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1. Introduction

We are given a partially observed linear system, defined by the equations

dXt = aYt dt+ σ dWt, X0 = 0, (1.1)

dYt = −fYt dt+ b dVt, Y0 = ξ, (1.2)

where a �= 0, σ �= 0, b �= 0 and f > 0 are constants, WT = (Wt, 0 ≤ t ≤ T )
and V T = (Vt, 0 ≤ t ≤ T ) are two independent Wiener processes. The random
variable ξ ∼ N

(
0, d2

)
is independent of WT and V T .

The system (1.1)-(1.2) is defined by the four parameters a, f, b, σ2. Recall
that the parameter σ2 can be estimated without error by continuous time ob-
servations XT as follows. By the Itô formula we can write

X2
t = 2

∫ t

0

Xs dXs + σ2t.

Hence, for any t ∈ (0, T ], we have the estimator

σ̂2
t = t−1X2

t − 2t−1

∫ t

0

Xs dXs = σ2,
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and this estimator equals the true value. Therefore we consider only the estima-
tion of the three other parameters f, b and a. Note that the consistent estimation
of the three-dimensional parameter ϑ = (a, b, f) or two-dimensional parameter
ϑ = (a, b) is impossible. The heuristic explication of this is given at the end of
this section.

The observations are XT = (Xt, 0 ≤ t ≤ T ) and the Ornstein-Uhlenbeck pro-
cess Y T is unobservable (hidden), i.e., we have partially observed linear model
of observations.

We consider estimation of the one-dimensional parameters f , b and a sepa-
rately given the continuous time observations XT . The unknown parameter will
be denoted by ϑ and we will assume that ϑ ∈ Θ = (α, β) for some constants
α < β. In all the cases the set Θ does not contain 0. Thus we are faced with
three different problems: ϑ = f , ϑ = b and ϑ = a. In each problem we propose a
two-step construction of asymptotically efficient estimator-process of recurrent
nature. First we propose a preliminary consistent estimator ϑT δ based on the

observations XT δ

=
(
Xt, 0 ≤ t ≤ T δ

)
with δ ∈ (1/2, 1). Then this estimator is

used for construction of One-step MLE-process, which has recurrent structure.
In the last section we discuss the possibilities of the joint estimation of two
dimensional parameters ϑ = (f, b) and ϑ = (f, a).

Equations (1.1)-(1.2) is a prototypical model in the Kalman-Bucy filtering
theory, which provides a closed form system of equations for the conditional
expectation m (t) = E (Yt|Xs, 0 ≤ s ≤ t) ([1], [9], [18]). The statistical problems
for discretely observed hidden Markov processes were studied by many authors
(see [2], [3], [6], [7] and the references therein). However, the literature on con-
tinuous time models is limited. For the results in continuous time setup, we refer
the interested reader to [13] (linear and non linear partially observed systems
with small noise), [6] (continuous-time hidden Markov models estimation), [4]
and [11] (hidden telegraph process observed in the white Gaussian noise).

In the present paper we are particularly interested in the asymptotic behavior
of the maximum likelihood estimator (MLE) ϑ̂T in the large sample asymptotic
regime, i.e., when T → ∞. The statistical problems for such observation models
have been widely studied, motivated by the importance of the Kalman-Bucy
filtering in engineering applications.

Let us now recall the definitions of the MLE in the case ϑ = f , when the other
two parameters a and b are known. As the parameters of the model take finite

values and σ2 > 0, the measures
{
P

(T )
ϑ , ϑ ∈ Θ

}
induced by the observations

(1.1) on the space of continuous functions on [0, T ] are equivalent. The likelihood
ratio function ([18]) is given by the expression

L
(
ϑ,XT

)
= exp

{∫ T

0

am (ϑ, t)

σ2
dXt −

∫ T

0

a2m (ϑ, t)
2

2σ2
dt

}
, ϑ ∈ Θ. (1.3)

Then the MLE ϑ̂T is defined by the equation

L(ϑ̂T , X
T ) = sup

ϑ∈Θ
L
(
ϑ,XT

)
. (1.4)
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This means that to calculate ϑ̂T we need the values of the family of stochastic
processes (m (ϑ, t) , 0 ≤ t ≤ T ) , ϑ ∈ Θ. The random process m (ϑ, ·) is solution
of the Kalman-Bucy filtering equations (see [1], [9], [18])

dm (ϑ, t) = −ϑm (ϑ, t) dt+
γ (ϑ, t) a

σ2
[dXt − a m (ϑ, t) dt]

= −
[
ϑ+

γ (ϑ, t) a2

σ2

]
m (ϑ, t) dt+

γ (ϑ, t) a

σ2
dXt, (1.5)

where m (ϑ, 0) = Eϑ (ξ|X0) = 0. The function γ (ϑ, t) = Eϑ (m (ϑ, t)− Yt)
2
is

the solution of the Ricatti equation

∂γ (ϑ, t)

∂t
= −2ϑγ (ϑ, t)− γ (ϑ, t)

2
a2

σ2
+ b2, γ (ϑ, 0) = d2. (1.6)

Due to importance of this model in many applied problems, much engineering
literature is concerned with identification of this model.

