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1. Introduction

1.1. Overview

We are concerned with the study of the aliasing effects for the harmonic ex-
pansion of a random field defined on the d-dimensional sphere S

d. A spherical
random field T is a stochastic process defined over the unit sphere S

d and
thus depending on the location x = (ϑ, ϕ) =

(
ϑ(1), . . . , ϑ(d−1), ϕ

)
∈ Sd, where

ϑ(i) ∈ [0, π], for i = 1, . . . , d − 1, and ϕ ∈ [ 0, 2π) . Harmonic analysis has
been proved to be an insightful tool to study several issues related to random
fields on the sphere and the development of spherical random fields in a series
of spherical harmonics has many applications in several branches of probabil-
ity and statistics. We are referring, for example, to the study of the asymptotic
behavior of the bispectrum of spherical random fields (see [Mar06]), their Euler-
Poincaré characteristic (see [CM18]), the estimation of their spectral parameters
([DLM14]), and the development of quantitative central limit theorems for non-
linear functional of corresponding random eigenfunctions (see [MR15]). Under
some integrability conditions on T (see Section 2.2), the following harmonic
expansion holds:

T (ϑ, ϕ) =
∑
�,m

a�,mY�,m (ϑ, ϕ) ,

where � ∈ N and m = (m1, . . . ,md−1) ∈ Nd−2 ⊗ Z are the harmonic (or wave)
numbers.

The set of spherical harmonics Y�,m = Y�,m1,...,md−1
: Sd → C provides an

orthonormal basis for the space L2
(
S
d
)
= L2

(
S
d, dx
)
, where dx is the uniform

Lebesgue measure over S
d (see Section 2.1). The harmonic coefficients a�,m =
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a�,m1,...,md−1
are given by

a�,m = 〈T, Y�,m〉L2(Sd) =

∫
Sd

T (x)Y�,m (x) dx, (1)

and contain all the stochastic information of T (ϑ, ϕ).
Nevertheless, the explicit computation of the integral (1) is an unachievable

target in many experimental situations. Indeed, the measurements of T (ϑ, ϕ)
can be in practical cases collected only over a finite sample of locations{

xi = (ϑi, ϕi) ∈ S
d : i = 1 . . . N

}
.

As a consequence, for any choice of � and m the integral producing the harmonic
coefficient a�,m is approximated by the sum of finitely many elements T (xi),
i = 1 . . . , N , the samples of the random field. As well-known in the literature,
an exact reconstruction of the harmonic coefficients by means of finite sums
represents a reachable target when considering band-limited random processes.
Band-limited random processes are characterized by a bandwidth L0, so that
all the harmonic coefficients for � ≥ L0 are null. A suitable choice of a sampling
theorem and the cardinality of the sampling points yields the exact reconstruc-
tion for the non-null coefficients (see also, for example, [Mü07, SB93]). Further
details will be discussed in Section 6.

However, if the random field is not band-limited or if the sampling theorem
is not properly selected, the approximation of the integral in (1) by a finite sum
can produce the so-called aliasing errors, that is, different coefficients become
indistinguishable — aliases — of one another (see, for example, [Mü07, SB93]).
The set of coefficients, acting as aliases of each other, depends specifically on
the chosen sampling procedure.

The concept of aliasing (also known as confounding) comes from signal pro-
cessing theory and related disciplines. In general, aliasing makes different signals
indistinguishable when sampled, and it can be produced when the reconstruc-
tion of the signal from samples is different from the original continuous one (see,
for example, [PM96, Chapter 1]).

The aliasing phenomenon arising in the harmonic expansion of a 2-dimen-
sional spherical random field has been investigated by [LN97]. On the one hand,
band-limited random fields over S2, which can be roughly viewed as linear com-
binations of finitely many spherical harmonics, can be uniquely reconstructed
with a sufficiently large sample size. On the other hand, an explicit definition of
the aliasing function, a crucial tool to identify the aliases of a given harmonic
coefficient, is developed when the sampling is based on the combination of a
Gauss-Legendre quadrature formula and a trapezoidal rule (see Section 4 for
further details). In many practical applications, this sampling procedure is the
most convenient scheme to perform numerical analysis over the sphere (see, for
example, [AH12, SB93, Sze75]). Further reasons of interest to study the alias-
ing effects in S

2 have arisen in the field of optimal design of experiments. In
[DMP05], designs over S

2 based on this sampling scheme have been proved to
be optimal with respect to the whole set of Kiefer’s Φp-criteria, presented in
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[Kie74], that is, they are the most efficient among all the approximate designs
for regression problems with spherical predictors.

Recently, interest has occurred in regression problems in spherical frame-
works of arbitrary dimension and the related discretization problems (see, for
example, [LS15]). In particular, in [DKSG18], experimental designs obtained by
the discretization of the uniform distribution over S

d by means of the combi-
nation of the so-called Gegenbauer-Gauss quadrature rules (see Section 3.2 for
further details) and a trapezoidal rule, have been proved to be optimal with
respect not only to the aforementioned Kiefer’s Φp-criteria, but also to another
class of orthogonally invariant information criteria, the ΦEs-criteria. Given the
increasing interest for spheres of dimension larger than 2 (see Subsection 1.2 for
further details), it is therefore pivotal to carry out further investigations into
the aliasing effects for random fields sampled over Sd, d > 2. On the one hand,
this research improves the understanding of the behavior of the approximated
harmonic coefficients when computed over discrete samplings, in particular over
a spherical uniform sampling (see Section 3.3). On the other hand, our investi-
gations make extensive use of the properties of the hyperspherical harmonics,
thus providing a deeper insight on their structure, carrying on with the results
presented in [DKSG18].

In this paper, we work under the following assumption: a spherical random
field T is observed over a finite set of locations

{
xi ∈ S

d : i = 1, . . . , N
}
, the

so-called sampling points, associated to the weights {wi : i = 1, . . . , N}. Thus,
for any set of harmonic numbers � and m, the approximated — or aliased —
harmonic coefficient is given by

ã�,m =
∑
�′,m′

τ (�,m; �′,m′) a�′,m′ ,

where τ (�,m; �′,m′) is the aforementioned aliasing function and is given by

τ (�,m; �′,m′) =
N∑
i=1

wiY�′,m′ (ϑi, ϕi) Ȳ�,m (ϑi, ϕi)

d−1∏
j=1

(
sinϑ

(j)
i

)d−j

.

Further details can be found in Section 4.1. The coefficient a�′,m′ is said to be
an alias of a�,m with intensity |τ (�,m; �′,m′)| if τ (�,m; �′,m′) �= 0.

First, we study the general structure of the aliasing function under the very
mild assumption that the sampling scheme is separable with respect to the an-
gular coordinates, that is, the sampling points {xi : i = 1, . . . , N} can be written
as follows{(

ϑ
(1)
k0

, . . . , ϑ
(d−1)
kd−2

, ϕkd−1

)
: kj−1 = 0, . . . , Qj−1 − 1 for j = 1, . . . , d

}
,

where Q0, Q1, . . . , Qd−1 ∈ N are defined so that
∏d−1

j=0 Qj = N (see Section
3.1). Heuristically, a sample scheme is separable if a different discretization
procedure is developed for each distinct coordinate. Then, we investigate on
the explicit structure of this function and, consequently, on the identification of
aliases assuming a spherical uniform design as the sampling procedure.
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Second, under the assumption of isotropy, we consider the aliasing effects for
the angular power spectrum of a random field, which describes the decomposi-
tion of the covariance function in terms of the frequency � ≥ 0 (see Section 2.2),
providing information on the dependence structure of the random field.

Third, we investigate also on the aliasing effects for band-limited random
fields. More specifically, we establish suitable conditions on the sample size in
order to guarantee the annihilation of the aliasing phenomenon.

1.2. Some applications and further research

An accurate characterization of the aliasing phenomena has great significance
from both the points of view of theoretical statistics and its practical applica-
tions. More specifically, the analysis of spherical random fields over Sd is strongly
motivated by a growing set of applications in several scientific disciplines, such
as Cosmology and Astrophysics for d = 2 (see, for example, [BM07, MP10]),
as well as in Medical Image Analysis ([HCW+13, HCK+15]), Material Physics
([MS08]), and Nuclear Physics ([AA18]) for d > 2.

As already mentioned, aliasing phenomena can be detected in all the ex-
perimental situations where harmonic coefficients are measured by means of a
discretization of the integral given by Equation (1). In this case, the presence
of aliases can bring some crucial disadvantages for the experimenter.

In the classical optimal design approach (see for example [DKSG18]), the
construction of experiments concerning spherical data is very sensitive to the
aliasing effects. The outcomes of these experiments can be indeed affected by
the aliasing of some terms belonging to the experimental design with other ones,
potentially important but not included in the chosen model (see, for example,
[JN11]). According for instance to [Mü07], in the construction of experimental
designs for the regression of random fields, the experimenter can exploit a first-
order regression model, where interactions and aliasing are not considered. On
the one hand, these designs are optimal to estimate primary effects. On the
other hand, they can still present some undesirable aliasing effects producing
some alias-depending bias. In this case, the information on the aliasing effects
for each term is developed by means of the aforementioned aliasing function.
The intensities of the aliases can be then collected in the so-called alias matrix
(see, for further details, [JN11]). The alias matrix depends specifically on the
experimental design; for further details, the reader is referred, for example, to
[GJ11]. The construction of optimal designs minimizing the alias-depending bias
subject to constraints on design efficiency, in the sense of the aforementioned
optimality criteria (see, again, [DKSG18]), is therefore a topic of extreme interest
(see also [JN11]).

