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Abstract: We define a modified Wasserstein distance for distribution clus-
tering which inherits many of the properties of the Wasserstein distance but
which can be estimated easily and computed quickly. The modified distance
is the sum of two terms. The first term — which has a closed form —
measures the location-scale differences between the distributions. The sec-
ond term is an approximation that measures the remaining distance after
accounting for location-scale differences. We consider several forms of ap-
proximation with our main emphasis being a tangent space approximation
that can be estimated using nonparametric regression and leads to fast and
easy computation of barycenters which otherwise would be very difficult to
compute. We evaluate the strengths and weaknesses of this approach on
simulated and real examples.
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1. Introduction

The Wasserstein distance has attracted much attention lately because it has
many appealing properties. ([19, 23]). It is especially useful as a tool for clus-
tering a set of distributions P1, . . . , PN because it captures key shape character-
istics of the distributions. But the Wasserstein distance is difficult to compute
and difficult to estimate from samples. In this paper we introduce a modified
Wasserstein distance that can be estimated and computed quickly.

Wasserstein distance If X ∈ R
d is a random vector with distribution P and

Y ∈ R
d is a random vector with distribution Q then, for p ≥ 1, the p-Wasserstein

distance is defined by

Wp(P,Q) ≡ Wp(X,Y ) =

(
inf
J

∫
||x− y||p dJ(x, y)

)1/p

(1.1)

where the infimum is over all joint distributions J for (X,Y ) such that X has
marginal P and Y has marginal Q. The minimizer J∗ is called the optimal
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transport plan or the optimal coupling. In this paper we will focus on the case
p = 2 and then we write W (P,Q) or W (X,Y ) instead of W2(P,Q) or W2(X,Y ).

The modified distance that we propose is

H2(X,Y ) = W 2(ZX , ZY ) +W 2
† (X̃, Ỹ ) (1.2)

where

ZX ∼ N(μX ,ΣX), X̃ = Σ
−1/2
X (X − μX)

ZY ∼ N(μY ,ΣY ), Ỹ = Σ
−1/2
Y (Y − μY ),

μX = E[X], μY = E[Y ], ΣX = Var[X] and ΣY = Var[Y ] and W† is a distance

between the centered and scaled variables X̃ and Ỹ . We consider several possible
choices for W†. We mainly focus on the case where W†(X̃, Ỹ ) is a tangent

space approximation to W (X̃, Ỹ ) as defined by [27]. The details of this tangent
approximation are given in Section 3. Our version of the tangent space distance
is a bit different than the original implementation as we use a combination of
density estimation, permutation smoothing and subsampling. We will call H
the hybrid distance. We will consider other choices for W†(X̃, Ỹ ) in Section 6.

The first term in (1.2) measures location-scale differences between the two
distributions, is available in closed form (see equation 2.2) and can be estimated
at a n−1/2 rate where n is the sample size. The second term captures any
remaining non-linear differences.

Distribution clustering As mentioned above, our main motivation is “dis-
tribution clustering” which requires repeatedly computing distances. Suppose,
for example, that we want to cluster a set of distributions P1, . . . , PN . Typically,
these are empirical distributions corresponding to datasets D1, . . . ,DN . Given a
metric d on the set of probability distributions, we can adapt existing methods
— such as hierarchical clustering and k-means clustering — to the problem of
clustering distributions. But if we use Wasserstein distance then the calculations
become onerous since we need to compute many distances. For example, sup-
pose we want to perform agglomerative hierarchical clustering. First we need to
compute the N(N − 1)/2 distances Wp(Pi, Pj). If we decide to cluster, say P1

and P2, we need to combine the corresponding datasets D1 and D2. Then we
need to compute the distance between the new empirical measure correspond-
ing to D1

⋃
D2 and all the other distributions. Each stage of the hierarchical

clustering involves recalculating the distances. Similarly, if we use k-means clus-
tering we need to iterate between assigning points to clusters and computing
centroids. Computing the centroid — also known as a barycenter — with respect
to the Wasserstein distance is computationally expensive. In fact, there is ap-
parently no off-the-shelf software to compute the barycenter. Replacing W with
H significantly reduces the computational burden without sacrificing accurate
clustering. In particular, it drastically simplifies the computation of barycenters.

Related work Our works builds on [27] who introduced the idea of using a
tangent space approximation to Wasserstein distance. Their motivation was im-
age processing and their implementation of the idea is quite different than our
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version. We also make use of subsampling approximations which were suggested
in [24]. The Gaussian approximation W (ZX , ZY ) is an example of a linear ap-
proximation. Optimal linear approximations to Wasserstein distance are studied
in [15]. An important reference on clustering distributions with Wasserstein dis-
tance is [7] which not only introduces the idea of distribution clustering in this
way, but also proposes a trimming procedure to create robust clusterings. We
do not consider robustness in this paper, except in the one-dimensional case
where the robust Wasserstein distance has a simple form. We note that combin-
ing ideas from [7] with the ideas in this paper is an interesting future direction.
Wasserstein clustering is also studied in [12] in the context of hierarchical mod-
els. That paper not only clusters distributions but, simultaneously, clusters data
within each distribution.

Paper outline In Section 2 we review the Wasserstein distance. In Section 3
we give the details of the proposed modified distance. In Section 4 we define sev-
eral versions of k-means distribution clustering. Section 5 gives some examples.
In Section 6 we briefly explain how our ideas can be used for hierarchical clus-
tering and mean-shift clustering. In Section 7 we discuss some different versions
of hybridization. Section 8 contains a discussion and concluding remarks.

2. Wasserstein distance

In this section we give a brief review of the Wasserstein distance and we explain
why it is useful for distribution clustering. An excellent reference on Wasserstein
distance is [26]. Recall that the Wasserstein distance is defined in equation (1.1).

Explicit expressions In general, there is no closed form expression for Wp.
There are three notable exceptions.

(i) When d = 1, the distance can be written explicitly as

Wp(P,Q) =

(∫ 1

0

|F−1(z)−G−1(z)|p dz
)1/p

where F (x) = P (X ≤ x) and G(y) = Q(Y ≤ y). A robust version is

Wp(P,Q) =

(∫ 1−δ

δ

|F−1(z)−G−1(z)|p dz
)1/p

where δ is a trimming constant. We use this version when doing one-dimensional
clustering.

