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Abstract: We consider the minimax estimation problem of a discrete dis-
tribution with support size k under locally differential privacy constraints.
A privatization scheme is applied to each raw sample independently, and
we need to estimate the distribution of the raw samples from the privatized
samples. A positive number ε measures the privacy level of a privatization
scheme.

In our previous work (IEEE Trans. Inform. Theory, 2018), we proposed
a family of new privatization schemes and the corresponding estimator. We
also proved that our scheme and estimator are order optimal in the regime
eε � k under both �22 (mean square) and �1 loss. In this paper, we sharpen
this result by showing asymptotic optimality of the proposed scheme under
the �pp loss for all 1 ≤ p ≤ 2. More precisely, we show that for any p ∈ [1, 2]
and any k and ε, the ratio between the worst-case �pp estimation loss of our
scheme and the optimal value approaches 1 as the number of samples tends
to infinity. The lower bound on the minimax risk of private estimation that
we establish as a part of the proof is valid for any loss function �pp, p ≥ 1.
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1. Introduction

This paper continues our work [28]. The context of the problem that we consider
is related to a major challenge in the statistical analysis of user data, namely,
the conflict between learning accurate statistics and protecting sensitive infor-
mation about the individuals. As in [28], we rely on a particular formalization
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of user privacy called differential privacy, introduced in [9, 8]. Generally speak-
ing, differential privacy requires that the adversary not be able to reliably infer
an individual’s data from public statistics even with access to all the other
users’ data. The concept of differential privacy has been developed in two differ-
ent contexts: the global privacy context (for instance, when institutions release
statistics related to groups of people) [12], and the local privacy context when
individuals disclose their personal data [6].

In this paper, we consider the minimax estimation problem of a discrete
distribution with support size k under locally differential privacy. This problem
has been studied in the non-private setting [18, 20], where we can learn the
distribution from the raw samples. In the private setting, we need to estimate
the distribution of raw samples from the privatized samples which are generated
independently from the raw samples according to a conditional distribution Q
(also called a privatization scheme). Given a privacy parameter ε > 0, we say
that Q is ε-locally differentially private if the probabilities of the same output
conditional on different inputs differ by a factor of at most eε. Clearly, smaller
ε means that it is more difficult to infer the original data from the privatized
samples, and thus leads to higher privacy. For a given ε, our objective is to find
the optimal ε-private scheme that minimizes the expected estimation loss for
the worst-case distribution. In this paper, we are mainly concerned with the
scenario where we have a large number of samples, which captures the modern
trend toward “big data” analytics.

1.1. Existing results

The following two privatization schemes are the most well-known in the lit-
erature: the k-ary Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse (k-RAPPOR) scheme [5, 10], and the k-ary Randomized Response (k-
RR) scheme [26, 17]. The k-RAPPOR scheme is order optimal in the high
privacy regime where ε is very close to 0, and the k-RR scheme is order optimal
in the low privacy regime where eε ≈ k [16]. Very recently, a family of privati-
zation schemes and the corresponding estimators were proposed independently
by Wang et al. [25] and the present authors [28]. In [28], we further showed
that under both �22 (mean square) and �1 loss, these privatization schemes and
the corresponding estimators are order-optimal in the medium to high privacy
regimes when eε � k. Subsequent to our work, [3] proposed another privatiza-
tion scheme and proved that it is order optimal in all regimes for �1 loss. At
the same time, prior to this paper, no schemes were shown to be asymptotically
optimal in the literature.

Duchi et al. [7] gave an order-optimal lower bound on the minimax private
estimation loss for the high privacy regime where ε is very close to 0. In [28],
we proved a stronger lower bound which is order-optimal in the whole region
eε � k. This lower bound implies that the schemes and the estimators proposed
in [25, 28] are order optimal in this regime. Here order-optimal means that
the ratio between the true value and the lower bound is upper bounded by a
constant (larger than 1) when n and k/eε both become large enough.
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1.2. Our contributions

In this paper, we study the private estimation problem under the �pp loss for
1 ≤ p ≤ 2, which in particular includes the widely used �1 and �22 loss. We
prove an asymptotically tight lower bound on the �pp loss of the minimax private
estimation for all values of k, ε and 1 ≤ p ≤ 2. This improves upon the lower
bounds in [28] and [7] for the following three reasons: First, although the lower
bounds in [28] and [7] are order-optimal, they differ from the true value by a
factor of several hundred. In practice, an improvement of several percentage
points is already considered as a substantial advance (see for instance, [16]), so
tighter bounds are of interest. Second, the bounds in [28] and [7] only hold for
certain regions of k and ε while the lower bound in this paper holds for all values
of k and ε. Finally, previous results were limited to �1 and �22 loss functions while
the results in this paper hold for all �pp loss functions, where 1 ≤ p ≤ 2.

Furthermore, as an immediate consequence of our lower bound, we show that
the schemes and the estimators proposed in [25, 28] are universally optimal
under the �pp loss for all 1 ≤ p ≤ 2 in the sense that the ratio between the lower
bound and the worst-case estimation loss of these schemes and estimators goes
to 1 when n goes to infinity.

In this paper we both generalize the results, and shorten the proofs in the
preprint [27] which addressed only the case of mean square loss.