The behavior of the MLE was studied at least in three asymptotics:

• Small noise in both equations σ = b = ε → 0 (T is fixed) [12], [13]

ϑ̂ε − ϑ

ε
=⇒ N

(
0, I1 (ϑ)

−1
)
.

• Large sample T → ∞ (σ and b are fixed) [14]

√
T
(
ϑ̂T − ϑ

)
=⇒ N

(
0, I2 (ϑ)

−1
)
.

• Small noise in observation only, σ = ε → 0 (T and b are fixed) [16]

ϑ̂ε − ϑ√
ε

=⇒ N
(
0, I3 (ϑ)

−1
)
.

In all three cases Ii (ϑ) are corresponding Fisher informations. It was also shown
that the polynomial moments of the scaled estimation error converge and the
MLE is asymptotically efficient.

Let us remind that the simultaneous consistent estimation of the parameters
a and b is impossible. According to (1.3) the Kullback-Leibler distance between
the measures with different ϑ = (a, b) is

DK−L (ϑ, ϑ0) =
1

2σ2

∫ T

0

Eϑ0 [am (ϑ, t)− a0m (ϑ0, t)]
2
dt.

Remark that if we denote m̃ (ϑ, t) = am (ϑ, t) and γ̃ (ϑ, t) = a2γ (ϑ, t), then we
obtain equations

dm̃ (ϑ, t) = −
[
f +

γ̃ (ϑ, t)

σ2

]
m̃ (ϑ, t) dt+

γ̃ (ϑ, t)

σ2
m̃ (ϑ0, t) dt+

γ̃ (ϑ, t)

σ
dW̄t,
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dm̃ (ϑ0, t) = −fm̃ (ϑ0, t) dt+
γ̃ (ϑ0, t)

σ
dW̄t,

∂γ̃ (ϑ, t)

∂t
= −2f γ̃ (ϑ, t)− γ̃ (ϑ, t)

2

σ2
+ a2b2, γ̃ (ϑ, 0) = d2a2,

∂γ̃ (ϑ0, t)

∂t
= −2f γ̃ (ϑ0, t)−

γ̃ (ϑ0, t)
2

σ2
+ a20b

2
0, γ̃ (ϑ0, 0) = d2a20.

Here W̄t is innovation Wiener process (see Theorems 6.2 and 7.11 in [18]). We
see that except the initial values the equations for m̃ (·, ·) do not depend on ϑ and
the equations for γ̃ (·, ·) depend on the products a2b2 and a20b

2
0 only. Therefore

the invariat distributions of m̃ (ϑ, ·) and m̃ (ϑ0, ·) depend on these products and
the limit Kullback-Leibler distance

T−1DK−L (ϑ, ϑ0) −→ B (ab, a0b0) .

Hence the consistent estimation of the parameter ϑ = (a, b) is impossible.

It is evident that the numerical calculation of the MLE ϑ̂T according to
(1.3)-(1.6) is quite a difficult problem. The goal of this work is to suggest the
new estimator, called One-step MLE-process ϑ�

t , τ ≤ t ≤ T , which has two
advantages. First, its numerical calculation is much more simple than that of the
MLE and, second, this estimator has a recurrent structure and can be used for
the joint estimation of the hidden process Yt and the parameter ϑ. Similar One-
step MLE’s and Multi-step MLE-processes, introduced in [15], have been applied
in the problem of parameter estimation of the hidden telegraph process [11],
parameter estimation in diffusion processes by the discrete time observations
[10], in the problem of frequency estimation [8], intensity parameter estimation
for inhomogeneous Poisson processes [5], parameter estimation for the Markov
sequences [17].

2. Preliminary estimator

Following [11] One-step MLE process will be constructed in two steps. First
we introduce a consistent and asymptotically normal preliminary estimator and
then this estimator is used to define One-step MLE-process. Preliminary estima-
tor is constructed using an asymptotically negligible amount of the observations
XK = (Xt, 0 ≤ t ≤ K), where K = T δ, δ ∈ (1/2, 1).

Suppose that ϑ = f and introduce the statistic SK and the function
Φ (ϑ) , ϑ ∈ Θ:

SK =
1

K

K∑
k=1

[Xk −Xk−1]
2
, Φ (ϑ) =

a2b2

ϑ3

[
e−ϑ − 1 + ϑ

]
+ σ2.

In the cases ϑ = b and ϑ = a the counterparts of the latter function are

Φ∗ (ϑ) =
a2ϑ2

f3

[
e−f − 1 + f

]
+ σ2, Φ̂ (ϑ) =

ϑ2b2

f3

[
e−f − 1 + f

]
+ σ2

respectively.
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In this section we consider the case ϑ = f only. Therefore

dXt = aYt dt+ σ dWt, X0 = 0, (2.1)

dYt = −ϑYt dt+ b dVt, Y0 = ξ. (2.2)

Note that the function Φ (ϑ) , α < ϑ < β is strictly decreasing. Define the
preliminary estimator ϑ̄K , base on the observations XK :

ϑ̄K = ϑ∗
K1{AK} + α1{A−

K} + β1{A+
K}.