Hyperspherical random fields in S
d can be furthermore exploited to study

random fields defined over the unit ball Bd−1 in Rd−1, which currently repre-
sent a very challenging topic in data analysis. On the one hand, random fields
defined over the unit ball B3 are a very useful tool, aimed to generate realistic
three-dimensional models from observational data in several research branches of
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Cosmology, and other disciplines, such as, for instance, Medical Brain Imaging,
and Seismology (see, respectively, [DFH+14, BSX+07, LM12] and the references
therein). On the other hand, the construction of a cubature formula on the unit
ball is a complicated task. Indeed, even if it is theoretically known that the
cubature points must correspond to the zeroes of Bessel functions of increasing
degrees, in practice these points are not explicitly calculable (see, for example,
[LM12]). As proved in [PX08], under some mild smoothing conditions, this is-
sue can be overcome by linking the construction of frames and the definition
of cubature formulas on B

d−1 with the ones on S
d. More specifically, orthogo-

nal polynomials on the unit sphere an those on unit ball can be related by the
following map

x ∈ B
d−1 	→ x′ :=

(
x,

√
1− |x|2

)
∈ S

d, (2)

linking the points in B
d−1 with the one in the upper hemisphere of S

d (see
[PX08][Equation (4.5)]). We can thus define a distance Bd−1

dBd−1(x, y) = arccos
(
〈x, y〉+

√
1− |x|

√
1− |x|

)
, x, y ∈ B

d−1,

which corresponds to the geodesic distance on Sd. The map given by (2) pro-
vides also a connection between (weighted) Lp-spaces on B

d−1 and Lp
(
S
d
)
. This

allows one to study random fields over the unit ball by means of objects defined
over spheres of higher dimension. The understanding of aliasing effects over Sd

becomes crucial to produce useful measurements related thus to these random
fields.

By the point of view of applications, in Medical Image Analysis the sta-
tistical representation of the shape of a brain region is commonly modeled
as the realization of a Gaussian random field, defined across the entire sur-
face of the region (see for example [BSX+07]). Many shape modeling frame-
works in computational anatomy apply shape particularization techniques for
cortical structures based on the spherical harmonic representation, to encode
global shape features into a small number of coefficients (see [HCW+13]). This
data reduction technique, however, can not provide a proper representation
with a single parametrization of multiple disconnected sub-cortical structures,
specifically the left and right hippocampus and amygdala. The so-called 4D-
hyperspherical harmonic representation of surface anatomy aims to solve this
issue by means of a stereographic projection of an entire collection of disjoint
3-dimensional objects onto the hypersphere of dimension 4. Indeed, as afore-
mentioned, a stereographic projection embeds a 3-dimensional volume onto the
surface of a 4-dimensional hypersphere, avoiding thus, the issues related to flat-
ten 3-dimensional surfaces to the 3-dimensional sphere. Subsequently, any dis-
connected objects of dimension 3 can be projected onto a connected surface
in S4, and, thus, represented as the linear combination of hyperspherical har-
monics of dimension 4 (see [HCK+15]). Finally, further investigations can be
done to study the aliasing effects arising when alternative sampling schemes
to the Gauss-Gegenbauer quadrature are taken into account. For example, we
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refer to the so-called equiangular sampling schemes, which involve a uniform
discretization of all the angular coordinates, introduced by [Sku86], and then
developed, among others, by [DH94, MW11]. Another relevant sampling scheme
concerns the decomposition of the hypersphere into Voronoi cells (see, for exam-
ple, [NPW06]). This sampling scheme allows one to build the so-called spherical
needlets, a class of spherical wavelets featuring a wide range of applications in
Statistics (see, for example, [BKMP09a, DLM13, Dur16]). In view of these ap-
plications, the aliasing effects related to this sampling procedure are of vibrant
interest.

1.3. Organization of the paper

This paper is structured as follows. In Section 2, we introduce some fundamen-
tal results on the harmonic analysis over the d-dimensional sphere as well as a
short review of spherical random fields. Section 3 includes a short overview on
the so-called Gegenbauer-Gauss quadrature formula, crucial to build a spher-
ical uniform sampling, and provides some auxiliary results. In Section 4, we
present the main findings of this work. In particular, Theorem 1 describes the
construction of the aliasing function τ (�,m; �′,m′) under the assumption of
the separability of the sampling with respect to the angular components, while
Theorem 2 identifies the aliases for any harmonic coefficient a�,m when the sam-
pling is uniform. In Section 5, we study the aliasing effects for the angular power
spectrum of an isotropic random field (see Theorem 3), while in Section 6 we
provide an algorithm to remove the aliasing effects for a band-limited random
field sampled over a spherical uniform design (see Theorem 4). Section 7 presents
an explanatory example, while Section 8 collects all the proofs.

2. Preliminaries

This section collects some introductory results, concerning harmonic analysis
and its application to spherical random fields. It also includes a quick overview
on the Gegenbauer-Gauss formula. The reader is referred to [SW71, AH12,
VK91] for further details about the harmonic analysis on the sphere, to [AT07]
for a detailed description of random fields and their properties, while [MP11]
provides an extended description of spherical random fields over S2. Further de-
tails concerning the Gegenbauer-Gauss quadrature rule can be found in [AS64,
AH12, SB93, Sze75].

2.1. Harmonic analysis on the sphere

Let ϑ(i) ∈ [0, π], for i = 1, . . . , d−1, and ϕ ∈ [ 0, 2π) be the spherical polar coordi-
nates over Sd. From now on, we will denote by x = (ϑ, ϕ) =

(
ϑ(1), . . . , ϑ(d−1), ϕ

)
the generic spherical coordinate, that is, the direction of a point on S

d. Let the



3304 C. Durastanti and T. Patschkowski

function f : [0, π]
d−1 → [−1, 1] be defined by

f (ϑ) = f
(
ϑ(1), . . . , ϑ(d−1)

)
=

d−1∏
j=1

(
sinϑ(j)

)d−j

. (3)

Thus, the uniform Lebesgue measure dx over S
d, namely, the element of the

solid angle, is defined by

dx =
(
sinϑ(1)

)d−1

dϑ(1)
(
sinϑ(2)

)d−2

dϑ(2) . . . sinϑ(d−1) dϑ(d−1) dϕ

=f
(
ϑ(1), . . . , ϑ(d−1)

)
dϑ(1) . . . dϑ(d−1) dϕ,

such that the surface area of the hypersphere corresponds to∫
Sd

dx =
2π

d+1
2

Γ
(
d+1
2

) ,
where Γ denotes the Gamma function. Let us denote by H� the restriction of the
space of harmonic homogeneous polynomials of order � to S

d. As well-known in
the literature (see, for example, [AH12, SW71]), the space of square-integrable
functions over Sd can be described as the direct sum of the spaces H�, that is,

L2
(
S
d
)
=
⊕
�≥0

H�.

For any integer � ≥ 0, from now on called frequency, we define the following set

M� =
{
m ∈ Z

d−1 : m1 = 0, . . . , �;m2 = 0, . . . ,m1; . . . ;md−2 = 0, . . . ,md−3;

md−1 = −md−2, . . . ,md−2} . (4)

Following [AW82, AH12, VK91], for any � ≥ 0, it holds that

H� = Span{Y�,m : m ∈ M�} ,

where, for x ∈ S
d, Y�,m = Y�,m1,...,md−1

: Sd → C denotes the so-called spherical
— or hyperspherical — harmonic of degree � and order m. In other words, fixed
� ≥ 0, M� appoints the finitely many vectors m which identify the spherical
harmonics spanning the space H�.

Another common approach to introduce spherical harmonics exploits the so-
called d-spherical Laplace-Beltrami operator ΔSd (see, for example, [MP11]).
Fixed � ≥ 0, the spherical harmonics Y�,m (x) corresponding to any m ∈ M�

are the eigenfunctions of ΔSd with eigenvalue −ε�;d, where ε�;d = � (�+ d− 1),
that is,

(ΔSd + ε�;d)Y�,m (x) = 0, for x ∈ S
d.

As proved for example in [AW82], for any � ≥ 0, the size of {Y�,m : m ∈ M�},
namely, the multiplicity of the set of spherical harmonics with eigenvalue ε�;d,
is given by

Ξd (�) =
(2�+ d− 1) (�+ d− 2)!

�! (d− 1)!
. (5)
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The set {Y�,m (x) : � ≥ 0;m ∈ M�} provides therefore an orthonormal basis for
L2
(
S
d
)
. For any g ∈ L2

(
S
d
)
, the following Fourier — or harmonic — expansion

holds

g (x) =
∑
�≥0

∑
m∈M�

a�,mY�,m (x) , for x ∈ S
d,

where {a�,m : � ≥ 0;m ∈ M�} are the so-called harmonic coefficients, given by
the integral

a�,m = 〈g, Y�,m〉L2(Sd) =

∫
Sd

g (x) Ȳ�,m (x) dx.