1.3. Related work

While in this paper we consider only the sample complexity, a recent work by
Acharya et al. [3] took communication complexity into consideration and pro-
posed a new privatization scheme with reduced communication complexity while
maintaining the optimal order of sample complexity for the �1 loss function.
Apart from the �p loss measures considered in this paper, significant attention
in the literature was devoted to the �∞ estimation of a discrete distribution (also
called the heavy hitters problem) under local differential privacy [21, 14, 4]. Al-
though we only consider the case where the same privatization scheme is applied
to each raw sample in this paper, one can also construct privatization schemes
that depend on the values of previously observed privatized samples. Such inter-
active privatization schemes are important for online and sequential procedures
in private learning [22, 23, 7]. A recent work [1] addresses the private estimation
problem of distributional properties when the support size k is not known to
the estimator. Other estimation-related problems that were studied under lo-
cal differential privacy constraints include the problem of testing identity and
closeness of discrete distributions [2] and hypothesis testing [11].

1.4. Organization of the paper

In Section 2, we formulate the problem and give a more detailed review of the
existing results. Section 3 is devoted to an overview of the main results of this
paper. The proofs of the main results are given in Sections 4-5.
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2. Problem formulation and existing results

Notation:
Let X = {1, 2, . . . , k} be the source alphabet and let p = (p1, p2, . . . , pk) be
a probability distribution on X. Denote by Δk = {p ∈ R

k : pi ≥ 0 for i =

1, 2, . . . , k,
∑k

i=1 pi = 1} the k-dimensional probability simplex. Let X be a
random variable (RV) that takes values on X according to p, so that pi =
P (X = i). Denote by Xn = (X(1), X(2), . . . , X(n)) the vector formed of n
independent copies of the RV X. Denote the uniform distribution as pU =
(1/k, 1/k, . . . , 1/k).

2.1. Problem formulation

In the classical (non-private) distribution estimation problem, we are given di-
rect access to i.i.d. samples {X(i)}ni=1 drawn according to some unknown distri-
bution p ∈ Δk. Our goal is to estimate p based on the samples [20]. We define
an estimator p̂ as a function p̂ : Xn → R

k, and assess its quality in terms of the
worst-case risk (expected loss)

sup
p∈Δk

E
Xn∼pn

�(p̂(Xn),p),

where � is some loss function. The minimax risk is defined as the solution of the
following saddlepoint problem:

r�k,n := inf
p̂

sup
p∈Δk

E
Xn∼pn

�(p̂(Xn),p).

In the private distribution estimation problem, we can no longer access the
raw samples {X(i)}ni=1. Instead, we estimate the distribution p from the pri-
vatized samples {Y (i)}ni=1, obtained by applying a privatization mechanism Q
independently to each raw sample X(i). A privatization mechanism (also called
privatization scheme) Q : X → Y is simply a conditional distribution QY |X .

The privatized samples Y (i) take values in a set Y (the “output alphabet”) that
does not have to be the same as X.

The quantities {Y (i)}ni=1 are i.i.d. samples drawn according to the marginal
distribution m given by

m(S) =

k∑
i=1

Q(S|i)pi (1)

for any S ∈ σ(Y), where σ(Y) denotes an appropriate σ-algebra on Y. In accor-
dance with this setting, the estimator p̂ is a measurable function p̂ : Yn → R

k.
We assess the quality of the privatization scheme Q and the corresponding
estimator p̂ by the worst-case risk

r�k,n(Q , p̂) := sup
p∈Δk

E
Y n∼mn

�(p̂(Y n),p),
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where mn is the n-fold product distribution and m is given by (1). Define the
minimax risk of the privatization scheme Q as

r�k,n(Q) := inf
p̂

r�k,n(Q , p̂). (2)

Definition 2.1. For a given ε > 0, a privatization mechanism Q : X → Y is
said to be ε-locally differentially private if for all x, x′ ∈ X

sup
S∈σ(Y)

log
Q(Y ∈ S|X = x)

Q(Y ∈ S|X = x′)
≤ ε. (3)

Denote by Dε the set of all ε-locally differentially private mechanisms. Given
a privacy level ε and a loss function �, we seek to find the optimal Q ∈ Dε with
the smallest possible minimax risk r�k,n(Q) among all the ε-locally differentially

private mechanisms. As already mentioned, in this paper we will consider1 � = �uu
for 1 ≤ u ≤ 2, where for x = (x1, x2, . . . , xk) ∈ R

k

�uu(x) :=
k∑

i=1

|xi|u.

It is easy to see that for any valid privatization scheme Q , the order of its �uu
minimax estimation risk is Θ(n−u/2), and limn→∞ r

�uu
k,n(Q)nu/2 is the coefficient

of the dominant term, which measures the performance of Q when n is large.

Main Problem: Suppose that the cardinality k of the source alphabet is known
to the estimator. For a given privacy level ε, we would like to find the optimal

(smallest possible) value of limn→∞ r
�uu
k,n(Q)nu/2 among all Q ∈ Dε and to con-

struct a privatization mechanism and a corresponding estimator to achieve this
optimal value.

It is this problem that we address—and resolve—in this paper. Specifically,

we prove a lower bound on limn→∞ r
�uu
k,n(Q)nu/2 for Q ∈ Dε, which implies that

the mechanism and the corresponding estimator proposed in [28] are universally
optimal for all loss functions �uu, 1 ≤ u ≤ 2.

2.2. Previous results

In this section we briefly review known results that are relevant to our problem.
In Sect. 1.1 we mentioned several papers that have considered it, viz., [26, 5,
10, 17, 16, 25, 7, 3]. In this section we focus on the results of [28] because they
are stated in the form convenient for our presentation.