Here ϑ∗
K is the root of equation Φ (ϑ∗

K) = SK and AK ,A−
K ,A+

K are the sets

AK = {ω : Φ (β) < SK < Φ (α)} , A−
K = {ω : SK ≥ Φ (α)} ,

A+
K = {ω : SK ≤ Φ (β)} .

The asymptotic behavior of ϑ̄K as K → ∞ is described in the following propo-
sition.

Proposition 1. The estimator ϑ̄K is consistent in L2 sense, uniformly on
compacts

[
ᾱ, β̄

]
⊂ Θ and

sup
ϑ0∈[ᾱ,β̄]

Eϑ0

∣∣ϑ̄K − ϑ0

∣∣2 ≤ C

K
(2.3)

with some constant C > 0.

Proof. We have

Eϑ0

[
ϑ̄K − ϑ0

]2
= Eϑ0 [ϑ

∗
K − ϑ0]

2 1{AK} + (ϑ0 − α)
2
Pϑ0

(
A−

K

)
+ (β − ϑ0)

2
Pϑ0

(
A+

K

)
.

For the probabilities we have the estimates

Pϑ0

(
A−

K

)
= Pϑ0 (SK − Φ (ϑ0) ≥ Φ (α)− Φ (ϑ0)) ≤

Eϑ0 [SK − Φ (ϑ0)]
2

|Φ (α)− Φ (ϑ0)|2
,

Pϑ0

(
A+

K

)
≤ Eϑ0 |SK − Φ (ϑ0)|2

[Φ (β)− Φ (ϑ0)]
2 .

Therefore we have to study the asymptotics of the statistic SK as K → ∞:

SK =
1

K

K∑
k=1

[Xk −Xk−1]
2
=

1

K

K∑
k=1

[∫ k

k−1

dXs

]2

=
a2

K

K∑
k=1

η2k +
2aσ

K

K∑
k=1

ηk [Wk −Wk−1] +
σ2

K

K∑
k=1

[Wk −Wk−1]
2
,
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where

ηk =

∫ k

k−1

Yt dt.

We have

Eϑ0SK =
a2

K

K∑
k=1

Eϑ0η
2
k + σ2

because Y T = (Yt, 0 ≤ t ≤ T ) and WT = (Wt, 0 ≤ t ≤ T ) are independent.
The process Y T can be written as

Yt = ξe−ϑ0t + b

∫ t

0

e−ϑ0(t−r)dVr.

Hence

Eϑ0YtYs = Eϑ0ξ
2e−ϑ0(t+s) + b2e−ϑ0(t+s)

∫ t∧s

0

e2ϑ0rdr

=

[
d2 − b2

2ϑ0

]
e−ϑ0(t+s) +

b2

2ϑ0
e−ϑ0|t−s|

and

Eϑ0η
2
k =

∫ k

k−1

∫ k

k−1

Eϑ0YtYs dsdt

=

[
d2 − b2

2ϑ0

](∫ k

k−1

e−ϑ0tdt

)2

+
b2

2ϑ0

∫ k

k−1

∫ k

k−1

e−ϑ0|t−s|dsdt

=

[
d2

ϑ2
0

− b2

2ϑ3
0

] [
eϑ0 − 1

]2
e−2ϑ0k +

b2

ϑ0
3

[
e−ϑ0 − 1 + ϑ0

]
.

Therefore

Eϑ0SK =
[
eϑ0 − 1

]2 a2
[
2ϑ0d

2 − b2
]

2ϑ3
0K

K∑
k=1

e−2ϑ0k +
a2b2

ϑ0
3

[
e−ϑ0 − 1 + ϑ0

]
+ σ2

=
a2b2

ϑ0
3

[
e−ϑ0 − 1 + ϑ0

]
+ σ2 + rK , |rK | ≤ C

K
.

Using similar calculations we obtain the estimate

Eϑ0ηkηm ≤ C e−ϑ0|k−m|,

which allows us to prove the law of large numbers: for K → ∞ we have conver-
gence in mean square

Eϑ0 (SK −Eϑ0SK)
2 ≤ C

K
, SK −→ Φ (ϑ0) =

a2b2

ϑ0
3

[
e−ϑ0−1 + ϑ0

]
+ σ2
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and

Eϑ0 (SK − Φ (ϑ0))
2 ≤ 2Eϑ0 (SK −Eϑ0SK)

2
+ 2 (Eϑ0SK−Φ (ϑ0))

2 ≤ C

K
.

Hence

sup
ᾱ<ϑ0≤β̄

[
Pϑ0

(
A−

K

)
+Pϑ0

(
A+

K

)]
≤ C

K
.

The function Φ (ϑ) , α < ϑ < β is strictly decreasing. If we denote its inverse
function as Ψ (φ) = Φ−1 (φ) ,Φ (β) < φ < Φ (α), then we have

Ψ′ (φ) =
1

Φ′ (ϑ)
, for φ = Φ(ϑ)

and

sup
ϑ∈Θ

|Ψ′ (Φ (ϑ))| =
(
inf
ϑ∈Θ

|Φ′ (ϑ)|
)−1

= |Φ′ (β)|−1 ≡ c∗ > 0.