From now on, for the sake of notational simplicity, we fix m0 = �. Further-
more, we will use indifferently the two equivalent short and long notations
Y�,m (x) and Y�,m1,...,md−1

(
ϑ(1), . . . , ϑ(d−1), ϕ

)
. Following [AW82], the hyper-

spherical harmonics are defined by

Y�,m (x) =
1√
2π

d−1∏
j=1

(
hmj−1,mj ;jC

(mj+
d−j
2 )

mj−1−mj

(
cosϑ(j)

)(
sinϑ(j)

)mj
)
eimd−1ϕ,

(6)
where hmk−1,mk;k is a normalizing constant, given by

hmj−1,mj ;j =

⎛
⎝22mj+d−j−2 (mj−1 −mj)! (2mj−1 + d− j) Γ2

(
mj +

d−j
2

)
π (mj−1 +mj + d− j − 1)!

⎞
⎠

1
2

.

(7)

The function C
(α)
n : [−1, 1] → R, α ∈ [−1/2,∞) , is the Gegenbauer (or ul-

traspherical) polynomial of degree n and parameter α. Following for example
[AS64, Sze75], they are orthogonal with respect to the measure

να (t) =
(
1− t2

)α− 1
2 1[−1,1] (t) ,

that is, ∫ 1

−1

C(α)
n (t)C

(α)
n′ (t) να (t) dt =

π21−2αΓ (n+ 2α)

n! (n+ α) Γ2 (α)
δn

′

n , (8)

see, for example, [Sze75, Formula 4.7.15]. Note that for α = 1/2 the Gegenbauer
polynomials reduce to the Legendre polynomials, while for α = 0, 1 the Gegen-
bauer polynomials reduce to the Chebyshev polynomials of the first and of the
second kind respectively (see [AS64, Chapter 22, Section 5]).

Roughly speaking, each hyperspherical harmonic in (6) can be viewed as
product of a complex exponential function and a set of Gegenbauer polynomials,
whose orders and parameters are properly nested and normalized to guarantee
orthonormality, that is,

∫
Sd

Y�,m (x) Ȳ�′,m′ (x) dx = δ�
′

�

d−1∏
k=1

δ
m′

k
mk .
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Hyperspherical harmonics feature also the following property, known as addition
formula (see, for example, [AW82]):

∑
m∈M�

Y�,m (x) Ȳ�′,m′ (x′) =
(2�+ d− 1) Γ

(
d+1
2

)
(�+ d− 2)!

2π
d+1
2 (d− 1)!�!

C
( d−1

2 )
� (〈x, x′〉)

=: K� (x, x
′) , (9)

where 〈·, ·〉 is the standard inner product in L2
(
R

d+1
)
. Note that K� can be

viewed as the kernel of the projector over the harmonic space H�, the restriction
to the sphere of the space of homogeneous and harmonic polynomials of order
�. The projection P� of g ∈ L2

(
S
d
)
onto H� is given by

P� [g] (x) =

∫
Sd

g (y)K� (x, y) dy, x ∈ S
d.

It follows that

P� [g] (x) =
∑

m∈M�

a�,mY�,m (x) , for x ∈ S
d,

and that any function g ∈ L2
(
S
d
)
can be rewritten as the sum of projections

over the spaces H�,

g (x) =
∑
�≥0

P� [g] (x) , for x ∈ S
d.

2.2. Spherical random fields

Given a probability space {Ω,F ,P}, a spherical random field Tω (x), ω ∈ Ω and
x ∈ S

d, describes a stochastic process defined the sphere S
d. From now on, the

dependence on ω ∈ Ω will be omitted and the random field will be denoted by
T (x), x ∈ S

d, for the sake of the simplicity (see also [AT07]).

If T has a finite second moment, that is, E
[
|T (x)|2

]
< ∞ for all x ∈ S

d, a

spherical random field can be decomposed in terms of the projections over the
space H�, � ≥ 0, so that

T (x) =
∑
�≥0

T� (x) , x ∈ S
d, (10)

where T� (x) = P� [T ] (x). Each projector onto H� can be described as a linear
combination of finitely many hyperspherical harmonics,

T� (x) =
∑

m∈M�

a�,mY�,m (x) , x ∈ S
d. (11)

As in the deterministic case described in Section 2.1, for any � ≥ 0 and m ∈ M�,
the random harmonic coefficient is defined by

a�,m =

∫
Sd

T (x) Ȳ�,m (x) dx. (12)
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The random harmonic coefficients contain all the stochastic information of the
random field T , namely, a�,m = a�,m (ω), for ω ∈ Ω, � ≥ 0 and m ∈ M�.

A random field is said to be band-limited if there exists a bandwidth L0 ∈ N,
so that a�,m = 0 for any � > L0, whenever m ∈ M�. In this case, it holds that

T (x) =

L0∑
�=0

∑
m∈M�

a�,mY�,m (x) , x ∈ S
d. (13)

By the practical point of view, band-limited random fields provide a useful
approximation of fields with harmonic coefficients decaying fast enough as the
frequency � grows.

Let us define the expectation μ (x) = E [T (x)]; the covariance function Υ :
Sd × Sd → R of the random field T is given by

Υ (x, x′) = E
[
(T (x)− μ (x))

(
T̄ (x′)− μ̄ (x′)

)]
, (14)

where, for z ∈ C, z̄ denotes its complex conjugate.
Without losing any generality, assume that T is centered, so that, for x, x′ ∈

S
d, it holds that

μ (x) = 0

Υ (x, x′) = E
[
T (x) T̄ (x′)

]
.

Let γ : Sd × S
d → [0, π] , γ (x, x′) = arccos〈x, x′〉Rd+1 be the geodesic distance

between x, x′ ∈ S
d. A spherical random field is said to be isotropic if it is

invariant in distribution with respect to rotations of the coordinate system or,
more precisely,

T (x)
d
= T (Rx) , for x ∈ S

d, R ∈ SO (d+ 1) ,

where
d
= denotes equality in distribution, and SO (d+ 1) is the so-called special

group of rotations in R
d+1. Following [BKMP09b, BM07, MP11], if the random

field is isotropic, then Υ depends only on γ and its variance σ2 (x) = Υ (x, x)
does not depend on the location x ∈ Sd, so that it holds that

σ2 (x) = E

[
|T (x)|2

]
= σ2, for all x ∈ S

d,

where σ2 ∈ R
+. The covariance function itself can be therefore rewritten in

terms of its dependence on the distance between x and x′, so that

Υ (x, x′) = Υ (γ (x, x′)).

Let us finally define the correlation function ρ : [−1, 1] → [−1, 1], which is
invariant with respect to rotations when the random field is isotropic, that is

ρ (cos γ (x, x′)) =
Υ (x, x′)√

Υ(x, x)Υ (x′, x′)
=

Υ (γ (x, x′))

σ2
, x, x′ = S

d (15)
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As far as the random harmonic coefficients {a�,m : � ≥ 0,m ∈ M�} are con-
cerned, since μ (x) = 0 for x ∈ S

d, we have that E [a�,m] = 0. On the one hand,
the Fourier expansion of T can be read as a decomposition of the field into a se-
quence of uncorrelated random variables, preserving its spectral characteristics,
that is,

Cov (a�,m, a�′,m′) = E [a�,mā�′,m′ ] = C�δ
�′

�

d−1∏
k=1

δ
m′

k
mk , (16)

where {C� : � ≥ 0} is the so-called angular power spectrum of T .
On the other hand, the spectral decomposition of the covariance function is

given by

Υ (x, x′) =
∑
�≥0

C�K� (x, x
′) ,

where we rewrite the covariance function in terms of the projection kernel cor-
responding to the frequency level �. Combining (9), (14) and (16), the angular
power spectrum of a random field can be viewed as the harmonic decomposition
of its covariance function and can be rewritten as the average

C� =
1

Ξd (�)

∑
m∈M�

Var (a�,m) , (17)

where Ξd (�) is given by (5) (see, for example, [Mar06] for d = 2).

3. The Gauss-Gegenbauer quadrature formula and the spherical
uniform design

This section includes a quick overview on the Gegenbauer-Gauss formula. We
also introduce the spherical uniform sampling and two related auxiliary results.
Further details concerning the Gegenbauer-Gauss quadrature rule can be found
in [AS64, AH12, SB93, Sze75], while the spherical uniform sampling is presented
by [DKSG18].

3.1. Separability of the sampling

We first introduce a very mild condition on the sampling procedure. Gener-
alizing the proposal introduced by [LN97] on S

2 to S
d, d > 2, here we con-

sider a discretization scheme produced by the combination of d one-dimensional
quadrature rules, with respect to the coordinates ϑ(j), j = 1, . . . , d− 1, and ϕ.

More specifically, we introduce the following condition on the sampling points
and weights.

Condition 1 (Separability of the sampling scheme). Fix Q0, Q1, . . . , Qd−1 ∈ N,

so that N =
∏d−1

j=0 Qj. For any j = 1, . . . , d, there exists a finite sequence of
positive real-valued weights{

w
(j)
kj−1

: kj−1 = 0, . . . , Qj−1 − 1
}
, (18)
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so that
Qj−1−1∑
kj−1=0

w
(j)
kj−1

= 1.