1The standard notation for the loss function should be �pp, as we used in the Introduction.
However, in order to avoid confusion with the notation for probability distribution, we will
use �uu from now on.
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Let Dε,F be the set of ε-locally differentially private schemes with finite out-
put alphabet. Let

Dε,E =

{
Q ∈ Dε,F :

Q(y|x)
minx′∈X Q(y|x′)

∈ {1, eε} for all x ∈ X and all y ∈ Y

}
.

(4)
In [28, Theorem 13], we have shown that

r
�uu
k,n(Q) ≥ inf

Q′∈Dε,E

r
�uu
k,n(Q

′) for all Q ∈ Dε. (5)

As a result, below we limit ourselves to schemes Q ∈ Dε,E in this paper. For
such schemes, since the output alphabet is finite, we can write the marginal
distribution m in (1) as a vector m = (

∑k
j=1 pjQ(y|j), y ∈ Y). We will also use

the shorthand notation m = pQ to denote this vector.
In [28], we introduced a family of privatization schemes which are parameter-

ized by the integer d ∈ {1, 2, . . . , k− 1}. Given k and d, let the output alphabet

be Yk,d = {y ∈ {0, 1}k :
∑k

i=1 yi = d}, so |Yk,d| =
(
k
d

)
.

Definition 2.2 ([28]). Consider the following privatization scheme:

Qk,ε,d(y|i) =
eεyi + (1− yi)(
k−1
d−1

)
eε +

(
k−1
d

) (6)

for all y ∈ Yk,d and all i ∈ X. The corresponding empirical estimator of p under
Qk,ε,d is defined as follows: For yn = (y(1), y(2), . . . , y(n)) ∈ Yn

k,d,

p̂i(y
n) =

( (k − 1)eε + (k−1)(k−d)
d

(k − d)(eε − 1)

) ti(y
n)

n
− (d− 1)eε + k − d

(k − d)(eε − 1)
, i ∈ [k] (7)

where ti(y
n) =

∑n
j=1 y

(j)
i is the number of privatized samples whose i-th coor-

dinate is 1.

Some papers [3] call Qk,ε,d the Subset Selection mechanism. It is easy to
verify that Qk,ε,d is ε-locally differentially private. The worst-case estimation
loss under Qk,ε,d and the empirical estimator is calculated in the following
proposition.

Proposition 2.3. [28, Prop. 4-5] Let Q = Qk,ε,d and suppose that the em-
pirical estimator p̂ is given by (7). Let m = pQk,ε,d. The estimation loss

E
Y n∼mn

�22(p̂(Y
n),p) is maximized for the uniform distribution pU , and

r
�22
k,n(Qk,ε,d, p̂) = E

Y n∼mn
U

�22(p̂(Y
n),pU ) =

(k − 1)2

nk(eε − 1)2
(deε + k − d)2

d(k − d)
, (8)

where mU = pUQk,ε,d.

It is clear that the smallest value of the risk r is obtained by optimizing on
d in (8). Namely, given k and ε, let

d∗ = d∗(k, ε) := argmin
1≤d≤k−1

(deε + k − d)2

d(k − d)
, (9)
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where the ties are resolved arbitrarily. We find that d∗ takes one the following
two values:

d∗ = �k/(eε + 1)	 or 
k/(eε + 1)�.
Therefore, when k/(eε + 1) ≤ 1, d∗ = 1, and when k/(eε + 1) > 1, the value of
d∗ can be determined by simple comparison.

As a consequence of Prop. 2.3 we find that

r
�22
k,n(Qk,ε,d∗ , p̂) = min

1≤d≤k−1
r
�22
k,n(Qk,ε,d, p̂).

While in [28] we proved the above results for the mean-square loss (and a similar
claim for � = �1), in this paper we show that they apply more universally.
Namely, let

M(k, ε) :=
(k − 1)2

k2(eε − 1)2
(d∗eε + k − d∗)2

d∗(k − d∗)
, (10)

and note that r
�22
k,n(Qk,ε,d∗ , p̂) = k

nM(k, ε). In this paper we show that the
quantity M(k, ε) bounds below the main term of the minimax risk for all loss
functions �uu, u ≥ 1.

3. Main result of the paper

Our main result is that the schemeQk,ε,d∗ and the empirical estimator p̂ defined
by (7) are universally optimal for all loss functions �uu, 1 ≤ u ≤ 2. Namely, the
following is true.

Theorem 3.1. Let k = |X|, let ε > 0, 1 ≤ u ≤ 2. Then

lim
n→∞

r
�uu
k,n(Q)

r
�uu
k,n(Qk,ε,d∗ , p̂)

≥ 1 for all Q ∈ Dε.

This theorem is a consequence of two results which we state next.
Let X ∼ N (0, 1) and define the constant

Cu := E|X|u = 2u/2Γ((u+ 1)/2)/
√
π for u > 0.

Theorem 3.2. For any ε > 0, any u ≥ 1, and any mechanism Q ∈ Dε

lim
n→∞

r
�uu
k,n(Q)nu/2 ≥ kCuM(k, ε)u/2. (11)

Note that this lower bound holds for any loss function �uu, u ≥ 1. The proof
of this theorem is given in Section 4.

Theorem 3.3. Consider the privatization scheme Q = Qk,ε,d∗ and let p̂ be the
empirical estimator given by (7). For every k and ε and every 0 < u ≤ 2,

r
�uu
k,n(Qk,ε,d∗ , p̂) =

k

nu/2
CuM(k, ε)u/2 + o(n−u/2).
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The proof of this theorem is given in Section 5. Note that, unlike Theorem
3.2, the claim that we make here allows the values of u ∈ (0, 1). The special
cases of Theorem 3.3 for u = 1 and u = 2 were addressed in our previous paper
[28], see in particular Theorem 10.