We can write

Eϑ0 [ϑ
∗
K − ϑ0]

2 1{AK} = Eϑ0 [Ψ (SK)−Ψ(Φ (ϑ0))]
2 1{AK}

≤ c2∗Eϑ0 [SK − Φ (ϑ0)]
2 ≤ Cc2∗

K
−→ 0

as K → ∞.
If we put K = T δ, then

sup
ᾱ≤ϑ0≤β̄

Eϑ0

[
ϑ̄T δ − ϑ0

]2 ≤ C T−δ. (2.4)

3. One-step MLE-process. Case ϑ = f

Suppose that the unknown parameter is ϑ = f and we have the model (2.1)-
(2.2), where the process XT is observable and the Ornstein-Uhlenbeck process
Y T is “hidden”. We realize the asymptotically efficient estimation of the param-
eter ϑ ∈ Θ in two steps. First we calculate the preliminary estimator ϑ̄T δ and
then using this estimator we construct the One-step MLE-process.

Recall that the equation (1.6) has explicit solution (see Lemma 1 in the
Section 1.8, [1])

γ (ϑ, t) = e−2r(ϑ)t

[
1

d2 − γ (ϑ)
+

a2

2r (ϑ)σ2

(
1− e−2r(ϑ)t

)]−1

+ γ (ϑ) .
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Here γ0 = d2,

r (ϑ) =

(
ϑ2 +

b2a2

σ2

)1/2

, γ (ϑ) =
ϑσ2

a2

(√
1 +

b2a2

ϑ2σ2
− 1

)
.

Therefore we have exponential convergence of γ (ϑ, t) to the stationary solution
γ (ϑ)

|γ (ϑ, t)− γ (ϑ)| ≤ C e−2r(ϑ)t.

To simplify the exposition we suppose that d2 = γ (ϑ); then we have γ (ϑ, t) =
γ (ϑ). The case with an arbitrary d2 requires cumbersome calculations, but the
main results remain intact.

The equation for m (ϑ, t) in this case is

dm (ϑ, t) = −
[
ϑ+

γ (ϑ) a2

σ2

]
m (ϑ, t) dt+

γ (ϑ) a

σ2
dXt.

Denote mt = m (ϑ0, t) and γ (ϑ0) = γ∗, where ϑ0 is the true value. Then for
the process mt, 0 ≤ t ≤ T we obtain the equation

dmt = −ϑ0mtdt+
γ∗a

σ
dW̄t, m0 ∼ N (0, γ∗) , 0 ≤ t ≤ T. (3.1)

Here we used once more the theorem 7.11 in [18].

dXt = amt dt+ σ dW̄t, X0 = 0, 0 ≤ t ≤ T.

The innovation Wiener process W̄t is defined by this equation and m0 is inde-
pendent on W̄t, 0 ≤ t ≤ T . With probability 1, the random process m (ϑ, t) has
continuous derivatives w.r.t. ϑ and derivative processes ṁ (ϑ, t) , m̈ (ϑ, t) satisfy
the equations

dṁ (ϑ, t) = −
[
ϑ+

γ (ϑ) a2

σ2

]
ṁ (ϑ, t) dt+

γ̇ (ϑ) a

σ2
dXt

−
[
1 +

γ̇ (ϑ) a2

σ2

]
m (ϑ, t) dt, (3.2)

dm̈ (ϑ, t) = −
[
ϑ+

γ (ϑ) a2

σ2

]
m̈ (ϑ, t) dt+

γ̈ (ϑ) a

σ2
dXt

− 2

[
1 +

γ̇ (ϑ) a2

σ2

]
ṁ (ϑ, t) dt− γ̈ (ϑ) a2

σ2
m (ϑ, t) dt. (3.3)

The Fisher information for this model of observations is (see, e.g., Section 3.1.2
[14])

I (ϑ) =
1

2ϑ
− 2ṙ (ϑ)

r (ϑ) + ϑ
+

ṙ (ϑ)
2

2r (ϑ)
.
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Note that I (ϑ) has continuous bounded derivatives and is uniformly in ϑ ∈ Θ
separated from zero.

According to [15] the One-step MLE-process ϑ�
t , T

δ < t ≤ T is introduced as
follows

ϑ�
t = ϑ̄T δ +

a

σ2tI
(
ϑ̄T δ

) ∫ t

T δ

ṁ(ϑ̄T δ , s)
[
dXs − am(ϑ̄T δ , s)ds

]
. (3.4)

Let us change the variables t = τT and denote ϑ�
τT = ϑ�

T (τ) , T δ−1 < τ ≤ 1.

Theorem 1. One-step MLE-process ϑ�
T (τ) , T δ−1 < τ ≤ 1 with δ ∈ (1/2, 1) is

consistent: for any ν > 0 and any τ ∈ (0, 1]

lim
T→∞

−Pϑ0 (|ϑ�
T (τ)− ϑ0| > ν) = 0,

and asymptotically normal

√
τT (ϑ�

T (τ)− ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)
.

