p = 1000,
θ = μ̄ = 5 and the correlation structure (9) with ρ = 0.6. In the first scenario

we chose μ such that η is constant (using the relation η = Λ−1/2ΓTμ) and
μ̄ = 5, while in the second scenario μ = (4, 6, 4, 6, . . . , 4, 6). Under the first
scenario, τ2 = (η1 − η̄)2 = 0 and therefore (18) is satisfied. For the second
scenario, (η1 − η̄)2 = 41.2 and τ2 = 6.5; hence, (18) is violated. Table 2 shows

the simulation results. Indeed, θ̂EB has smaller risk than θ̂ for the first scenario
but not for the second scenario.

Table 2

Simulation results of E(θ̂ − θ)2 and E(θ̂EB − θ)2. Confidence intervals based on two
standard deviations are given in parentheses.

Scenario Estimator Mean square error (MSE) Asymptotic MSE

Constant η θ̂ 0.60 (0.55, 0.66) 0.6

Constant η θ̂EB 1.12× 10−3(0.96× 10−3, 1.28× 10−3) 0

μ = (4, 6, 4, 6, . . . , 4, 6) θ̂ 0.57 (0.51, 0.62) 0.6

μ = (4, 6, 4, 6, . . . , 4, 6) θ̂EB 2.26 (2.16, 2.36) 2.28
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B.5. Empirical covariance matrix under exchangeable correlation

Recall the regression setting of Section 2 and suppose that each row of the
matrix X is sampled independently from a distribution with covariance matrix
(9). The results of Fan and Wang (2017) indicate that the leading eigenvalue
of the sample covariance is of order p, as of the original distribution, but it is
biased upward. In terms of our notation, the sample covariance satisfies K̄ = 1,
but λ1 is greater than the leading eigenvalue ρp+ 1− ρ of the true underlying
distribution and still of order p. This is the case considered in the Simulations
Section 4.4.

Appendix C: Vertex-wise correlations

Closely related to the z-scores Z̃ is the vector of voxelwise correlations ρ̂ =

σZ̃/[
√
nŜd(Y )] with entries

σ
√
n Ŝd(Y )

Z̃j =

∑n
i=1 X

(j)
i Yi/n√

sjj/n Ŝd(Y )
, (19)

equal to the observed correlation between the row vector (X
(j)
1 , . . . , X

(j)
n ) and

Y. Ignoring the error in the estimation of the standard deviation of Y for large

n, we have that ρ̂ is approximately normal with mean σμ̃/[
√
nŜd(Y )]. We may

estimate linear projections of this vector, such as the average voxelwise correla-
tion.

Appendix D: Proofs

D.1. Proof of Proposition 1

(I). Write Z in the coordinate system of the eigenvectors

Z = ΓZΓ + Γ⊥ZΓ⊥ .

The variance of the second part is zero since ZΓ⊥ = ΓT
⊥Z and

V ar(ΓT
⊥Z) = ΓT

⊥Cov(Z)Γ⊥ = ΓT
⊥ΓΛΓTΓ⊥ = 0.

Therefore, E(ZΓ⊥) = ΓT
⊥μ is a known vector.

(II). Part I implies that μ lies within the r-dimensional space spanned by the
columns of Γ. Thus, if we write ã in the coordinate system of the eigenvectors
ã = ΓãΓ + Γ⊥ãΓ⊥ , then

θ = ãTμ = {ΓãΓ + Γ⊥ãΓ⊥}Tμ = ãTΓΓ
Tμ.

Therefore, we can write in this coordinate system, θ = bTη, where b = Λ1/2ΓT ã
since

bTη = ãTΓΛ1/2Λ−1/2ΓTμ = ãTΓΓTμ = ãTΓΓ
Tμ = θ.
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(III). Since Z = ΓZΓ, then W = Λ−1/2ΓTZ = Λ−1/2ZΓ implies that ZΓ =

Λ1/2W. We conclude that Z = ΓΛ1/2W since Z = ΓZΓ.

D.2. Proof of Theorem 1

The proof follow similar ideas as in Proposition 10.4.2–10.4.4 in Bickel and
Doksum (1977) that show that Z̄ is minimax and admissible for estimation of
a standard normal mean.