The sampling points {xi : i = 1, . . . , N} are component-wise given by{(
ϑ
(1)
k0

, . . . , ϑ
(d−1)
kd−2

, ϕkd−1

)
: kj−1 = 0, . . . , Qj−1 − 1 for j = 1, . . . , d

}
. (19)

Roughly speaking, each sequence in (18) corresponds to the set of weights for
a quadrature formula with respect to the j-th angular component of the angle
vector x =

(
ϑ(1), . . . , ϑ(d−1), ϕ

)
. The subscript index is related to the harmonic

numbers � = m0,m1, . . . ,md−1.
Each value of the index i∗ ∈ {1, . . . , N} corresponds uniquely to a suitable

choice of values
{
k∗0 , . . . , k

∗
d−1

}
, while the related weight wi∗ is given by

wi∗ =
d∏

j=1

w
(j)
k∗
j−1

.

3.2. The Gauss-Gegenbauer quadrature formula

In general, a quadrature rule denotes an approximation of a definite integral of
a function by means of a weighted sum of function values, estimated at specified
points within the domain of integration (see, for example, [SB93]). In particu-
lar, a r-point Gaussian quadrature rule is a formula specifically built to yield an
exact result for polynomials of degree smaller or equal to 2r−1, after a suitable
choice of the points and weights {tk, ωk : k = 0, . . . , r − 1}. For this reason, it
is also called quadrature formula of degree 2r − 1. The domain of integration
is conventionally taken as [−1, 1], and the choice of points and weights usually
depends on the so-called weight function a, whereas the integral can be writ-

ten in the form
∫ 1
−1

p (t) a (t) dt. Here p (t) is approximately polynomial, and

a (t) ∈ L1 ([−1, 1]) is a well-known function. In this case, a proper selection of
{tk, ωk : k = 0, . . . , r − 1} yields

∫ 1

−1

p (t) a (t) dt =

r−1∑
k=0

ωkp (tk) .

From now on, while the letter ω will concern weights related to quadrature
formulas for coordinates on the interval [−1, 1], the letter w will denote weights
related to quadrature formulas for angular coordinates.

Following for example [SB93], it can be shown that the quadrature points
can be chosen as the roots of some polynomial belonging to some suitable class
of orthogonal polynomials, depending on the function a.

When a (t) = 1 for all t ∈ [−1, 1], the associated polynomials are the Leg-
endre polynomials. In this case, the method is then known as Gauss-Legendre
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quadrature (see [AS64, Formula 25.4.29]). Such a method is widely used in the
2-dimensional spherical framework (see, for example, [AH12]), and the aliases
produced by this formula were largely investigated in [LN97]).

More in general, as stated in [AS64, Formula 25.4.33], when a (t) = aα,β (t) =

(1− t)
α
(1 + t)

β
, the method is known as the Gauss-Jacobi quadrature formula,

since it makes use of the Jacobi polynomials (see also [Sze75, p.47]). Since it
is well-known that Jacobi polynomials reduce to Gegenbauer polynomials when
α = β (see, for example, [Sze75, Formula 4.1.5]), we refer to the quadrature
rule denoted by a weight function να (t) (equal to aα,β (t) for α = β) as the
Gauss-Gegenbauer quadrature (see, for example, [ESM14]).

Subsequently, the discrete uniform sampling over the sphere is obtained by
combining a trapezoidal rule for the angle ϕ and (d− 1) Gauss-Gegenbauer
quadrature rules for the coordinates ϑ(j), for j = 1, . . . , d − 1, with weight
function aj (t) = να(j) (t), α (j) = d− 1− j.

This method has been described in details by [DKSG18, Lemma 3.1] in the
framework of optimal design for regression problems with spherical predictors.
Indeed, by the theoretical point of view, the (continuous) uniform distribution
on the sphere provides an optimal design for experiments on the unit sphere,
but this distribution is not implementable as a design in real experiments (for
more details, see [DKSG18, Theorem 3.1]). Thus, a set of equivalent discrete
designs is established by means of the combination of the following quadrature
formulas over the sphere, written as in [DKSG18, Lemma 3.1], to which we refer
to for a proof.

Lemma 1 (Gauss-Gegenbauer quadrature). Let a ∈ L1 ([−1, 1]) be a positive

weight function so that ā =
∫ 1
−1

a (t) dt. Consider also the set of r ∈ N points
−1 ≤ t0 < . . . < tr−1 ≤ 1, associated to the positive weights ω0, . . . , ωr−1 such
that
∑r−1

k=0 ωk = 1. Then the set of points and weights {tk, ωk : k = 0, . . . , r − 1}
generates a quadrature formula of degree z ≥ r, namely,

∫ 1

−1

a (t) tp dt = ā

r−1∑
k=0

ωkt
p
k, for p = 0, . . . , z, (20)

if and only if the following conditions are satisfied:

1. The polynomial
∏r−1

k=0 (t− tk) is orthogonal to all polynomials of degree
smaller or equal to z − r with respect to a (t),

∫ 1

−1

r−1∏
k=0

(t− tk) a (t) t
p dt = 0, for p = 0, . . . , z − r;

2. the weights ωk are given by

ωk =
1

ā

∫ 1

−1

a (t)λk (t) dt, for k = 0, . . . , r − 1, (21)
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where λk (t) is the k-th Lagrange interpolation formula with nodes t0, . . . ,
tr−1, given by

λk (t) =

r−1∏
i=0,i �=k

t− ti
ti − tk

.

3.3. The spherical uniform sampling

Assume now z = 2Q0 in Definition 1. Following [Sze75, Formula 4.7.15] (see also

(8)), the Gegenbauer polynomials C
(α)
n are orthogonal with respect to a (t) =

να (t). Fixed n, the real-valued n roots of C
(α)
n have multiplicity 1 and are located

in the interval [−1, 1]. Thus, it follows that for any r ∈ {Q0 + 1, . . . , 2Q0}, there
exists at least one set of points and weights

{
t
(j)
k , ω

(j)
k : k = 0, . . . , r − 1

}
, j =

1 . . . , d− 1, generating a quadrature formula (20) with a (t) = aj (t) = να(j) (t),
and α (j) = d− 1− j.

In Lemma 1 above, we have recalled a set of quadrature formulas for the
interval [−1, 1], each of those associated to the corresponding weight function
να(j), for j = 1, . . . , d − 1. The following Condition exploits properly these
quadrature formulas for ϑ, combined with a trapezoidal rule for ϕ, to establish
a well-defined uniform distribution over the sphere of arbitrary dimension d (see
also, for example, [AH12, DKSG18]). Observe that this choice yields a suitable
quadrature formula for each angular component in S

d.

Condition 2 (Spherical uniform sampling). Assume that Condition 1 holds
and fix M ∈ N so that Qd−1 = 2M . The sampling with respect to ϕ is uniform,
so that for any kd−1 = 0, . . . , 2M − 1, it holds that

ϕkd−1
=
kd−1π

M
; (22)

w
(d)
kd−1

=
π

M
. (23)

The sampling with respect to each component ϑ(j), j = 1, . . . , d−1 has the form

ϑ
(j)
kj−1

=arccos
(
t
(j)
kj−1

)
; (24)

w
(j)
kj−1

=
ω
(j)
kj−1(

sinϑ
(j)
kj−1

)d−j
, (25)

where, for any j = 1, . . . , d−1,
{
tkj−1 : kj−1 = 0, . . . , Qj−1 − 1

}
in (24) are the

zeros of C
( d−j

2 )
Qj−1

, while
{
ωkj−1 : kj−1 = 0, . . . , Qj−1 − 1

}
in (25) are the corre-

sponding weights in the Gauss-Gegenbauer framework, given by (21) in Defini-
tion (1).

As already discussed in [AH12, DKSG18], the Gauss-Gegenbauer quadrature
in Lemma 1 is characterized by a unitary sum of the weights for each component,
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while Condition 2 guarantees orthonormality for spherical harmonics Y�,m and
Y�′,m′ so that �+ �′ ≤ 2Q0, that is,

Q0−1∑
k0=0

. . .

Qd−1−1∑
kd−1=0

⎛
⎝ d∏

j=1

w
(j)
kj−1

⎞
⎠Y�,m

(
ϑk0,...,kd−2

, ϕkd−1

)
Y �′,m′

(
ϑk0,...,kd−2

, ϕkd−1

)

= δ�
′

�

d−1∏
k=1

δ
m′

k
mk ,

for �+ �′ < 2Q0.

We present now two auxiliary results crucial to prove Theorem 2, referring
to the aliasing effects under Condition 2. Their proofs can be found in Section
8.2.

The first Lemma establishes the parity properties of the cubature points
and weights for each angular component ϑ(j) with respect to ϑ(j) = π/2, for

j = 1, . . . , d − 1. Indeed, due to the parity formula C
(α)
r (−t) = (−1)

r
C

(α)
r (t)

(see [Sze75, Formula 4.7.4]), the roots of C
(α)
r (t), t1, . . . , tr, are symmetric with

respect to 0, namely, tk = −tr−k−1 for k = 0, . . . , [r/2]. As a consequence, the
following lemma holds.

Lemma 2. Let the cubature points and weights be given by (24) and (25) respec-
tively in the framework described by Definition 1. Hence, for any j = 1, . . . , d−1,
it holds that

ϑ
(j)
kj−1

= π − ϑ
(j)
Qj−1−kj−1−1;

w
(j)
kj−1

= w
(j)
Qj−1−kj−1−1.