Proof. Consider the difference

√
τT (ϑ�

T (τ)− ϑ0) =
√
τT

(
ϑ̄T δ − ϑ0

)
+

a

σ
√
τT I

(
ϑ̄T δ

) ∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

+
a2

σ2
√
τT I

(
ϑ̄T δ

) ∫ τT

T δ

ṁ
(
ϑ̄T δ , s

) [
ms −m(ϑ̄T δ , s)

]
ds. (3.5)

Note that as it follows from the equations (3.2)-(3.3), the Gaussian processes
ṁ (ϑ, t) and m̈ (ϑ0, t) have bounded variances and therefore for any p > 1 we
have

sup
ϑ∈Θ

Eϑ0 |ṁ (ϑ, t)|p ≤ C, sup
ϑ∈Θ

Eϑ0 |m̈ (ϑ, t)|p ≤ C,

where the constants do not depend on t. We can write

ṁ(ϑ̄T δ , s) = ṁ(ϑ0, s) + ṁ(ϑ̄T δ , s)− ṁ (ϑ0, s)

= ṁ (ϑ0, s) +
(
ϑ0 − ϑ̄T δ

)
m̈(ϑ̃, s) = ṁ (ϑ0, s) +O

(
T−δ/2

)
because(

Eϑ0

∣∣∣(ϑ0 − ϑ̄T δ

)
m̈(ϑ̃, s)

∣∣∣)2

≤ Eϑ0

(
ϑ0 − ϑ̄T δ

)2
Eϑ0m̈(ϑ̃, s)2 ≤ C

T δ
.

Here
∣∣∣ϑ̃− ϑ̄T δ

∣∣∣ ≤
∣∣ϑ0 − ϑ̄T δ

∣∣ and O
(
T−δ/2

)
means that T δ/2O

(
T−δ/2

)
is

bounded in probability.
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Further, for the Fisher information we have∣∣∣∣∣ 1

I
(
ϑ̄T δ

) − 1

I (ϑ0)

∣∣∣∣∣ =
∣∣I (ϑ̄T δ

)
− I (ϑ0)

∣∣
I
(
ϑ̄T δ

)
I (ϑ0)

≤ C
∣∣ϑ̄T δ − ϑ0

∣∣ = O
(
T−δ/2

)
.

This allows us to write

ΔT =
a

σ
√
τT I

(
ϑ̄T δ

) ∫ τT

T δ

ṁ(ϑ̄T δ , s) dW̄s

=
a

σI (ϑ0)
√
τT − T δ

∫ τT

T δ

ṁ(ϑ0, s) dW̄s (1 + o (1)) ,

where o (1) is small in probability. By the law of large numbers

a2

σ2τT

∫ τT

T δ

ṁ(ϑ0, s)
2 ds −→ I (ϑ0)

and therefore by the central limit theorem

a

σI (ϑ0)
√
τT

∫ τT

T δ

ṁ(ϑ0, s) dW̄s =⇒ N
(
0, I (ϑ0)

−1
)
.

The similar arguments allow us to write∫ τT

T δ

ṁ
(
ϑ̄T δ , s

) [
m (ϑ0, s)−m(ϑ̄T δ , s)

]
ds

= −(ϑ̄T δ − ϑ0)

∫ τT

T δ

ṁ
(
ϑ̄T δ , s

)
ṁ(ϑ̃, s)ds

= −(ϑ̄T δ − ϑ0)

∫ τT

T δ

ṁ (ϑ0, s)
2
ds

(
1 +O

(
T−δ/2

))
.

Recall that Eϑ0ṁ(ϑ0, s)
2 = σ2a−2I (ϑ0) (1 + o (1)). Therefore

1

τT

∫ τT

T δ

ṁ (ϑ0, s)
2
ds− σ2a−2I (ϑ0) =

1√
τT

A (τT ) + o (1) ,

where the integral (see, e.g., Proposition 1.23 in [14])

A (τT ) =
1√
τT

∫ τT

T δ

[
ṁ (ϑ0, s)

2 −Eϑ0ṁ (ϑ0, s)
2
]
ds =⇒ N (0, D (ϑ0)) .

Hence we obtained the representation

a2

σ2
√
τT I

(
ϑ̄T δ

) ∫ τT

T δ

ṁ
(
ϑ̄T δ , s

) [
ms −m(ϑ̄T δ , s)

]
ds

= −
√
τT

(
ϑ̄T δ − ϑ0

) (
1 +O

(
T−δ/2

))
.



4518 Yu. A. Kutoyants

Substitution of this relation into the initial representation (3.5) yields the final
expression

√
τT (ϑ� (τ)− ϑ0) = ΔT +

√
τT

(
ϑ̄T δ − ϑ0

)
O
(
T−δ/2

)
= ΔT +O

(
T

1
2−δ

)
=⇒ N

(
0, I (ϑ0)

−1
)
,

since δ ∈ (1/2, 1).
Note that the process ϑ�

t , T
δ < t ≤ T can be written in recurrent form

dϑ�
t = −ϑ�

t − ϑ̄T δ

t
dt+

aṁ(ϑ̄T δ , t)

σ2tI(ϑ̄T δ)

[
dXt − am(ϑ̄T δ , t)dt

]
(3.6)

and we can introduce the adaptive filtering equations as follows

dm̂t = −
[
ϑ�
t +

γ (ϑ�
t ) a

2

σ2

]
m̂tdt+

γ (ϑ�
t ) a

σ2
dXt, T δ < t ≤ T, (3.7)

γ (ϑ�
t ) =

ϑ�
tσ

2

a2

(√
1 +

b2a2

(ϑ�
t )

2
σ2

− 1

)
(3.8)

with the initial value m̂T δ = m
(
ϑ̄T δ , T δ

)
.

