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Abstract: We study the problem of distributional approximations to high-
dimensional non-degenerate U -statistics with random kernels of diverging
orders. Infinite-order U -statistics (IOUS) are a useful tool for constructing
simultaneous prediction intervals that quantify the uncertainty of ensemble
methods such as subbagging and random forests. A major obstacle in using
the IOUS is their computational intractability when the sample size and/or
order are large. In this article, we derive non-asymptotic Gaussian approxi-
mation error bounds for an incomplete version of the IOUS with a random
kernel. We also study data-driven inferential methods for the incomplete
IOUS via bootstraps and develop their statistical and computational guar-
antees.
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1. Introduction

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random vari-
ables taking value in a measurable space (S,S) with common distribution P ,
and let h : Sr → R

d be a symmetric and measurable function with respect
to the product space Sr equipped with the product σ-field Sr = S ⊗ · · · ⊗ S
(r times). Assume E[|hj(X1, . . . , Xr)|] < ∞ for 1 � j � d, and consider the
statistical inference on the mean vector θ = (θ1, . . . , θd)

T = E[h(X1, . . . , Xr)].
A natural estimator for θ is the U -statistic with kernel h:

Un :=
1

|In,r|
∑

ι∈In,r

h(Xi1 , . . . , Xir) :=
1

|In,r|
∑

ι∈In,r

h(Xι), (1)
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where In,r := {ι = (i1, . . . , ir) : 1 � i1 < . . . < ir � n} is the set of all ordered
r-tuples of 1, . . . , n and | · | denotes the set cardinality. The positive integer r is
called the order or degree of the kernel h or the U -statistic Un. We refer to [21]
as an excellent monograph on U -statistics.

In the present paper, we are interested in the situation where the order r
may be nonneglible relative to the sample size n, i.e., r = rn → ∞ as n → ∞.
U -statistics with divergent orders are called infinite-order U -statistic (IOUS)
[14]. IOUS has attracted renewed interests in the recent statistics and machine
learning literature in relation to uncertainty quantification for Breiman’s bag-
ging [3] and random forests [4]. In such applications, the tree-based prediction
rules can be thought of as U -statistics with deterministic and random kernels,
respectively, and their order corresponds to the sub-sample size of the training
data [23]. Statistically, the subsample size r used to build each tree needs to
increase with the total sample size n to produce reliable predictions. As a lead-
ing example, we consider construction of simultaneous prediction intervals for a
version of random forests discussed in [23].

Example 1.1 (Simultaneous prediction intervals for random forests). Consider
a training dataset of size n, {(Y1, Z1), . . . , (Yn, Zn)} = {X1, . . . , Xn} = Xn

1 ,
where Yi ∈ Y is a vector of features and Zi ∈ R is a response. Let h be a
deterministic prediction rule that takes as input a sub-sample {Xi1 , . . . , Xir}
and outputs predictions on d testing points (y∗1 , . . . , y

∗
d) in the feature space

Y . Then Un in (1) are the overall predictions by averaging over all possible
sub-samples of size r.

For random forests [4, 23], the tree-based prediction rule may be constructed
with additional randomness: in building a tree or multiple trees based on a sub-
sample, the split at each node may only occur on a randomly selected subset
of features. Thus, let {Wι : ι ∈ In,r} be a collection of i.i.d. random variables
taking value in a measurable space (S′,S ′) that are independent of the data
Xn

1 , and that determine the potential splits for each sub-sample. Here, each
Wι captures the random mechanism in building a prediction function based
on Xι = (Xi1 , . . . , Xir), but are assumed to be independent for different sub-
samples. Further, let H : Sr × S′ → R

d be an Sr ⊗ S ′-measurable function,
that represents the random forest algorithm, such that E[H(x1, . . . , xr,W )] =
h(x1, . . . , xr). Then predictions of random forests are given by a d-dimensional
U -statistic with random kernel H:

Ûn := |In,r|−1
∑

ι∈In,r

H(Xi1 , . . . , Xir ,Wι) = |In,r|−1
∑

ι∈In,r

H(Xι,Wι), (2)

where the random kernel H varies with r.

Compared to U -statistics with fixed orders (i.e., r being fixed), the analy-
sis of IOUS brings nontrivial computational and statistical challenges due to
increasing orders. First, even for a moderately large value of r, exact computa-
tion of all possible

(
n
r

)
trees is intractable. For diverging r, it is not possible

to compute Un in polynomial-time of n. Second, the variance of the Hájek
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projection (i.e., the first-order term in the Hoeffding decomposition [19]) of
Un − θ tends to zero as r → ∞. To wit, define a function g : S → [0,∞) by
g(x1) = E[h(x1, X2, . . . , Xr)], and

σ2
g,j := E[(gj(X1)− θj)

2] for 1 � j � d, σ2
g := min

1�j�d
σ2
g,j .

Then the Hájek projection of Un − θ is given by n−1r
∑n

i=1(g(Xi)− θ). By the
orthogonality of the projections, we have

E[(hj(X1, . . . , Xr)− θj)
2] �

∑
1�i�r

E[(gj(Xi)− θj)
2] = rσ2

g,j .

Thus the variances of the kernel h and its associated Hájek projection g have
different magnitudes. In particular, if the variance of hj(X1, . . . , Xr) is bounded
by a constant C > 0 (which is often assumed for random forests, cf. [23]),
then σ2

g,j � C/r, which vanishes as r diverges. Thus standard Gaussian ap-
proximation results in literature are no longer applicable in our setting since
they require that the componentwise variances are bounded below from zero to
avoid degeneracy, i.e., there is an absolute constant σ2 > 0 such that σ2

g � σ2

(cf. [6, 10, 11]).
In this work, our focus is to derive computationally tractable and statistically

valid sub-sampling procedures for making inference on θ with a class of high-
dimensional random kernels (i.e., large d) of diverging orders (i.e., increasing r).

To break the computational bottleneck, we consider the incomplete version of Ûn

by sampling (possibly much) fewer terms than |In,r|. In particular, we consider
the Bernoulli sampling scheme introduced in [8]. Given a positive integer N ,
which represents our computational budget, define the sparsity design parameter
pn := N/|In,r|, and let {Zι : ι ∈ In,r} be a collection of i.i.d. Bernoulli random
variables with success probability pn, that are independent of the data Xn

1 and
{Wι : ι ∈ In,r}. Consider the following incomplete U -statistic (on the data Xn

1 )
with random kernel and weights:

U ′
n,N := N̂−1

∑
ι∈In,r

ZιH(Xι,Wι), where N̂ :=
∑

ι∈In,r

Zι. (3)

Obviously, U ′
n,N is an unbiased estimator of θ and it only involves computing

N̂ terms, which on average is much smaller than |In,r| if pn � 1.
When the kernel h is both deterministic and of fixed order, finite sample

bounds for the Gaussian and bootstrap approximations of U ′
n,N − θ (after a

suitable normalization) are established in [8]. Roughly speaking, error bound
analysis in [8] has two major steps: i) establish the Gaussian approximation
to the Hájek projection, and ii) bound the maximum norm of all higher-order
degenerate terms. As discussed above, the first-order Hájek projection in the
Hoeffding decomposition is asymptotically vanishing for the IOUS, and we must
control the moments of an increasing number of degenerate terms, which makes
the analysis of the incomplete IOUS with random kernels substantially more
subtle.
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In Section 2, we derive non-asymptotic Gaussian approximation error bounds
for approximating the distribution of the incomplete IOUS U ′

n,N with random
kernels subject to sub-exponential moment conditions. Specifically, our rates
of convergence for the Gaussian approximation of U ′

n,N have the explicit de-

pendence on all parameters (n,N, d, r, σ2
g, Dn), where Dn is an upper bound

for the ψ1 norms of the random kernels (for precise statements, see conditions
(C3), (C4), and (C3’) ahead). In particular, asymptotic validity of the Gaussian
approximation can be achieved if σ−2

g r2D2
n log

7(dn) = o(n ∧ N). The order of

σ−2
g will be application specific. As we shall verify in Section 4, under certain

regularity conditions,

σ−2
g = O(r2). (4)

It is worth noting that (4) is sharp in the sense that for the linear kernel
h(x1, · · · , xr) = (x1 + · · · + xr)/r, we have σ−2

g � r2 if c � Var(X1j) � C.
If further Dn = O(1), log(d) = O(log(n)) and n = O(N) (i.e., the compu-
tational complexity is at least linear in sample size), then the order of U ′

n,N is

allowed to increase at the rate of r = o(n1/4−ε) for any ε ∈ (0, 1/4). On the other
hand, the dimension may grow exponentially fast in sample size (i.e., d = O(en

c

)
for some constant c ∈ (0, 1/7)) to maintain the asymptotic validity of Gaussian
approximations while r is still allowed to increase at a polynomial rate in n.

The proof of our Gaussian approximation results for IOUS builds upon a
number of recently developed technical tools such as Gaussian approximation
results for sum of independent random vectors and U -statistics of fixed orders
[6, 7, 10, 11], anti-concentration inequality for Gaussian maxima [9], and iter-
ative conditioning argument for high-dimensional incomplete U -statistics (with
the fixed kernel and order) [8]. However, there are three technical innovations in
our proof to accommodate the issues of diverging orders and randomness of the
kernel. First, we use the iterative renormalization for each dimension of g and
also H by its variance. This simple trick turns out to be the crux to avoid the
lower bound assumption for Gaussian approximation in the literature [8, 10].
Second, we derive an order-explicit maximal inequality for the expected supre-
mum of the remainder of the Hájek projection of the IOUS (cf. Section 5).
This maximal inequality is new in literature and our main tools include a sym-
metrization inequality of [27] and Bonami inequality [13, Theorem 3.2.2] for
the Rademacher chaos, both with the explicit dependence on r. Third, we de-
velop new tail probability inequalities for U -statistics with random kernels by
leveraging the independence between {Wι, ι ∈ In,r} and the data Xn

1 .
In Section 3, we derive computationally tractable and fully data-driven infer-

ential methods of θ based on the incomplete IOUS when the sample size n, the
dimension d, and the order r, are all large. We consider a multiplier bootstrap
procedure consisting of two partial bootstraps that are conditionally indepen-
dent given Xn

1 and {Wι, Zι : ι ∈ In,r}: one estimates the covariance matrix of
the randomized kernel, and the other estimates the Hájek projection. The latter
is usually computationally demanding, and we develop a divide and conquer al-
gorithm to maintain the overall computational cost of our multiplier bootstrap
procedure at most O(n2d+B(N + n)d), where B denotes the number of boot-
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strap iterations. Thus the computational cost of the bootstrap to approximate
the sampling distribution for incomplete IOUS can be made independent of the
order r, even though r diverges.

In Section 4, we discuss the key non-degeneracy condition (4) for deriving
the validity of Gaussian and bootstrap approximations. We provide a general
embedding scheme where a Cramér-Rao type lower bound can be established
for the minimum σ2

g of the projection variances. Specifically, the lower bound

for r2σ2
g only involves the sensitivity of E[h(X1, . . . , Xr)] under perturbation

and the Fisher information of the embedded family, which in some cases remain
constants as r diverges. In non-parametric regressions, there is a natural em-
bedding of the response variable into a location family such that the sensitivity
and Fisher information can be explicitly computed.

1.1. Connections to the literature

For univariate U -statistics (d = 1), the asymptotic distributions are derived in
the seminal paper [19] for the non-degenerate case. [14] introduced the notion
“infinite-order U statistics” (IOUS) with diverging orders and established the
central limit theorem for Un when d = 1. For univariate IOUS, asymptotic nor-
mality of IOUS can be found in [2, Chapter 4.6], and the Berry-Esseen type
bounds for IOUS were established by [16, 30, 31]. Further, [23] applied IOUS
to construct a prediction interval for one test point. However, i). [23] does not
address the issue that the variance of the Hájek projection is vanishing: the two
conditions in Theorem 1 therein, Ehkn(Z1, . . . , Zkn) � C < ∞ and lim ζ1,kn 	= 0,
are not compatible based on our previous discussions; ii). In practice, the size d
of a test set may be comparable to or even much larger than the size n of a train-
ing set, and the current work is motivated by such consideration. Limit theorems
of the related infinite-order V -statistics and the infinite-order U -processes were
studied in [18, 28]. The high-dimensional Gaussian approximation results and
bootstrap methods were established in [10, 11] for sum of independent random
vectors, and in [6, 8] for U -statistics. We refer readers to these references for
extensive literature review.

Incomplete U -statistics were first introduced in [1], which can be viewed
as a special case of weighted U -statistics. There is a large literature on limit
theorems for weighted U -statistics; see [22, 24, 25, 26]. The asymptotic dis-
tributions of incomplete U -statistics (for fixed d) were derived in [5] and [20];
see also Section 4.3 in [21] for a review on incomplete U -statistics. Recently,
incomplete U-statistics have gained renewed interests in the statistics and ma-
chine learning literatures [12, 23]. To the best of our knowledge, the current
paper is the first work that establishes distributional approximation theorems
for incomplete IOUS with random kernels and increasing orders in high dimen-
sions.

The remaining of the paper is organized as follows. We develop Gaussian
approximation results for above U -statistics in Section 2, and bootstrap methods
for the variance of the approximating Gaussian distribution in Section 3. We
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apply the theoretical results to several examples in Section 4. We highlight a
maximal inequality in Section 5, and present all other proofs in Appendix A.

1.2. Notation

We write l.h.s. � r.h.s. if there exists a finite and positive absolute constant
C such that l.h.s. � C × r.h.s.. We shall use c, C,C1, C2, . . . to denote finite
and positive absolute constants, whose value may differ from place to place. We
denote Xi, . . . Xi′ by Xi′

i for i � i′.
For a, b ∈ R, let 
a� denote the largest integer that does not exceed a, a∨ b =

max{a, b} and a ∧ b = min{a, b}. For a, b ∈ R
d, we write a � b if aj � bj

for 1 � j � d, and write [a, b] for the hyperrectangle
∏d

j=1[aj , bj ] if a � b.

We denote by R := {
∏d

j=1[aj , bj ] : −∞ � aj � bj � ∞} the collection of

hyperrectangles in R
d. Further, for a ∈ R

d, r, t ∈ R, ra+ t is a vector in R
d with

jth component being raj+t. For a matrix A = (aij), denote ‖A‖∞ = maxi,j |aij |.
For a diagonal matrix Λ with positive diagonal entries, Λ−1/2 (resp. Λ1/2) is the

diagonal matrix, with j-th diagonal entry being Λ
−1/2
jj (resp. Λ

1/2
jj ).

For β > 0, let ψβ : [0,∞) → R be a function defined by ψβ(x) = ex
β −

1, and for any real-valued random variable ξ, define ‖ξ‖ψβ
= inf{C > 0 :

E[ψβ(|ξ|/C)] � 1}. Further, we define a family of functions {ψ̃β(·)} on [0,∞)

indexed by β > 0. For β � 1, define ψ̃β = ψβ . For β ∈ (0, 1), define τβ = (βe)1/β ,

xβ = (1/β)1/β , and ψ̃β(x) = τβx1{x<xβ} + ex
β

1{x�xβ}.
For a generic random variable Y , let P|Y (·) and E|Y [·] denote the conditional

probability and expectation given Y , respectively. Further, we write “a.s.” for
“almost surely” and “w.r.t.” for “with respect to”. Throughout the paper, we
assume that r � 2, d � 3, n � 4, pn := N/|In,r| � 1/2.

2. Gaussian approximations for IOUS

In this section, we shall derive non-asymptotic Gaussian approximation error
bounds for: (i) the IOUS with random kernel Ûn in (2), which includes the IOUS
with deterministic kernel Un in (1) as a special case, and (ii) the incomplete
IOUS U ′

n,N in (3) under the Bernoulli sampling scheme.

Recall that h(xr
1) = E[H(xr

1,W )], g(x1) = E[h(x1, X
r
2 )], θ = E[g(X1)], σ

2
g,j =

E[(gj(X1)− θj)
2] and σ2

g = min1�j�d σ
2
g,j . Further, define

Γg := Cov(g(X1)), ΓH := Cov(H(Xr
1 ,W )),

σ2
H,j := E[(Hj(X

r
1 ,W )− θj)

2] for 1 � j � d.