(ii) If Pn is the empirical distribution of a dataset X1, . . . , Xn and Qn is the
empirical distribution of another dataset Y1, . . . , Yn of the same size, then the
distance takes the form

W p
p (Pn, Qn) = min

π

1

n

n∑
i=1

||Xi − Yπ(i)||p
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where the minimum is over all permutations. This minimization can be done
using various algorithms such as the Hungarian algorithm ([16]) which takes
time O(n3). When d = 1 this further simplifies to

Wp(Pn, Qn) =

(
1

n

n∑
i=1

|X(i) − Y(i)|p
)1/p

(2.1)

where X(1) ≤ · · · ≤ X(n) and Y(1) ≤ · · · ≤ Y(n) are the order statistics.
(iii) The distance has a simple expression in the Gaussian case (or more

generally, for location-scale families). Suppose that X ∼ N(μX ,ΣX) and Y ∼
N(μY ,ΣY ). Then

W 2(P,Q) ≡ W 2(X,Y ) = ||μX − μY ||2 +B2(ΣX ,ΣY ) (2.2)

where

B2(ΣX ,ΣY ) = tr(Σ1) + tr(Σ2)− 2tr
[(

Σ
1/2
X ΣY Σ

1/2
X

)1/2]
(2.3)

is the Bures distance ([3]) between ΣX and ΣY . See [10] and [20]. From now on,
we refer to (2.2) as the Gaussian Wasserstein distance. Even for non-Gaussian
data, this metric is useful for capturing location-scale effects.

The Monge distance and transport maps A related distance is the Monge
distance defined by (

inf
T

∫
||x− T (x)||pdP (x)

)1/p

(2.4)

where the infimum is over all maps T such that T (X) ∼ Q. When a minimizer
exists, this corresponds to the Wasserstein distance and the map T is called
the optimal transport map. In this case the optimal coupling J∗ is a degenerate
distribution on the set {(x, T (x))}. But, the minimizer might not exist. Consider
P = δ0 and Q = (1/2)δ−1 + (1/2)δ1 where δa denotes a point mass at a. In this
case, there is no map T such that T (X) ∼ Q. In contrast, an optimal coupling
always exists and can be thought of as defining a transport plan that allows the
mass to be split and assigned to many locations. A sufficient condition for the
existence of a unique optimal transport map is that P be absolutely continuous
with respect to Lebesgue measure. In the Gaussian case, the optimal transport

map is L(x) = μY +Σ
1/2
Y Σ

−1/2
X (x− μX).

Barycenters Given a set of distributions P1, . . . , PN , the barycenter, with
respect to non-negative weights λ1, . . . , λN , is defined to be the distribution P
that minimizes

∑
j λjW

2(P, Pj). (In this paper, we will always use λj = 1/N .)
There is a substantial literature on finding methods to compute the barycenter.
In the special case that each Pj is Gaussian, the barycenter takes a special form.
Let Pj = N(μj ,Σj) for j = 1, . . . , N . Then the barycenter P is N(μ,Σ) where
μ = N−1

∑
j λjμj and Σ is the unique, symmetric, positive definite matrix

satisfying the fixed point equation

Σ =
∑
j

λj(Σ
1/2ΣjΣ

1/2)1/2. (2.5)
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Fig 1. Top row: Six Gaussian distributions. Bottom left: The usual Euclidean average of the
six distributions. Bottom right: The Wasserstein barycenter.

The barycenter Σ can be found by iterating the equation

Σ(s+1) ← (Σ(s))−1/2

⎛⎝∑
j

λj

[
(Σ(s))1/2Σj(Σ

(s))1/2
]1/2⎞⎠2

(Σ(s))−1/2.

The same holds for any location-scale family; see [1]. In one dimension, the
barycenter of P1, . . . , PN is the distribution P with cdf F where F−1(u) =∑

j λjF
−1
j (u).

Key properties There has been a surge of interest in the Wasserstein distance
in statistics and machine learning lately. This is because the distance has a
number of useful properties. Here we review three key properties, namely: (1)
sensitivity to underlying geometry, (2) comparability of discrete and continuous
distributions and (3) shape preservation.

1. The Wasserstein distance is sensitive to the underlying geometry . Con-
sider the distributions P1 = δ0, P2 = δε and P3 = δ100 and ε > 0 is a
small positive number. Then W (P1, P2) ≈ 0, W (P1, P3) ≈ W (P2, P3) ≈
100. On the other hand, consider the total variation distance dTV. Then
dTV(P1, P2) = dTV(P1, P3) = dTV(P2, P3) = 1. So the total variation dis-
tance fails to capture our intuition that P1 and P2 are close while P3 is
far. The same is true for Hellinger distance and Kullback-Leibler distance.

2. The Wasserstein distance permits direct comparison between discrete and
continuous distribution. If P1 is continuous and P2 is discrete, then, for
example, dTV(P1, P2) = 1. But Wp(P1, P2) gives reasonable values. For ex-
ample, suppose that P1 is uniform on [0, 1] and P2 is uniform on
{1/N, 2/N, . . . , 1}. Then dTV(P1, P2) = 1 for all N but Wp(P1, P2) = 1/N
which again seems quite intuitive.

3. Shape Preservation. Suppose we have a set of distributions P1, . . . , PN .
Recall that the barycenter P minimizes

∑
j λjW

2
2 (P, Pj). The barycenter
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P preserves the shape of the distributions. Specifically, if each Pj can be
written as a location-scale shift of some distribution P0, the P is also a
location-scale shift of P0. For example, suppose that P1 = N(μ1,Σ) and
that P2 = N(μ2,Σ). Then the barycenter is P = N((μ1 + μ2)/2,Σ). In
contrast, the Euclidean average (1/2)P1 + (1/2)P2 looks nothing like any
of the Pj ’s. Figure 1 shows a comparison of the Wasserstein barycenter
and the usual Euclidean average.

3. The hybrid distance

Let X ∼ P and Y ∼ Q. Define ZX ∼ N(μX ,ΣX), ZY ∼ N(μY ,ΣY ), X̃ =

Σ
−1/2
X (X − μX), and Ỹ = Σ

−1/2
Y (Y − μY ). Our modified distance — which we

call the hybrid distance — is

H2(X,Y ) = W 2(ZX , ZY ) +W 2
† (X̃, Ỹ ) (3.1)

where W† is described below. The first term W 2(ZX , ZY ) has the simple closed
form given in (2.2). Given samples X1, . . . , Xn ∼ P and Y1, . . . , Ym ∼ Q, we
can estimate W 2(ZX , ZY ) by plugging in sample moments. We then have that

Ŵ (ZX , ZY ) = W (ZX , ZY )+OP ((n∧m)−1/2); see [20]. We measure the remain-

ing difference by computing the distance between the standardized variables X̃
and Ỹ by adapting the method from [27] which we now describe.