It will be interesting to see the behavior of the system (3.6)-(3.8) using nu-
merical simulations.

Recall that if we put τ = 1, then ϑ�
T is One-step MLE with

√
T (ϑ�

T − ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)

studied for ergodic diffusion processes in the Section 2.5 [14]. Therefore the
estimator ϑ�

T is asymptotically equivalent to the asymptotically efficient MLE

ϑ̂T defined by the equation (1.4). There is essential computational difference

between these two estimators. The calculation of ϑ̂T using (1.3)-(1.6) requires
solving the differential equations (1.5)-(1.6) for numerous values of ϑ ∈ Θ,
which is computationally inefficient. To construct One-step MLE-process ϑ�

T

we have to calculate a simple preliminary estimator ϑ̄T δ and then to solve the
system (1.5)-(1.6) for just one value ϑ = ϑ̄T δ . The difference between these two
approaches becomes even more significant in the case of multidimensional ϑ.

4. One-step MLE-process. Case ϑ = b

Suppose that the volatility b = ϑ is the unknown parameter and we have the
equations

dXt = aYt dt+ σ dWt, X0 = 0, (4.1)

dYt = −fYt dt+ ϑdVt, Y0 = ξ. (4.2)
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As before all parameters a, σ, ϑ do not vanish and f > 0. The volatility ϑ ∈ (α, β)
with α > 0 and the function

Φ∗ (ϑ) =
a2ϑ2

f3

[
e−f − 1 + f

]
+ σ2, α < ϑ < β

is strictly increasing.
The statistic SK , with the new notations, converges to this function

SK −→ Φ∗ (ϑ0) as K → ∞.

Therefore we have the explicit expression for the preliminary estimator

ϑ̄K = ϑ∗
K1{BK} + α1{B−

K} + β1{B+
K},

where on BK

ϑ∗
K =

(
f3

(
SK − σ2

)
a2 [e−f − 1 + f ]

)1/2

.

Here the sets B± are defined by the similar relations

B−
K = {ω : SK ≤ Φ∗ (α)} , B+

K = {ω : SK ≥ Φ∗ (β)} ,
BK = {ω : SK ∈ (Φ∗ (α) ,Φ∗ (β))} .

As before, we have the consistency

ϑ̄K −→ ϑ0 as K → ∞

and

Eϑ0

∣∣ϑ̄K − ϑ0

∣∣2 ≤ C

K
.

We need the equation for ṁ (ϑ, t) and expression for Fisher information

I (ϑ0) = σ−2a2Eϑ0ṁ (ϑ0, t)
2

in this case. The filtering equations in the stationary regime are

dm (ϑ, t) = −
[
f +

γ∗ (ϑ) a
2

σ2

]
m (ϑ, t) dt+

γ∗ (ϑ) a

σ2
dXt, m (ϑ, 0) = ξ,

γ∗ (ϑ) =
fσ2

a2

(√
1 +

ϑ2a2

f2σ2
− 1

)
, ξ ∼ N (0, γ∗ (ϑ)) .

Therefore

dṁ (ϑ, t) = −
[
f +

γ∗ (ϑ) a
2

σ2

]
ṁ (ϑ, t) dt+

γ̇∗ (ϑ) a

σ2
[dXt − am (ϑ, t) dt] .
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For ϑ = ϑ0

dm (ϑ0, t) = −fm (ϑ0, t) dt+
γ∗ (ϑ0) a

σ
dW̄t, m (ϑ, 0) ∼ N (0, γ∗ (ϑ0)) ,

dṁ (ϑ0, t) = −A (ϑ0) ṁ (ϑ0, t) dt+
ϑ0a

σA (ϑ0)
dW̄t, ṁ (ϑ0, 0) ∼ N (0, q (ϑ0)) ,

where

A (ϑ0) = f +
γ∗ (ϑ0) a

2

σ2
=

√
f2 +

ϑ2
0a

2

σ2
, q (ϑ0) =

ϑ2
0a

2

σ2A (ϑ0)
3 .

Since

ṁ (ϑ0, t) = ṁ (ϑ0, 0) e
−At +

∫ t

0

e−A(t−s) γ̇∗ (ϑ0) a

σ
dW̄s

we obtain

Eϑ0ṁ (ϑ0, t)
2
=

ϑ2
0a

2

2σ2A (ϑ0)
3 .

Therefore the Fisher information is

I (ϑ) =
ϑ2
0a

4

2σ4A (ϑ0)
3 .