Clearly, for 1 � j � d, σ2
H,j � σ2

g,j and thus σ2
H := min1�j�d σ

2
H,j � σ2

g. Define
two d× d diagonal matrices Λg and ΛH such that

Λg,jj := σ2
g,j � σ2

H,j := ΛH,jj for 1 � j � d. (5)
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Let YA and YB be two independent d-dimensional zero mean Gaussian ran-
dom vectors with variance Γg and ΓH respectively. We may take YA and YB to
be independent of any other random variables. Further, for any two zero mean
d-dimensional random vectors U and Y ,

ρ(U, Y ) := sup
R∈R

|P (U ∈ R)− P(Y ∈ R)| ,

where we recall that R := {
∏d

j=1[aj , bj ] : −∞ � aj � bj � ∞} is the collection

of hyperrectangles in R
d.

Finally, in view of the discussions in the Introduction (Section 1) and to
simplify presentation, we assume σ2

g � 1. Otherwise, the conclusions in this
paper hold with σg replaced by min{σg, 1}.

2.1. IOUS with random kernel

We start with Ûn. Define for 1 � j � d, q > 0, and (x1, . . . , xr) ∈ Sr,

Bn,j(x1, . . . , xr) := ‖Hj(x1, . . . , xr,W )− hj(x1, . . . , xr)‖ψq . (6)

We make following assumptions: there exist Dn � 1 and an absolute constant
q > 0 such that

σ2
g,j > 0, for all j = 1, . . . , d, (C1-ND)

E|gj(X1)− θj |4 � σ2
g,jD

2
n, for all j = 1, . . . , d, (C2)

‖hj(X
r
1 )− θj‖ψq � Dn, for all j = 1, . . . , d, (C3)

‖Bn,j(X
r
1 )‖ψq � Dn for all j = 1, . . . , d. (C4)

Clearly, if |Hj(X
r
1 ,W )| � Dn a.s. for 1 � j � d, then the latter three conditions

hold. Indeed, (C3) and (C4) follow immediately from the definition, and (C2)
is due to the observation that E|gj(X1)− θj |4 � E|gj(X1)− θj |2D2

n = σ2
g,jD

2
n.

Theorem 2.1. Assume (C1-ND), (C2), (C3) and (C4) hold. Then

ρ(
√
n(Ûn − θ), rYA) �

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

,

where q∗ := (6/q + 1) ∨ 7, YA ∼ N(0,Γg) and � means up to a multiplicative
constant that only depends on q.

Proof. See Section A.3. We highlight that a key step to establish Theorem 2.1 is
to control the expected supremum of the remainder of the Hájek projection of the
complete IOUS with deterministic kernel (see Theorem 5.1). Then the Gaussian
approximation result for IOUS follows from Gaussian approximation results for
sum of independent random vectors [10] and anti-concentration inequality [9],
by a similar argument in [8] with proper normalization. �
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Clearly, in the special case of non-random kernel, i.e., H(x1, . . . , xr,W ) =
h(x1, . . . , xr), (C4) trivially holds. Thus we have the following immediate result
for the IOUS with deterministic kernel Un in (1).

Corollary 2.2. Assume (C1-ND), (C2) and (C3) hold. Then

ρ(
√
n(Un − θ), rYA) �

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

,

where q∗ := (6/q+1)∨7, and � means up to a multiplicative constant that only
depends on q.

Remark 2.3 (Comparisons with existing results for d = 1). For the univariate
IOUS with non-random kernels, asymptotic normality and its rate of conver-
gence are well understood in literature; see [2] for a survey of results in this di-
rection. In [31], a Berry-Esseen bound is derived for symmetric statistics, which
include IOUS (with non-random kernels) as a special case. In particular, apply-
ing Corollary 4.1 in [31] to IOUS, the rate of convergence to normality is of order
O(r2n−1/2σ2

H/σ2
g) for a bounded kernel, which implies that asymptotic normal-

ity requires (at least) r = o(n1/6). A related Berry-Esseen bound is given in [16].
In both papers, the rates of convergence are suboptimal. For elementary sym-
metric polynomials (which are U -statistics corresponding to the product kernel
h(x1, . . . , xr) = x1 · · ·xr), it is shown in [30] that the sharp rate of convergence
to normality is of order O(rn−1/2), provided that E[X1] 	= 0,Var(X1) ∈ (0,∞),
E[|X1|3] < ∞ and r = O((log n)−1(log2(n))

−1n1/2). This result implies that
asymptotic normality for the IOUS with the product kernel is achieved when
r = O(log−2(n)n1/2). If σ−2

g = O(r2), which holds under regularity condi-
tions in Lemma 4.1, our Corollary 2.2 with q = 1 implies that the rate of con-
vergence for high-dimensional IOUS is O((r4 log7(dn)n−1)1/6) (with suitably
bounded moments). In particular, Gaussian approximation is asymptotically
valid if log d = O(log n) and r = o(n1/4−ε) for any ε ∈ (0, 1/4). Even though our
result is valid for a smaller range of r and the rate is slower than the optimal
rate in the case d = 1, Corollary 2.2 does allow the dimension to grow sub-
exponentially fast in sample size, which is a useful feature for high-dimensional
statistical inference. In addition, to the best of our knowledge, the validity of
bootstrap procedures proposed in Section 3 to approximate the sampling dis-
tribution of IOUS (on hyperrectangles in R

d) are new in literature.

2.2. Incomplete IOUS with random kernel

Now we consider U ′
n,N , where we recall that N is some given computational

budget. We will assume the following conditions: for q > 0,

‖Hj(X
r
1 ,W )− θj‖ψq � Dn, for all j = 1, . . . , d, (C3’)

E|Hj(X
r
1 )− θj |4 � σ2

H,jD
2
n, for all j = 1, . . . , d. (C5)

Clearly, (C4) and (C3’) implies (C3) up to a multiplicative constant. Fur-
ther, (C3’) and (C5) hold if |Hj(X

r
1 ,W )| � Dn a.s. for 1 � j � d.
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Theorem 2.4. Assume (C1-ND), (C2), (C4), (C3’) and (C5) hold. Then

ρ
(√

n(U ′
n,N − θ), rYA + α1/2

n YB

)
� n, where n :=

(
rq1D2

n log
q∗(dn)

σ2
g (n ∧N)

)1/6

,

where αn := n/N , q1 := 2 ∨ (2/q), q∗ := (6/q + 1) ∨ 7, � means up to a
multiplicative constant that only depends on q, and we recall that YA ∼ N(0,Γg),
YB ∼ N(0,ΓH) and YA, YB are independent.

Proof. See Section A.4.4. �
Remark 2.5. If q � 1, then q1 = 2 and q∗ = 7. Since ‖ξ‖ψ1 � ‖ξ‖ψq for any
random variable ξ and q � 1, we may assume without loss of generality that
q � 1 in the proof. When r is fixed, q = 1, the kernel is deterministic, and
there exists some absolute constant σ2 > 0 such that σ2

g � σ2, then the above
Theorem recovers Theorem 3.1 from [8].

Further, by first conditioning on Xn
1 , we have

ΓH = Cov (H(Xr
1 ,W )) � Cov (h(Xr

1 )) := Γh,

where for two square matrices, A � B means A − B is positive semi-definite.
Thus the random kernel H(·) increases the variance of the approximating Gaus-
sian distribution compared to the associated deterministic kernel h(·).

3. Bootstrap approximations

In Section 2.2, we have seen that the incomplete U -statistic with random kernel
is approximated by a Gaussian distribution N(0, r2Γg + αnΓH). However, the
covariance term is typically unknown in practice. In this section, we will estimate
Γg and ΓH by bootstrap methods.

3.1. Bootstrap for ΓH

Let Dn := {X1, . . . , Xn} ∪ {Wι, Zι : ι ∈ In,r} be the data involved in the
definition of U ′

n,N , and take a collection of independent N(0, 1) random variables
{ξ′ι : ι ∈ In,r} that is independent of the data Dn. Define the following bootstrap
distribution:

U#
n,B :=

1√
N̂

∑
ι∈In,r

ξ′ι
√

Zι

(
H(Xι,Wι)− U ′

n,N

)
. (7)

The next theorem establishes the validity of U#
n,B .

Theorem 3.1. Assume the conditions (C1-ND) (C2), (C4), (C3’) and (C5)
hold. If

rq1D2
n log

q2(dn)

(σ2
H ∧ 1) (n ∧N)

� C1n
−ζ , (8)



High-dimensional infinite-order U-statistics 4803

for q1 := 2 ∨ (2/q), q2 := (4/q + 1) ∨ 5, some constants C1 > 0 and ζ ∈ (0, 1),
then there exists a constant C depending only on q, C1 and ζ such that with
probability at least 1− C/n,

sup
R∈R

∣∣∣P|Dn

(
U#
n,B ∈ R

)
− P(YB ∈ R)

∣∣∣ � Cn−ζ/6.

Proof. See Section A.5.1. �

3.2. Bootstrap for the approximating Gaussian distribution

Let S1 ⊂ {1, . . . , n}, and n1 = |S1|. Further, consider a collection of Dn-
measurable Rd-valued random vectors {Gi1 : i1 ∈ S1}, where Gi1 is some “good”
estimator of g(Xi1), and its form is specified later. We use the following quantity
to measure the quality of Gi1 as an estimator of g(Xi1)

Δ̂A,1 := max
1�j�d

1

n1σ2
g,j

∑
i1∈S1

(Gi1,j − gj(Xi1))
2
. (9)

Define G := 1
n1

∑
i1∈S1

Gi1 and consider the following bootstrap distribution
for N(0,Γg):

U#
n1,A

:=
1√
n1

∑
i1∈S1

ξi1
(
Gi1 −G

)
, (10)

where {ξi1 : i1 ∈ S1} is a collection of independent N(0, 1) random variables
that is independent of Dn and {ξ′ι : ι ∈ In,r}.

Lemma 3.2. Assume the conditions (C1-ND), (C2) and (C3’) hold. If

D2
n log

q2(dn)

σ2
g n1

� C1n
−ζ1 , and P

(
Δ̂A,1 log

4(d) > C1n
−ζ2
)
� C1n

−1, (11)

for q2 := (4/q+1)∨ 5, some constants C1, and ζ1, ζ2 ∈ (0, 1). Then there exists
a constant C depending only on q, C1 and ζ1 such that with probability at least
1− C/n,

sup
R∈R

∣∣∣P|Dn

(
U#
n1,A

∈ R
)
− P(YA ∈ R)

∣∣∣ � Cn−(ζ1∧ζ2)/6,

where we recall that YA ∼ N(0,Γg).

Proof. See Subsection A.5.2. �

Hereafter we consider a special case of the divide and conquer bootstrap
algorithm in [8] to estimate Γg. For each i1 ∈ S1, partition the remaining indexes,

{1, . . . , n} \ {i1}, into disjoint subsets {S(i1)
2,k : k = 1, . . . ,K}, each of size L =

r − 1, where K = 
(n− 1)/(r − 1)�.
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Now define for each i1 ∈ S1 and k = 1, . . . ,K,

S
(i1)

2,k := {i1} ∪ S
(i1)
2,k , Gi1 :=

1

K

K∑
k=1

H(X
S

(i1)

2,k

,W
S

(i1)

2,k

).

Finally, define
U#
n,n1

:= rU#
n1,A

+ α1/2
n U#

n,B .

Theorem 3.3. Assume the conditions (C1-ND) (C2), (C4) (C3’) and (C5)
hold. If

rq1D2
n log

q∗(dn)

σ2
g (n1 ∧N)

� C1n
−ζ , (12)

for q1 := 2 ∨ (2/q), q∗ := (6/q + 1) ∨ 7, some constants C1 > 0, ζ ∈ (0, 1). For
any ν ∈ (max{7/6, 1/ζ},∞), there exists a constant C depending only on q, ζ,
ν and C1 such that with probability at least 1− C/n,

sup
R∈R

∣∣∣P|Dn

(
U#
n,n1

∈ R
)
− P(rYA + α1/2

n YB ∈ R)
∣∣∣ � Cn−(ζ−1/ν)/6.

Proof. See Subsection A.5.3. �

3.3. Simultaneous confidence intervals

We first combine the Gaussian approximation result with the bootstrap result.

Corollary 3.4. Assume (C1-ND), (C2) (C4) (C3’) and (C5) hold. Further,
assume that for some constants C1 > 0, ζ ∈ (0, 1), (12) holds. Then there exists
a constant C depending only on q, C1 and ζ such that with probability at least
1− C/n,

sup
R∈R

∣∣P (√n
(
U ′
n,N − θ

)
∈ R
)
− P|Dn

(
U#
n,n1

∈ R
)∣∣ � Cn−ζ/7.

Proof. It follows from Theorem 2.4 and Theorem 3.3 (with ν = 7/ζ). �
In simultaneous confidence interval construction, it is sometimes desirable

to normalize the variance of each dimension, so that if we use maximum-type
statistics, the critical value is not dominated by terms with large variance. Define
for 1 � j � d,

σ̂2
g,j :=

1

n1

∑
i1∈S1

(
Gi1,j −Gj

)2
, σ̂2

H,j :=
1

N̂

∑
ι∈In,r

Zι

(
Hj(Xι,Wι)− U ′

n,N,j

)2
,

which are the diagonal elements in the conditional covariance matrices of U#
n,A

(10) and U#
n,B (7) respectively. Further, define a d× d diagonal matrix Λ̂ with

Λ̂j,j = r2σ̂2
g,j + αnσ̂

2
H,j , for each 1 � j � d.
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Corollary 3.5. Assume the conditions in Corollary 3.4. Then there exists a
constant C depending only on q, C1 and ζ such that with probability at least
1− C/n,

sup
R∈R

∣∣∣P(√nΛ̂−1/2
(
U ′
n,N − θ

)
∈ R
)
− P|Dn

(
Λ̂−1/2U#

n,n1
∈ R
)∣∣∣ � Cn−ζ/7.

Consequently, for any t > 0,∣∣∣P(‖√nΛ̂−1/2(U ′
n,N − θ)‖∞ � t

)
− P|Dn

(
‖Λ̂−1/2U#

n,n1
‖∞ � t

)∣∣∣ � Cn−ζ/7.

Proof. See Subsection A.5.4. �
Remark 3.6. From Corollary 3.5, we can immediately construct confidence
intervals for θ in a data-dependent way. Specifically, let q̂1−α be a (1 − α)th

quantile of the conditional distribution of ‖Λ̂−1/2U#
n,n1

‖∞ given Dn. Then one
way to construct simultaneous confidence intervals with confidence level (1−α)

is as follows: for 1 � j � d, U ′
n,N,j ± q̂1−α n−1/2Λ̂

1/2
j,j .

4. Applications

In many applications, g(x) = E[h(x,X2, . . . , Xr)] does not admit an explicit
form, and thus it is usually hard to compute σg in conditions (C1-ND) and
(12) directly. When the kernel h has special structures, we can establish a lower
bound on σg with explicit dependence on r, which can be applied to Exam-
ple 1.1. We shall give additional examples in Section 4.3 and 4.4 to illustrate
the usefulness of U -statistics as a tool to estimate and make inference of certain
statistical functionals of X1, . . . , Xr. In Section 4.3 for the expected maximum
and log-mean functionals, we also establish a lower bound on σg with explicit
dependence on r. In Section 4.4 for the kernel density estimation problem, r is
assumed to be fixed, but we allow the diameter of the design points to diverge.

For simplicity of the presentation, in this section, we assume that all involved
derivatives and integrals exist and are finite, and that the order of integrals and
the order of integral and differentiation can be exchanged. These assumptions
can be justified under standard smoothness and moment conditions. For illus-
tration, we use q = 1 in (C4) and (C3’).

4.1. Lower bound for σg

Suppose that the distribution P of X1 has a density function f0 with respect to
some σ-finite (reference) measure μ, i.e.,

P (A) =

∫
A

f0(x)μ(dx) for any A ∈ S.

We first embed f0 into a family of densities {fβ : β ∈ B ⊂ R
	}, where B is

an open neighborhood of 0 ∈ R
	. Such embeddings always exist and below are

some examples for S = R
	.
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1. Location and scale family. If μ is the Lebesgue measure on R
	, we may

consider the following location or scaling families: for x ∈ R
	,

fβ(x) =f0(x− β) with β ∈ R
	,

or fβ(x) =(1 + β)f0((1 + β)x) with β ∈ (−1, 1).

2. Exponential family. If φ(β) := log
(∫

f0(x)e
βT xμ(dx)

)
< ∞ for β ∈ B,

then we may consider the exponential family:

fβ(x) = f0(x) exp(β
Tx− φ(β)), for x ∈ R

	, β ∈ B.

3. Additive noise model. Let Υ be a R
	-dimensional random vector inde-

pendent of X1, whose distribution is absolutely continuous w.r.t. μ, then
X1+βΥ has a density fβ given by the convolution of those of X1 and βΥ.