Consider a set of distributions P1, . . . , PN . Let μj = E[Xj ] and Σj = Var[Xj ]

where Xj ∼ Pj . Let Zj ∼ N(μj ,Σj) and X̃j = Σ
−1/2
j (Xj − μj). Let R be a

reference measure with density r, (R is defined below.) Define

W 2
† (P̃j , P̃k) =

∫
(ψj(z)− ψk(z))

2dz (3.2)

where ψj(z) = (Tj(z) − z)
√

r(z), and Tj is the optimal transport map from

R to P̃j . [27] justify this expression as follows. The set of probability measures
endowed with the Wasserstein metric is a Riemannian manifold. Then

∫
(ψj(z)−

ψk(z))
2dz is the distance between the projections of P̃j and P̃k onto the tangent

space at R; Now∫
(ψj(z)− ψk(z))

2dz =

∫
(Tj(z)− Tk(z))

2dR(z).

Hence, if U1, . . . , Um ∼ R then∫
(ψj(z)− ψk(z))

2dz =
1

m

m∑
s=1

(Tj(Us)− Tk(Us))
2 +OP (m

−1/2).

The hybrid distance is

H2(Xj , Xk) = W 2(Zj , Zk) +W 2
† (X̃j , X̃k)
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= ||μj − μk||2 + B2(Σj ,Σk) +

∫
(ψj(z)− ψk(z))

2dz

= ||μj − μk||2 + B2(Σj ,Σk) +

∫
(Tj(z)− Tk(z))

2dR(z)

≈ ||μj − μk||2︸ ︷︷ ︸
location

+B2(Σj ,Σk)︸ ︷︷ ︸
scale

+
1

m

∑
i

(Tj(Ui)− Tk(Ui))
2

︸ ︷︷ ︸
shape

(3.3)

where U1, . . . , Um ∼ R.
To estimate the distance we need to choose R and estimate Tj . [27], motivated

by applications in image processing, suggest using R = N−1
∑

j Pj . We take
a slightly different approach. Recall that we have datasets D1, . . . ,DN where
Dj = {Xj1, . . . , Xjnj} consists of nj observations with empirical distribution

Pj . Let D̃j = (X̃js : 1 ≤ s ≤ nj) denote the normalized observations where

X̃js = Σ̂
−1/2
j (Xjs− μ̂j). The combined dataset D̃ =

⋃N
j=1 D̃j can be regarded as

a sample from
∑

j πjP̃j where πj = nj/
∑

j nj and P̃j is the distribution of X̃j .
Let R be the distribution with density r where r is a kernel density estimate
obtained from D̃ using a simple bandwidth rule such as Silverman’s rule [22].

Thus, R = Rn � Kh (the convolution) where Rn =
∑

j πjP̃j and Kh is a kernel
with bandwidth h. This choice of reference measure is simple and smooth.

Remark We have tried a few other reference measures such as Gaussian,
Uniform and Cauchy. For the Gaussian and Uniform the results do not change.
For the Cauchy, which has thick tails, the results are unstable due to the large
outliers and should be avoided. Currently, there is no existing theory about the
robustness of the tangent approximation to the choice of reference measure.

Next we have to estimate Tj . Here we use a variation of nonparametric regres-
sion that we call permutation smoothing. The steps are given in Figure 2. The
idea is to sample m observations from each dataset and the reference measure
R. The optimal permutation for matching the samples can be found in O(m3)
time. This defines a map Tj from m points drawn from R to m points drawn

from P̃j . We then extend Tj over the whole space by using b-nearest neighbor
regression. It suffices to take b = 1 to get a consistent estimator of the transport
function. Consistency follows from standard theory ([28]). We can summarize
the steps as follows:

Gaussian approximation −→ subsample −→ permutation smoothing −→ tangent approximation.

[27] point out that the tangent space approximation is a well-defined distance
and need not be thought of as an approximation to the Wasserstein distance.
They show that, even when it does not approximate the Wasserstein distance,
it still contains valuable information for comparing distributions.



Distribution clustering 5095

Fig 2. Permutation smoothing algorithm to estimate transport map.

The idea of using subsamples to approximate Wasserstein distance (rather
than using subsamples to estimate the transport map to a reference measure
as we are doing) was examined carefully in [24]. For distribution clustering, the
subsample size m need not be large. (In our examples we use m = 100 but we
get similar results even using m = 20). This keeps the computation very fast.

Also, note that we only ever evaluate T̂j on the points U1, . . . , Um ∼ R.

Remark [24] suggest estimating Wasserstein distance by averaging over sub-
samples. Similarly, we could repeat our procedure over several subsamples and
average the T̂j’s. However, we have not found this to be necessary for distri-
bution clustering. Also, as suggested by a referee, it is possible to average the
barycenters over subsamples to improve accuracy although we did not find it
necessary in our examples.

Finally, we estimate H2 by

Ĥ2(Pj , Pk) = ||μ̂j − μ̂k||2 +B2(Σ̂j , Σ̂k) +
1

m

m∑
s=1

(T̂j(Us)− T̂k(Us))
2. (3.4)

The modified distance retains many properties of Wasserstein distance. The
following proposition summarizes these facts. The proof is straightforward and
is omitted.

Proposition 1. The distance H has the following properties.

1. H is a metric on the space of distributions with densities and finite second
moments. In particular, H(P,Q) = 0 if and only if P = Q.

2. H is exact for Gaussians: if P and Q are Gaussian then H2(P,Q) =
W 2(P,Q).

3. If P1, . . . , PN are in a location-scale family then the barycenter is in the
same family.

When clustering we need to repeatedly compute averages. In terms of the
Wasserstein distance this corresponds to computing barycenters. To the best
of our knowledge, there is no off-the-shelf software to compute Wasserstein
barycenters in the multivariate case. But the barycenter with respect to H is
easy to compute. Figure 3 summarizes the steps for computing the barycenter.
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Fig 3. Barycenter algorithm.