The next result exploits Lemma 2 to develop parity properties on the Gauss-
Gegenbauer quadrature formula.

Lemma 3. Let ψ ∈ [0, π], and j = 1, . . . , d− 1. Let mi ∈ m, with m0 = � and
m′

i ∈ m′, with m′
0 = �′ and define, for j = 1, . . . , d− 1,

Gj (ψ) = C
(mj+

d−j
2 )

mj−1−mj
(cosψ)C

(m′
j+

d−j
2 )

m′
j−1−m′

j
(cosψ) (sinψ)

d−j
.

Then it holds that

Gj (π − ψ) = (−1)
mj−1+m′

j−1−mj−m′
j G (ψ) . (26)

Furthermore, for Q ∈ N, let {ψk : k = 0, . . . , Q− 1} and {wk : k = 0, . . . , Q− 1}
be samples of points and weights in [−1, 1] so that for k = 0, . . . , [Q/2]

ψk = ψQ−1−k,

wk = wQ−1−k,
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where [·], t ∈ R denotes the floor function. Then, if
(
mj−1+m′

j−1−mj −m′
j

)
=

2c+ 1, c ∈ N, it holds that

Q−1∑
k=0

wkGj (ψk) = 0. (27)

4. Aliasing effects on the sphere

This section presents our main results concerning the aliasing phenomenon for
d-dimensional spherical random fields. First, we define the aliasing function, the
key tool to explicitly determine the aliases for any given harmonic coefficient.
Then, we study the aliasing function and the set of harmonic numbers identifying
the aliases for any given coefficient a�,m in two different cases. The proof of the
theorems presented in this section are collected in Section 8.1.

As a first step, we just assume that the aliasing function is separable with
respect to the angular components. This assumption is very mild, as it reflects
both the separability of the spherical harmonics and the practical convenience
of choosing separable sampling points, with respect to the angular coordinates.

As a second step, we study the aliasing effects under the assumption that the
sample comes from a spherical uniform design.

4.1. The aliasing function

In practical applications, the measurements of the random fields can be sampled
only over a finite number of locations on S

d. As a straightforward consequence,
the integral (12) can not be explicitly computed, but it has to be replaced by a
sum of finitely many samples of T .

Fixed a sample size N ∈ N and given a set of sampling points over Sd{
xi = (ϑi, ϕi) ∈ S

d : i = 1, . . . , N
}
,

the measurements of the spherical random field T are collected in the sample
{T (xi) : i = 1, . . . , N}. For any � ≥ 0 and m ∈ M�, the approximated harmonic
coefficient is given by

ã�,m =

N∑
i=1

wiT (ϑi, ϕi) Ȳ�,m (ϑi, ϕi) f (ϑi) , (28)

where f (ϑ) is given by (3). Combining (10) and (11) with (28) yields

ã�,m =

N∑
i=1

wi

⎛
⎝∑

�′≥0

∑
m′∈M�′

a�′,m′Y�′,m′ (ϑi, ϕi)

⎞
⎠ Ȳ�,m (ϑi, ϕi) f (ϑi)

=
∑
�′≥0

∑
m′∈M�′

τ (�,m; �′,m′) a�′,m′ , (29)
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where τ (�,m; �′,m′) is given by

τ (�,m; �′,m′) =
N∑
i=1

wiY�′,m′ (ϑi, ϕi) Ȳ�,m (ϑi, ϕi) f (ϑi) . (30)

From now on, we will refer to τ (�,m; �′,m′) as the aliasing function and to ã�,m
as the random aliased coefficient . For �′ �= � and m′ �= m, the coefficients a�′,m′

in (29) are called aliases of a�,m if τ (�,m; �′,m′) �= 0. Note that if the random
field T is centered, it follows that

E [ã�,m] =
∑
�′≥0

∑
m′∈M�′

τ (�,m; �′,m′)E [a�′,m′ ] = 0.

As stated by [LN97] for the case d = 2, on the one hand, the following equality

τ (�,m; �′,m′) = δ��′

d−1∏
i=1

δmi

m′
i
,

is a necessary and sufficient condition to identify a�,m and ã�,m. This equality
does not hold in general (see Section 6). On the other hand, fixed �, �′,m and
m′, if τ (�,m; �′,m′) �= 0, that is, a�′,m′ is an alias of a�,m, its intensity, denoting
how large is the contribution of this alias, is given by |τ (�,m; �′,m′)|.

The total amount of aliases in (29) and the corresponding intensity depends
specifically on the choice of the sampling points {xi : i = 1, . . . , N} over S

d,
which characterizes entirely the subsequent structure of (30). In other words,
every setting chosen for the sampling points leads to a specific set of aliases,
described by the corresponding aliasing function.

Here we study the aliasing function τ (�,m; �′,m′) first in a more general
framework, under the assumption of a separable sampling with respect to the
angular coordinates in Section 4.2, and then for a discrete version of the spherical
uniform distribution in Section 4.3.

4.2. The separability of the aliasing function

Let us assume now that the assumptions of Condition 1 hold. Thus, given
Q0, Q1, . . . , Qd−1 ∈ N, so that N =

∏d−1
j=0 Qj , for j = 1, . . . , d − 1, the cor-

responding set of quadrature points and weights is given by{(
ϑ
(j)
kj−1

, w
(j)
kj−1

)
∈ [0, π]× [0, 1] : kj−1 = 0, . . . , Qj−1 − 1

}
,

while, for j = d, we have that{(
ϕkd−1

, w
(d)
kd−1

)
∈ [0, 2π]× [0, 1] : kd−1 = 0, . . . , Qd−1 − 1

}
.

As a straightforward consequence, we obtain the following result.
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Theorem 1. Under Condition 1, it holds that

τ (�,m; �′,m′)=
1

2π

d−1∏
j=1

hmj−1,mj ;jhm′
j−1,m

′
j ;j

IQj−1
mj−1,mj

(
m′

j−1,m
′
j

)
JQd−1
md−1

(
m′

d−1

)
,

(31)
where hmj−1,mj ;j is given by (7) and

JQd−1
md−1

(
m′

d−1

)
=

Qd−1−1∑
kd−1=0

w
(d)
kd−1

ei(m
′
d−1−md−1)ϕkd−1 ; (32)

IQj−1
mj−1,mj

(
m′

j−1,m
′
j

)
=

Qj−1−1∑
kj−1=0

w
(j)
kj−1

(
sinϑ

(j)
kj−1

)mj+m′
j+d−j

· C(mj+
d−j
2 )

mj−1−mj

(
cosϑ

(j)
kj−1

)
C
(m′

j+
d−j
2 )

m′
j−1−m′

j

(
cosϑ

(j)
kj−1

)
. (33)

Remark 1. Loosely speaking, the function τ (�,m; �′,m′) can be rewritten as
a chain of products of functions, pairwise coupled by two indexes mj ,m

′
j, j =

1, . . . , d − 2. Indeed, as shown by (6), each angular component ϑ(j) is related

to two harmonic numbers mj−1 and mj. While J
Qd−1
md−1

(
m′

d−1

)
is concerned

with the discretization of components along the azimuthal angle ϕ, the factors

I
Qj−1
mj−1,mj

(
m′

j−1,m
′
j

)
, j = 1, . . . , d−1, represent the discretization along the j-th

component of the vector ϑ. Finally, the multiplicative factor hmj−1,mj ;j comes
from the normalization of hyperspherical harmonics in (6).

From now on, we will refer to I
Qj−1
mj−1,mj

(
m′

j−1,m
′
j

)
, for j = 1, . . . , d− 1, and

J
Qd−1
md−1

(
m′

d−1

)
as the aliasing (function) j-th and d-th factors respectively.

4.3. Aliasing and spherical uniform designs

As already mentioned in Section 1.1, the motivations behind the study of this
particular setting come from two different sources. On the one hand, the uniform
design is largely used in the framework on numerical analysis over the sphere
(see [AH12, SB93, Sze75]). On the other hand, in the field of mathematical
statistics, the spherical uniform sampling has be proved to be the the most
efficient design with respect to a large set of optimality criteria such as the
Kiefer’s Φp- as well as the ΦEs -criteria, in the framework of optimal designs
of experiments (see [DKSG18]). Furthermore, in Remark 3, we show that our
findings align with the results established [LN97]) for the two-dimensional case.
The example described in Section 7 establishes explicitly the set of aliases of a
given harmonic coefficient.

The main results of this section, stated in the forthcoming Theorem 2, require
some further notation, produced in Remark 2.