For β ∈ B, define the following perturbed expectation

θ(β) :=

∫
h(x1, . . . , xr)

r∏
i=1

fβ(xi)μ(dxi) := Eβ [h(X1, . . . , Xr)],

where Eβ denotes the expectation when X1, . . . , Xr have density fβ . Further,
define

Ψ(β) :=

r∑
i=1

∇ ln fβ(Xi), J (β) := r−1Varβ (Ψ(β)) ,

where ∇ denotes the gradient (or derivative when β is a scalar) with respect
to β and Varβ denotes the covariance matrix when X1, . . . , Xr have the density
fβ . Thus Ψ(β) is the score function and J (β) is the Fisher-information for a
single observation.

Lemma 4.1. If we assume J (0) is positive definite, then

σ2
g,j � r−2(∇θj(0))

TJ−1(0)∇θj(0), for 1 � j � d. (13)

In particular, if there exists an absolute positive constant c such that

(∇θj(0))
TJ−1(0)∇θj(0) � c for 1 � j � d,

then σ2
g � cr−2.

Proof. See Subsection A.6. �

4.2. Simultaneous prediction intervals for random forests

Consider the Example 1.1 and assume that (Y1, Z1) has density q(y)p(z; y)
w.r.t. the product measure ν(dy)⊗dz on Y ×R, i.e., for A1 ∈ B(Y), A2 ∈ B(R),

P(Y1 ∈ A1, Z1 ∈ A2) =

∫
A1×A2

q(y)p(z; y)ν(dy)dz.



High-dimensional infinite-order U-statistics 4807

That is, the feature Y1 has the density q(y) w.r.t. some σ-finite measure ν on
Y , and thus is allowed to have both continuous and discrete components. The
response Z1 given Y1 = y has a conditional density p(z; y) w.r.t. the Lebesgue
measure.

For many regression algorithms such as tree based methods, if we fix the
features and increase the responses of training samples by β ∈ R, the prediction
at any test point will increase by β, i.e., for 1 � j � d,

Hj ((y1, z1 + β), . . . , (yr, zr + β), w) = Hj ((y1, z1), . . . , (yr, zr), w) + β,

which implies that h ((y1, z1 + β), . . . , (yr, zr + β)) = h ((y1, z1), . . . , (yr, zr)) +
β. Now we consider the embedding into the “location” family {q(y)p(z − β; y) :
β ∈ R}. Observe that

θj(β) = Eβ [hj(X1, . . . , Xr)] = θj(0) + β, for 1 � j � d,

which implies that θ′j(0) = 1. In addition,

J (β) = Varβ

(
d

dβ
ln(q(Y )p(Z − β;Y ))

)
= Eβ

[(
∂zp(Z − β;Y )

p(Z − β;Y )

)2
]
.

Thus if we assume that there exists c such that

J (0) = E

[(
∂zp(Z;Y )

p(Z;Y )

)2
]
� c−1, (14)

then (13) reduces to σ2
g � cr−2. If further we assume that Hj(X

r
1 ,W ) � C

a.s. for some constant C and each 1 � j � d (this holds for example when
the response is bounded a.s.), then the conditions (C2), (C3), (C4) and (C5)
hold with Dn = ln−2(2)C. With these assumptions, the condition (12) in Corol-
lary 3.5 simplifies as

r4 log7(dn)

n1 ∧N
� C1n

−ζ .

Thus if r = O(n1/4−ε) for some ε > 0, log(d) = O(log(n)), and n = O(n1 ∧N),
then Corollary 3.5 can be used to construct asymptotically valid simultaneous
prediction intervals with the error of approximation decaying polynomially fast
in n.

Remark 4.2 (Fisher information in nonparametric regressions). Let us take a
closer look at the condition (14). Consider the nonparametric regression model

Zi = κ(Yi) + εi, for 1 � i � n,

where κ : Y → R is a deterministic measurable function, and ε1, . . . εn are
i.i.d. with some density f with respect to the Lebesgue measure. Then p(z; y) =
f(z − κ(y)) and thus

J (0) =

∫ (
f ′(z − κ(y))

f(z − κ(y))

)2

q(y)f(z − κ(y))ν(dy)dz =

∫
(f ′(z))2

f(z)
dz,

where for the last equality, we first perform integration w.r.t. dz and apply a
change-of-variable. Thus J (0) only depends the density of the noise.
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4.3. Expected maximum and log-mean functionals

Next we compute the lower bounds on σ2
g for two additional statistical func-

tionals.

Example 4.3. Let S = R
d and consider the following two kernels: for 1 � j � d,

hj(x1, . . . , xr) = max
1�i�r

xij , and hj(x1, . . . , xr) = log

(
1

r

r∑
i=1

xij

)
.

In the former case, we are interested in estimating the expectation for the
coordinate-wise maxima of r independent random vectors, {E[max1�i�r Xij ] :
1 � j � d}. In the latter, we assume X1j > 0 for 1 � j � d and are interested in
estimating {E[log(r−1

∑r
i=1 Xij)] : 1 � j � d}. In both cases, the coordinates

of X1 can have arbitrary dependence, and we allow r → ∞.

Consider the first kernel in Example 4.3, where S = R
d, and hj(x1, . . . , xr) =

max1�i�r xij for 1 � j � d. Assume X1j has a density fj w.r.t. the Lebesgue
measure on R for 1 � j � d, and we consider the following embedding {fj(·−β) :
β ∈ R}. As in the previous example, for β ∈ R

θ′j(β) = 1, Jj(β) = Varβ

(
d

d β
ln fj(X1j − β)

)
=

∫
(f ′

j(x− β))2

fj(x− β)
d x.

Thus, by Lemma 4.1, if we assume for some absolute positive constant c∫
(f ′

j(x))
2

fj(x)
d x � c−1, 1 � j � d,

we have σ2
g � cr−2. Further, if we assume that there exists a positive constant

C such that
‖X1j‖ψ1 � C, 1 � j � d,

then by maximal inequality (e.g., see [29, Lemma 2.2.2]), ‖max1�i�r Xij‖ψ1 �
log(r). Then if we select Dn = C ′σ−1

g log2(r), the conditions (C2), (C3) and
(C5) hold. Further, (C4) trivially holds for non-random kernels. With above
assumptions and selection of Dn, the condition (12) in Corollary 3.5 simplifies
as (n1 ∧N)−1r6 log4(r) log7(dn) � C1n

−ζ .
Now consider the second kernel in Example 4.3, where hj(x1, . . . , xr) =

log
(
r−1
∑r

i=1 xij

)
and X1j > 0 for 1 � j � d. Assume X1j has a density

fj w.r.t. the Lebesgue measure on R for 1 � j � d, and consider the following
embedding {(1 + β)fj((1 + β)·) : β ∈ (−1, 1)}. As before, it is easy to see that
for 1 � j � d,

θ′j(0) = 1, and Jj(0) =

∫
(xf ′

j(x) + fj(x))
2

fj(x)
d x.

Thus if there exists a constant c such that max1�j�d Jj(0) � c−1, then σ2
g �

cr−2. Further, if there exists a constant C > 0 such that

P(0 < X1j � C) = 1, 1 � j � d,



High-dimensional infinite-order U-statistics 4809

then the conditions (C2), (C3), (C4) and (C5) hold with Dn = ln−1(2) log(C).
With these assumptions, the condition (12) in Corollary 3.5 simplifies as (n1 ∧
N)−1r4 log7(dn) � C1n

−ζ .

4.4. Kernel density estimation

Example 4.4 (Kernel density estimation). Let τ : Sr → R
	 be a measurable

function that is symmetric in its r arguments, and {tj : 1 � j � d} ⊂ R
	 be

d design points. [15, 17] used Un as a kernel density estimator (KDE) for the
density of τ(X1, . . . , Xr) at the given design points with

hj(x1, . . . , xr) =
1

b	n
κ

(
tj − τ(x1, . . . , xr)

bn

)
, 1 � j � d,

where bn > 0 is a bandwidth parameter, and κ(·) is the density estimation kernel
with

∫
κ(z)dz = 1, which should not be confused with the U -statistic kernel h.

For this example, we will assume r fixed and the bandwidth bn → 0, but allow
the diameter of the design points, max1�j�d ‖tj‖, to grow, where ‖ · ‖ denotes
the usual Euclidean norm.

Assume that given X1 = x1, τ(x1, X
r
2 ) has a density f(z;x1) w.r.t. the

Lebesgue measure on R
	, i.e., P ( τ(x1, X2, . . . , Xr) ∈ A) =

∫
A
f(z;x1)dz for

any A ∈ B(R	). Then by definition, for 1 � j � d,

gj(x1) =

∫
1

b	n
κ

(
tj − z

bn

)
f(z;x1)dz =

∫
κ(z)f(tj − bnz;x1)dz.

For t ∈ R
	, denote

Vn(t) := Var

(∫
κ(z)f(t− bnz;X1)dz

)
, V(t) := Var(f(t;X1)).

As in [15], if
∫
κ2(z)dz < ∞ and supt E[f

2(t;X1)] < ∞, then limn→∞ Vn(t) =
V(t) for any fixed t. If there exists some R > 0 such that max1�j�d ‖tj‖ � R
for any d ∈ N and inft∈R�:|t|�R V(t) > 0, under mild continuity assumptions
(e.g. the equicontinuty of Vn(t)), there exists an absolute constant c > 0 such
that σ2

g � c for large n. Then we can apply the result in [8], which does not

allow σ2
g to vanish.

In this work, we allow σ2
g to vanish, and thus allow the diameter of the design

points to grow as n becomes large. Specifically, if we assume κ(·) is bounded
by some constant C, we can select Dn = ln−1(2)Cb−1

n in conditions (C2), (C3),
(C4) and (C5). Then the condition (12) in Corollary 3.5 simplifies as

log7(dn)

σ2
gb

2
n(n1 ∧N)

� C1n
−ζ .

Thus if log(d) = O(log(n)) and n = O(n1 ∧ N), to apply Corollary 3.5, we
require that σ−2

g = O(b2nn
1−ε) for any ε > 0.
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Remark 4.5. [15] considers the case d = 1, and shows the
√
n-convergence rate

of the KDE. The same discussion applies here. [17] constructs confidence bands
(without computational considerations and bootstrap results) for the density of
τ(Xr

1 ), under the additional assumptions required to establish the convergence
of empirical processes.

5. Maximal inequality

In this section, we derive an upper bound on the expected supremum of the
remainder of the Hájek projection of the complete IOUS with deterministic
kernel. This maximal inequality (with the explicit dependence on r) serves as
a key step to establish the Gaussian approximation result for the incomplete
IOUS with random kernel.

Theorem 5.1. Assume (C3) hold. Then there exist constants c, C, depending
only on q, such that if r2 log(d)/n � c, then

E

[
max
1�j�d

∣∣∣∣∣(Un,j − θj)−
r

n

n∑
i=1

(gj(Xi)− θj)

∣∣∣∣∣
]
� C

r2 log1+1/q(d)Dn

n
.

The proof of Theorem 5.1 is quite involved: we need to develop a number
of technical tools such as the symmetrization inequality and Bonami inequality
(i.e., exponential moment bound) for the Rademacher chaos, all with the explicit
dependence on r.

We start with some notation. Let X ′ := (X ′
1, . . . , X

′
n) be an independent

copy of X := (X1, . . . , Xn), and ε := (ε1, . . . , εn) be i.i.d. Rademacher random
variables, i.e., P(ε1 = 1) = P(ε1 = −1) = 1/2, that are independent of X and
X ′. If all involved random variables are independent, we write Eε (resp. EX′)
for expectation only w.r.t. ε (resp. X ′).

For a given probability space (X,A, Q), a measurable function f on X and
x ∈ X, we use the notation Qf =

∫
fdQ whenever the latter integral is well-

defined, and denote δx the Dirac measure on X, i.e., δx(A) = 1{x ∈ A} for any
A ∈ A. For a measurable symmetric function f on Sr and k = 0, 1, . . . , r, let
P r−kf denote the function on Sk defined by

P r−kf(x1, . . . , xk) := E [f(x1, . . . , xk, Xk+1, . . . , Xr)] ,

whenever it is well defined. To prove Theorem 5.1, without loss of generality,
we may assume

θ = P rh = 0,

since we can always consider h(·)− θ instead. For 0 � k � r, define

π̃kh(x1, . . . , xk) := P r−kh,

πkh(x1, . . . , xk) := (δx1 − P )× · · · × (δxk
− P )× P r−kh.

(15)
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Clearly πk is degenerate of order k with respect to the distribution P in the
sense of (16) below. For any ι = (i1, . . . , ik) ∈ In,k, and J = (j1, . . . , j	) ∈ Ik,	
where 0 � � � k, define

ιJ := (ij1 , . . . , ij�) ∈ In,	.

Then πkh(xι) = EX′

[∑k
	=0(−1)k−	

∑
J∈Ik,�

π̃kh(xιJ , X
′
ι\ιJ )
]
for all ι ∈ In,k.

Further, the Hoeffding decomposition [19] for the U -statistic (with θ = 0) is
as follows:

Un =
1

|In,r|
∑

ι∈In,r

h(Xι) =

r∑
k=1

(
n

r

)−1(
n− k

r − k

) ∑
ι∈In,k

πkh(Xι).

=

r∑
k=1

(
r

k

)(
n

k

)−1 ∑
ι∈In,k

πkh(Xι) =:

r∑
k=1

(
r

k

)
U (k)
n (πkh).

Finally, for any 1 � k � r, define the envelope function

Fk(x1, . . . , xk) := max
1�j�d

|π̃khj(x1, . . . , xk)| .

5.1. Symmetrization inequality

For each integer k, consider a symmetric kernel f : Sk → R
d. We say that f is

degenerate of order k with respect to the distribution P if

EX1 [fj(X1, X2, . . . , Xk)] = 0 a.s., for any 1 � j � d. (16)

The following result is essentially due to [27, Section 3, Symmetrization in-
equality] in the U -process setting. We provide a self-contained (and perhaps
more transparent) proof for completeness.

Theorem 5.2 (Symmetrization inequality). Assume (16) holds.

E

⎡⎣ max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

fj(Xi1 , . . . , Xik)

∣∣∣∣∣∣
⎤⎦

� 2kE

⎡⎣ max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

εi1 · · · εikfj(Xi1 , . . . , Xik)

∣∣∣∣∣∣
⎤⎦ .

Remark 5.3. In Theorem 5.2, the symmetrization costs a multiplicative factor
of 2k for a degenerate kernel of order k. Standard symmetrization argument for
such degenerate U -statistics (cf. [13, Theorem 3.5.3]) together with the decou-
pling inequalities (cf. [13, Theorem 3.1.1]) in literature yield that

E

⎡⎣ max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

fj(Xi1 , . . . , Xik)

∣∣∣∣∣∣
⎤⎦
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� Ck E

⎡⎣ max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

εi1 · · · εikfj(Xi1 , . . . , Xik)

∣∣∣∣∣∣
⎤⎦ ,

where Ck = 24k−2(k−1)!(kk−1)((k−1)k−1−1)×· · ·× (22−1). Since 2k � Ck,
improvement of the constant to the exponential growth in k turns out to be
crucial to obtain the maximal inequality for the IOUS in Theorem 5.1. The
major component for the super-exponential behavior of Ck is due to the step
for applying the decoupling inequality in [13, Theorem 3.1.1], which is valid for
any (measurable) symmetric kernel. If the kernel f is degenerate of order k, then
symmetrization can be directly done without the decoupling inequality (cf. the
proof of Theorem 5.2 below).

Proof of Theorem 5.2. Define a new sequence of random variables {Zi : 1 � i �
n}:

Zi = Xi1{εi=1} +X ′
i1{εi=−1}.

Further, for each ι = {i1, . . . , ik} ∈ In,k, define

f̃j,ι = 2kEε [fj(Zi1 , . . . , Zik)εi1 · · · εik ] .

Due to degeneracy, we have

EX′

[
f̃j,ι

]
= 2kEεEX′ [fj(Zi1 , . . . , Zik)εi1 · · · εik ]

= 2kEε

[
fj(Xi1 , . . . , Xik)1{εi1=1,...,εik=1}

]
= fj(Xi1 , . . . , Xik),

where the first and third equalities follow from definitions and Fubini Theorem,
and the second follows from the degeneracy. To wit, on the event that {εi� = −1}
for some 1 � � � k,

EX′
i�

[
fj(Zi1 , . . . , Zi�−1

, X ′
i�
, Zi�+1

, . . . , Zik)εi1 · · · εik
]
= 0.