Lemma 2. Let P minimize
∑

j λjH
2(P, Pj). Then P can be characterized as

follows: P is the distribution of the random variable

Y = μ+Σ
1/2

T (U)

where U ∼ R, T (z) = z +
∑

j λj(Tj(z) − z), μ =
∑

j λjμj and Σ is the

unique, positive definite matrix satisfying the fixed point equation Σ =∑
j λj(Σ

1/2
ΣjΣ

1/2
)1/2.

Proof. Let P be a distribution and let μ be its mean, let Σ be its covariance
and let T be the optimal transport map from R to P . From the definition of H
we have that∑

j

H2(P, Pj) =
∑
j

||μ− μj ||2 +
∑
j

B(Σ,Σj) +
∑
j

∫
(ψj(z)− ψ(z))2dz

where ψ(z) = (T (z) − z)
√

r(z) and ψj(z) = (Tj(z) − z)
√

r(z). By minimiz-
ing each sum separately, the optimal P has mean and variance as stated and
its transport map satisfies ψ =

∑
j λjψj which implies that T (z) =

z +
∑

j λj(Tj(z)− z).

We can regard the triple (μP ,ΣP , ψP ) as a transform φ of P where

φ : P �→ (μP ,ΣP , ψP ). (3.5)

We call φ the hybrid transform. Note that the transform depends on the reference
measure R. Barycenters are computed by averaging each component of the triple
separately (with the appropriate fixed point equation used for Σ.) All clustering
calculations can be carried out in terms of the representation rather than in
terms of the original distribution. The representation is invertible: given a triple
(μP ,ΣP , ψP ), the corresponding P is the distribution of the random variable

μP + Σ
1/2
P T (U) with U ∼ R and T (z) = ψP (z)/

√
r(z) + z. We write P =

φ−1(μP ,ΣP , ψP ).
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A further speed-up using hypothesis testing The most expensive step
in computing Ĥ2 is estimating the transport map Tj . Sometimes P̃j is very
close to R and there is no need to compute Tj . We can check this formally by

testing H0 : P̃j = R using any convenient two-sample hypothesis test. If the
test rejects, we compute ψj . If the test fails to reject we just set ψj = 0. A
convenient nonparametric test with a distribution-free null distribution is the
cross-match test ([21]). This idea is illustrated in Section 5.5.

4. k-means distribution clustering

Now we are ready to discuss the distribution clustering problem. For concrete-
ness, we focus here on k-means clustering. In Section 6 we briefly consider other
clustering methods.

The general outline is as follows. Fix an integer k. Then:

1. Choose k distributions c1, . . . , ck as starting points using k-means++ [2].
2. Assign each distribution to the nearest centroid:

Cj =
{
Ps : d(Ps, cj) < d(Ps, c�) for all 	 
= j

}

where d is a distance.
3. Compute the barycenter cj of Cj putting equal weight on each distribution

in the cluster.
4. Repeat steps 2 and 3 until convergence.

We consider four versions:

1. Exact: Use the Wasserstein distance as the distance at each step. Given
the computational burden, we only use the exact method in one-dimen-
sional examples as a point of comparison.

2. Euclidean. Compute W (Pi, Pj) for each pair. Use multidimensional scal-
ing to embed the distributions into R

a. Thus we map each Pj to a vector
Vj ∈ R

a. For ease of visualization, we use a = 2. We note that the set of
distributions equipped with Wasserstein distance is not isometrically em-
beddable into R

a and so there will necessarily be some distortion. Once we
have the vectors V1, . . . , VN we proceed with k-means clustering as usual.

3. Gaussian. We use W (Zi, Zj) as an approximation of W (Pi, Pj). Barycen-
ters are computed by averaging the means and by iterating the fixed point
equation (2.5) for the variances.

4. Hybrid.We use our Hybrid distanceH(Pi, Pj). The steps of this approach
are in Figure 4.

Of course, the fourth method which uses d = H is the focus of this paper.
We include the others for comparison.
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Fig 4. The hybrid k-means distribution clustering method.

5. Examples

In this section, we consider some examples. In all the examples that follow, we
visualize the set of distributions by applying multidimensional scaling to the
pairwise distances. Each point in the plots represents one distribution.

5.1. One dimensional examples

This section presents three one-dimensional examples. These examples are cho-
sen to illustrate the behavior of the four versions of k-means clustering methods,
presented in Section 4, and, more specifically, for comparing the performance
of the hybrid distance of Section 3 with the procedure based on Wasserstein
distance. When d = 1, the exact Wasserstein clustering can be easily computed.
(The algorithm is in the appendix.)

The first example consists of 15 Normally distributed data sets of size n =
100, all with variance σ2 = 1. There are three groups of five data sets each with
means close together. This specific simple example is chosen to show that all
four versions of k-means clustering methods identify the clusters correctly, in
straightforward cases. Figure 5 shows the multidimensional scaling projection
of the pairwise distances, with different colors used to indicate the clusters.

Our second and third examples are chosen to illustrate that less clean clusters
of data-sets cannot be well identified by the Gaussian approximation. Example
2 consists of two clusters. The first cluster has twenty normal distributions with
mean 0 and variance 1. The second cluster has twenty distributions each of
which has the form (1/2)δ−1 + (1/2)δ1. This means that the first and second
moments are also 0 and 1 so the Gaussian approximation should be unable to
find the two clusters.
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Fig 5. Example 1. The plots show pairwise distances as represented by multi-dimensional
scaling. The plots show three clusters of five normal distribution each. All four methods are
accurate.

Figure 6 shows the distances computed with the Gaussian approximation and
the Hybrid method, versus the Wasserstein procedure. The line x = y is included
for illustrating the difference between the distances. This plot complements the
following Figure 7, showing the clustering obtained in this example, and illus-
trates that distances from the Gaussian approximation are a poor approxima-
tion. Figure 7 shows indeed that, as expected, the Gaussian approximation does
not work well.

Our third example consists of three clusters of distributions, each being a
mixture of normal distributions. This example also shows that the Gaussian
approximation does not identify the clusters. As in Example 2, we first display
the plots of the distances, in Figure 8, and then Figure 9 with plots of the
multidimensional scaling projections. This confirms the issue noted earlier for
the Gaussian approximation. Note that the clusters displayed in some plots are
very close together and not easily detectable in the picture. But it is clear that
the Gaussian approximation does not fare well.