The crux of our argument is in the proof of Theorem 3.2, where we reduce
the estimation problem in the k-dimensional space to a one-dimensional prob-
lem. Generally, it is well known that the local minimax risk can be calculated
from the inverse of the Fisher information matrix. However, it is difficult to
obtain the exact expression of the inverse of a large-size matrix, and without
it, the path to the desired estimates is not so clear. To work around this com-
plication, we view a ball in a high-dimensional space as a union of parallel line
segments with a certain direction v i. We first consider the estimation problem
on each line segment individually. Since this is a one-dimensional problem, its
minimax rate can be easily calculated from the Fisher information of the corre-
sponding parameter. For the estimation of each component pi of the probability
distribution, we choose a suitable direction vector v i. In this way, we reduce
the original k-dimensional estimation problem to k one-dimensional estimation
problems and then rely on the additivity of the loss function for the final result.

4. Proof of Theorem 3.2

4.1. Bayes estimation loss

In light of (5), to prove Theorem 3.2, it suffices to show that for every u ≥ 1,

lim
n→∞

r
�uu
k,n(Q)nu/2 ≥ kCuM(k, ε)u/2 for all Q ∈ Dε,E . (12)

Since the worst-case estimation loss is always lower bounded by the average

estimation loss, the minimax risk r
�uu
k,n(Q) can be bounded below by the Bayes

estimation loss. More specifically, we assume that p := {p1, p2, . . . , pk} is drawn
uniformly from

P :=
{
p ∈ Δk : ‖p − pU‖2 ≤ D√

n

}
, (13)

where D � 1 is a constant. Let P = (P1, P2, . . . , Pk) denote the random vector
that corresponds to p. For a given privatization schemeQ and the corresponding
estimator p̂ := (p̂1, p̂2, . . . , p̂k), the �uu Bayes estimation loss is defined as

r
�uu
Bayes(Q , p̂) := E

P∼Unif(P)

[
E

Y n∼(PQ)n
�uu(p̂(Y

n),P)
]

=

k∑
i=1

(
E

P∼Unif(P)

[
E

Y n∼(PQ)n
|p̂i(Y n)− Pi|u

])
,

and the optimal Bayes estimation loss for Q is

r
�uu
Bayes(Q) := inf

p̂
r
�uu
Bayes(Q , p̂).
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We further define component-wise Bayes estimation loss for Q and p̂

r
�uu
i,Bayes(Q , p̂i) := E

P∼Unif(P)

[
E

Y n∼(PQ)n
|p̂i(Y n)− Pi|u

]
, i ∈ [k],

and the optimal component-wise Bayes estimation loss for Q

r
�uu
i,Bayes(Q) := inf

p̂i

r
�uu
i,Bayes(Q , p̂i), i ∈ [k].

Therefore,

r
�uu
Bayes(Q , p̂) =

k∑
i=1

r
�uu
i,Bayes(Q , p̂i), r

�uu
Bayes(Q) =

k∑
i=1

r
�uu
i,Bayes(Q).

As mentioned above,

r
�uu
k,n(Q) ≥ r

�uu
Bayes(Q) =

k∑
i=1

r
�uu
i,Bayes(Q).

We will prove (12) by showing that

k∑
i=1

r
�uu
i,Bayes(Q) ≥ k

nu/2
CuM(k, ε)u/2 − o(n−u/2) for all Q ∈ Dε,E . (14)

4.2. Lower bound on one-dimensional Bayes estimation loss

Below we will prove a lower bound on r
�uu
i,Bayes(Q). To this end, in this section

we consider a one-dimensional Bayes estimation problem. Define the following
vectors:

v i :=
(
− 1

k − 1
, . . . ,− 1

k − 1
, 1,− 1

k − 1
, . . . ,− 1

k − 1

)
, i ∈ [k], (15)

where the 1 is in the ith position and all the other coordinates are − 1
k−1 . Let

p∗ := (p∗1, p
∗
2, . . . , p

∗
k) ∈ Δk be a probability distribution and let Si(p

∗) be a
line segment with midpoint p∗ and direction vector v i:

Si(p
∗) :=

{
p∗ + sv i : |s| ≤

D′
√
n

}
, i ∈ [k], (16)

where D′ � 1 is a constant. Let p = (p1, . . . , pk) be a PMF in the segment
Si(p

∗). Given the value pi, we can find all the other components of p as follows:

pv = p∗v −
1

k − 1
(pi − p∗i ) for all v �= i. (17)

Assume that p = (p1, p2, . . . , pk) is drawn uniformly from Si(p
∗), and we con-

sider the Bayes estimation of pi from the privatized samples Y n obtained from
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applying Q to the raw samples. More precisely, for an estimator p̂i, we define
its Bayes estimation loss

r
�uu
i,Si(p∗)(Q , p̂i) := E

P∼Unif(Si(p∗))

[
E

Y n∼(PQ)n
|p̂i(Y n)− Pi|u

]
, i ∈ [k],

then the optimal estimation loss is

r
�uu
i,Si(p∗)(Q) := inf

p̂i

r
�uu
i,Si(p∗)(Q , p̂i), i ∈ [k].