The rest of the argument is standard: by Jensen’s inequality,

max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

fj(Xi1 , . . . , Xik)

∣∣∣∣∣∣ = max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

EX′

[
f̃j,ι

]∣∣∣∣∣∣
� 2kEε,X′ max

1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

fj(Zi1 , . . . , Zik)εi1 · · · εik

∣∣∣∣∣∣ .
Since (X1, . . . , Xn, ε1, . . . , εn) and (Z1, . . . , Zn, ε1, . . . , εn) have the same distri-
bution, taking expectation on both sides completes the proof. �
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5.2. Maximal inequality

We start with a lemma, whose proof is elementary and thus omitted. Recall the
definition of ψ̃β in Subsection 1.2.

Lemma 5.4. For any β > 0, ψ̃β(·) is strictly increasing, convex, and ψ̃β(0) = 0.
Further, for any β > 0,

ψ̃β(x) � ex
β � ψ̃β(x) + e1/β ,

and consequently

ψ̃−1
β (m) � log1/β

(
m+ e1/β

)
.

Now we state the maximal inequality with explicit constants.

Lemma 5.5. Fix β ∈ (0, 1]. Consider a sequence of non-negative random vari-
ables {Zj : 1 � j � d}, and assume that there exists some real number Δ > 0

such that E[ψ̃β (Zj/Δ)] � 2, for 1 � j � d. Then

E

[
max
1�j�d

Zj

]
� Δlog1/β(2d+ e1/β).

Proof. By monotonicity and convexity,

ψ̃β

(
E

[
max
1�j�d

(Zj/Δ)

])
� E

[
ψ̃β

(
Δ−1 max

1�j�d
Zj

)]
= E

[
max
1�j�d

ψ̃β(Zj/Δ)

]
�
∑

1�j�d

E

[
ψ̃β(Zj/Δ)

]
= 2d.

Then the proof is complete by Lemma 5.4. �

5.3. Exponential moment of Rademacher chaos

The goal is to establish an exponential moment bound (i.e., Bonami inequality)
of Rademacher chaos of order k. Based on the well-known hyper-contractivity of
Rademacher chaos variables in literature (cf. [13, Corollary 3.2.6]), our Lemma
5.6 below provides an exponential moment bound with an explicit dependence
on the order.

Lemma 5.6 (Exponential moment of Rademacher chaos). Fix k � 2, β = 2/k
and let {xι : ι ∈ In,k} be a collection of real numbers. Consider the following
homogeneous chaos of order k:

Z =
∑

ι∈In,k

xιεi1 · · · εik ,

where ε1, . . . , εn are i.i.d. Rademacher random variables. Then

E

[
ψ̃β (|Z|/Δn)

]
� 2, where Δn = 7k/2

√ ∑
ι∈In,k

x2
ι .
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Proof. Denote κ =
√
E[Z2], c =

√
7 and thus Δn = ckκ. Observe that β � 1

and βk = 2. From [13, Theorem 3.2.2], we have for any q > 0

E|Z|q �
(
qq/β
∨

1
)
κq � (qq/β + 1)κq.

Here, the first inequality clearly holds for q � 2, and we use [13, Theorem 3.2.2]
for q > 2. Then using the fact that ex � 1 +

∑∞
	=1 |x|	/�! and by Lemma 5.4,

we have

Eψ̃β (|Z|/Δn) � E exp
(
(|Z|/Δn)

β
)
� 1 +

∞∑
	=1

E|Z|β	/(�!Δβ	
n )

�
∞∑
	=1

(β�)	κβ	

�!Δβ	
n

+

∞∑
	=0

κβ	

�!Δβ	
n

=

∞∑
	=1

β	�	

�!c2	
+

∞∑
	=0

1

�!c2	
.

Using the fact that �	 � e	�!, we have

Eψ̃β (|Z|/Δn) �
∞∑
	=1

(
βe

c2

)	

+

∞∑
	=0

1

�!c2	
�

∞∑
	=1

( e

c2

)	
+

∞∑
	=0

1

�!c2	
.

Since c2 = 7 > e, we have

Eψ̃β (|Z|/Δn) �
e

c2 − e
+ ec

−2

< 2,

which completes the proof. �

5.4. Proof of Theorem 5.1

Now we are in position to prove Theorem 5.1. Recall that we assume θ = 0.
First, for each 2 � k � r and 1 � j � d, define

Zk,j = Eε

⎡⎣∣∣∣∣∣∣
∑

ι∈In,k

εi1 · · · εikπkhj(Xi1 , . . . , Xik)

∣∣∣∣∣∣
⎤⎦ ,

where πkh is defined in (15), and ε1, . . . , εn are i.i.d. Rademacher random vari-
ables. Define

Δ2
k,j =

∑
ι∈In,k

(πkhj(Xι))
2

=
∑

ι∈In,k

⎛⎝EX′

⎡⎣ k∑
	=0

(−1)k−	
∑

J∈Ik,�

π̃khj(XιJ , X
′
ι\ιJ )

⎤⎦⎞⎠2

.

By Jensen’s inequality and the fact that (
∑n

i=1 zn)
2 � n

∑n
i=1 z

2
n, we have for

any 1 � j � d,

Δ2
k,j � 2kEX′

⎡⎣ ∑
ι∈In,k

k∑
	=0

∑
J∈Ik,�

(
π̃khj(XιJ , X

′
ι\ιJ )
)2⎤⎦
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� 2kEX′

⎡⎣ ∑
ι∈In,k

k∑
	=0

∑
J∈Ik,�

F 2
k (XιJ , X

′
ι\ιJ )

⎤⎦ .
Then by Lemma 5.6,

Eε

[
ψ̃2/k

(
|Zk,j |

7k/2Δk,j

)]
� 2.

Further, by Lemma 5.5 with β = 2/k, we have

Eε max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

εi1 · · · εikπkhj(Xi1 , . . . , Xik)

∣∣∣∣∣∣
� 7k/2 max

1�j�d
(Δk,j) log

k/2(2d+ ek/2)

� 14k/2 logk/2(2d+ ek/2)

√√√√√EX′

⎡⎣ ∑
ι∈In,k

k∑
	=0

∑
J∈Ik,�

F 2
k (XιJ , X

′
ι\ιJ )

⎤⎦.
Then by Lemma 5.2 and Jensen’s inequality, we have

E

⎡⎣ max
1�j�d

∣∣∣∣∣∣
∑

ι∈In,k

πkhj(Xι)

∣∣∣∣∣∣
⎤⎦

� 56k/2 logk/2(2d+ ek/2)E

√√√√√EX′

⎡⎣ ∑
ι∈In,k

k∑
	=0

∑
J∈Ik,�

F 2
k (XιJ , X

′
ι\ιJ )

⎤⎦

� 56k/2 logk/2(2d+ ek/2)

√√√√√E

⎡⎣ ∑
ι∈In,k

k∑
	=0

∑
J∈Ik,�

F 2
k (XιJ , X

′
ι\ιJ )

⎤⎦
= 56k/2 logk/2(2d+ ek/2)

√(
n

k

)
2kE[F 2

k (X1, . . . , Xk)].

Now we bound E[F 2
k (X1, . . . , Xk)]. By the definition of π̃khj , condition (C3),

Lemma 5.4 and Jensen’s inequality, we have

E

[
ψ̃q (|π̃khj(X1, . . . , Xk)|/Dn)

]
= E

[
ψ̃q(|EX′ [hj(X1, . . . , Xk, X

′
k+1, . . . , X

′
r)]|/Dn)

]
� E

[
ψ̃q(|hj(X1, . . . , Xk, X

′
k+1, . . . , X

′
r)|/Dn)

]
� E [ψq(|hj(X1, . . . , Xk, Xk+1, . . . , Xr)|/Dn)] + 1 � 2.

Since ψ̃q(0) = 0, by Jensen’s inequality, we have ‖π̃khj(X1, . . . , Xk)|‖ψ̃q
� 2Dn.

Then by the standard maximal inequality (e.g., see [29, Lemma 2.2.2]), there
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exists a constant C, depending only on q, such that for 1 � k � r,√
E|Fk(X1, . . . , Xk)|2 � C log1/q(d)Dn.

Thus we obtain that

E

[
max
1�j�d

∣∣∣∣∣Un,j −
r

n

n∑
i=1

gj(Xi)

∣∣∣∣∣
]

�
r∑

k=2

(
r

k

)
E

[
max
1�j�d

∣∣∣U (k)
n (πkhj)

∣∣∣]

�
r∑

k=2

(
r
k

)√(
n
k

) (112)k/2 logk/2(2d+ ek/2)
√

EF 2
k (X1, . . . , Xk)

� C log1/q(d)Dn

r∑
k=2

(
r
k

)√(
n
k

) (112)k/2 logk/2(2d+ ek/2).

Observe that if r2 � n, we have for any 1 � i � r

r − i√
n− i

� r√
n

⇒
(
r
k

)√(
n
k

) � 1√
k!

(
r2

n

)k/2

.

Further, for any x, y � 2, logk/2(x+ y) � 2k/2(logk/2(x)+ logk/2(y)). Now, take
c = 1/500, and in particular r2 � n. Then

E

[
max
1�j�d

∣∣∣∣∣Un,j −
r

n

n∑
i=1

gj(Xi)

∣∣∣∣∣
]

� C log1/q(d)Dn

r∑
k=2

(
224

r2

n

)k/2

(logk/2(2d) +
1√
k!
(k/2)k/2).

For the first term, by geometric series formula,

I = C log1/q(d)Dn

r∑
k=2

(
224

r2 log(2d)

n

)k/2

� C
r2 log1+1/q(d)Dn

n
.

For the second term, since for any � � 1, �	 � e	�!, we have

II = C log1/q(d)Dn

r∑
k=2

(
112e

r2

n

)k/2

� C
r2 log1/q(d)Dn

n
,

which completes the proof of Theorem 5.1. �
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Appendix A: Proofs

A.1. Tail probabilities

In this section, we collect and prove some results regarding tail probabilities for
sum of independent random vectors, U -statistics, and U -statistics with random
kernels. For each type of statistics, we present two versions, one for non-negative
random variables and the other for general cases.

These inequalities are used in bounding the effects due to sampling (Subsec-
tion A.4.3), and also in controlling the ‖ · ‖∞ distance between the bootstrap
covariance matrices and their targets (Section A.5).

A.1.1. Tail probabilities for sum of independent random vectors

In this subsection, m,n, d � 2 are all integers.

Lemma A.1. Let Z1, . . . , Zm be independent R
d-valued random vectors and

β ∈ (0, 1]. Assume that

Zij � 0, ‖Zij‖ψβ
� un, for all i = 1, . . . ,m, and j = 1, . . . , d.

Then there exists some constant C that only depends on β such that with prob-
ability at least 1− 3/n,

max
1�j�d

m∑
i=1

Zij � C
(
νn + un log

1/β(dm)(log(dm) + log1/β(n))
)
.

where νn := max1�j�d E [
∑m

i=1 Zij ].

Proof. See Subsection A.7.1. �

Lemma A.2. Let Z1, . . . , Zm be independent R
d-valued random vectors and

β ∈ (0, 1]. Assume that

E[Zij ] = 0, ‖Zij‖ψβ
� un, for all i = 1, . . . ,m, and j = 1, . . . , d.

Then there exists some constant C that only depends on β such that with prob-
ability at least 1− 4/n,

max
1�j�d

∣∣∣∣∣
m∑
i=1

Zij

∣∣∣∣∣ � C
(
σ log1/2(dn) + un log

1/β(dm)
(
log(dm) + log1/β(n)

))
,

where σ2 := max1�j�d

∑m
i=1 E[Z

2
ij ].

Proof. See Subsection A.7.2 �
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Lemma A.3. Let Z1, . . . , Zm be independent and identical distributed Bernoulli
random variables with success probability pn, i.e., P(Zi = 1) = 1− P(Zi = 0) =
pn for 1 � i � m. Further, let a1, . . . , am be deterministic R

d vectors. Then
there exists an absolute constant C such that with probability at least 1− 4/n,

max
1�j�d

∣∣∣∣∣
m∑
i=1

(Zi − pn)aij

∣∣∣∣∣ � C
(√

pn(1− pn)σ log1/2(dn) +M log(dn)
)
.

where σ2 := max1�j�d

∑m
i=1 a

2
ij and M = max1�i�m,1�j�d |aij |.

Proof. See Subsection A.7.3 �

A.1.2. Tail probabilities for U -statistics

Lemma A.4. Let X1, . . . , Xn be i.i.d. random variables taking value in (S,S)
and fix β ∈ (0, 1]. Let f : (Sr,Sr) → R

d be a measurable, symmetric function
such that for all j = 1, . . . , d,

fj(X1, . . . , Xr) � 0 a.s., E[fj(X1, . . . , Xr)] � vn, ‖fj(X1, . . . , Xr)‖ψβ
� un.

Define Un := |In,r|−1
∑

ι∈In,r
f(Xι). Then there exists a constant C that only

depends on β such that

P

(
max
1�j�d

Un,j � C
(
vn + n−1r log1/β+1(dn) log1/β−1(n)un

))
� 3

n
.

Clearly, we can replace vn by un.

Proof. See Subsection A.7.4. �

Lemma A.5. Let X1, . . . , Xn be i.i.d. random variables taking value in (S,S)
and fix β ∈ (0, 1]. Let f : (Sr,Sr) → R

d be a measurable, symmetric function
such that

E [fj(X1, . . . , Xr)] = 0, ‖fj(X1, . . . , Xr)‖ψβ
� un for all j = 1, . . . , d.

Define Un := |In,r|−1
∑

ι∈In,r
f(Xι) and σ2 := max1�j�d E[f

2
j (X

r
1 )]. Then there

exists a constant C that only depends on β such that with probability at least
1− 4/n,

max
1�j�d

|Un,j | � C
(
n−1/2r1/2 log1/2(dn)σ + n−1r log1/β+1(dn) log1/β−1(n)un

)
.

Clearly, we can replace σ by un.

Proof. See subsection A.7.5. �
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A.1.3. Tail probabilities for U -statistics with random kernel

Let X1, . . . , Xn be i.i.d. random variables taking value in (S,S) and W, {Wι, ι ∈
In,r} be i.i.d. random variables taking value in (S′,S ′), that are independent of
Xn

1 . In this subsection, we consider a measurable function F : Sr × S′ → R
d

that is symmetric in the first r variables, and fix some β ∈ (0, 1]. Further, define

f(x1, . . . , xr) := E[F (x1, . . . , xr,W )],

bj(x1, . . . , xr) := ‖Fj(x1, . . . , xr,W )− fj(x1, . . . , xr)‖ψβ
for all j = 1, . . . , d.

We first consider the non-negative random kernels.

Lemma A.6. Consider Z := max1�j�d |In,r|−1∑
ι∈In,r

Fj(Xι,Wι). Assume

that for all j = 1, . . . , d, Fj(·) � 0, and that there exists un � 1 such that

‖bj(Xr
1 )‖ψβ

� un, ‖fj(Xr
1 )‖ψβ

� un, for all j = 1, . . . , d.

Then there exists some constant C that only depends on β such that with prob-
ability at least 1− 8/n,

Z � C max
1�j�d

E [fj(X
r
1 )] + Cn−1r log1/β+1(dn) log1/β−1(n)un

+ C|In,r|−1r3/β log2/β+1(dn) log2/β−1(n)un.

Proof. See subsection A.7.6. �

Next, we consider centered random kernels.

Lemma A.7. Let Z := max1�j�d

∣∣∣|In,r|−1∑
ι∈In,r

(Fj(Xι,Wι)− fj(Xι))
∣∣∣. As-

sume there exists un � 1 such that for all j = 1, . . . , d,

‖bj(X1, . . . , Xr)‖ψβ
� un.

Then there exists some constant C that only depends on β such that with prob-
ability at least 1− 9/n,

Z � Cun|In,r|−1/2r1/2 log1/2(dn)
(
1 + n−1/2r1/2 log1/β+1/2(dn) log1/β−1/2(n)

)
+ Cun|In,r|−1r3/β log2/β+1(dn) log2/β−1(n).

Proof. See subsection A.7.7. �

A.2. Additional lemmas

The following Lemma concerns Gaussian approximation for sum of independent
vectors. It replaces the ‖ · ‖ψ1 condition in Proposition 2.1 of [10] by ‖ · ‖ψq .
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Lemma A.8. Let Z1, . . . , Zn be independent Rd-valued random vectors. Assume
that for some absolute constant σ2 > 0, and q > 0,

n−1
n∑

i=1

E
[
Z2
ij

]
� σ2, n−1

n∑
i=1

E
[
Z2+k
ij

]
� Dk

n for j = 1, . . . , d, k = 1, 2,

‖Zij‖ψq � Dn, for i = 1, . . . , n, j = 1, . . . , d.