5.2. Multivariate examples

In this section we consider three artificial data-sets in two dimensions. We no
longer consider the exact Wasserstein method which is computationally pro-
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Fig 6. Example 2. Plots of Gaussian and Hybrid distances of two data sets versus Wasserstein
distance. The line across the plots is the line x = y. The left hand side plot shows the distances
among distributions computed with the normal approximations are far from the Wasserstein
distance.

Fig 7. Example 2. While the Gaussian approximation does detect the two clusters, they are
not well identified. The projection plots show random points in the plane. The other three
methods, instead, identify the clusters correctly.
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Fig 8. Example 3. Plots of Gaussian and Hybrid distances of three data sets versus Wasser-
stein distance. The left hand side plot also shows distances among distributions computed by
the Gaussian approximations are far from the Wasserstein distance.

Fig 9. Example 3. Clusters for mixtures of Normal distributions. The Gaussian approximation
does not performs well.
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Fig 10. Boxplots of first coordinates in the bivariate example 1.

Fig 11. Bivariate Example 1. Clusters obtained using the procedures Gaussian and Hybrid.

hibitive. As mentioned earlier, the computation of the barycenter in multivari-
ate cases is still a research problem. We obtain, instead, clustering from the
other three methods of Section 4. For each example, we will plot the pairwise
distances between datasets using multi-dimensional scaling.

The first example consists of 40 bivariate Normal distributions, with n = 100
observations each. Twenty of them have mean (0, 0) and variance I (where I is
the identity matrix), the other twenty have mean (5, 5) and variance I. We also
include twenty bivariate uniform distributions each with 100 data points, for a
total of three distributional clusters.

Figure 10 displays the boxplots of the first coordinates of the three data
sets. The clusters appear to be well separated as expected. All three methods
performs well, as it can be seen from the clusters obtained from the Euclidean,
Gaussian, and Hybrid methods in Figure 11.

The second example consists of four groups of distributions which are uniform
on circles, each with n = 100 data points. The circles’ centers and radii are
randomly selected. More specifically the centers are generated from uniform
distributions, with various ranges, as are their radii. Figure 12 displays the data
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Fig 12. Bivariate Example 2. The datasets.

Fig 13. Bivariate Example 2. Clusters.

that form four well separated clusters. Figure 13 shows the results for the three
methods of clustering. All of them identify the four clusters correctly.

Our third example consists of two groups of distributions. One group of 50
distributions, with 100 observations each, are uniformly distributed on a cir-
cle and the 50 distributions in the other group are normal with mean 0 and
variance 1. Figure 14 shows the boxplot of their first coordinates. Figure 15
presents the results for the three clustering methods. As expected the Gaussian
procedure performs quite poorly.

5.3. Multivariate example: cytometric data

We now apply the Gaussian and Hybrid methods for clustering distributions,
presented in Sections 3 and 4 to a collection of data sets from cytometric ge-
netic research by [17]. The authors obtained fluorescence intensity measures
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Fig 14. Bivariate Example 3. Boxplots of first coordinates.

Fig 15. Bivariate Example 3. Clusters.

of fluorophore-conjugated reagents on whole blood, stained with an antibody
marker. The data record the luminosity of four proteins linked to the T-cells,
that are part of the adaptive immune system. Luminosity was measured on the
proteins SLP76, ZAP70, CD4, and CD45RA before and after stimulation with
the antibody anti-CD3. Two sets of blood samples were collected. One sample
consists in 13 four-dimension data-sets, stained prior to anti-CD3 stimulation.
The second sample, of 30 more data-sets, stained five minutes after stimula-
tion, for a total of 43 data-sets in four dimension. Figure 16 shows pairwise
scatterplots for the first dataset.

In this example, for reasons explained in Section 5.4, we searched for six
clusters. Figure 17 show the boxplots with six colors to show the clusters.

The boxplots are color coded by our clustering. Note that the boxplots of the
SLP6 and ZAP70 proteins correspond nicely to the six clusters. The third and
fourth proteins, CD4 and CD45RA, in Figure 17, instead do not seem to be well
clustered. We conclude that the clustering information is deriving mainly from
SLP6 and ZAP70.
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Fig 16. Cytometric Data. Scatterplots of joint luminosity recorded for the first distribution
of 13 blood samples stained prior to the anti-CD3 stimulation.

The following Figure 18 shows the six clusters obtained with the Gaussian and
the Hybrid procedures. Although the clusters appear to be not so well separated,
we recall that multidimensional scaling projections from several dimensions to
two might not be very accurate. Our choice, in searching for six clusters, has
been suggested by the plots in Figure 20 of Section 5.4, where the issue of
choosing the number of clusters is examined, and reinforced by the boxplots in
Figure 17.

Cytometric data are often modeled as mixtures of Normals. The mixture
structure is evident in some of the boxplots. This suggests replacing the first
term of the hybrid distance with a metric specially designed for mixtures. Thus
we would use H2(X,Y ) = W 2

mix(X,Y ) + W 2
† (X̃, Ỹ ). Such a hybrid distance

would make use of the mixture structure of the cytometric data. But, there is no
known simple formula for computing the Wasserstein distance between mixtures.
Moreover, it is not clear how to define X̃ and Ỹ in this case. Currently, we do
not know how to solve this problem. This direction deserves further scrutiny.

5.4. Choosing k: elbows

The issue of choosing k in k-means clustering is a well-studied problem. Perhaps
the oldest and simplest method is to plot the sums of squares versus k and look
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Fig 17. Cytometric Data. Boxplots of SLP76, ZAP70, CD4 and CD45RA.
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Fig 18. Cytometric Data. Clusters obtained using the procedures Gaussian and Hybrid.

Fig 19. Plot of
∑k

j=1

∑
s∈Cj

H2(Ps, cj) for k = 1, . . . , 10 for the example with four groups of

circles. Note the pronounced elbow at k = 4.

for an elbow. For distribution clustering, we plot Sk =
∑

j

∑
s∈Cj

H2(Ps, cj)

versus k. In some cases, the elbow is clearer if we plot 1/Sk versus k. Figure
19 shows the plot of Sk versus k for the second example in Section 5.2 where
data were generated as four groups of circles. We see a clear elbow at k = 4.
Figure 20 shows another plot of cluster quality versus k. In this case, for the
cytometric data sets, we plot 1/

∑
j

∑
s∈Cj

H2(Ps, cj) as the inverse plot shows
a clearer signal. The elbow is at k = 6.