Remark 2. Let us fix preliminarily m0 = �. From now on, s = (s1, . . . , sd−1) ∈
Z
d−1 will denote a (d− 1)-vector of indices, while Q = (Q0, Q1, . . . , Qd−1) is
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a d-vector collecting the cardinality of the quadrature nodes for each angular
component in (ϑ, ϕ). Following Lemmas 2 and 3, for � ≥ 0 and m ∈ M�,
Theorem 2 establishes that the aliases for a�,m are identified by the harmonic
numbers (�′,m′), so that

∣∣mj −m′
j

∣∣ = 2sj , j = 0, . . . , d− 1. The aliases of a�,m
take thus the form

a�+2s0,m+2s = a�+2s0,m1+2s1,...,md−2+2sd−2,md−1+2rM ,

where the indices s0, . . . , sd−1 belong to suitable sets defined as follows. For the
index s0, we define

D0 = D0 (�) =

{
s0 ∈ Z : s0 ≥ − �

2

}
. (34)

Then, for j = 1, . . . , d− 2, we have that

H(j)
mj

(mj−1 + 2sj−1) =

{
sj ∈ Z : −mj

2
≤ sj ≤

(mj−1 + 2sj−1)−mj

2

}
. (35)

Finally, the last index sd−1, characterizing the trapezoidal rule on ϕ, depends
on the constant M given in Condition 2, so that sd−1 = rM , where r belongs
to the following set,

RM
md−1

(md−2 + 2sd−2)

:=

{
r ∈ Z : − (md−2 + 2sd−2) +md−1

2M
≤ r ≤ (md−2 + 2sd−2)−md−1

2M

}
.

(36)

Notice that for j = 1, . . . , d − 1 each index sj , belongs to a set whose size
depends on the value of sj−1. Furthermore, while D0 (�) provides just a lower

bound for s0, each H
(j)
mj (mj−1 + 2sj−1), j = 1, . . . , d − 1, features only finitely

many elements.
Let us now define the following sets,

A0 = A0 (�,Q0) =

{
s0 ∈ Z : − �

2
≤ s0 ≤ Q0 − �− 1

}
; (37)

B0 = B0 (�,Q0) = {s0 ∈ Z : Q0 − � ≤ s0 ≤ ∞} , (38)

and, for j = 1, . . . , d− 2,

Aj = Aj (mj , Qj) =
{
sj ∈ Z : −mj

2
≤ sj ≤ Qj −mj − 1

}
; (39)

Bj = Bj (mj−1,mj , sj−1, Qj)=

{
sj ∈ Z : Qj −mj ≤ sj ≤

mj−1 −mj

2
+ sj−1

}
.

(40)

Observe that the definition of Aj and Bj is formally correct only if Qj −mj <
mj−1−mj

2 + sj−1, that is, sj−1 > Qj − mj−1+mj

2 . Thus, from now on, for sj−1 ≤
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Qj − mj−1+mj

2 , we consider

Aj =

{
sj ∈ Z : −mj

2
≤ sj ≤

mj−1 −mj

2
+ sj−1

}
; (41)

Bj = ∅, (42)

to take into account all the possible combinations of sj−1 and Qj. It is straight-
forward to observe that

D0 = A0 ∪B0, H(j)
mj

(mj−1 + 2sj−1) = Aj ∪Bj , for j = 1, . . . , d− 2.

Define now the following sets

H(j);0
mj

(mj−1 + 2sj−1) = H(j)
mj

(mj−1 + 2sj−1) ∩ {sj �= 0} ; (43)

RM ;0
md−1

(md−2 + 2sd−2) = RM
md−1

(md−2 + 2sd−2) ∩ {r �= 0} , (44)

which are equal to H
(j)
mj−1,mj (sj−1) and RM

md−1
(md−2 + 2sd−2) respectively, but

omitting the null value. Finally, we define, for j = 1, . . . , d− 2,

Δj =Δj (mj−1 + 2sj−1,mj , Qj−1, sj−1)

=
{
sj ∈ Z : sj ∈

(
H(j);0

mj
(mj−1 + 2sj−1) 1{sj−1 ∈ Aj−1}

+H(j)
mj

(mj−1 + 2sj−1) 1{sj−1 ∈ Bj−1}
)}

, (45)

while

Δd−1 =Δd−1 (md−2 + 2sd−2,md−1,M, sd−2)

=
{
sd−1 = Mr;M = Qd−1/2, r ∈ Z : r∈

(
RM ;0

md−1
(md−2 + 2sd−2)

·1{sd−2 ∈ Ad−2}+RM
md−1

(md−2 + 2sd−2) 1{sd−2 ∈ Bd−2}
)}

. (46)

In other words, when sj ∈ Δj, it can take any value in H
(j)
mj−1 (mj−1 + 2sj−1)

if sj−1 ∈ Bj−1. Otherwise, if sj−1 ∈ Aj−1, it can take any value in the set

H
(j)
mj−1 (mj−1 + 2sj−1) except to the null value.
We collect these sets together with the notation

ZQ
�,m = {(s1, . . . , sd−1) : s1 ∈ Δ1, . . . , sd−1 ∈ Δd−1; s1 ≥ . . . ≥ sd−1} . (47)

Finally, we define

η (�,m; �+ 2s0,m+ 2s)

=
d−1∏
j=1

hmj−1,mj ;jhmj−1+2sj−1,mj+2sj ;jI
Qj−1
mj−1,mj

(mj−1 + 2sj−1,mj + 2sj) ,

(48)

where hmj−1,mj ;j and I
Qj−1
mj−1,mj (mj−1 + 2sj−1,mj + 2sj) are defined by (7) and

(33) respectively, and corresponding to τ (�,m; �′,m′) as given by (31), with

�′ = �+ 2s0, m
′ = m+ 2s and J

Qd−1
md−1

(
m′

d−1

)
= 2π.
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Theorem 2. Assuming that Condition 2 holds, for any � ≥ 0 and m ∈ M�,
the aliased harmonic coefficient defined in (29) is given by

ã�,m = a�,m +
∑

s0∈D0(�)

∑
s∈ZQ

�,m

η (�,m; �+ 2s0,m+ 2s) a�+2s0,m+2s, (49)

where η (�,m; �+ 2s0,m+ 2s) is defined by (48), while the sets D0 (�) and ZQ
�,m

are given by (34) and (47).

Remark 3 (Comparison with the 2-dimensional case). The aliasing effects
over S

2 have been studied by [LN97], involving a trapezoidal rule for the co-
ordinate ϑ and the Gauss-Laplace quadrature formula for the angle ϑ. More
formally, fixed Q ∈ N, a quadrature formula is obtained by a set of Q points
and weights {θk, wk : k = 0, . . . , Q− 1}, obtained as in Definition 1. The points
{θk : k = 0, . . . , Q− 1} are, in this case, the nodes of the Legendre polynomial
of order Q. Recall that, for d = 2, m does not identify a vector of harmonic
numbers, but just an integer, defined so that −� ≤ m ≤ �. Thus, the aliases of
the harmonic coefficient a�,m are given by the following formula,

ã�,m =

Q−�−1∑
s=−�/2

∑
r∈RM

m (�+2s)

ζ�,mζ�+2s,m+2rMIQ�,m (�+ 2s,m+ 2rM) a�+2s,m+2rM

+
∑

s≥Q−�

∑
r∈RM;0

m (�+2s)

ζ�,mζ�+2s,m+2rMIQ�,m (�+ 2s,m+ 2rM) a�+2s,m+2rM ,

where

ζ�,m =

(
2�+ 1

2

(�−m)!

(�+m)!

) 1
2

;

IQ�,m (�+ 2s,m+ 2rM) =

Q−1∑
k=0

wk sinϑkP�,m (cosϑk)P�+2s,m+2rM (cosϑk) .

Simple algebraic manipulations show that this formula coincides with (49)
claimed in Theorem 2 for d = 2.

Remark 4 (Location and distance of the aliases). From now on, we will de-
fine the location in the frequency domain of any harmonic coefficient a�,m as
the set of numbers {�,m}. Following [LN97], we can thus define the distance
in the frequency domain of the alias a�′,m′ from the original coefficient by
dist (a�,m, ã�,m) = ‖(�− �′,m−m′)‖l2 , where ‖·‖l2 is the Euclidean norm in
the space of the square-summable sequences. If the uniform sampling scheme is
considered, it follows that

dist (a�,m, a�+2s0,m+2s) = D (s0, s) = 2

√√√√d−2∑
i=0

si + rM.



Aliasing effects for random fields over Sd 3319

Furthermore, from Theorem 2 it follows that D (s0, s) > 2. Indeed, the index r
can be null only if s0 ∈ B0 and, then, s0 > 0. On the other hand, if there exists
an alias with s0 = . . . = sd−2 = 0, then we have that r > 0.

The next result provides some practical rules on the choice of the parameters
Q0, . . . , Qd − 2,M , with the aim to reduce the amount of aliases of a given
harmonic coefficient a�,m assuming a uniform spherical sampling.

Corollary 1. Assume that Condition 2 holds and that, furthermore, Q0 ≥
. . . ≥ Qd−2, while M > Q0. Thus, for any a�,m, � ∈ N,m ∈ M�, its aliases
have locations (�+ 2s0,m+ 2s), where si ∈ Bi for i = 0, . . . , d− 2 and sd− 1 =
rM : r ∈ RM

md−1
.

Remark 5 (Categories of locations). In view of Corollary 1, from now on we

will denote the elements belonging to
{
s0 ∈ B0, . . . , sd−2 ∈ Bd−2, r ∈ RmM

d−1

}
as primary locations. The locations of the other aliases belonging to the set{
s0 ∈ D0 (�) , s ∈ ZQ

�,m

}
\
{
s0 ∈ B0, . . . , sd−2 ∈ Bd−2, r ∈ RmM

d−1

}
will be labeled

as secondary locations. According to Corollary 1, a proper choice of the sampling
points can annihilate the aliases having secondary locations. The same does not
hold for the ones in the primary locations. It is indeed impossible to remove
all the aliases in primary locations just by choosing the sampling points and
parameters. As we will discuss in Section 6, these aliases can be completely
erased, after a proper selection of sampling points, only if the random field is
band-limited.