Our approach to obtain the lower bound on this Bayes estimation loss relies
on a classical method in asymptotic statistics, namely, local asymptotic normal-
ity (LAN) of sequences of statistical models [19, 13], see also [15, 24]. The exact
formulation of the results that pertain to the method involves several technical
concepts; we will limit ourselves to explaining the general idea and the implica-
tions for our problem. We will also confine ourselves to the one-dimensional case
as opposed to the general formulation of LAN. Let pθ be the density function of
a distribution Pθ, where the parameter θ takes values in an open subset Θ ⊂ R.
For every fixed x we have the following Taylor expansion:

log
pθ+h

pθ
(x) = h

∂

∂θ
log pθ(x) +

1

2
h2 ∂2

∂θ2
log pθ(x) + o(h2).

Suppose that Xn are n i.i.d. samples drawn from the distribution Pθ. It follows
that

log

n∏
i=1

pθ+h/
√
n

pθ
(Xi) =

h√
n

n∑
i=1

∂

∂θ
log pθ(Xi) +

1

2

h2

n

n∑
i=1

∂2

∂θ2
log pθ(Xi) + o(1).

Under some mild smoothness conditions, we have

EX∼Pθ

∂

∂θ
log pθ(X) = 0,

EX∼Pθ

( ∂

∂θ
log pθ(X)

)2

= −EX∼Pθ

∂2

∂θ2
log pθ(X) = Iθ,

where Iθ is the Fisher information of θ, which is assumed to be nonzero. There-
fore, by central limit theorem, 1√

n

∑n
i=1

∂
∂θ log pθ(Xi) is asymptotically normal

with mean zero and variance Iθ. Furthermore, 1
n

∑n
i=1

∂2

∂θ2 log pθ(Xi) converges
to Iθ, by the law of large numbers. Consequently, under suitable conditions we
have

log

n∏
i=1

pθ+h/
√
n

pθ
(Xi) = hX − 1

2
Iθh

2 + o(1), where X ∼ N (0, Iθ)

The quadratic form on the right-hand side is very similar to the exponent of the
Gaussian distribution, and one can derive a normal approximation from this
similarity. More precisely, if Tn is a sequence of statistics in the experiments
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(Pθ+h/
√
n : h ∈ R) such that Tn converges in distribution for every h, then there

exists a (randomized) statistic T in the experiment N (h, I−1
θ ), h ∈ R such that

Tn converges in distribution to T for every h; in other words, every converging
sequence of statistics in the local experiments (Pθ+h/

√
n : h ∈ R) approaches in

distribution the statistic of a single normal experiment. We refer in particular
to [24, Ch.7] for a detailed, accessible account of the above informal discussion.

The implications of the general LAN results for our problem can be stated
as follows. When the constant D′ in (16) is large enough, the conditional dis-
tribution of Pi given Y n = yn is approximately a Gaussian distribution with
variance (Ip∗

i
)−1 for almost all2 yn ∈ Yn as n goes to infinity, where Ipi is the

Fisher information of the parameter pi. Before we calculate the value of Ip∗
i
,

let us recall a simple fact about Gaussian distribution: Suppose that X is a
Gaussian random variable, then one can easily verify3 that for any u ≥ 1,

EX = argmin
a

E|X − a|u. (18)

Therefore, the estimator p̂i(y
n) = E(Pi|Y n = yn) is asymptotically optimal for

this Bayes estimation problem under the �uu loss function for all u ≥ 1. Since
the variance of Pi given Y n = yn is (Ip∗

i
)−1 for almost all yn ∈ Yn, the Bayes

estimation loss of this asymptotically optimal estimator is

Cu(Ip∗
i
)−u/2(1− o(1)).

Thus we conclude that

r
�uu
i,Si(p∗)(Q) ≥ Cu(Ip∗

i
)−u/2(1− o(1)) for all u ≥ 1. (19)

Now we are left to calculate the value of Ip∗
i
. To this end, we introduce

some notation. For a given privatization scheme Q ∈ Dε,E with output size L,
we write its output alphabet as Y = {1, 2, . . . , L}, and we use the shorthand
notation

qjv := Q(j|v) (20)

for all j ∈ [L] and v ∈ [k]. For j ∈ [L] and yn = (y(1), y(2), . . . , y(n)) ∈ Yn, define
wj(y

n) :=
∑n

v=1 1[y(v) = j] to be the number of times that symbol j appears in
yn. Let P(yn; pi) be the probability mass function of a random vector Y n formed
of i.i.d. samples drawn according to the distribution m = pQ , where the other
components of p are calculated from pi according to (17). The random variables
wj(Y

n) follow the multinomial distribution, and Ewj(Y
n) = nm(j), j ∈ [L].

Therefore,

logP(yn; pi) =

L∑
j=1

wj(y
n) log

( k∑
v=1

pvqjv

)

2More precisely, for any ε1, ε2 > 0 there is N such that for any n > N there is a subset
E ⊆ Yn such that (1) P(E) > 1 − ε1, and (2) for all yn ∈ E the relative difference between
the pdf of conditional distribution of Pi given Y n = yn and the Gaussian pdf is at most ε2.