Part (I) Let πk(η) be the density of the prior η1, . . . , ηr ∼i.i.d N(0, k). The
posterior distribution of ηi givenW = w isN

(
wik
k+1 ,

k
k+1

)
. The Bayes estimator is

bT η̂Bayes (the dependence on k is suppressed in the notation), where η̂Bayes :=

(η̂Bayes
1 , . . . , η̂Bayes

p ) for η̂Bayes
i := Wik

k+1 . The Bayes risk is

rk := Ẽ(bT η̂Bayes − θ)2 =

∫
Ẽ
{
bT (η̂Bayes − η)|W = w

}2

f(w)dw

=
k

k + 1
bTb,

where Ẽ denotes expectation with respect to the joint density of θ and Z ac-
cording to induced probability measure of the Bayesian framework and f(W)
is the marginal density of Z under this probability measure. The Bayes risk of
the natural estimator is

rk(θ̂) =

∫
η

E(θ̂ − θ)2πk(η)dη =

∫
η

bTbπk(η)dη = bTb.

Hence, rk = rk(θ̂) − bTb
k+1 . Since θ̂ is constant risk, this implies that for any

estimator θ̃,

sup
η∈Rr

E(θ̃ − θ)2 ≥
∫
η

E(θ̃ − θ)2πk(η)dη ≥ rk

= rk(θ̂)−
bTb

k + 1
= sup

η∈Rr

E(θ̂ − θ)2 − bTb

k + 1
.

Taking limit as k → ∞ implies the result.

Part (II) Suppose θ̂ is inadmissible, then, there exists a better estimator θ̃,

that satisfies E(θ̃−θ)2 ≤ E(θ̂−θ)2 for every η ∈ R
r and by continuity (see e.g.,

Bickel and Doksum, 1977, P. 429), there exists a box B = [a1, b1]× · · · × [ar, br]

such that E(θ̂ − θ)2 − E(θ̃ − θ)2 ≥ ε for certain ε > 0 and for every η ∈ B.
Therefore,∫

Rr

{
E(θ̂ − θ)2 − E(θ̃ − θ)2

}
πk(η)dη ≥

∫
B

{
E(θ̂ − θ)2 − E(θ̃ − θ)2

}
πk(η)dη

≥ ε

∫
B

πk(η)dη,
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which implies that

ε ≤ rk(θ̂)− rk(θ̃)∫
B
πk(η)dη

=
bTb− rk(θ̃)∫
B
πk(η)dη

≤ bTb− rk∫
B
πk(η)dη

. (20)

However, bTb− rk = bTb
k+1 and

∫
B
πk(η)dη is of order of 1/

√
k; hence, the right

hand-side of (20) converges to zero as k → ∞ in contradiction.

D.3. Proof of Theorem 2

Suppose that a consistent estimator exists. Denote fp(θ) := E(θ̃ − θ)2; fp(θ)
converges pointwise to 0. Therefore, by Egorov’s theorem, for each finite interval
[−B,B] and δ > 0, fp(θ) → 0 uniformly on θ ∈ [−B,B] \ Aδ, where Aδ has
Lebesgue measure δ. We set B = B0 for certain “large” B0, which is defined now.
To this end, we use the following result from Bickel (1981): forX ∼ N(ξ, 1) when

the parameter space is ξ ∈ [−B̃, B̃], the minimax risk rate is 1− π2

B̃2
+ o(1/B̃2)

attained by a Bayes rule with respect to a certain continuous prior, which we
denote by πB̃(ξ). Let B̃ be such that the minimax risk is > 1/2 and let B0

be such that |
∑i0

i=1{bp}2i |1/2
√
i0B̃ ≤ B0 for every p (recall that

∑i0
i=1{bp}2i is

bounded). Summing up,

sup
θ∈[−B0,B0]\Aδ

E(θ̃ − θ)2 →p→∞ 0. (21)

We will now show a contradiction to (21). For every p define the set B̄p :=

[−B̃, B̃]i0×{0}r−i0 . Then for every ηp ∈ B̄p satisfies θ(ηp) = bT
p ηp ∈ [−B0, B0],

since

|bT
p ηp| =

∣∣∣∣∣
i0∑
i=1

{bp}i{ηp}i

∣∣∣∣∣ ≤
∣∣∣∣∣

i0∑
i=1

{bp}2i

∣∣∣∣∣
1/2∣∣∣∣∣

i0∑
i=1

{ηp}2i

∣∣∣∣∣
1/2

≤
(

i0∑
i=1

{bp}2i

)1/2√
i0B̃ ≤ B0.