Finally, note that under the assumptions of Corollary 1, it holds that

D (s0, s) ≥ 2Q. (50)

5. Aliasing for angular power spectrum

In this section, our purpose is to investigate on the aliasing effects as far as the
spectral approximation of an isotropic random field is concerned. More specifi-
cally, we establish a method to identify the aliases of each element of the power
spectrum {C� : � ≥ 0}.

Assume to have an isotropic random field on S
d, so that (15) and (16) hold.

When the integral (12) is replaced with the sum (29) under the Condition 2,
we want to study how the aliasing errors arising in (29), affect the estimation
of C� = Var (a�,m) (see (16)). In particular we are interested in developing the
presence of aliases when C� is approximated by the average

C̃� =
1

Ξd (�)

∑
m∈M�

Var (ã�,m) , (51)

where Ξd (�) is given by (5) (cf, for example, (17)). Let us recall that D0 (�) is

given by (34), and let V Q
�,′m (�′) be defined by



3320 C. Durastanti and T. Patschkowski

V Q
�,m (�′)

=
∑

s∈ZQ
�,m

d−1∏
j=1

h2
mj−1,mj ;jh

2
mj−1+2sj−1,mj+2sj ;j

(
IQj−1
mj−1,mj

(mj−1+ 2sj−1,mj+2sj)
)2

.

Our findings, which extend to the d-dimensional sphere the outcomes of [LN97,
Theorem 3.1] (cf. Remark 3), are produced in the following theorem.

Theorem 3. Let T be an isotropic random field on S
d with angular power

spectrum given by (16). Under the assumption given in Condition 2, it holds
that

C̃� =
∑

s0∈D0(�)

ΛQ
� (�+ 2s0)C�+2s0 ,

where

ΛQ
� (�+ 2s0) =

1

Ξd (�)

∑
m∈M�

V Q
�,m (�+ 2s0) .

The proof of Theorem 3 can be found in Section 8.1.

6. Band-limited random fields

In this section, we establish the condition on the sample size, leading to an exact
reconstruction of the harmonic coefficients a�,m for band-limited random fields,
in the paradigm of the spherical uniform design. In other words, for band-limited
random fields and for a suitable choice of Q, the approximation of the integral
(12) by the sum (28) is exact and, then, there are no aliases, analogously to
the findings described in [LN97, Section 4] for d = 2. The reader is referred to
Section 8.1 for the proofs of the theorems collected in this section.

If the number of sampling points is sufficiently large with respect to the band-
width characterizing the random field, we obtain two crucial results, stated in
the next theorem. On the one hand, the band-limited random fields are alias-
free in ã�,m and, on the other, they are exactly reconstructed by means of the
Gaussian quadrature procedure described above.

Theorem 4. Assume that T (x) is band-limited with bandwidth L0, that is,
the harmonic expansion given by (13) holds. If also Condition 2 holds, with
Q = Q0 = . . . = Qd−2 > L0 and M > L0. Then, it holds that

ã�,m = a�,m for � ≤ L0,m ∈ M�. (52)

Furthermore, for any L ∈ N satisfying Q ≥ L ≥ L0, the following reconstruction
holds exactly:

T (x) =

Q0−1∑
k0=0

. . .

Qd−1−1∑
kd−1=0

⎛
⎝d−1∏

j=0

w
(j+1)
kj

⎞
⎠
⎛
⎝d−1∏

j=1

(
sinϑ

(j)
kj−1

)d−j

⎞
⎠
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· T
(
ϑ
(1)
k0

, . . . , ϑ
(d−1)
kd−2

, ϕkd−1

) L∑
�=0

K� (x, xk) , (53)

where xk =
(
ϑk0,...,kd−2

, ϕkd−1

)
and K� is given by (9).

Remark 6. In view of the results presented in Theorem 4, the sample size N
has to satisfy the following condition,

N ≥ 2Ld
0,

in order to avoid aliasing effects for band-limited random processes with band-
width L0.

Remark 7. If the random field is band-limited, the only possible aliases belong
to secondary locations (see Remark 5). Thus, a suitable choice of the parameters
Q0, . . . , Qd−2,M annihilates all the potential aliases.

A random field has a band-limited power spectrum with bandwidth PL if
C� = 0 for any � > PL. The following theorem shows that these random fields
are aliases-free in C̃�, employing a Gauss sampling under Condition 2 and given
a suitable sample size.

Theorem 5. Let T be a random field with a band-limited power spectrum with
bandwidth PL, sampled by means of a Gauss scheme under Condition 2, so that
Q = Q0 = . . . = Qd−2 ≥ M > PL. Thus, it holds that

Var (ã�,m) = Var (a�,m) = C�.

7. An example

In this section, the reader is provided with an example, with the aim of giving
a practical insight on the identification of the aliases of a harmonic coefficient.
Let us fix d = 3 and calculate the aliases of the harmonic coefficient a0,0,0. Let
us assume, furthermore, that Q = Q0 = Q1. We have that

ã0,0,0 =a0,0,0 +
∑

s0∈D0

∑
(s1,s2)∈ZQ

0,0,0

h0,0;1h2s0,2s1;1I
Q
0,0 (2s0, 2s1)

· h0,0;2h2s1,2s2;2I
Q
0,0 (2s1, 2s2) a2s0,2s1,2s2 .

On the one hand, using (7) to develop the intensity of the aliases, we obtain

h0,0;1 =

(
2

π

) 1
2

;

h0,0;2 =
1√
2
;

h2s0,2s1;1 =

(
24s1+1 (2s0 − 2s1)! (2s0 + 1)Γ2 (2s1 + 1)

π (2s0 + 2s1 + 1)!

) 1
2
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Fig 1. Coordinates of the aliases for the coefficient a0,0,0 for Q = 2 and M = 1, 2. The left
panel shows that this choice of Q yields the presence of aliases with secondary locations. In
the right panel these aliases are removed. Indeed, this choice of Q annihilates all the aliases
not featuring primary locations.

=

(
24s1+1 (2s0 − 2s1)! (2s0 + 1) ((2s1)!)

2

π (2s0 + 2s1 + 1)!

) 1
2

;

h2s1,2s2;2 =

(
24s2−1 (2s1 − 2s2)! (4s1 + 1)Γ2

(
2s2 +

1
2

)
π (2s1 + 2s2)!

) 1
2

=

(
(2s1 − 2s2)! (4s1 + 1) ((4s2)!)

2

24s2+1 (2s1 + 2s2)! ((2s2)!)
2

) 1
2

,

so that we can define

εs0,s1,s2 = h0,0;1h2s0,2s1;1h0,0;2h2s1,2s2;2

=

(
(2s0−2s1)! (2s1 − 2s2)! (2s0 + 1) (4s1 + 1)

(2s0 + 2s1 + 1)! (2s1 + 2s2)!

) 1
2 22(s1−s2) (2s1)! (4s2)!

π (2s2)!
.

On the other hand, we obtain from (34), (37), (38), (39), and (40) that

D0 = {s0 ∈ Z : s0 ≥ 0} ,
A0 = {s0 ∈ Z : 0 ≤ s0 ≤ Q− 1} , B0 = {s0 ∈ Z : s0 ≥ Q− 1} ,
H

(1)
0 (2s0) = {s1 ∈ Z : 0 ≤ s1 ≤ s0} ,

A1 = {s1 ∈ Z : 0 ≤ s1 ≤ Q− 1} ,
B1 = {s1 ∈ Z : Q− 1 ≤ s1 ≤ s0} .

RM
m2

(2s1) =
{
r ∈ Z : − s1

M
≤ r ≤ s1

M

}
.

Hence, from (47) we have that
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Fig 2. Coordinates of the aliases for the coefficient a0,0,0 for Q = 4 and M = 1, 2. Also here,
in the left panel aliases with secondary locations are detected, because of the choice of Q. The
right panel features only aliases with primary locations. Indeed, this choice of Q deletes all
the aliases with secondary locations.

Table 1

List of aliases of the coefficient a0,0,0 (Q = 2, 4 and M = Q
2
), for s0 = 1, . . . 4).

Q = 2, M = 1
s0 A0, A1 B0, A1 B0, B1

1 a2,2,−2, a2,2,2

2
a4,2,−2, a4,2,2 a4,4,−4, a4,4,−2, a4,2,0,

a4,4,2, a4,4,4

3

a6,2,−2, a6,2,2 a6,4,−4, a6,4,−2, a6,2,0,
a6,4,2, a6,4,4, a6,6,−6,
a6,6,−4, a6,6,−2, a6,6,0,
a6,6,2, a6,6,4, a6,6,6

4

a8,2,−2, a8,2,2 a8,4,−4, a8,4,−2, a8,4,0,
a8,4,2, a8,4,4, a8,6,−6,
a8,6,−4, a8,6,−2, a8,6,0,
a8,6,2, a8,6,4, a8,6,6,

a8,8,−8, a8,8,−6, a8,8,−4,
a8,8,−2, a8,8,0, a8,8,2,
a8,8,4, a8,8,6, a8,8,8,

Q = 4, M = 2
s0 A0, A1 B0, A1 B0, B1

1
2 a4,4,−4, a4,4,4
3 a6,4,−4, a6,4,4 a6,6,−4, a6,6,4

4
a8,4,−4, a8,4,4 a8,8,−8, a8,4,−4, a8,8,0

a8,8,4, a8,8,8

ZQ
0,0,0 =

{
(s1, r) : s1 ∈

(
H

(1);0
0 (2s0) 1{s0 ∈ A0}+H

(1)
0 (2s0) 1{s0 ∈ B0}

)
,

r ∈
(
RM,0

0 (2s1) 1{s1 ∈ A1}+RM
0 (2s1) 1{s1 ∈ B1}

)}
.
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Table 2

List of aliases of the coefficient a0,0,0 (Q = 2, 4 and M = Q), for s0 = 1, . . . 4).