Now we can write the One-step MLE-process ϑ�
t , T

δ < t ≤ T as follows

ϑ�
t = ϑ̄T δ +

a

σ2 (t− T δ) I
(
ϑ̄T δ

) ∫ t

T δ

ṁ(ϑ̄T δ , s)
[
dXs − am(ϑ̄T δ , s)ds

]
. (4.3)

If we change the variables t = τT and denote ϑ�
τT = ϑ�

T (τ) , T δ−1 < τ ≤ 1, then
we obtain the same assertions as in the Theorem 1:

Proposition 2. One-step MLE-process ϑ�
T =

(
ϑ�
T (τ) , T δ−1 < τ ≤ 1

)
with δ ∈

(1/2, 1) is consistent: for any ν > 0 and any τ ∈ (0, 1]

lim
T→∞

−Pϑ0 (|ϑ�
T (τ)− ϑ0| > ν) = 0,

and asymptotically normal

√
τT (ϑ�

T (τ)− ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)
.

Proof. Similarly to (3.6), we have exactly the same representation for the esti-
mator ϑ�

t as in (3.4), with the only difference in the forms of ṁ (ϑ, t) and I (ϑ).
Thus the previous proof works in this case as well.

It is possible to write the system of recurrent equations as in (3.6)-(3.8).
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5. One-step MLE-process. Case ϑ = a

It is clear that the suggested estimation approach also works for the partially
observed system

dXt = ϑYt dt+ σ dWt, X0 = 0, (5.1)

dYt = −fYt dt+ b dVt, Y0 = ξ, (5.2)

where the unknown parameter is the drift ϑ = a.
The function

Φ̂ (ϑ) =
b2ϑ2

f3

[
e−f − 1 + f

]
+ σ2, α < ϑ < β

is strictly increasing and the corresponding preliminary estimator

ϑ̄T δ =
f3

(
ST δ − σ2

)
b2 (ef − 1 + f)

1{CTδ} + α1{
C−
Tδ

} + β1{
C+

Tδ

} ,

where

C−
T δ =

{
ω : ST δ ≤ Φ̂ (α)

}
, C+

T δ =
{
ω : ST δ ≥ Φ̂ (β)

}
,

CT δ =
{
ω : Φ̂ (α) < ST δ < Φ̂ (β)

}
admits the same asymptotic properties as in the preceding section.

The filtering equations are

dm (ϑ, t) = −
[
f +

γ̂ (ϑ)ϑ2

σ2

]
m (ϑ, t) dt+

γ̂ (ϑ)ϑ

σ2
dXt, m (ϑ, 0) = ξ,

γ̂ (ϑ) =
fσ2

ϑ2

(√
1 +

ϑ2b2

f2σ2
− 1

)
, ξ ∼ N (0, γ̂ (ϑ)) .

Therefore

dṁ (ϑ, t) = −
[
f +

γ̂ (ϑ)ϑ2

σ2

]
ṁ (ϑ, t) dt+

ˆ̇γ (ϑ)ϑ+ γ̂ (ϑ)

σ2
dXt

−

[
ˆ̇γ (ϑ)ϑ2 + 2γ̂ (ϑ)ϑ

]
σ2

m (ϑ, t) dt.

To calculate Fisher information I (ϑ0) = σ−2Eϑ0 [m (ϑ0, t) + ϑ0ṁ (ϑ0, t)]
2
we

write the representations

m (ϑ0, t) =
γ̂ (ϑ0)ϑ0

σ

∫ t

0

e−f(t−s)dW̄s + o (1) , A = f +
γ̂ (ϑ0)ϑ

2
0

σ2
,

ṁ (ϑ0, t) =
ˆ̇γ (ϑ0)ϑ0 + γ̂ (ϑ0)

σ

∫ t

0

e−A(t−s)dW̄s
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− γ̂ (ϑ0)ϑ0

σ2

∫ t

0

e−A(t−s)m (ϑ0, s) ds+ o (1) .

In the last integral we change the order of integration∫ t

0

e−A(t−s)m (ϑ0, s) ds =
γ̂ (ϑ0)ϑ0

σ

∫ t

0

e−A(t−s)

∫ s

0

e−f(s−r)dW̄r ds

=
γ̂ (ϑ0)ϑ0

σ
e−At

∫ t

0

(∫ t

r

e(A−f)sds

)
efrdW̄r

=
γ̂ (ϑ0)ϑ0

σ (A− f)
e−At

∫ t

0

(
e(A−f)t − e(A−f)r

)
efrdW̄r

=
σ

ϑ0

∫ t

0

e−f(t−r)dW̄r −
σ

ϑ0

∫ t

0

e−A(t−r)dW̄r.

Hence

m (ϑ0, t) + ϑ0ṁ (ϑ0, t) = N (ϑ0)

∫ t

0

e−A(t−s)dW̄s + o (1) ,

where we denoted

N (ϑ0) =
ˆ̇γ (ϑ0)ϑ

2
0 + 2γ̂ (ϑ0)ϑ0

σ
.

Therefore the Fisher information in this problem is the function

I (ϑ0) =

(
ˆ̇γ (ϑ0)ϑ

2
0 + 2γ̂ (ϑ0)ϑ0

)2

2σ2 (fσ2 + γ̂ (ϑ0)ϑ2
0)

.