3 Let φ(x) be the pdf of X and note that φ(x) = φ(2EX − x) for all real x. By convexity
of | · |u, u ≥ 1 we have |x − EX|u ≤ (1/2)(|a − x|u + |2EX − x − a|u) for all a. Integrating
against φ(x) and using the symmetry condition, we obtain that E|X − EX|u ≤ E|X − a|u for
all u ≥ 1, a ∈ R.
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=

L∑
j=1

wj(y
n) log

(
piqji +

∑
v 
=i

(
p∗v −

1

k − 1
(pi − p∗i )

)
qjv

)
,

and the Fisher information of pi is

I(pi) = − E
Y n∼(pQ)n

[
d2

dp2i
logP(yn; pi)

]

=

L∑
j=1

(qji − 1
k−1

∑
v 
=i qjv)

2

(
piqji +

∑
v 
=i

(
p∗v − 1

k−1 (pi − p∗i )
)
qjv

)2 E
Y n∼(pQ)n

wj(Y
n)

=

L∑
j=1

(qji − 1
k−1

∑
v 
=i qjv)

2

( ∑k
v=1 pvqjv

)2 E
Y n∼(pQ)n

wj(Y
n)

= n

L∑
j=1

(qji − 1
k−1

∑
v 
=i qjv)

2

∑k
v=1 pvqjv

=
nk2

(k − 1)2

L∑
j=1

(qji − 1
k

∑k
v=1 qjv)

2

∑k
v=1 pvqjv

,

where pv’s on the last line are given by (17). In particular,

Ip∗
i
=

nk2

(k − 1)2

L∑
j=1

(qji − 1
k

∑k
v=1 qjv)

2

∑k
v=1 p

∗
vqjv

.

Combining this with (19), we have that for all u ≥ 1,

r
�uu
i,Si(p∗)(Q) ≥ Cu

( nk2

(k − 1)2

L∑
j=1

(qji − 1
k

∑k
v=1 qjv)

2

∑k
v=1 p

∗
vqjv

)−u/2

− o(n−u/2).

For j ∈ [L], define

qj :=
1

k

k∑
v=1

qjv. (21)

It is clear that when p∗ is in the neighborhood of the uniform distribution pU ,
i.e., when p∗v = 1/k + on(1) for all v ∈ [k], we have

r
�uu
i,Si(p∗)(Q) ≥ Cu

( nk2

(k − 1)2

L∑
j=1

(qji − qj)
2

qj

)−u/2

− o(n−u/2) for all u ≥ 1.

(22)

4.3. Proof of (14)

Our first step in this section will be to prove a lower bound on r
�uu
i,Bayes(Q). Let

us phrase the claim in (22) in a more detailed form: For any δ > 0, there exists
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D0 > 0 such that whenever the constant D′ in the definition of Si(p
∗) is larger

than D0,

r
�uu
i,Si(p∗)(Q) ≥ Cu

( nk2

(k − 1)2

L∑
j=1

(qji − qj)
2

qj

)−u/2

− δn−u/2 for all u ≥ 1. (23)

The constant D′ is required to be large for the local asymptotic normality
arguments to hold (refer again to [15, Chapter 2, Theorem 1.1] and [24, Ch. 7]).

Proposition 4.1. Let P be the Euclidean ball around pU defined in (13). For
a sufficiently large constant D and any u ≥ 1 we have

r
�uu
i,Bayes(Q) ≥ Cu

( nk2

(k − 1)2

L∑
j=1

(qji − qj)
2

qj

)−u/2

− o(n−u/2). (24)

Proof. We can view P as a union of (uncountably many) parallel line segments
with direction vector v i defined in (15). Each of these line segments can be
written as Si(p

∗) (see (16)), with a suitably chosen midpoint p∗ ∈ P. Since the
midpoints of all the line segments lie inside P, which is a neighborhood of the
uniform distribution, by (23) we have that for any estimator p̂i, the average

�uu estimation loss r
�uu
i,Si(p∗)(Q , p̂i) on any of these line segments Si(p

∗) with

D′ ≥ D0 is lower bounded by

r
�uu
i,Si(p∗)(Q , p̂i) ≥ r

�uu
i,Si(p∗)(Q) ≥ Cu

( nk2

(k − 1)2

L∑
j=1

(qji − qj)
2

qj

)−u/2

− δn−u/2

for u ≥ 1. To compute the average estimation loss r
�uu
i,Bayes(Q , p̂i) on P we need to

average over all the segments with weight proportional to the length of the seg-
ment. Given D0, we can choose D in (13) large enough so that the proportion of
the segments Si(p

∗) withD′ ≥ D0 out of all the segments in P is arbitrarily close
to one (formally, denote the union of such segments as P0, then Vol(P0)/Vol(P)
can be made arbitrarily close to 1 as long as we set D/D0 to be large enough).
The average estimation loss along each of these segments is uniformly bounded
below as in (23), and thus the average loss on P0 is lower bounded by the same
quantity. Combining the fact that Vol(P0)/Vol(P) = 1− o(1), we have

r
�uu
i,Bayes(Q , p̂i) ≥ Cu

( nk2

(k − 1)2

L∑
j=1

(qji − qj)
2

qj

)−u/2

− o(n−u/2) for all u ≥ 1.

This lower bound holds for any estimator p̂i, and this implies the claimed lower
bound (24).
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We will need the following lemma.

Lemma 4.2. For every Q ∈ Dε,E with output alphabet Y = {1, 2, . . . , L} we
have

k∑
i=1

q2ji
q2j

≤ k
(
1 + (eε − 1)2

d∗(k − d∗)

(d∗eε + k − d∗)2

)
for all j ∈ [L].

Proof. Let mj := mini∈[k] qji. According to the definition of Dε,E in (4), the
coordinates of the vector (qji, i ∈ [k]) are either mje

ε or mj . Let d be the
number of mje

ε entries, then

qj =
mj

k
(deε + k − d),

k∑
i=1

q2ji = m2
j (de

2ε + k − d).