Define the set Iδ ⊆ B̄p such that ηp ∈ Iδ ⇔ ηT
p bp ∈ Aδ. Then the set Iδ

has an arbitrarily small Lebesgue measure as Aδ (since Iδ ⊆ B̄p and B̄p is a
i0-dimensional box).

Define πp to be the density of the prior {ηp}i ∼i.i.d πB̃ (recall the above

definition of πB̃ as the least favorable prior) for i = 1, . . . , K̄ and {ηp}i ≡ 0 for

i > K̄. The prior πp is defined on B̄p and its Bayes risk is rπ :=
∑i0

i=1{bp}2i {1−
π2

B̃2
+ o(1/B̃2)} > 1

2

∑i0
i=1{bp}2i . Therefore,

sup
θ∈[−B0,B0]\Aδ

E(θ̃ − θ)2 ≥ sup
η∈B̄p\Iδ

E(θ̃ − θ)2 ≥
∫
B̄p\Iδ

E(θ̃ − θ)2πp(ηp)dηp

=

∫
B̄p

E(θ̃ − θ)2πp(ηp)dηp −
∫
Iδ

E(θ̃ − θ)2πp(ηp)dηp
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≥ rπ −
∫
Iδ

E(θ̃ − θ)2πp(ηp)dηp

>
1

2

i0∑
i=1

{bp}2i −
∫
Iδ

E(θ̃ − θ)2πp(ηp)dηp.

Now, E(θ̃ − θ)2 is bounded for ηp ∈ Iδ (since |θ| is bounded by B0) and Iδ has
an arbitrarily small Lebesgue measure, then

sup
θ∈[−B0,B0]\Aδ

E(θ̃ − θ)2 ≥ 1

4

i0∑
i=1

{bp}2i ≥ 1

4

i0∑
i=1

α2
iλi − ε, (22)

where the last inequality holds true since
∑i0

i=1{bp}2i =
∑i0

i=1
λi

p {pαi}2 and

from the definitions αi and λi. Inequality (22) holds for large enough p and for

arbitrarily small ε > 0 and
∑i0

i=1 α
2
iλi is positive by assumption, in contradiction

to (21).

D.4. Proof of Proposition 2

One needs to verify when aTβ1 = θ1 �= θ2 = aTβ2 implies that Xβ1 �= Xβ2.
We have

0 �= aT (β1 − β2) = (αTΓT +αT
⊥Γ

T
⊥)(β1 − β2). (23)

Necessity: Suppose that α⊥ = 0, then (23) implies that ΓT (β1 − β2) �= 0.

Using the SVD decomposition X = UΛ1/2ΓT , this implies that

UΛ1/2ΓT (β1 − β2) = X(β1 − β2) �= 0.

Sufficiency: Suppose that α⊥ �= 0. Consider β1 �= β2 such that β1 − β2 =
Γ⊥α⊥. Then,

aT (β1 − β2) = (αTΓT +αT
⊥Γ

T
⊥)Γ⊥α⊥ = ||α⊥||2 > 0

but

X(β1−β2) = XΓ⊥α⊥ = UΛ1/2 ΓTΓ⊥︸ ︷︷ ︸
=0

α⊥ = 0.

D.5. Proof of Proposition 3

To show part (I), recall that ã = σ
nDΓΛ−1ΓTa and μ̃ = 1

σ Σ̃Dβ =
1
σD

−1XTXβ = n
σD

−1ΓΛΓTβ. Therefore, ãT μ̃ = aTΓΓTβ. Since a = Γα,

then aTΓ = αT and aTΓΓTβ = αTΓβ = aTβ.
For part (II), since Z̃ = D−1XTY/σ and ã = σ

nDΓΛ−1ΓTa, the natural
estimator can be written as

ãT Z̃ = aTΓΛ−1ΓTD
σ

n
D−1XTY/σ = aTΓΛ−1ΓT 1

n
XTY = aT

(
XTX

)−
XTY.
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We have that Σ̃ = D−1XTXD−1 = nD−1ΓΛΓTD−1; hence the variance of the
natural estimator is