Then there exists some constant C that only depends on q and σ2 such that

ρ(n−1/2
n∑

i=1

(Zi − E[Zi]) , Y ) � C

(
D2

n log
q∗(dn)

n

)1/6

,

where q∗ = (6/q + 1) ∨ 7, Y ∼ N (0,Σ), and Σ := n−1
∑n

i=1 E[ZiZ
′
i].

Proof. See Subsection A.8. �
The following lemmas are elementary, but used repeatedly.

Lemma A.9. Let β > 0. There exits a constant C, only depending on β, such
that for any positive integers r, n such that 2 � r � √

n,

n2rβ � C‖In,r‖.

Proof. Fix β. If r → ∞, n2rβ/‖In,r‖ → 0. Thus there exits M such that if
r � M , n2rβ � ‖In,r‖. For r < M , the inequality holds with C = Mβ . �
Lemma A.10. Let β, k > 0. For any random variable X,

‖Xk‖ψβ
= ‖X‖kψkβ

.

Proof. Observe that

E

[
exp
(
|X|k/‖X‖kψkβ

)β]
= E

[
exp
(
|X|/‖X‖ψkβ

)kβ] � 2,

which implies that ‖Xk‖ψβ
� ‖X‖kψkβ

. The reverse direction is similar. �

For β < 1, ‖·‖ψβ
is not a norm, but the usual triangle inequality and maximal

inequality hold up to a multiplicative constant.

Lemma A.11. Fix β ∈ (0, 1).

(i) For any random variables X and Y ,

‖X + Y ‖ψβ
� 21+1/β

(
‖X‖ψβ

+ ‖Y ‖ψβ

)
.

(ii) Let ξ1, . . . , ξn be a sequence of random variables such that ‖ξi‖ψβ
� D for

1 � i � n, and n � 2. Then there exists a constant C depending only on
β such that

‖ max
1�i�n

ξi‖ψβ
� C log1/β(n)D.

Proof. See Subsection A.8. �
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A.3. Proofs in Section 2.1

We first prove Corollary 2.2 and then prove Theorem 2.1.

Proof of Corollary 2.2. Let c be the constant in Theorem 5.1. Without loss of
generality, we assume

r2D2
n log

q∗(dn)

σ2
g n

� c, and θ = 0, (17)

since ρ(·, ·) � 1 and we can always consider h(·) − θ instead. Recall that q∗ =
(6/q + 1) ∨ 7.

Fix any rectangle R = [a, b] ∈ R, where a, b ∈ R
d and a � b. Define

ã = r−1Λ−1/2
g a, b̃ = r−1Λ−1/2

g b, Ũn = r−1Λ−1/2
g Un, G̃i = Λ−1/2

g g(Xi).

Denote

ξn := max
1�j�d

∣∣∣∣∣Ũn,j −
1

n

n∑
i=1

G̃i,j

∣∣∣∣∣ .
Then by Theorem 5.1,

E[ξn] � r−1σ−1
g max

1�j�d

∣∣∣∣∣Un,j −
r

n

n∑
i=1

gj(Xi)

∣∣∣∣∣ � σ−1
g n−1r log1+1/q(d)Dn.

For any t > 0, by Markov inequality and definition,

P(
√
nUn ∈ R) = P(−

√
nUn � −a ∩

√
nUn � b)

= P(−
√
nŨn � −ã ∩

√
nŨn � b̃)

� P(−
√
nŨn � −ã ∩

√
nŨn � b̃ ∩

√
nξn � t) + P(

√
nξn > t)

� P(− 1√
n

n∑
i=1

G̃i � −ã+ t ∩ 1√
n

n∑
i=1

G̃i � b̃+ t)

+ Ct−1σ−1
g n−1/2r log1+1/q(d)Dn.

Due to assumptions (C2), (C3) and Cauchy-Schwarz inequality,

E[G̃2
i,j ] = 1, for 1 � i � n, 1 � j � d,

E[G̃4
i,j ] � (σ−1

g,jDn)
2 � (σ−1

g Dn)
2, for 1 � i � n, 1 � j � d,

E[|G̃i,j |3] �
√
E[G̃2

i,j ]E[G̃
4
i,j ] � σ−1

g Dn, for 1 � i � n, 1 � j � d,

‖G̃i,j‖ψq � σ−1
g,jDn � σ−1

g Dn, for 1 � i � n, 1 � j � d.

Then due to Lemma A.8, we have

P(
√
nUn ∈ R) � P(−Λ−1/2

g YA � −ã+ t ∩ Λ−1/2
g YA � b̃+ t)

+ C
(
σ−2
g n−1D2

n log
q∗(dn)

)1/6
+ Ct−1σ−1

g n−1/2r log1+1/q(d)Dn.
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Further, by anti-concentration inequality [10, Lemma A.1],

P(
√
nUn ∈ R) � P(−Λ−1/2

g YA � −ã ∩ Λ−1/2
g YA � b̃) + Ct

√
log(d)

+ C
(
σ−2
g n−1D2

n log
q∗(dn)

)1/6
+ Ct−1σ−1

g n−1/2r log1+1/q(d)Dn.

Finally, taking t =
(
σ−2
g n−1r2 log1+2/q(d)D2

n

)1/4
and due to convention (17),

we have

P(
√
nUn ∈ R)− P(rYA ∈ R)

� C
(
σ−2
g n−1D2

n log
q∗(dn)

)1/6
+ C
(
σ−2
g n−1r2 log3+2/q(d)D2

n

)1/4
� C

(
σ−2
g n−1D2

n log
q∗(dn)

)1/6
+ C
(
σ−2
g n−1r2 logq∗(d)D2

n

)1/6
� C

(
σ−2
g n−1r2D2

n log
q∗(dn)

)1/6
.

Likewise, we can show the lower inequality

P(
√
nUn ∈ R) � P(rYA ∈ R)− C

(
σ−2
g n−1r2D2

n log
q∗(dn)

)1/6
,

which completes the proof. �
Proof of Theorem 2.1. As before, without loss of generality, we assume

θ = 0, and
r2D2

n log
q∗(dn)

σ2
gn

� c1, (18)

for some sufficiently small c1 ∈ (0, 1). Define for each ι = (i1, . . . , ir) ∈ In,r,

Hι := H(Xi1 , . . . , Xir ,Wι)− h(Xi1 , . . . , Xir) := H(Xι,Wι)− h(Xι).

Then by definition,

Ûn = Rn + Un, where Rn := |In,r|−1
∑

ι∈In,r

Hι.

Step 1 . We first show that

E

[
max
1�j�d

|Rn,j |
]
� Dn log

1/2+1/q(dn)

n
. (19)

Note that conditional onXn
1 , Rn is an average of independent random vectors.

Thus by [9, Lemma 8],

E|Xn
1

[
max
1�j�d

|In,r| |Rn,j |
]
�
√

log(d) max
1�j�d

∑
ι∈In,r

E|Xn
1

[
H

2

j (Xι,Wι)
]

+ log(d)

√
E|Xn

1

[
max
ι∈In,r

max
1�j�d

H
2

j (Xι,Wι)

]
.
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By definition (6) and maximal inequality ([29, Lemma 2.2.2] and Lemma A.11),

E|Xn
1

[
H

2

j (Xι,Wι)
]
� B2

n,j(Xι) for all ι ∈ In,r,√
E|Xn

1

[
max
ι∈In,r

max
1�j�d

H
2

j (Xι,Wι)

]
� r1/q log1/q(dn) max

ι∈In,r

max
1�j�d

Bn,j(Xι).

Define

Z1 := max
1�j�d

1

|In,r|
∑

ι∈In,r

B2
n,j(Xι) � max

ι∈In,r

max
1�j�d

B2
n,j(Xι) := M2

1 .

Under the assumption (C4) and again maximal inequality ([29, Lemma 2.2.2]
and Lemma A.11), we have

‖M1‖ψq � r1/q log1/q(dn)Dn.

Then, we have

E

[
max
1�j�d

|Rn,j |
]
�
√

log(d)

|In,r|
E[M1] +

r1/q log1+1/q(dn)

|In,r|
E[M1]

�
(√

log(d)

|In,r|
+

r1/q log1+1/q(dn)

|In,r|

)
r1/q log1/q(dn)Dn.

Then due to Lemma A.9 and (18), we have

E

[
max
1�j�d

|Rn,j |
]
� Dn log

1/2+1/q(dn)

n
.

Step 2 . We finish the proof by a similar argument as in the proof of Corol-
lary 2.2.

Fix any rectangle R = [a, b] ∈ R, where a, b ∈ R
d and a � b. Define

ã = r−1Λ−1/2
g a, b̃ = r−1Λ−1/2

g b, ỸA = Λ−1/2
g YA,

where we recall that Λg is defined in (5). Recall that Ûn = Un + Rn. For any
t > 0, by Markov inequality, the result from Step 1, and Corollary 2.2,

P(
√
nÛn ∈ R) = P(−

√
nÛn � −a ∩

√
nÛn � b)

� P(−
√
nÛn � −a ∩

√
nÛn � b ∩

√
n‖Rn‖∞ � t) + P(

√
n‖Rn‖∞ > t)

�P(−
√
nUn � −a+ t ∩

√
nUn � b+ t) + Ct−1n−1/2Dn log

1/2+1/q(dn)

� P(−rYA � −a+ t ∩ rYA � b+ t)

+ C

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

+ Ct−1n−1/2Dn log
1/2+1/q(dn)
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� P(−ỸA � −ã+ tr−1σ−1
g ∩ ỸA � b̃+ tr−1σ−1

g ) + C

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

+ Ct−1n−1/2Dn log
1/2+1/q(dn).

Observe that E[Ỹ 2
A,j ] = 1 for 1 � j � d. By anti-concentration inequality [10,

Lemma A.1],

P(
√
nÛn ∈ R) � P(−ỸA � −ã ∩ ỸA � b̃) + C

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

+ Ctr−1σ−1
g

√
log(d) + Ct−1n−1/2Dn log

1/2+1/q(dn).

Finally, taking t =
(
σ2
gn

−1r2 log2/q(dn)D2
n

)1/4
and due to convention (18),

we have

P(
√
nÛn ∈ R) � P(rYA ∈ R) + C

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

.

By a similar argument, we can show

P(
√
nÛn ∈ R) � P(rYA ∈ R)− C

(
r2D2

n log
q∗(dn)

σ2
g n

)1/6

,

which completes the proof. �

A.4. Proofs in Section 2.2

In this subsection, without loss of generality, we assume θ = 0. Recall the
definition ΛH in (5). Further, define a function H̃ : Sr ∗S′ → R

d by H̃(xr
1, w) =

Λ
−1/2
H H(xr

1, w) for any xr
1 ∈ Sr, w ∈ S′, and

ΓH̃ := Cov(H̃(Xr
1 ,W )) = Λ

−1/2
H ΓHΛ

−1/2
H ,

Γ̂H̃ :=
1

|In,r|
∑

ι∈In,r

H̃(Xι,Wι)H̃(Xι,Wι)
T .

(20)

Clearly, if (C5) holds, then

E|H̃j(X
r
1 ,W )|2+k � (σ−1

H,jDn)
k � (σ−1

H Dn)
k, for 1 � j � d, k = 1, 2, (21)

where again we applied Cauchy–Schwarz inequality for k = 1.

A.4.1. Bounding N̂/N

The following lemma follows from an application of Bernstein’s inequality and
is proved in the Step 5 of the proof of [8, Theorem 3.1]. It is included here for
easy reference.
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Lemma A.12. Assume
√
log(n)/N � 1/4. Then

P

(
|N̂/N − 1| > 2

√
log(n)/N

)
� 2n−1,

P

(
|N/N̂ − 1| > 4

√
log(n)/N

)
� 2n−1.

A.4.2. Bounding the normalized covariance estimator

Lemma A.13. Assume (C3’), (C4) and (C5) hold. Then there exists a constant
C, depending only on q, such that with probability at least 1− 13/n,

C−1‖Γ̂H̃ − ΓH̃‖∞ �
σ−1
H n−1/2r1/2 log1/2(dn)Dn + σ−2

H n−1r log2/q+1(dn) log2/q−1(n)D2
n

+σ−2
H D2

n|In,r|−1/2r1/2 log1/2(dn)
(
1 + n−1/2r1/2 log2/q+1/2(dn) log2/q−1/2(n)

)
+σ−2

H D2
n|In,r|−1r6/q log4/q+1(dn) log4/q−1(n).

Proof. Define v(xr
1) := E[H̃(xr

1,W )H̃(xr
1,W )T ], V̂ := |In,r|−1

∑
ι∈In,r

v(Xι).
Observe that

‖Γ̂H̃ − ΓH̃‖∞ � ‖Γ̂H̃ − V̂ ‖∞ + ‖V̂ − ΓH̃‖∞.

We will bound these two terms separately.

Step 0. We first make a few observations. Clearly, E[v(Xr
1 )] = ΓH̃ , and for all

1 � j, k � d, by Jensen’s inequality for conditional expectation and (21),

E |vjk(Xr
1 )|

2 � E[H̃2
j (X

r
1 ,W )H̃2

k(X
r
1 ,W )]

� E[H̃4
j (X

r
1 ,W )] + E[H̃4

k(X
r
1 ,W )] � σ−2

H D2
n.

(22)

Further, by definition

|vjk(xr
1)| � E[H̃2

j (x
r
1,W )] + E[H̃2

k(x
r
1,W )]

� σ−2
H

(
B2

n,j(x
r
1) + h2

j (x
r
1) +B2

n,k(x
r
1) + h2

k(x
r
1)
)
.

As a result, by the assumptions (C4) and (C3’), and Lemma A.10,

max
1�j,k�d

‖vjk(Xr
1 )‖ψq/2

� σ−2
H max

1�j�d

(
‖B2

n,j(X
r
1 )‖ψq/2

+ ‖h2
j (X

r
1 )‖ψq/2

)
= σ−2

H max
1�j�d

(
‖Bn,j(X

r
1 )‖2ψq

+ ‖hj(X
r
1 )‖2ψq

)
� (σ−1

H Dn)
2.

(23)

Step 1 . We bound ‖Γ̂H̃ − V̂ ‖∞ using Lemma A.7 with F = H̃H̃T and ψq/2. For
1 � j, k � d, define

bjk(x
r
1) := ‖H̃j(x

r
1,W )H̃k(x

r
1,W )− vjk(x

r
1)‖ψq/2

.
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Observe that due to Lemma A.10 and A.11,

bjk(x
r
1) � ‖H̃2

j (x
r
1,W )‖ψq/2

+ ‖H̃2
k(x

r
1,W )‖ψq/2

+ vjk(x
r
1)

= ‖H̃j(x
r
1,W )‖2ψq

+ ‖H̃k(x
r
1,W )‖2ψq

+ vjk(x
r
1)

� σ−2
H (h2

j (x
r
1) +B2

n,j(x
r
1) + h2

k(x
r
1) +B2

n,k(x
r
1)) + vjk(x

r
1).

Then due to (23) and the assumptions (C4) and (C3’),

‖bjk(Xr
1 )‖ψq/2

� (σ−1
H Dn)

2, for all 1 � j, k � d.

Now we apply Lemma A.7, with probability at least 1− 9/n,

‖Γ̂H̃ − V̂ ‖∞ �

σ−2
H D2

n|In,r|−1/2r1/2 log1/2(dn)
(
1 + n−1/2r1/2 log2/q+1/2(dn) log2/q−1/2(n)

)
+ σ−2

H D2
n|In,r|−1r6/q log4/q+1(dn) log4/q−1(n).

Step 2 . We bound ‖V̂ − ΓH̃‖∞ using Lemma A.5 with ψq/2. By (22) and (23),

with probability at least 1− 4/n, ‖V̂ − ΓH̃‖∞ �

n−1/2r1/2 log1/2(dn)σ−1
H Dn + n−1r log2/q+1(dn) log2/q−1(n)σ−2

H D2
n.

Then the proof is complete by combining step 1 and 2. �

A.4.3. Bounding the effect of sampling

The following quantity will appear in the proof of Theorem 2.4:

√
Nζn :=

1√
|In,r|

∑
ι∈In,r

Zι − pn√
pn(1− pn)

H̃(Xι,Wι) :=
1√
|In,r|

∑
ι∈In,r

Z̃ι. (24)

The next lemma establishes conditional Gaussian approximation for
√
Nζn.