We obtain

k∑
i=1

q2ji
q2j

=
k2(de2ε + k − d)

(deε + k − d)2
= k

(de2ε + k − d)(d+ k − d)

(deε + k − d)2

= k
d2e2ε + (k − d)2 + d(k − d)(e2ε + 1)

(deε + k − d)2

= k
d2e2ε + 2d(k − d)eε + (k − d)2 + d(k − d)(e2ε − 2eε + 1)

(deε + k − d)2

= k
(deε + k − d)2 + d(k − d)(eε − 1)2

(deε + k − d)2

= k
(
1 + (eε − 1)2

d(k − d)

(deε + k − d)2

)

≤ k
(
1 + (eε − 1)2

d∗(k − d∗)

(d∗eε + k − d∗)2

)
,

where the last inequality follows from the definition of d∗ in (9).

Now we are ready to prove (14). Using the obvious relations
∑L

j=1 qji =∑L
j=1 qj = 1, we can simplify the right-hand side of (24) as follows:

L∑
j=1

( (qji − qj)
2

qj

)
=

L∑
j=1

( L∑
j=1

q2ji
qj

− 2

L∑
j=1

qji +

L∑
j=1

qj

))

=

L∑
j=1

q2ji
qj

− 1.

Now let us sum (24) over i ∈ [k] on both sides and use the simplification above:

k∑
i=1

r
�uu
i,Bayes(Q) ≥ Cu

k∑
i=1

( nk2

(k − 1)2

( L∑
j=1

q2ji
qj

− 1
))−u/2

− o(n−u/2). (25)
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Since for u > 0, x−u/2 is a convex function for x > 0, we can further bound
below the right-hand side of (25):

k∑
i=1

( nk2

(k − 1)2

( L∑
j=1

q2ji
qj

− 1
))−u/2

≥ k
(1

k

k∑
i=1

nk2

(k − 1)2

( L∑
j=1

q2ji
qj

− 1
))−u/2

= k
( nk

(k − 1)2

L∑
j=1

k∑
i=1

q2ji
qj

− nk2

(k − 1)2

)−u/2

= k
( nk

(k − 1)2

L∑
j=1

(
qj

k∑
i=1

q2ji
q2j

)
− nk2

(k − 1)2

)−u/2

≥ k
( nk2

(k − 1)2

(
1 + (eε − 1)2

d∗(k − d∗)

(d∗eε + k − d∗)2

) L∑
j=1

qj −
nk2

(k − 1)2

)−u/2

= k
(nk2(eε − 1)2

(k − 1)2
d∗(k − d∗)

(d∗eε + k − d∗)2

)−u/2

=
k

nu/2
M(k, ε)u/2 for all Q ∈ Dε,E

where the second inequality follows by Lemma 4.2 (note the inverted inequality
of the Lemma because of the negative power −u/2). Combining this with (25),
we conclude that

k∑
i=1

r
�uu
i,Bayes(Q) ≥ k

nu/2
CuM(k, ε)u/2 − o(n−u/2) for all Q ∈ Dε,E .

Thus we have established (14), and this completes the proof of Theorem 3.2.

5. Proof of Theorem 3.3

We begin with showing that for the privatization scheme Qk,ε,d defined in (6)
and the estimator (7), the �uu estimation loss is maximized for the uniform
distribution pU for all 0 < u ≤ 2 when n is large. To shorten the notation,
rewrite (7) as

p̂i(y
n) = A

ti(y
n)

n
−B, i ∈ [k],

where

A :=
(k − 1)eε + (k−1)(k−d)

d

(k − d)(eε − 1)
, B :=

(d− 1)eε + k − d

(k − d)(eε − 1)
.

In [28] we have shown that the estimator p̂i(y
n) is unbiased, i.e.,

pi = A E
Y n∼(pQk,ε,d)

n

( ti(Y
n)

n

)
−B, i ∈ [k].
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By definition,

ti(Y
n) =

n∑
j=1

1[Y (j)
i = 1]

is the sum of n i.i.d. Bernoulli random variables with parameter

P[Y
(j)
i = 1] = E

ti(Y
n)

n
=

pi
A

+
B

A
.

Therefore the variance of ti(Y
n)

n is 1
n (

pi

A + B
A )(1− pi

A − B
A ), and the variance of

p̂i(Y
n) is

Var p̂i(Y
n) = A2 1

n

(pi
A

+
B

A

)(
1− pi

A
− B

A

)
=

1

n
(pi +B)(A− pi −B).

Using the Central Limit Theorem, we then obtain for the absolute moment of
p̂i(Y

n) around pi the following approximation:

E
Y n∼(pQk,ε,d)

n
|p̂i(Y n)− pi|u = Cu

( 1

n
(pi +B)(A− pi −B)

)u/2

+ o(n−u/2),

where Cu is the absolute moment of the N (0, 1) RV; see Section 3. Therefore,

E
Y n∼(pQk,ε,d)

n
�uu(p̂(Y

n),p) =
k∑

i=1

Cu

( 1

n
(pi +B)(A− pi −B)

)u/2

+ o(n−u/2)

≤ kCun
−u/2

(1

k

k∑
i=1

(pi +B)(A− pi −B)
)u/2

+ o(n−u/2)

= kCun
−u/2

(A

k
− 2B

k
+AB −B2 − 1

k

k∑
i=1

p2i

)u/2

+ o(n−u/2)

≤ kCun
−u/2

(A

k
− 2B

k
+AB −B2 − 1

k2

)u/2

+ o(n−u/2),

where the first inequality follows from the fact that xu/2 is a concave function
of x on (0,+∞) for all positive 0 < u ≤ 2, and the last line uses the Cauchy–
Schwarz inequality. Both inequalities hold with equality if and only if p is the
uniform distribution. Thus when n is large, for all 0 < u ≤ 2 and all 1 ≤ d ≤
k − 1, we have

r
�uu
k,n(Qk,ε,d, p̂) = E

Y n∼(pUQk,ε,d)
n
�uu(p̂(Y

n),pU ).