5.5. The pre-testing speedup

We generated 100 observations from each of 30 multivariate Normal distribu-
tions that lie in three distinct groups. After computing the rescaled data X̃, we
apply the cross-match test from [21] to see if the rescaled data differ significantly
from the sample from the reference distribution. We used level α = 0.10. The
test does not reject and we set ψj = 0 which saves considerable computing time.
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Fig 20. Plot of 1/
∑k

j=1

∑
s∈Cj

H2(Ps, cj) for k = 1, . . . , 9 for the cytometric data. Note the

elbow at k = 6.

Typically, the clustering is perfect (adjusted Rand index of 1). But when the
same procedure is applied to the Normal and circles data, the null is almost
always rejected (as expected) and we need to do the full computations.

6. Other clustering methods

There are, of course, many other clustering methods besides k-means clustering.
In this section we give a sense of how the hybrid distance can be used for two
other clustering methods.

Hierarchical clustering The hybrid distance can easily be used for hierar-
chical clustering. These are the steps for single linkage hierarchical clustering:

1. Compute the transform (μj ,Σj , ψj) = φ(Pj) for each distribution.
2. Compute the pairwise distances Hjk = H(Pj , Pk).
3. Find the pair (j, k) that minimizes Hj,k. Merge Pj and Pk into a single

distribution Pjk = πjkPj + (1− πjk)Pk where πjk = nj/(nj + nk) and nj

and nk are the sample sizes of the two datasets.
4. Compute the representation (μjk,Σjk, ψjk) of Pjk by computing the

barycenter of Pj and Pk with weights πjk and 1− πjk.
5. Repeat steps 2-4 until all distributions are merged.

By working with the hybrid representations we do not have to keep recom-
puting Wasserstein distances.

Mean-shift and medoid-shift clustering Next we discuss mean shift clus-
tering and medoid shift clustering [6, 4, 14, 5]. First we review these methods
when applied to a single dataset. Give a sample Y1, . . . , Yn from a distribution P
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with density p, mean shift clustering works by first computing an estimate p̂ of
p. Let m1, . . . ,mk be the modes of p̂. Given any point y, if we follow the gradient
of p̂ starting at y we will end up at one of the modes. In this way the modes
define a partition of the sample space. This partition defined the mode-based
clustering. There is a simple iterative algorithm called the mean-shift algorithm
to implement this idea. Recently, [8] showed that if we use r-nearest neighbor
density estimation, then the iterative algorithm takes the following form. Pick
any starting value x. Define y(0), y(1), . . . by y(0) = y and

y(s) =
1

r

∑
Nr(y(s−1))

Yi

where Nr(y) denotes the r-nearest neighbors of the point y. This iteration leads
to a mode of the estimated density. This assigns any point y to a mode. The
iteration can be applied to any set of starting points although these starting
points are usually taken to be the data points.

Returning to distribution clustering, we have a set of distributions P1, . . . , PN

which we now regard as a sample from a measure Π on the space of distributions.
Unfortunately, Π does not have a density in any meaningful sense. Nonetheless,
we can formally apply the mean shift clustering algorithm. Given any P , let
Nr(P ) denote the r closest distributions in {P1, . . . , PN} to P under the hybrid
distance. Let Bary(Nr(P )) denote the hybrid barycenter of the distributions in
Nr(P ). We then define P (0) = P and

P (s) = Bary(Nr(P
(s−1))).

A faster approach, which avoids computing the barycenter, is medoid-shift clus-
tering. In this case, we begin by estimating ρ(Pj) = 1/d(P, Pr(P )) where Pr(P )
is the rth nearest neighbor. This can be thought of as a pseudo-density. We
move P to the distribution in Nr(P ) with highest pseudo-density. This is re-
peated until there is no change. This can be regarded as an approximation to
mean-shift clustering.

As an example, we consider a collection of 80, two-dimensional datasets. Each
dataset has n = 100 observations from a bivariate Normal. We construct the
data so that there are four, well-defined clusters. Figure 21 shows medoid-shift
clustering using the hybrid distance. The plots correspond to r = 2, 10, 15 and
20 nearest neighbors. The plots show the MDS of the data sets and the paths
of the data as the clustering proceeds. The red dots show the final destinations,
that is, the pseudo-modes. When r reaches 20 we start to oversmooth and end
up with 2 clusters. There is a large range of values of r that lead to the correct
answer of 4 clusters.

Currently, we do not have a theoretical basis for applying the mean shift
algorithm to distributions. We believe that it may be possible to define a pseudo-
density on the space of distributions similar to the approach used by [9] in the
context of clustering functional data. We conjecture that density clustering in
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Fig 21. Medoid-Shift Clustering using the hybrid distance. The plots show the MDS of the
data sets and the paths of the data as the clustering proceeds for r = 2, 10, 15 and 20 nearest
neighbors.

Wasserstein space can be similarly justified by regarding the density estimator
as estimating a pseudo-density. For example, if P is a random distribution, one
can define the pseudo-density at P0 by P(P ∈ B(P0, h)) where B(P0, h) = {P :
H(P0, P ) ≤ h}. We leave the details for future work.

7. Other hybridizations

The hybrid approach is very flexible. There are many ways to generalize the
method. In this section, we consider other hybrid distances of the form,

H2(X,Y ) = W 2(ZX , ZY ) +W 2
† (X̃, Ỹ ).
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Specifically, we explore other choices besides the tangent distance for W†. In
each case, we want an approximate distance that can be computed quickly.

Marginal distance Here we take the average of the easily computed one-
dimensional distances

W 2
† (X,Y ) =

d∑
j=1

W 2(X(j), Y (j))

where X(j) and Y (j) are the jth components of X and Y . It then follows that

W 2
† (X,Y ) =

d∑
j=1

∫ 1

0

|F−1
j (u)−G−1

j (u)|2du

where Fj(t) = P (X(j) ≤ t) and Gj(t) = Q(Y (j) ≤ t). Hence,

H2(X,Y ) = ||μX − μY ||2 + B2(ΣX ,ΣY ) +

d∑
j=1

∫ 1

0

|F−1
j (u)−G−1

j (u)|2du.