Lemma A.14. Suppose the assumptions in Theorem 2.4 hold. There exists a
constant C, depending on q, such that with probability at least 1− C/n,

ρR|X,W (
√
Nζn,Λ

−1/2
H YB) := sup

R∈R

∣∣∣P|X,W

(√
Nζn ∈ R

)
− P(Λ

−1/2
H YB ∈ R)

∣∣∣
� Cn,

where we recall YB ∼ N(0,ΓH), and abbreviate P|X,W for P|Xn
1 ,{Wι:ι∈In,r}.

Proof. Consider conditionally independent (conditioned on X,W ) R
d-valued

random vectors {Ŷι : ι ∈ In,r} such that

Ŷι|X,W ∼ N(0, H̃(Xι,Wι)H̃(Xι,Wι)
T ), Ŷ := |In,r|−1/2

∑
ι∈In,r

Ŷι.
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Clearly, Ŷ |X,W ∼ N(0, Γ̂H̃). Further, define

ρR|X,W (
√
Nζn, Ŷ ) := sup

R∈R

∣∣∣P|X,W

(√
Nζn ∈ R

)
− P|X,W (Ŷ ∈ R)

∣∣∣ ,
ρR|X,W (Ŷ ,Λ

−1/2
H YB) := sup

R∈R

∣∣∣P|X,W

(
Ŷ ∈ R

)
− P(Λ

−1/2
H YB ∈ R)

∣∣∣ .
By triangle inequality, it then suffices to show that each of the following events
happens with probability at least 1− C/n,

ρR|X,W (
√
Nζn, Ŷ ) � Cn, ρR|X,W (Ŷ ,Λ

−1/2
H YB) � Cn, (25)

on which we now focus. Without loss of generality, since σg � 1, we assume

rq1D2
n log

q∗(dn)

σ2
g n ∧N

� c1, and
rq1D2

n log
q∗(dn)

n ∧N
� c1, (26)

for some sufficiently small constant c1 ∈ (0, 1) that is to be determined. Recall
that q1 = 2 ∨ (2/q) and q∗ = (6/q + 1) ∨ 7.

Step 0 . By Lemma A.13 and A.9,

P

⎛⎝‖Γ̂H̃ − ΓH̃‖∞ � C

(
r log1∨(2/q−1)(dn)D2

n

σ2
H n

)1/2
⎞⎠ � 1− 13

n
. (27)

In particular, since ΓH̃,jj = 1, if we take c1 small enough such that Cc
1/2
1 � 1/2,

then P

(
min1�j�d Γ̂H̃,jj � 1/2

)
� 1− 13/n.

Step 1 . The goal is to show that the first event in (25), ρR|X,W (
√
Nζn, Ŷ ) � Cn,

holds with probability at least 1− C/n.

Step 1.1. Define

L̂n := max
1�j�d

|In,r|−1
∑

ι∈In,r

E|X,W

[
|Z̃ι,j |3

]
. (28)

Further, M̂n(φ) := M̂n,X(φ) + M̂n,Y (φ), where

M̂n,X(φ) := |In,r|−1
∑

ι∈In,r

E|X,W

[
max
1�j�d

|Z̃ι,j |3; max
1�j�d

|Z̃ι,j | >
√
|In,r|

4φ log d

]
,

M̂n,Y (φ) := |In,r|−1
∑

ι∈In,r

E|X,W

[
max
1�j�d

|Ŷι,j |3; max
1�j�d

|Ŷι,j | >
√

|In,r|
4φ log d

]
.

(29)

By Theorem 2.1 in [10], there exist absolute constants K1 and K2 such that
for any real numbers Ln and Mn, we have

ρR|X,W (
√
Nζn, Ŷ ) � K1

⎛⎝(L
2

n log
7(d)

|In,r|

)1/6

+
Mn

Ln

⎞⎠ ,
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on the event En := {L̂n � Ln} ∩ {M̂n(φn) � Mn} ∩ {min1�j�d Γ̂H̃,jj � 1/2},

where φn := K2

(
L

2
n log4(d)
|In,r|

)−1/6

.

In Step 0, we have shown P

(
min1�j�d Γ̂H̃,jj � 1/2

)
� 1 − 13/n. In Step

1.2-1.4, we select proper Ln and Mn such that the first two events happen with
probability at least 1− C/n. In Step 1.5, we plug in these values.

Step 1.2: Select Ln. Since pn � 1/2, E|Zι − pn|3 � Cpn, and thus

L̂n � Cp−1/2
n Z1, where Z1 := max

1�j�d

1

|In,r|
∑

ι∈In,r

∣∣∣H̃j(Xι,Wι)
∣∣∣3 .

We will apply Lemma A.6 with F (·) = |H̃(·)|3 and β = q/3. Thus for 1 � j � d,
define

fj(x
r
1) := E

[∣∣∣H̃j(x
r
1,W )

∣∣∣3] , bj(x
r
1) :=

∥∥∥∥∣∣∣H̃j(x
r
1,W )

∣∣∣3 − fj(x
r
1)

∥∥∥∥
ψq/3

.

First, by iterated expectation and due to (21),

E [fj(X
r
1 )] = E

[∣∣∣H̃j(X
r
1 ,W )

∣∣∣3] � σ−1
H Dn, for 1 � j � d.

Second, observe that σ3
H,jfj(x

r
1) � E

[
|Hj(x

r
1,W )− hj(x

r
1)|3
]
+ |hj(x

r
1)|3 �

B3
n,j(x

r
1) + |hj(x

r
1)|3, and thus due to (C3), (C4) and Lemma A.10 and A.11,

‖fj(Xr
1 )‖ψq/3

� σ−3
H,j

(
‖B3

n,j(X
r
1 )‖ψq/3

+ ‖h3
j (X

r
1 )‖ψq/3

)
= σ−3

H,j

(
‖Bn,j(X

r
1 )‖3ψq

+ ‖hj(X
r
1 )‖3ψq

)
� (σ−1

H Dn)
3.

Further, observe that by Lemma A.11,

σ3
H,jbj(x

r
1) � ‖ |Hj(x

r
1,W )− hj(x

r
1)|

3 ‖ψq/3
+ |h3

j (x
r
1)|+ σ3

H,jfj(x
r
1)

= B3
n,j(x

r
1) + |h3

j (x
r
1)|+ σ3

H,jfj(x
r
1).

Thus by the same argument, ‖bj(Xr
1 )‖ψq/3

� (σ−1
H Dn)

3. Then by Lemma A.6,

with probability at least 1− 8n−1,

Z1 � C
(
σ−1
H Dn + n−1r log6/q(dn)σ−3

H D3
n + |In,r|−1r9/q log12/q(dn)σ−3

H D3
n

)
.

Due to Lemma A.9 and assumption (26), P(L̂n � Cσ−1
H p

−1/2
n Dn) � 1 − 8/n.

Thus there is a constant C1, depending on q, such that if

Ln := C1σ
−1
H p−1/2

n r1/qDn, (30)

then P(L̂n � Ln) � 1− 8/n.



High-dimensional infinite-order U-statistics 4829

Step 1.3: bounding M̂n,X(φn). Since Zι is a Bernoulli random variable, it is

clear that M̂n,X(φn) = 0 on the event

M := max
ι∈In,r

max
1�j�d

|H̃j(Xι,Wι)| �
√
N

4φn log(d)
= 4−1K−1

2 C
1/3
1

(
r1/qDnN

σH log(d)

)1/3

,

where we use the value (30) for Ln.
By assumption (C3’) and Lemma A.11,

‖M‖ψq � C ′σ−1
H r1/qDn log

1/q(dn)

⇒ P

(
M � C ′σ−1

H r1/qDn log
2/q(dn)

)
� 1− 2/n.

Due to (26),(
r1/qDnN

σH log(d)

)1/3

� c
−1/3
1 σ−1

H r1/qDn log
2/q(dn),

φ−1
n = K−1

2 C
1/3
1

(
r2/qD2

n log
4(d)

σ2
HN

)1/6

� K−1
2 C

1/3
1 c

1/6
1 .

Thus if we take c1 in (26) to be sufficiently small such that

c
−1/3
1 4−1K−1

2 C
1/3
1 � C ′ and K−1

2 C
1/3
1 c

1/6
1 � 1,

then P(M̂n,X(φn) = 0) � 1− 2/n and φn � 1.

Step 1.4: select Mn. From Step 1.3, we have shown that P (E ′
n) � 1 −

2/n, where

E ′
n :=

{
M := max

ι∈In,r

max
1�j�d

|H̃j(Xι,Wι)| � C ′σ−1
H r1/qDn log

2/q(dn)

}
.

Then by the same argument as in Step 1.4 of the proof of [8, Theorem 3.1] and
due to (26) and φn � 1, on the event E ′

n, for any ι ∈ In,r,

E|X,W

[
max
1�j�d

|Ŷι,j |3; max
1�j�d

|Ŷj,ι| >
√

|In,r|
4φn log d

]

� C

( √
|In,r|

4φn log d
+ CM log1/2(d)

)3

exp

(
−

√
|In,r|

CMφn log
3/2 d

)

� Cn3r/2 exp

(
− |In,r|1/3

Cσ
−2/3
H r2/3qD

2/3
n log2/q+5/6(dn)

)
� Cn3r/2 exp

(
−|In,r|11/84/C

)
.
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Thus there exists an absolute constant C2 such that if we set

Mn := C2n
3r/2 exp

(
−|In,r|11/84/C2

)
, (31)

then P(M̂n,Y (φn) � Mn) � 1− 2/n.

Step 1.5: plug in Ln and Mn. Recall the definition Ln and Mn in (30) and
(31). With these selections, we have shown that P(En) � 1 − C/n, where we

recall that En := {L̂n � Ln} ∩ {M̂n(φn) � Mn} ∩ {min1�j�d Γ̂H̃,jj � 1/2}.
Further, on the event En,

ρR|X,W (
√
Nζn, Ŷ ) �

(
L
2

n log
7(d)

|In,r|

)1/6

+
Mn

Ln

�
(
r2/qD2

n log
7(d)

σ2
HN

)1/6

+
p
1/2
n σH

Dnr1/q
n3r/2 exp

(
−|In,r|11/84/C2

)
� Cn,

which completes the proof of Step 1.

Step 2. We show that the second event in (25), ρR|X,W (Ŷ ,Λ
−1/2
H YB) � Cn,

holds with probability at least 1− C/n.

Observe that Cov(Λ
−1/2
H YB) = ΓH̃ and ΓH̃,jj = 1 for 1 � j � d. By the

Gaussian comparison inequality [8, Lemma C.5],

ρR|X,W (Ŷ ,Λ
−1/2
H YB) � Δ

1/3
log2/3(d),

on the event that {‖Γ̂H̃ − ΓH̃‖∞ � Δ}. From (27) in Step 0,

P

(
‖Γ̂H̃ − ΓH̃‖∞ � C(σ−2

H n−1r log1∨(2/q−1)(dn)D2
n)

1/2
)

� 1− 13/n.

Thus if we set Δ = C(σ−2
H n−1r log1∨(2/q−1)(dn)D2

n)
1/2, then with probability

at least 1− C/n,

ρR|X,W (Ŷ , YB) � C

(
r log5∨(2/q+3)(dn)D2

n

σ2
H n

)1/6

� Cn.
�

A.4.4. Proof of Theorem 2.4

Without loss of generality, we assume that

rq1D2
n log

q∗(dn)

σ2
g n ∧N

� 1

16
. (32)

Observe that

U ′
n,N =

N

N̂

⎛⎝ 1

N

∑
ι∈In,r

(Zι − pn)Λ
1/2
H H̃(Xι,Wι) +

1

|In,r|
∑

ι∈In,r

H(Xι,Wι)

⎞⎠
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=
N

N̂

(√
1− pnΛ

1/2
H ζn + Ûn

)
:=

N

N̂
Φn,

where we recall that Ûn and ζn is defined in Section 2.1 and in (24) respectively.

Denote Y := rYA + α
1/2
n YB .

Step 1: the goal is to show that

ρ
(√

nΦn, rYA + α1/2
n YB

)
� n.

For any rectangle R ∈ R, observe that

P(
√
n
(
Ûn +

√
1− pnΛ

1/2
H ζn

)
∈ R)

= E

[
P|X,W

(
√
Nζn ∈

(
1√

αn(1− pn)
Λ
−1/2
H R−

√
N

1− pn
Λ
−1/2
H Ûn

))]
.

By Lemma A.14, since n−1 � n, we have

P(
√
n
(
Ûn +

√
1− pnΛ

1/2
H ζn

)
∈ R)

� E

[
P|X,W

(
Λ
−1/2
H YB ∈

(
1√

αn(1− pn)
Λ
−1/2
H R−

√
N

1− pn
Λ
−1/2
H Ûn

))]
+ Cn

= P

(√
nÛn ∈

[
R−
√
αn(1− pn)YB

])
+ Cn,

where we recall that YB is independent of all other random variables. Further,
by Theorem 2.1,

P(
√
n
(
Ûn +

√
1− pnΛ

1/2
H ζn

)
∈ R)

� E

[
P|YB

(√
nÛn ∈

[
R−
√
αn(1− pn)YB

])]
+ Cn

� E

[
P|YB

(
rYA ∈

[
R−
√
αn(1− pn)YB

])]
+ Cn,

= P

(
Λ−1/2
g (rYA +

√
αn(1− pn)YB) ∈ Λ−1/2

g R
)
+ Cn.

Observe that E[(σ−1
g,jrYA,j)

2] = r2 � 1 for any 1 � j � d, ‖ΓH‖∞ � D2
n

due to (C3’), and αnpn = n/|In,r| � n−1. Then by the Gaussian comparison
inequality [8, Lemma C.5] and due to (32)

P(
√
nΦn ∈ R)

� P

(
Λ−1/2
g (rYA +

√
αnYB) ∈ Λ−1/2

g R
)
+ Cn + C

(
D2

n log
2(d)

σ2
gn

)1/3

� P (rYA +
√
αnYB ∈ R) + Cn.



4832 Y. Song et al.

Similarly, we can show P(
√
nΦn ∈ R) � P

(
rYA +

√
αnYB ∈ R

)
− Cn. Thus

the proof of Step 1 is complete.

Step 2: we show that with probability at least 1− Cn,

‖(N
N̂

− 1)
√
NΦn‖∞ � Cνn, where νn :=

√
log3(dn)r2D2

n

n ∧N
.

Clearly, E[Y 2
j ] = r2σ2

g,j+αnσ
2
H,j . Then due to (C3’), E[Y 2

j ] � (r2+αn)D
2
n. Since

Y is a multivariate Gaussian, max1�j�d ‖Yj‖ψ2 �
√
(r2 + αn)D2

n. Then by max-

imal inequality [29, Lemma 2.2.2] ‖max1�j�d |Yj |‖ψ2 � C
√
(r2 + αn)D2

n log(d),
which further implies that

P

(
max
1�j�d

|Yj | � C
√
(r2 + αn)D2

n log(d) log(n)

)
� 2n−1.

Since n−1 � n, and from the result in Step 1, we have

P

(
‖
√
nΦn‖∞ � C

√
(r2 + αn)D2

n log(d) log(n)
)
� Cn.

Finally, due to Lemma A.12 and (32), we have with probability at least 1−Cn,

‖(N/N̂ − 1)
√
NΦn‖∞ � C

√
(r2 + αn)D2

n log(d) log
2(n)N−1α−1

n .

Since (r2 +αn)N
−1α−1

n = r2n−1 +N−1 � 2r2(n∧N)−1, the proof is complete.

Step 3: final step. Recall that
√
NU ′

n,N =
√
NΦn+(N/N̂ − 1)

√
NΦn and νn

is defined in Step 2. For any rectangle R = [a, b] with a � b, by Step 2,

P

(√
NU ′

n,N ∈ R
)

� P

(√
NU ′

n,N ∈ R ∩ ‖(N/N̂ − 1)
√
NΦn‖∞ � Cνn

)
+ Cn

� P

(√
NΦn � −a+ Cνn ∩

√
NΦn � b+ Cνn

)
+ Cn.