In particular, it also holds for d = d∗. Next we calculate the estimation loss at
the uniform distribution. By symmetry, it is clear that

E
Y n∼(pUQk,ε,d∗ )

n

∣∣∣p̂i(Y n)− 1

k

∣∣∣2 =
1

k

(
E

Y n∼(pUQk,ε,d∗ )
n
�22(p̂(Y

n),pU )
)
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=
1

k
r
�22
k,n(Qk,ε,d∗ , p̂) =

M(k, ε)

n
.

Therefore when the input distribution is uniform, p̂i(Y
n) can be approximated

for large n by a Gaussian random variable with mean 1/k and variance M(k,ε)
n .

Thus,

E
Y n∼(pUQk,ε,d∗ )

n

∣∣∣p̂i(Y n)− 1

k

∣∣∣u = Cu

(M(k, ε)

n

)u/2

+ o(n−u/2),

so for 0 < u ≤ 2,

r
�uu
k,n(Qk,ε,d∗ , p̂) = E

Y n∼(pUQk,ε,d∗ )
n
�uu(p̂(Y

n),pU )

=
k

nu/2
CuM(k, ε)u/2 + o(n−u/2).

This completes the proof of Theorem 3.3.
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[13] Hájek, J. (1972). Local asymptotic minimax and admissibility in esti-
mation. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability 1 175–194. MR0400513

[14] Hsu, J., Khanna, S. and Roth, A. (2012). Distributed private heavy
hitters. In International Colloquium on Automata, Languages, and Pro-
gramming 461–472. Springer. MR2995330

[15] Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical Estimation.
Springer.

[16] Kairouz, P., Bonawitz, K. and Ramage, D. (2016). Discrete distri-
bution estimation under local privacy. In Proc. 33rd Int. Conf. Machine
Learning 48 2436–2444.

[17] Kairouz, P., Oh, S. and Viswanath, P. (2016). Extremal mechanisms
for local differential privacy. Jounral of Machine Learning Research 17 1–
51. MR3491111

[18] Kamath, S., Orlitsky, A., Pichapati, V. and Suresh, A. T. (2015).
On learning distributions from their samples. Jounral of Machine Learning
Research: Workshop and Conference Proceedings 40 1–35.

[19] Le Cam, L. (2012). Asymptotic Methods in Statistical Decision Theory.
Springer Science & Business Media. MR0856411

[20] Lehmann, E. L. and Casella, G. (2006). Theory of Point Estimation.
Springer Science & Business Media. MR1639875

[21] Mishra, N. and Sandler, M. (2006). Privacy via pseudorandom sketches.
In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems 143–152. ACM.

[22] Smith, A. (2011). Privacy-preserving statistical estimation with optimal
convergence rates. In Proceedings of the Forty-Third Annual ACM Sympo-
sium on Theory of Computing 813–822. ACM. MR2932032

[23] Thakurta, A. G. and Smith, A. (2013). (Nearly) optimal algorithms for
private online learning in full-information and bandit settings. In Advances
in Neural Information Processing Systems 2733–2741.

[24] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Uni-
vesity Press. MR1652247

[25] Wang, S., Huang, L., Wang, P., Nie, Y., Xu, H., Yang, W., Li, X.

and Qiao, C. (2016). Mutual information optimally local private discrete
distribution estimation. arXiv:1607.08025.

[26] Warner, S. L. (1965). Randomized response: A survey technique for elim-

http://www.ams.org/mathscinet-getitem?mr=3029267
http://www.ams.org/mathscinet-getitem?mr=0400513
http://www.ams.org/mathscinet-getitem?mr=2995330
http://www.ams.org/mathscinet-getitem?mr=3491111
http://www.ams.org/mathscinet-getitem?mr=0856411
http://www.ams.org/mathscinet-getitem?mr=1639875
http://www.ams.org/mathscinet-getitem?mr=2932032
http://www.ams.org/mathscinet-getitem?mr=1652247


4120 M. Ye and A. Barg

inating evasive answer bias. Journal of the American Statistical Association
60 63–69.

[27] Ye, M. and Barg, A. (2017). Asymptotically optimal private estimation
under mean square loss. arXiv:1708.00059.

[28] Ye, M. and Barg, A. (2018). Optimal schemes for discrete distribution
estimation under locally differential privacy. IEEE Trans. Inform. Theory
64 5662–5676. MR3832328

http://www.ams.org/mathscinet-getitem?mr=3832328

	Introduction
	Existing results
	Our contributions
	Related work
	Organization of the paper

	Problem formulation and existing results
	Problem formulation
	Previous results

	Main result of the paper
	Proof of Theorem 3.2
	Bayes estimation loss
	Lower bound on one-dimensional Bayes estimation loss
	Proof of (14)

	Proof of Theorem 3.3
	References