Having the preliminary estimator ϑ̄T δ , expression for Fisher information I (ϑ0)
and the equation for ṁ (ϑ, t) we can construct the One-step MLE-process

ϑ�
t = ϑ̄T δ +

1

I
(
ϑ̄T δ

) ∫ t

T δ

[
m(ϑ̄T δ , s) + ϑ̄T δṁ(ϑ̄T δ , s)

]
σ2t

[
dXs − ϑ̄T δm(ϑ̄T δ , s)ds

]
.

This estimator has the same asymptotic properties: it is consistent and as-
ymptotically normal

√
τT (ϑ�

T (τ)− ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)
.

The proof follows the same pattern as in the previous cases.

6. Discussion

The results, presented above, can be developed in several directions by means
of already known approaches.
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1. It is interesting to find preliminary estimator in the cases of unknown pa-
rameters f, b, a. Recall that the estimation of all parameters is impossible.
Of course, with one statistic ST δ it is impossible and we need at least
two different statistics. Consider the case of two-dimensional parameter
ϑ = (f, b) or ϑ = (f, a) and two statistics

SK =
1

K

K∑
k=1

[Xk −Xk−1]
2
, RK =

1

K

K∑
k=1

[Xk −Xk−1] [Xk−1 −Xk−2] .

The limits are

SK −→ Φ (ϑ) =
a2b2

f3

[
e−f − 1 + f

]
+ σ2,

RK −→ Ξ (ϑ) =
a2b2

2f3

[
e−f − 1

]2
.

Therefore

QK =
SK − σ2

RK
−→

2
[
e−f − 1 + f

]
[e−f − 1]

2 .

The function

φ (x) =
2 [e−x − 1 + x]

[e−x − 1]
2 , x > 0

is strictly increasing and limx→0 φ (x) = 1, limx→∞ φ (x) = ∞. Therefore,
the parameter f can be estimated with the help of the statistic QK :

QK = φ (f∗
K) .

Having this estimator the second parameter, say, a or b can be obtained
as solution of one of these equations

SK = Φ(f∗
K , a∗K) , or SK = Φ(f∗

K , b∗K) ,

with obvious notation. As soon as we have a consistent preliminary esti-
mator, say, ϑ̄T δ =

(
f∗
T δ , b

∗
T δ

)
and explicit expression for the information

matrix I (ϑ), then

ϑ�
t = ϑ̄T δ + t−1I

(
ϑ̄T δ

)−1
∫ t

T δ

a ṁ
(
ϑ̄T δ , s

)
σ2

[
dXs − am

(
ϑ̄T δ , s

)
ds

]
.

Recall that such processes were studied in [15].
2. The One-step MLE-process has learning interval

[
0, T δ

]
with δ ∈ ( 12 , 1]. It

can be interesting to have such process with shorter learning. This can be
done with the help of another construction called Two-step MLE-process
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introduced in [15]. Let us recall this construction using the model of obser-
vation (2.1)-(2.2). The first preliminary estimator ϑ̄T δ is constructed us-

ing the observations XT δ

=
(
Xt, 0 ≤ t ≤ T δ

)
with δ ∈ (1/3, 1/2] (shorter

learning interval). The second preliminary estimator-process ϑ∗
t , T

δ < t ≤
T is

ϑ∗
t = ϑ̄T δ +

a

σ2tI
(
ϑ̄T δ

) ∫ t

T δ

ṁ(ϑ̄T δ , s)
[
dXs − am(ϑ̄T δ , s)ds

]
.

The Two-step MLE-process is

ϑ��
t = ϑ∗

t +
a

σ2tI (ϑ∗
t )

∫ t

T δ

ṁ(ϑ̄T δ , s) [dXs − am(ϑ∗
t , s)ds] .

Following the same arguments as in the proof of Theorem 2 in [15] it can
be shown that

√
τT (ϑ��

T (τ)− ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)
,

where ϑ��
T (τ) = ϑ��

τT .
The learning interval

[
0, T δ

]
can be made even shorter if δ ∈ (1/4, 1/3].

In this case we use Three-step MLE-process (see details in [15]).
3. Consider the model (2.1)-(2.2) and the estimator-process ϑ�

T (τ) , τ ∈ [κ, 1],
where κ > 0. Let us denote by PT the measure induced by the process

ζT (τ) =
√

T I (ϑ0) (ϑ
�
T (τ)− ϑ0) , κ ≤ τ ≤ 1

in the measurable space (C [κ, 1] ,B) of continuous on [κ, 1] functions. It
is possible to verify the weak convergence

PT =⇒ P

where P corresponds to the Gaussian process ζ (τ) , τ ∈ [κ, 1] with

Eϑ0ζ (τ) = 0, Eϑ0ζ (τ1) ζ (τ2) = τ1 ∧ τ2,

i.e. ζ (·) is a Wiener process on the interval [κ, 1].
The proof in similar situation can be found in [15], Theorem 1. It consists
of proving convergence of the finite-dimensional distributions

(ζT (τ1) , . . . , ζT (τk)) =⇒ (ζ (τ1) , . . . , ζ (τk))

and the estimate

Eϑ0 |ζT (τ1)− ζT (τ2)|4 ≤ C |τ2 − τ1|2 ,

where the constant C > 0 does not depend on T . The approach applied
in the present work allows us the direct verification these two conditions.
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