Then by the result in Step 1, we have

P

(√
NU ′

n,N ∈ R
)

� P

(
α−1/2
n Y � −a+ Cνn ∩ α−1/2

n Y � b+ Cνn

)
+ Cn

� P

(
α−1/2
n Ỹ � −ã+ Cσ−1

H νn ∩ α−1/2
n Ỹ � b̃+ Cσ−1

H νn

)
+ Cn,

where Ỹ = Λ−1
H Y , ã = Λ−1

H a and b̃ = Λ−1
H b. Observe that E[(α

−1/2
n Ỹj)

2] �
E[(σ−1

H,jYB,j)
2] = 1 for 1 � j � d, and thus by anti-concentration inequality [10,

Lemma A.1],
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P

(√
NU ′

n,N ∈ R
)

� P

(
α−1/2
n Ỹ � −ã ∩ α−1/2

n Y � b̃
)
+ Cσ−1

H νn log
1/2(d) + Cn

= P

(
α−1/2
n Y ∈ R

)
+

√
log(d) log3(dn) r2D2

n

σ2
Hn ∧N

+ Cn

� P

(
α−1/2
n Y ∈ R

)
+ Cn,

where the last inequality is due to (32). By a similar argument, we can show

that P
(√

NU ′
n,N ∈ R

)
� P

(
α
−1/2
n Y ∈ R

)
− Cn, and thus

ρ(
√
NU ′

n,N , α−1/2
n Y ) � n,

which completes the proof.

A.5. Proofs in Section 3

In this subsection, without loss of generality, we assume q � 1 (see Remark 2.5).

A.5.1. Proof of Theorem 3.1

Proof. Without loss of generality, we can assume θ = E[H(Xr
1 ,W )] = 0, since

otherwise we can center H first. Recall the definition of ΛH in (5), H̃(·) =

Λ
−1/2
H H(·), and ΓH̃ , Γ̂H̃ in (20). Observe that for any integer k, there exists

some constant C that depends only on k and ζ such that

logk(n)n−ζ � C. (33)

Step 0. Define Ũ ′
n,N := Λ

−1/2
H U ′

n,N and

Δ̂B :=

∥∥∥∥∥∥ 1

N̂

∑
ι∈In,r

Zι

(
H̃(Xι,Wι)− Ũ ′

n,N

)(
H̃(Xι,Wι)− Ũ ′

n,N

)T
− ΓH̃

∥∥∥∥∥∥
∞

.

Since ΓH̃,jj = 1 for 1 � j � d, by Gaussian comparison inequality [8, C.5],

sup
R∈R

∣∣∣P|Dn

(
U#
n,B ∈ R

)
− P(YB ∈ R)

∣∣∣
= sup

R∈R

∣∣∣P|Dn

(
Λ
−1/2
H U#

n,B ∈ R
)
− P(Λ

−1/2
H YB ∈ R)

∣∣∣ � (Δ̂B log2(d)
)1/3

.

Thus it suffices to show that with probability at least 1 − C/n, Δ̂B log2(d) �
n−ζ/2. Define

Δ̂B,1 :=

∥∥∥∥∥∥N−1
∑

ι∈In,r

(Zι − pn)H̃(Xι,Wι)H̃(Xι,Wι)
T

∥∥∥∥∥∥
∞

,
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Δ̂B,2 :=
∥∥∥Γ̂H̃ − ΓH̃

∥∥∥
∞

, Δ̂B,3 := |N/N̂ − 1| ‖ΓH̃‖∞ ,

Δ̂B,4 :=

∥∥∥∥∥∥N−1
∑

ι∈In,r

ZιH̃(Xι,Wι)

∥∥∥∥∥∥
2

∞

.

Then clearly Δ̂B � |N/N̂ |
(
Δ̂B,1 + Δ̂B,2

)
+ Δ̂B,3 + (N/N̂)2Δ̂B,4.

Without loss of generality, we can assume C1n
−ζ � 1/16, since we can always

take C to be large enough. Then by Lemma A.12, P(|N/N̂ | � C) � 1 − 2n−1,
and thus it suffices to show that

P

(
Δ̂B,i log

2(d) � Cn−ζ/2
)
� 1− C/n, for all i = 1, . . . , 4,

on which we now focus.

Step 1: bounding Δ̂B,1. Conditional on {Xι,Wι : ι ∈ In,r}, by Lemma A.3,

P

(
NΔ̂B,1 � C

(√
NVn log(dn) +M1 log(dn)

))
� 1− C/n,

where

Vn := max
1�j,k�d

|In,r|−1
∑

ι∈In,r

H̃2
j (Xι,Wι)H̃

2
k(Xι,Wι),

M1 := max
ι∈In,r

max
1�j�d

H̃2
j (Xι,Wι).

First, by the maximal inequality ([29, Lemma 2.2.2] and Lemma A.11) and
due to (C3’) and Lemma A.10 and A.11,

‖M1‖ψq/2
� σ−2

H r2/q log2/q(dn) max
ι∈In,r

max
1�j�d

‖H2
j (Xι,Wι)‖ψq/2

� σ−2
H r2/q log2/q(dn)D2

n.

As a result, P
(
M1 � Cσ−2

H r2/qD2
n log

2/q(n) log2/q(dn)
)
� 1− 2/n.

Second, we will apply Lemma A.6 to bound Vn with Fjk(·) = H̃2
j (·)H̃2

k(·) and
β = q/4. Note that by Lemma A.11, for 1 � j, k � d,

σ2
H,jσ

2
H,kfjk(x

r
1) := E

[
H2

j (x
r
1,W )H2

k(x
r
1,W )

]
� E
[
H4

j (x
r
1,W ) +H4

k(x
r
1,W )

]
� h4

j (x
r
1) +B4

n,j(x
r
1) + h4

k(x
r
1) +B4

n,k(x
r
1),

σ2
H,jσ

2
H,kbjk(x

r
1) := ‖H2

j (x
r
1,W )H2

k(x
r
1,W )− σ2

H,jσ
2
H,kfjk(x

r
1)‖ψq/4

� h4
j (x

r
1) +B4

n,j(x
r
1) + h4

k(x
r
1) +B4

n,k(x
r
1) + σ2

H,jσ
2
H,kfjk(x

r
1).

As a result, due to (C5), (C3) and (C4)

E[fjk(X
r
1 )] � (σ−1

H Dn)
2, ‖fjk(Xr

1 )‖ψq/4
� (σ−1

H Dn)
4,



High-dimensional infinite-order U-statistics 4835

‖bjk(Xr
1 )‖ψq/4

� (σ−1
H Dn)

4.

Then by Lemma A.6 and A.9, and due to (8) and (33)

P(Vn � Cσ−2
H D2

n) � 1− 8/n.

Finally, putting the two results together and again by (33), we have with
probability at least 1− C/n,

Δ̂B,1 � C
(
N−1/2 log1/2(dn)σ−1

H Dn +N−1r2/q log2/q(n) log2/q+1(dn)σ−2
H D2

n

)
.

Then by (8), P
(
Δ̂B,1 � Cσ−1

H N−1/2r1/q log1/2(dn)Dn

)
� 1−C/n, which im-

plies that with probability at least 1− C/n,

Δ̂B,1 log
2(d) � Cn−ζ/2.

Step 2: bounding Δ̂B,2. By Lemma A.13 and A.9, and due to assumptions (8)

and (33)

P

(
Δ̂B,2 � Cσ−1

H n−1/2r1/2 log1/2(dn)Dn

)
� 1− 13/n,

which implies P(Δ̂B,2 log
2(d) � Cn−ζ/2) � 1− 13/n.

Step 3: bounding Δ̂B,3. By definition, ‖ΓH̃‖∞ = 1. Then by Lemma A.12 and

(8),

Δ̂B,3 log
2(d) � 4N−1/2 log1/2(n) log2(d) � Cn−ζ/2,

with probability at least 1− 2n−1.

Step 4: bounding Δ̂B,4. Define

Δ̂B,5 :=

∥∥∥∥∥∥N−1
∑

ι∈In,r

(Zι − pn)H̃(Xι,Wι)

∥∥∥∥∥∥
∞

,

Δ̂B,6 :=

∥∥∥∥∥∥|In,r|−1
∑

ι∈In,r

H̃(Xι,Wι)

∥∥∥∥∥∥
∞

.

Clearly, Δ̂B,4 � 2
(
Δ̂2

B,5 + Δ̂2
B,6

)
. In the next two sub-steps, we will bound

these two terms separately.

Step 4.1: bounding Δ̂2
B,5. Conditional on {Xι,Wι : ι ∈ In,r}, by Lemma A.3,

P

(
NΔ̂B,5 � C

(√
NṼn log(dn) + M̃1 log(dn)

))
� 1− C/n,
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where Ṽn := max
1�j�d

|In,r|−1
∑

ι∈In,r

H̃2
j (Xι,Wι),

M̃1 := max
ι∈In,r

max
1�j�d

|H̃j(Xι,Wι)|.

First, by the maximal inequality ([29, Lemma 2.2.2] and Lemma A.11) and
due to (C3’),

‖M̃1‖ψq � σ−1
H r1/q log1/q(dn)Dn.

As a result, P
(
M̃1 � Cσ−1

H r1/qDn log
1/q(n) log1/q(dn)

)
� 1− 2/n.

Second, we will apply Lemma A.6 to bound Ṽn with Fj(·) = H̃2
j (·) and

β = q/2. Define for 1 � j � d,

fj(x
r
1) := E

[
H̃2

j (x
r
1,W )

]
, bj(x

r
1) := ‖H̃2

j (x
r
1,W )− fj(x

r
1)‖ψq/2

.

By the similar argument as in Step 1,

E[fj(X
r
1 )] = 1, ‖fj(Xr

1 )‖ψq/2
� (σ−1

H Dn)
2, ‖bj(Xr

1 )‖ψq/2
� (σ−1

H Dn)
2.

Then by Lemma A.6 and A.9, and due to (8) and (33) we have P(Ṽn � C) �
1− 8/n.

Finally, putting the two results together, we have that with probability at
least 1− C/n,

Δ̂2
B,5 � C

(
N−1 log(dn) + σ−2

H N−2r2/q log2/q+2(dn) log2/q(n)D2
n

)
.

Then by (8), P
(
Δ̂2

B,5 � CN−1 log(dn)
)
� 1 − C/n, which implies that with

probability at least 1− C/n, Δ̂2
B,5 log

2(d) � Cn−ζ holds.

Step 4.2: bounding Δ̂2
B,6. Observe that Δ̂B,6 � Δ̂B,7 + Δ̂B,8, where

Δ̂B,7 :=

∥∥∥∥∥∥|In,r|−1
∑

ι∈In,r

Λ
−1/2
H (H(Xι,Wι)− h(Xι))

∥∥∥∥∥∥
∞

,

Δ̂B,8 :=

∥∥∥∥∥∥|In,r|−1
∑

ι∈In,r

Λ
−1/2
H h(Xι)

∥∥∥∥∥∥
∞

.

By directly applying Lemma A.7 with β = q, due to (8) and Lemma A.9,

P

(
Δ̂B,7 � Cσ−1

H Dnn
−1 log1/2(dn)

)
� 1− 9/n.

By directly applying Lemma A.5 with β = q and due to (8),

P

(
Δ̂B,8 � Cσ−1

H n−1/2r1/2 log1/2(dn)Dn

)
� 1− 4/n.
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Thus P
(
Δ̂2

B,6 log
2(d) � Cn−ζ

)
� 1− C/n.

Combining sub-step 4.1 and 4.2, we have P

(
Δ̂2

B,4 log
2(d) � Cn−ζ

)
� 1 −

C/n. And combining Step 0-4, we finish the proof. �

A.5.2. Proof of Lemma 3.2

Proof. Without loss of generality, we can assume θ = E[H(Xr
1 ,W )] = 0. Recall

the definition Λg is (5). By definition, E[(σ−1
g,jYA,j)

2] = 1 for 1 � j � d. Then
by the Gaussian comparison inequality [8, Lemma C.5],

sup
R∈R

∣∣∣P|Dn

(
U#
n1,A

∈ R
)
− P(YA ∈ R)

∣∣∣
= sup

R∈R

∣∣∣P|Dn

(
Λ−1/2
g U#

n1,A
∈ R
)
− P(Λ−1/2

g YA ∈ R)
∣∣∣

� (Δ̂A log2(d))1/3,

where

Δ̂A := max
1�j,k�d

∣∣∣∣∣ 1

σg,jσg,kn1

∑
i1∈S1

(Gi1,j −Gj)(Gi1,k −Gk)−
1

σg,jσg,k
Γg,jk

∣∣∣∣∣ .
By the same argument as in the proof of [8, Theorem 4.2],

Δ̂A � Δ̂
1/2
A,1 + Δ̂A,1 + Δ̂A,2 + Δ̂2

3,

where Δ̂A,1 is defined in (9), and

Δ̂A,2 := max
1�j,k�d

∣∣∣∣∣ 1

σg,jσg,kn1

∑
i1∈S1

(gj(Xi1)gk(Xi1)− Γg,jk)

∣∣∣∣∣ ,
Δ̂A,3 := max

1�j,k�d

∣∣∣∣∣ 1

σg,jn1

∑
i1∈S1

gj(Xi1)

∣∣∣∣∣ .
Step 1: bounding Δ̂A,1. By the second part of (11), we have

P

(
Δ̂

1/2
A,1 log

2(d) � C
1/2
1 n−ζ2/2

)
� 1− Cn−1,

P

(
Δ̂A,1 log

2(d) � C1n
−ζ2
)
� 1− Cn−1.

Step 2: bounding Δ̂A,2. We apply Lemma A.2 with β = q/2, m = n1 and note
that n1 � n:

P

(
Δ̂A,2 � C

(
n−1
1 σ log1/2(dn) + n−1

1 un log
2/q+1(dn1) log

2/q(n)
))

� 4n−1.
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where σ2 = max1�j,k�d σ
−2
g,jσ

−2
g,k

∑
i1∈S1

E[(gj(Xi1)gk(Xi1)− Γg,jk)
2] and

un = ‖σ−1
g,jσ

−1
g,k (gj(Xi1)gk(Xi1)− Γg,jk) ‖ψq/2

.

By Lemma A.11, (C2) and (C3’), σ2 � n1

(
σ−1
g Dn

)2
, un �

(
σ−1
g Dn

)2
. Thus

with probability � 4n−1,

Δ̂A,2 � C
(
n
−1/2
1 σ−1

g Dn log
1/2(dn) + n−1

1 σ−2
g D2

n log
2/q+1(dn1) log

2/q(n)
)
.

Then due to the first part of (11) and (33), P(Δ̂A,2 log
2(d) � Cn−ζ1/2) � Cn−1.

Step 3: bounding Δ̂A,3. We apply Lemma A.2 with β = q, m = n1:

P

(
Δ̂A,3 � C

(
n
−1/2
1 log1/2(dn) + n−1

1 σ−1
g Dn log

2(dn1) log(n)
))

� 4n−1.

Then due to the first part of (11) and (33), P(Δ̂2
A,3 log

2(d) � Cn−ζ1) �
Cn−1. �

A.5.3. Proof of Theorem 3.3

Proof. Without loss of generality, we can assume θ = E[H(Xr
1 ,W )] = 0.

Step 1. Let ζ1 := ζ, ζ2 := ζ − 1/ν. Due to Theorem 3.1, Lemma 3.2 and using
the same argument as in the Step 3 of the proof of [8, Theorem 4.2], it suffices
to show the second part of (11) holds. From the definition (9),

Δ̂A,1 � σ−2
g max

1�j�d

1

n1

∑
i1∈S1

(Gi1,j − gj(Xi1))
2
:= σ−2

g ΔA,1.

In Step 2, we will show that

E

[
Δ

ν

A,1

]
�
(
n−1rD2

n log
2/q+1(d)

)ν
. (34)

Then by Markov inequality and (12),

P

(
Δ̂A,1 log

4(d) � C1n
−ζ2
)
� nζ2νσ−2ν

g log4ν(d)
(
n−1rD2

n log
2/q+1(d)

)ν
= n−1

(
nζn−1σ−2

g rD2
n log

2/q+5(d)
)ν

� n−1,

which completes the proof.

Step 2. The goal is to show (34). Define

F (xr
1, w) := max

1�j�d
|Hj(x

r
1, w)|,

g(i1,k)(Xi1) := H(X
S

(i1)

2,k

,W
S

(i1)

2,k

) for i1 ∈ S1, k = 1, . . . ,K.
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By Jensen’s inequality,

E[Δ
ν

A,1] �
1

n1

∑
i1∈S1

E

[
max
1�j�d

|Gi1,j − gj(Xi1)|
2ν

]
,

and for each i1 ∈ S1, conditional on Xi1 , by Hoffmann-Jorgensen inequality [29,
A.1.6.],

E|Xi1

[
max
1�j�d

|Gi1,j − gj(Xi1)|
2ν

]
� Ii1 + IIi1 :=(

E|Xi1

[
max
1�j�d

|Gi1,j − gj(Xi1)|
])2ν

+K−2ν
E|Xi1

[
max

1�k�K
max
1�j�d

∣∣∣g(i1,k)j (Xi1)− gj(Xi1)
∣∣∣2ν] .