ãT Σ̃ã =
σ2

n2
aTΓΛ−1ΓTDnD−1ΓΛΓTD−1DΓΛ−1ΓTa

=
σ2

n
aTΓΛ−1ΓTa = σ2aT

(
XTX

)−
a

D.6. Proof of Proposition 4

We first show that under (6), (7), we have that β̃j = O(1/
√
p) uniformly over

j, where β̃ = Γβ. By the linear model (1),

1

n

n∑
i=1

(Yi − Ȳ )2 = βT 1

n
XTXβ +

1

n

n∑
i=1

ε2i =

r∑
j=1

λj β̃
2
j +

1

n

n∑
i=1

ε2i ,

where β̃j = γT
j β. Since

1
n

∑n
i=1(Yi−Ȳ )2 and 1

n

∑n
i=1 ε

2
i converge to V ar(Y ) and

σ2, respectively, which are O(1) by condition (7), then
∑r

j=1 λj β̃
2
j is of order

of a constant. Condition (6) now implies that
∑r

j=1 λj β̃
2
j = O(1)β̃2

1

∑r
j=1 λj =

O(1)β̃2
1p, and therefore β̃j = O(1/

√
p) uniformly over j.

We now consider two cases:

Global average: Suppose that αj = cαO(1) uniformly for all j = 1, . . . , r. In

this case, θ = αT β̃ = cαO(1)r/
√
p, because β̃j = O(1/

√
p). Therefore, the

assumption that θ is O(1) implies that cα =
√
p/r. The variance of θ̂ is

σ2aT (XTX)−a =
σ2

n

r∑
j=1

α2
j

λj
= O(1)

p

nr2

r∑
j=1

1

λj
.

Single entry: Suppose that α = cαej . Assuming that θ = aTβ = αT β̃ = cαβ̃j

is O(1), then β̃j = O(1/
√
p) implies that cα =

√
p. The variance of θ̂ is

σ2aT (XTX)−a =
σ2

n

r∑
j=1

α2
j

λj
=

σ2

n

cα
λj

= O(1)
p

nλj

D.7. Proof of Proposition 5

Part (I)(a) We show the result for limsup as liminf is similar. The variance of
the estimator is

ãTΣã = ãT

[
p∑

i=1

λiγi {γi}
T

]
ã =

K̄∑
i=1

λiα
2
i +

p∑
i=K̄+1

λiα
2
i . (24)
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The limit of the first term in (24) equals to

lim sup
p

K̄∑
i=1

λiα
2
i = lim sup

p

K̄∑
i=1

λi/p {
√
pαi}2 =

p∑
i=K̄+1

λ̄iᾱ
2
i .

The second term in (24) coverges to zero since

0 ≤
p∑

i=K̄+1

λiα
2
i ≤ λK̄+1

p∑
i=K̄+1

{αi}2 ≤ λK̄+1

p
p||α||2

=
λ
(p)

K̄+1

p
p||ã||2 =

λ
(p)

K̄+1

p
O(1), (25)

which goes to 0 by the definition of K̄.

Part (I)(b) We have that bi =
√
λiαi =

√
λi/p

√
pαi; the result now follows

from the definition of λi, αi, λ̄i and ᾱi.

Part (I)(c) The result follows from the computation in (25).

Part II For limsup we have that,

ãTΣã =

i0∑
i=1

λi

p
(
√
pαi)

2
+

p∑
i=i0+1

λi

p
(
√
pαi)

2

≤
i0∑
i=1

λi

p
(
√
pαi)

2
+

λi0+1

p

∞∑
i=1

(
√
pαi)

2.

Taking limsup from both sides implies the result. For liminf, the inequality

ãTΣã ≥
i0∑
i=1

λi

p
(
√
pαi)

2

yields the claim.

D.8. Proof of Proposition 6

By (13) we have that

λ̄1−πρ1 = z+
√

z2 + π(1− π)ρ2B and, λ̄2− (1−π)ρ2 = z−
√

z2 + π(1− π)ρ2B ,

where z = {πρ1 − (1− π)ρ2}/2. Therefore, if (15) is satisfied, then

z +
√

z2 + π(1− π)ρ2B + πρB = 0 and, z −
√
z2 + π(1− π)ρ2B + (1− π)ρB = 0.

(26)
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Summing up the equations in (26), we obtain 2z = −ρB . Hence, if z > 0,

z +
√
z2 + π(1− π)ρ2B + πρB = z +

√
z2 + 4π(1− π)z2 − π2z

> z + z − π2z = 2z(1− π) > 0,

in contradiction to the first equation in (26). Similarly, if z < 0 (z = 0 implies
that ρB = 0 which is not possible),

z −
√

z2 + π(1− π)ρ2B + (1− π)ρB = z −
√

z2 + 4π(1− π)z2 − (1− π)2z

< z + z − (1− π)2z = 2zπ < 0,

in contradiction to the second equation in (26).
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