The estimate is

Ĥ2(X,Y ) = ||μ̂X − μ̂Y ||2 + B2(Σ̂X , Σ̂Y ) +

d∑
j=1

∫ 1

0

|F̂−1
j (u)− Ĝ−1

j (u)|2du.

Assuming we have samples m observations from each dataset, we have the fur-
ther simplification that∫ 1

0

|F̂−1
j (u)− Ĝ−1

j (u)|2du =
1

m

∑
i

(X(i)(j)− Y(i)(j))
2

where X(1)(j), . . . , X(n)(j) and Y(1)(j), . . . , Y(n)(j) are the order statistics for

the jth coordinate of X and Y , respectively.
Next we consider an example. We generate 100 datasets. The first 50 are

standard bivariate Normal. The second 50 are uniform on a circle, scaled to
have the same mean and covariance as the Normal. The left plot of Figure
22 shows the Gaussian-Wasserstein distances using multidimensional scaling.
The colors indicate Normal (black) and uniform on circles (red). The Gaussian-
Wasserstein distance cannot distinguish the two types of datasets. The right
plot shows the marginal hybrid distance. Here, the two types of datasets are
clearly distinguished.

Transformed Gaussian approximation Recall that the Gaussian-Wasser-
stein distance is

||μX − μY ||2 +B2(ΣX ,ΣY ) ≡ G2(X,Y ).
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Fig 22. The left plot shows the Gaussian-Wasserstein distance. As expected, the Gaussian-
Wasserstein distance cannot distinguish the two types of datasets. The right plot shows the
marginal hybrid distance. Here, the two types of datasets are clearly distinguished.

A hybrid distance that leverages the simplicity of G can be obtained by re-
peatedly applying a nonlinear transformation to the variables, using G, stan-
dardizing the variables and repeating. Let L be the map that takes X to

X̃ = Σ
−1/2
X (X−μX) and let Φ be some fixed nonlinear map. Define H2(X,Y ) =

G2(X,Y ) +W†(X,Y ) where

W†(X,Y ) =

k∑
j=1

G2(Xj , Yj)

with

Xj = [(Φ ◦ L) ◦ · · · (Φ ◦ L)]︸ ︷︷ ︸
k times

X, Yj = [(Φ ◦ L) ◦ · · · (Φ ◦ L)]︸ ︷︷ ︸
k times

Y.

In the case k = 1 this simplifies to

H2(X,Y ) = G2(X,Y ) +G2(Φ(X̃),Φ(Ỹ ))

= ||μX − μY ||2 +B2(ΣX ,ΣY ) + ||μΦ(X̃) − μΦ(Ỹ )||
2

+B2(ΣΦ(X̃),ΣΦ(Ỹ )).

There are many possible choices for Φ. The only requirement is that Φ be non-
linear otherwise the transformation adds no information beyond that already
captured by G. A convenient choice is the polynomial transform

Φ(x) = ([x]2, . . . , [x]k)

where [x]2 = (xi1xi2 : 1 ≤ i1 ≤ i2 ≤ d), [x]3 = (xi1xi2xi3 : 1 ≤ i1 ≤ i2 ≤ i3 ≤
d), etc.
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Fig 23. Left: MDS based on pairwise Wasserstein distance. The two groups are clearly visible.
Middle: MDS based on the Gaussian Wasserstein distance. As expected, the mixtures distribu-
tions are mixed in with the Normals. Right: Hybrid distance with polynomial transformation.
Here we see that again, the distributions are clearly separated.

As an example, consider a one-dimensional case. We suppose that
P1, . . . , P50 = N(0, 1) and Pj = (1/2)δ−1 + (1/2)δ1 for j = 51, . . . , 100. We
take Φ(X) = (X2, X3, X4). Since the first two moments of all the distributions
match, the Gaussian distance is unable to distinguish the 100 distributions. Fig-
ure 23 shows the pairwise distances using multidimensional scaling (MDS). The
left plot is based on pairwise Wasserstein distances. The two groups are clearly
visible. The middle plot used Gaussian Wasserstein distance. As expected, the
distributions are mixed up. The right uses hybrid distance with polynomial
transformation. Here we see that again, the distributions are clearly separated.

8. Discussion

We have proposed a modified version of the Wasserstein distance called the
hybrid distance that can be used for clustering sets of distributions. The dis-
tances and the barycenter can be computed quickly. The slowest part of the
computation is finding the optimal matching permutation which takes O(m3)
operations. There is large literature on approximate matching in the computer
science literature. It would be interesting to incorporate some of those methods
to further speed up the computations.

The hybrid distance can be used for other tasks as well such as shrinkage
estimation, modeling random effects, domain adaptation, and image processing.
We will report on these applications in future work. We conclude by discussing
a few issues.

8.1. Energy distance

The energy distance ([25]) is another metric that takes the underlying geometry
of the sample space into account. The metric defined by

E(X,Y ) ≡ E(P,Q) = 2E||X − Y || − E||X −X ′|| − E||Y − Y ′|| (8.1)
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where X,X ′ ∼ P and Y, Y ′ ∼ Q. The energy distance has many of the desirable
properties that the Wasserstein distance has including the ability to compare
discrete and continuous distributions.

A sample estimator of the distance based on X1, . . . , Xn ∼ P and
Y1, . . . , Ym ∼ Q is

Ê(X,Y ) =
2

nm

∑
i,j

||Xi−Yj ||−
(
n

2

)∑
i �=j

||Xi−Xj ||−
(
m

2

)∑
i �=j

||Yi−Yj ||. (8.2)

In fact, there are very fast approximations that speed up the calculations; see
[13].

To the best of our knowledge, there is no fast way to compute barycenters
with this metric. But we can get around this by using k-medoids in place of
k-means. This, if P1, . . . , Pr is a set of distributions in a cluster, we define the
centroid to be Pt where Pt = argmin1≤j≤r

∑
s E(Pj , Ps). That is, we restrict the

search for a centroid to be over the observed distributions.
Hence, if we use k-medoids, distribution clustering with the energy distance

is feasible. However, the energy distance is not shape preserving. To see this,
consider the following example. P1 = δ−a and P2 = δa where a > 0 and δ denotes
a point mass. The barycenter P minimizes E(P, P1) + E(P, P2). Recall the the
Wasserstein barycenter is δ0. But this is not true for the energy distance. To see
this, consider distributions of the form P = (1/2)δ−b +m(1/2)δb. It is easy to
show that, over such distributions, E(P, P1)+E(P, P2) is minimized by choosing
the mixture P = (1/2)δ−a +m(1/2)δa. This implies that the barycenter cannot
be δ0 as desired.