Step 2.1: bounding IIi1 . Observe that for each 1 � k � K,

E|Xi1

[
max
1�j�d

∣∣∣g(i1,k)j (Xi1)− gj(Xi1)
∣∣∣2ν]

= E|Xi1

[
max
1�j�d

∣∣∣g(i1,k)j (Xi1)− E|Xi

[
g
(i1,k)
j (Xi1)

]∣∣∣2ν]
� E|Xi1

[
max
1�j�d

∣∣∣g(i1,k)j (Xi1)
∣∣∣2ν] = E|Xi1

[
F 2ν(X

S
(i1)

2,k

,W
S

(i1)

2,k

)

]
= E|Xi1

[
F 2ν(X

S
(i1)
2,1

,W
S

(i1)
2,1

)
]
:= b(Xi1).

Thus IIi1 � K−2ν+1b(Xi1).

Step 2.2: bounding Ii1 . Observe that for each i1 ∈ S1,

max
1�j�d

K∑
k=1

E|Xi1

[(
g
(i1,k)
j (Xi1)− gj(Xi1)

)2]
� KE|Xi1

[
F 2(X

S
(i1)
2,1

,W
S

(i1)
2,1

)
]
:= Kb̃(Xi1).

Further, by Jensen’s inequality,

E|Xi1

[
max

1�k�K
max
1�j�d

∣∣∣g(i1,k)j (Xi1)− gj(Xi1)
∣∣∣2]

�
(

K∑
k=1

E|Xi1

[
max
1�j�d

∣∣∣g(i1,k)j (Xi1)− gj(Xi1)
∣∣∣2ν])1/ν

� K1/νb1/ν(Xi1),

where b(Xi1) is defined in Step 1. Then by the same argument as in the proof
of [8, Proposition 4.4],

Ii1 � K−ν logν(d)̃bν(Xi1) +K−2ν+1 log2ν(d)b(Xi1).
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Step 2.3: combining 2.1 and 2.2. By Jensen’s inequality, assumption (C3’) and
by the maximal inequality ([29, Lemma 2.2.2] and Lemma A.11)

E

[
b̃ν(Xi1)

]
� log2ν/q(d)D2ν

n , E [b(Xi1)] � log2ν/q(d)D2ν
n .

Thus combining the results from 2.1 and 2.2, we have

E

[
max
1�j�d

|Gi1,j − gj(Xi1)|
2ν

]
� K−νD2ν

n log3ν(d)
(
1 +K−ν+1 logν(d)

)
�
(
n−1rD2

n log
2/q+1(d)

)ν
,

where the second inequality is due to (12) and that ν � 7/6 and K = 
(n −
1)/(r − 1)�. �

A.5.4. Proof of Corollary 3.5

Proof. We have shown in Step 0 of the proof (Subsection A.5.1) for Theorem 3.1
that

P

(
max
1�j�d

|σ̂2
H,j/σ

2
H,j − 1| log2(d) � Cn−ζ/2

)
� 1− Cn−1.

Further, if we take ν = 7/ζ in Theorem 3.3, then in the proof for Theorem 3.2
and Theorem 3.3, we have shown that

P

(
max
1�j�d

|σ̂2
g,j/σ

2
g,j − 1| log2(d) � Cn−3ζ/7

)
� 1− Cn−1.

The rest of the proof is the same as the proof for [8, Corollary A.1], and thus
omitted. �

A.6. Proof of Lemma 4.1

Proof. Clearly, the inequality is for each dimension, and thus without loss of
generality, we assume d = 1 and omit the dependence on j.

We denote Eβ and Covβ the expectation and covariance when X1, . . . , Xr

have densities fβ . Further, define gβ(x1) = Eβ [h(x1, X2, . . . , Xr)] for x1 ∈ S
and by definition g(·) = g0(·).

First, note that by interchanging the order of integration and differentiation

Eβ [Ψ(β)] =

∫ ( r∑
i=1

∇ ln fβ(xi)

)
r∏

i=1

fβ(xi)μ(dxi)

=

∫
∇
(

r∏
i=1

fβ(xi)

)
r∏

i=1

μ(dxi) = 0.
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Further, by a similar argument,

Covβ(gβ(X1),Ψ(β)) =

∫
gβ(x1)

(
r∑

i=1

∇ ln fβ(xi)

)
r∏

i=1

fβ(xi)μ(dxi)

=

∫
gβ(x1)∇ ln fβ(x1)fβ(x1)μ(dx1)

=

∫ (∫
h(x1, x2, . . . , xr)

r∏
i=2

fβ(xi)μ(dxi)

)
(∇ ln fβ(x1)) fβ(x1)μ(dx1)

=

∫
h(x1, x2, . . . , xr)∇ ln fβ(x1)

r∏
i=1

fβ(xi)μ(dxi),

which implies that

r∑
i=1

Covβ(gβ(Xi),Ψ(β))

=

∫
h(x1, x2, . . . , xr)

(
r∑

i=1

∇ ln fβ(xi)

)
r∏

i=1

fβ(xi)μ(dxi)

=

∫
h(x1, x2, . . . , xr)∇

(
r∏

i=1

fβ(xi)

)
r∏

i=1

μ(dxi) = ∇θ(β).

Finally, observe that

0 �Varβ

(
r∑

i=1

gβ(Xi)−∇θ(β)T (rJ (β))−1Ψ(β)

)

=

r∑
i=1

Varβ (gβ(Xi))− 2r−1Covβ

(
r∑

i=1

gβ(Xi),∇θ(β)TJ (β)−1Ψ(β)

)
+ r−2Varβ

(
∇θ(β)TJ (β)−1Ψ(β)

)
= rVarβ (gβ(X1))− r−1∇θ(β)TJ (β)−1∇θ(β),

which completes the proof. �

A.7. Proofs of tail probabilities in Section A.1

A.7.1. Proof of Lemma A.1

Proof. We first define

S := max
1�j�d

m∑
i=1

Zij , M := max
1�i�m

max
1�j�d

Zij .
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Then by the maximal inequality [29, Lemma 2.2.2], ‖M‖ψβ
� Cun log

1/β(dm).
By [10, Lemma E.4],

P (S � 2E[S] + t) � 3 exp

(
−
(

t

C‖M‖ψβ

)β
)
.

The right hand side is 3/n if

t = C‖M‖ψβ
log1/β(n) � Cun log

1/β(n) log1/β(dm).

Further by [10, Lemma E.3],

E[S] � max
1�j�d

E

[
m∑
i=1

Zij

]
+ log(d)E[M ] � max

1�j�d
E

[
m∑
i=1

Zij

]
+ un log

1/β+1(dm).

Combining two parts finishes the proof. �

A.7.2. Proof of Lemma A.2

Proof. We first define

S := max
1�j�d

∣∣∣∣∣
m∑
i=1

Zij

∣∣∣∣∣ , M := max
1�i�m

max
1�j�d

|Zij | .

Then by the maximal inequality [29, Lemma 2.2.2], ‖M‖ψβ
� Cun log

1/β(dm).
By [10, Lemma E.2],

P (S � 2E[S] + t) � exp(−t2/(3σ2)) + 3 exp

(
−
(

t

C‖M‖ψβ

)β
)
.

The right hand side is 4/n if

t =
√
3σ log1/2(n) + C‖M‖ψβ

log1/β(n)

� C
(
σ log1/2(n) + log1/β(dm) log1/β(n)un

)
.

Further by [10, Lemma E.1],

E[S] � σ log1/2(d) + log(d)
√

E[M2] � σ log1/2(d) + log1/β+1(dm)un.

Combining two parts finishes the proof. �

A.7.3. Proof of Lemma A.3

Proof. We first define

S := max
1�j�d

∣∣∣∣∣
m∑
i=1

(Zi − pn)aij

∣∣∣∣∣ ,
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M̃ := max
1�i�m

max
1�j�d

|(Zij − pn)aij | � max
1�i�m

max
1�j�d

|aij |

σ̃2 := max
1�j�d

m∑
i=1

E[(Zi − pn)
2a2ij ] � pn(1− pn) max

1�j�d

m∑
i=1

a2ij .

By [10, Lemma E.2],

P (S � 2E[S] + t) � exp(−t2/(3σ̃2)) + 3 exp

(
− t

C‖M̃‖ψ1

)
.

The right hand side is 4/n if

t =
√
3σ̃ log1/2(n) + C‖M̃‖ψ1 log(n)

� C
(√

pn(1− pn)σ log1/2(n) +M log(n)
)
.

Further by [10, Lemma E.1],

E[S] � σ̃ log1/2(d) + log(d)

√
E[M̃2] �

√
pn(1− pn)σ log1/2(d) +M log(d).

Combining two parts finishes the proof. �

A.7.4. Proof of Lemma A.4

Proof. Let m = 
n/r�, and define the following quantity

Z1 := max
1�j�d

m∑
i=1

fj(X
ir
(i−1)r+1), M1 := max

1�i�m
max
1�j�d

fj(X
ir
(i−1)r+1).

Then by the maximal inequality [29, Lemma 2.2.2], ‖M1‖ψβ
� Cun log

1/β(dn).
By [6, Lemma E.3],

P

(
m max

1�j�d
Un,j � 2E[Z1] + t

)
� 3 exp

(
−
(

t

C‖M1‖ψβ

)β
)
.

The right hand side is 3/n if we set

t = C‖M1‖ψβ
log1/β(n) � Cun log

1/β(dn) log1/β(n).

Further, by [9, Lemma 9],

E[Z1] � C

(
max
1�j�d

E

[
m∑
i=1

fj(X
ir
(i−1)r+1)

]
+ log(d)E[M1]

)
� C

(
mvn + un log

1/β+1(dn)
)
.

Putting two parts together, we have with probability � 3/n,

max
1�j�d

Un,j � C
(
vn + n−1run log

1/β+1(dn) + n−1run log
1/β(dn) log1/β(n)

)
,

which completes the proof. �
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A.7.5. Proof of Lemma A.5

Proof. Let m = 
n/r�, and define the following quantity

Z1 := max
1�j�d

∣∣∣∣∣
m∑
i=1

fj(X
ir
(i−1)r+1)

∣∣∣∣∣ , M1 := max
1�i�m

max
1�j�d

∣∣∣fj(Xir
(i−1)r+1)

∣∣∣ .
Then by the maximal inequality [29, Lemma 2.2.2], ‖M1‖ψβ

� Cun log
1/β(dn).

By [8, Lemma C.3],

P

(
m max

1�j�d
|Un,j | � 2E[Z1] + t

)
� exp

(
−t2

3mσ2

)
+ 3 exp

(
−
(

t

C‖M1‖ψβ

)β
)
.

The right hand side is 4/n if we take

t = σ
√
3m log1/2(n) + C‖M1‖ψβ

log1/β(n)

� C
(
σm1/2 log1/2(n) + un log

1/β(dn) log1/β(n)
)
.

Further, by [9, Lemma 8],

E[Z1] �
√

log(d)mσ2 +
√

E[M2
1 ] log(d) � m1/2 log1/2(d)σ + un log

1/β+1(dn).

Putting two parts together completes the proof. �

A.7.6. Proof of Lemma A.6

Proof. First, observe that ‖Fj(x
r
1,W )‖ψβ

� fj(x
r
1) + bj(x

r
1). Denote

Z1 := max
1�j�d

1

|In,r|
∑

ι∈In,r

fj(Xι), M1 := max
ι∈In,r

max
1�j�d

(fj(Xι) + bj(Xι)) .

Then conditional on Xn
1 , by Lemma A.1,

P|Xn
1

(
Z � C

(
Z1 + |In,r|−1M1r

2/β log1/β+1(dn) log1/β−1(n)
))

� 3

|In,r|
� 3

n
.

By Lemma A.4,

P

(
Z1 � C

(
max
1�j�d

E[fj(X
r
1 )] + n−1r log1/β+1(dn) log1/β−1(n)un

))
� 3

n
.

Further, by maximal inequality [29, Lemma 2.2.2]

‖M1‖ψβ
� Cr1/β log1/β(dn)un

⇒ P

(
M1 � Cr1/β log1/β(n) log1/β(dn)un

)
� 2

n
.

Then the proof is complete by combining above results. �
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A.7.7. Proof of Lemma A.7

Proof. First, we define

σ2 := max
1�j�d

∑
ι∈In,r

E|Xn
1

[
(Fj(Xι,Wι)− fj(Xι))

2
]
� max

1�j�d

∑
ι∈In,r

b2j (Xι),

M := max
ι∈In,r

max
1�j�d

bj(Xι).

Then by first conditional on Xn
1 and by Lemma A.2,

P

(
|In,r|Z � C(σr1/2 log1/2(dn) +Mr2/β log1/β+1(dn) log1/β−1(n))

)
� 4/|In,r| � 4/n.

Observe that

‖b2j (Xr
1 )‖ψβ/2

= ‖bj(Xr
1 )‖2ψβ

� u2
n.

Then by Lemma A.4 with ψβ/2,

P

(
σ2

|In,r|
� Cu2

n

(
1 + n−1r log2/β+1(dn) log2/β−1(n)

))
� 3

n
.

Further, by maximal inequality [29, Lemma 2.2.2]

‖M‖ψβ
� Cr1/β log1/β(dn)un ⇒ P(M � Cr1/β log1/β(dn) log1/β(n)un) �

2

n
.

Then the proof is complete by combining above results. �

A.8. Proofs of additional lemmas

The following lemma is similar to [10, Lemma C.1], and is needed in proving
Lemma A.8.

Lemma A.15. Let q ∈ (0, 3], and ξ be a non-negative random variable such
that ‖ξ‖ψq � D. Then there exists a constant C, depending only on q, such that

E
[
ξ3; ξ > t

]
� C(t3 +D3)e−(t/D)q , for t > 0.

Proof. Since ‖ξ‖ψq � D, we have for x > 0,

P(ξ > x) � e−(x/D)q
E

[
e−(ξ/D)q

]
� 2e−(x/D)q .

By change of variable, we have

E
[
ξ3; ξ > t

]
� t3P(ξ > t) + 3

∫ ∞

t

P(ξ > x)x2d x
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� t3e−(t/D)q +D3

∫ ∞

(t/D)q
e−uu3/q−1d u

� t3e−(t/D)q +D3e−(t/D)q
∫ ∞

0

e−u (u+ (t/D)q)
3/q−1

d u

� t3e−(t/D)q +D3e−(t/D)q
∫ ∞

0

e−u
(
u3/q−1 + (t/D)3−q

)
d u

� t3e−(t/D)q +D3e−(t/D)q
∫ ∞

0

e−u
(
u3/q−1 + (t/D)3−q

)
d u

�
(
t3 +D3 + t3−qDq

)
e−(t/D)q �

(
t3 +D3

)
e−(t/D)q . �

Proof of Lemma A.8. For q � 1, it has been established by [10, Proposition 2.1].
For q < 1, the proof is almost identical to that for [10, Proposition 2.1], except
that we replace [10, Lemma C.1] by Lemma A.15. �

Proof of Lemma A.11. (i). Without loss of generality, we assume 0 < x :=
‖X‖ψβ

< ∞, and 0 < y := ‖Y ‖ψβ
< ∞. Observe that

E

[
exp

(
|X + Y |

21+1/β(x+ y)

)β
]
� E

[
exp

(
|X|β + |Y |β
2(x+ y)β

)]
�E

[
1

2
exp

(
|X|β

(x+ y)β

)]
+ E

[
1

2
exp

(
|Y |β

(x+ y)β

)]
� 2.

(ii). From Lemma 5.4, for 1 � i � n,

E

[
ψ̃β

(
|ξi|
D

)]
� E

[
ψβ

(
|ξi|
D

)]
+ 1 � 2,

which, by the convexity of ψ̃β and the fact ψ̃β(0) = 0, implies ‖ξi‖ψ̃β
� 2D. By

the standard maximal inequality (e.g., see [29, Lemma 2.2.2]) and Lemma 5.4,

‖max1�i�n ξi‖ψ̃β
� C log1/β(n)D. Thus by Lemma 5.4,

E

⎡⎣exp( max1�i�n ξi

C log1/β(n)D

)β
⎤⎦ � E

[
ψβ

(
max1�i�n ξi

C log1/β(n)D

)]
+ e1/β � 1 + e1/β .

Now we let m � 1 such that
(
1 + e1/β

)1/m � 2. Then by Jensen’s inequality

(E[X1/m] � (E[X])
1/m

for X > 0 a.s.),

E

⎡⎣exp( max1�i�n ξi

Cm1/β log1/β(n)D

)β
⎤⎦ � 2,

which implies that ‖max1�i�n ξi‖ψ̃β
� log1/β(n)D. �
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