In summary, we see that when distributions are well separated, the energy
barycenter is over-dispersed compared to the Wasserstein barycenter. This leads
to situations where the centroid of a cluster might look quite different than the
distributions in the cluster. It is tempting to look for a simple modification of
the energy distance that fixes this problem. We have tried several approaches
without success. Thus, the advantage of energy distance is that it can be com-
puted quickly but the disadvantage is that it does not preserve the shape of the
distributions when computing barycenters.

8.2. Optimal preconditioning

The linear transformation that we used, namely, X̃ = Σ
−1/2
X (X − μX) matches

the first two moments of X̃ with U where U ∼ R is the reference distribution.
This transformation is chosen for convenience. An alternative approach is to
choose an optimal linear transformation. That is, we could choose a and A to
minimize W 2(a + AX,U). Unfortunately, computing the optimal a and A is
non-trivial. If we permit linear transformations of both Xj and U then there is
a closed form expression for the optimal transformation; see [15]. This requires
a different transformation of U for each Xj . Hence, we lose the idea of a single,
fixed, reference distribution. It would be possible to construct a composition of
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Fig 24. The optimal linear map, preserves the Wasserstein distance and makes X̃ and Ỹ as
close as possible.

Fig 25. The optimal linear preconditioning is applied to Xj and U in a pairwise fashion.

maps Xj → X̃j → Z̃j → U where Xj → X̃j is the optimal linear map on Xj and

Z̃j → U is the optimal linear map for U . [15] show that the optimal map T (X)
is the same as the composition M−1 ◦ T† ◦ L where T† is the optimal transport

map from X̃ to Ỹ ; see Figures 24 and 25.
This might lead to more accurate approximations at the expense of much

more computation. In the interest of keeping the method as simple as possible,
we have not use this more involved approach.

8.3. The choice of reference measure and multiple tangents

When we used the tangent approximation, we approximated the distance by pro-
jecting on a single tangent space. An alternative, when there are a large number
of diverse distributions, is to use several tangent approximations. The datasets
could first clustered using some fast approximation, such as the marginal hybrid
distance. A separate tangent approximation is computed for each preliminary
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cluster. Then each distribution can be represented by its local tangent approx-
imation using the same reference measure.

Another issue is the choice of reference measures. We do not know if there is
an optimal reference measure. It is not even clear how to define such a notion
of optimality. We conjecture that, at least for distribution clustering, the choice
of reference measure is not critical as we mentioned earlier.

8.4. Other applications of the hybrid approach

The hybrid distance can be used for other tasks besides clustering. In this section
we outline how the hybrid distance can be used for these tasks.

Nonparametric shrinkage Suppose that P1, . . . , PN are random distribu-
tions drawn from a distribution Π. Let Dj be nj samples drawn from Pj . Sup-
pose that we want to borrow strength from all the data to estimate each Pj .
Let R be a reference measure and let (μj ,Σj , ψj) = φ(Pj) denote the hybrid

transform as in (3.5). Let (μ̂j , Σ̂j , ψ̂j) denote the jth estimate. We can apply

shrinkage estimation separately to the μ̂j ’s, the Σ̂j ’s and the ψ̂j ’s. Denote these
estimates by μj , Σj , ψj . Inverting φ gives the shrinkage estimator P j . We obtain

μj using standard James-Stein shrinkage, Σj by covariance shrinkage as in [18]

and ψj is obtained by functional shrinkage as in [11].

Multi-sample testing Suppose that we want to test the null hypothesis H0 :
P1 = · · · = PN . The hybrid distance allows us to split this null into three
different null hypotheses, namely, H0 : μ1 = · · · = μN , H0 : Σ1 = · · · = ΣN and
H0 : ψ1 = · · · = ψN . This allows us to separate the deviations from the null in
terms of location, scale and shape.

Multi-level clustering After clustering the distributions P1, . . . , PN into
clusters C1, . . . , Ck, we may want to further cluster the datasets D1, . . . ,DN .
We could apply any standard clustering algorithm to each dataset. But we may
want the distributions in a cluster Cj to have similar clusterings. For example,
we could use Normal mixture clustering on each dataset then apply the shrink-
age ideas mentioned above to make the clusterings similar. This is an alternative
to simultaneous Wasserstein clustering as in [12] which is quite expensive.

Appendix

This appendix summarizes some algorithm details.

Wasserstein k-means in one dimension Now we give the steps for exact
Wasserstein k-means clustering in one dimension. Given datasets D1, . . . ,DN

let F1, . . . , FN be the empirical cdf’s. We use the trimmed Wasserstein distance

W 2(Fj , Fk) =
1

1− 2δ

∫ 1−δ

δ

(F−1
j (s)− F−1

k (s))2ds

where δ > 0 is some specified positive trimming constant.
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First, we use k-means++ seeding to get starting centroids:

Wasserstein k-means seeding

1. Input: integer k and data sets D1, . . . ,DN .
2. Compute all pairwise Wasserstein distances

D2
jk = W 2(Fj , Fk).

3. Let F1, . . . , FN be the empirical cdf’s of the data sets.
4. Find the starting values:

(a) Let c1 = Fj where j is chosen randomly from 1, . . . , N . Set C = {j}.
(b) Choose c2 randomly from {F1, . . . , FN} where Fs is chosen with prob-

ability proportional to minj∈C D
2
sj .

(c) Set C ← C
⋃
{j}.

(d) Repeat the last two steps until C = {c1, . . . , ck} has k elements.

The main algorithm is as follows.

Wasserstein k-means

1. Run Wasserstein k-means seeding to get centroids C.
2. Compute Djs = W (Fj , cs) for j = 1, . . . , N and s = 1, . . . , k.
3. Assign each Fj to its nearest centroid: let Cj = {Fr : W (Fr, Fj) <

W (Fr, Ft) t 
= j}.
4. Let cj be the centroid of Cj using Wasserstein centroid.
5. Repeat last two steps until convergence.

Wasserstein centroid

1. Given one-dimensional cdf’s F1, . . . , FN .
2. Let c(s) = 1

N

∑
j F

−1
j (s).

3. Return F (x) = c−1(x).
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