Q = 2, M = 2
s0 A0, A1 B0, A1 B0, B1

1
2 a4,4,−4, a4,4,−2, a4,2,0

3
a6,4,−4, a6,4,0, a6,4,4,
a6,6,−4, a6,6,0, a6,6,4

4

a8,4,−4, a8,4,0, a8,4,4
a8,6,−4, a8,6,0, a8,6,4
a8,8,−8, a8,8,−4, a8,8,0

a8,8,4, a8,8,8

Q = 4, M = 4
s0 A0, A1 B0, A1 B0, B1

1
2
3
4 a8,8,−8, a8,4,0, a8,8,8

We can then rewrite

ã0,0,0 = a0,0,0 +

Q−1∑
s0=0

s0∑
s1=1

s1
M∑

r=− s1
M

s2 �=0

εs0,s1,rMIQ0,0 (2s0, 2s1) I
Q
0,0 (2s1, 2rM) a2s0,2s1,2rM

+
∑
s0≥Q

⎛
⎜⎜⎝

Q−1∑
s1=0

s1/M∑
r=−s1/M

s2 �=0

εs0,s1,rMIQ0,0 (2s0, 2s1) I
Q
0,0 (2s1, 2rM)

+

s0∑
s1=Q

s1/M∑
r=−s1/M

εs0,s1,rMIQ0,0 (2s0, 2s1) I
Q
0,0 (2s1, 2rM)

⎞
⎠ a2s0,2s1,2rM .

(54)

Observe that the first line in (54) describes the aliases obtained for s0 ∈ A0, while
the other two lines contain the aliases corresponding to s0 ∈ B0. Notice that if
s0 ∈ A0, then B1 = ∅. As a consequence, it follows that both the indexes s1 and
s2 can not take the null-value. When s0 ∈ B0, we have that A1 = {0, . . . , Q− 1}
and B1 = {Q, . . . , s0}. Hence, we obtain the second and the third sums in (54).

We want to establish here the locations of the aliases that affect a0,0,0 for
some choices of Q and M . Let us take Q = 2, 4 and M = Q/2, Q. Here, for the
sake of the computational simplicity, we will take into account only s0 = 1, . . . , 4.
All the aliases of a0,0,0 for the considered range of s0 are collected in Table 1
and in Table 2. For any choice of Q and M , each column contains aliases belong-
ing to the sets {s0 ∈ A0, s1 ∈ A1}, {s0 ∈ B0, s1 ∈ A1}, and {s0 ∈ B0, s1 ∈ B1}
respectively. The locations of the aliases are also shown in Figure 1, for Q = 2,
and Figure 2, for Q = 4.
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According to the results here produced, we can notice that

• the minimum distance of the aliases increases when Q grows, following
Remark 4 and Equation (50) in Remark 5;

• all the aliases with secondary locations (see Remark 5), belonging thus to
the subsets {s0 ∈ A0, s1 ∈ A1} and {s0 ∈ B0, s1 ∈ A1}, vanish for M = Q,
as stated in Corollary 1;

• the coefficient a0,0,0 is not affected by aliasing if it is the harmonic coef-
ficient of a band-limited function with band width L0 < Q, as stated in
Theorem 4.

8. Proofs

In this section, we provide proofs for the main and auxiliary results.

8.1. Proofs of the main results

Proof of Theorem 1. Using (3), (6), (18) and (19) in (30) yields

τ (�,m; �′,m′)

=

Q0−1∑
k0=0

. . .

Qd−1−1∑
kd−1=0

⎛
⎝ d∏

j=1

w
(j)
kj−1

⎞
⎠
⎛
⎝d−1∏

j=1

(
sinϑ

(j)
kj−1

)d−j

⎞
⎠

·

⎛
⎝ 1√

2π

d−1∏
j=1

(
hm′

j−1,m
′
j ;j

C
(m′

j+
d−j
2 )

m′
j−1−m′

j

(
cosϑ

(j)
kj−1

)(
sinϑ

(j)
kj−1

)m′
j

)
eim

′
d−1ϕkd−1

⎞
⎠

·

⎛
⎝ 1√

2π

d−1∏
j=1

(
hmj−1,mj ;jC

(mj+
d−j
2 )

mj−1−mj

(
cosϑ

(j)
kj−1

)(
sinϑ

(j)
kj−1

)mj
)
eimd−1ϕkd−1

⎞
⎠

=
1

2π

d−1∏
j=1

⎛
⎝Qj−1−1∑

kj−1=0

w
(j)
kj−1

(
sinϑ

(j)
kj−1

)mj+m′
j+d−j

hmj−1,mj ;jhm′
j−1,m

′
j ;j

· C(mj+
d−j
2 )

mj−1−mj

(
cosϑ

(j)
kj−1

)
C
(m′

j+
d−j
2 )

m′
j−1−m′

j

(
cosϑ

(j)
kj−1

))

·

⎛
⎝Qd−1−1∑

kd−1=0

w
(d)
kd−1

ei(m
′
d−1−md−1)ϕkd−1

⎞
⎠ ,

as claimed.

Proof of Theorem 2. We divide this proof in two parts. The first part establishes
explicit bounds for the indices s0, . . . , sd−2, r by means of

1. the parity properties of the Gegenbauer polynomials (see Lemma 3);
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2. the definition of M� (cf. (4)), which exploits the definition of spherical
harmonics in (6).

The second part of the proof detects then some sets of indices s0, . . . , sd−2, r for
which τ (�,m; �′,m′) = 0 as a consequence of

1. the order of the quadrature formula (see (20));
2. the orthogonality of the Gegenbauer polynomials (see (8)).

For both cases, we follow a backward induction step, studying first the aliasing
effects due to the trapezoidal sampling for coordinate j = d, using the results
holding for the j-th component to prove the statement for the j − 1-th compo-
nent, until we reach j = 1.

Part 1 - Here our purpose it to exploit either properties due to the uniform sam-
pling and the ones related to the harmonic numbers of spherical harmonics, to
establish lower and, where possible, upper bounds for the indices s0, . . . , sd−2, r.
These indices identify the aliases of the harmonic coefficient a�,m, given in the
form a�+2s0,m+2s.

Let us consider initially j = d and apply to the coordinate ϕ the standard
trapezoidal rule. As well as in [LN97] (see also [DKSG18]), using (22) and (23)
in (32) yields

J2M
md−1

(
m′

d−1

)
=

π

M

2M−1∑
q=0

ei(m
′
d−1−md−1) qπ

M = 2πδ
m′

d−1

md−1+2rM , (55)

where r ∈ Z is such that |md−1 + 2rM | ≤ m′
d−2. Indeed, from (6) it follows

that Y�′,m′ (x) is well-defined only for
∣∣m′

d−1

∣∣ ≤ m′
d−2. Thus, it holds that

r ∈ RM
md−1

(
m′

d−2

)
, where

RM
md−1

(
m′

d−2

)
:=

{
r ∈ Z : −

m′
d−2 +md−1

2M
≤ r ≤

m′
d−2 −md−1

2M

}
.

Consider now j = d−1. The component ϑ(d−1) is subject to the aforementioned
Gauss-Legendre quadrature formula (cf. the case d = 2 in [LN97]). Indeed, by
using (55) jointly with the definition of the sampling points and weights given
by (24) and (25) respectively with j = d − 1, the (d − 1)-th aliasing factor is
given by

IQd−2
md−2,md−1

(
m′

d−2,md−1 + 2rM
)

=

Qd−2−1∑
kd−2=0

w
(d−1)
kd−2

(
sinϑ

(d−1)
kd−2

)2(md−1+rM)+1

C
(md−1+

1
2 )

md−2−md−1

(
cosϑ

(d−1)
kd−2

)

· C(md−1+2rM+ 1
2 )

m′
d−2−md−1−2rM

(
cosϑ

(d−1)
kd−2

)
. (56)

Observe now that the Legendre polynomials can be expressed in terms of a
Gegenbauer polynomial by means of the formula

Pmd−2,md−1

(
cosϑ

(d−1)
kd−2

)
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=
(2md−1)!

2md−1 (md−1)!

(
sinϑ

(d−1)
kd−2

)md−1

C
(md−1+

1
2 )

md−2−md−1

(
cosϑ

(d−1)
kd−2

)
,

see for example [Sze75, Formula 4.7.35]. Hence, we obtain that

IQd−2
md−2,md−1

(
m′

d−2,md−1 + 2rM
)

= cmd−1
cmd−1+2rM

Qd−2−1∑
kd−2=0

w
(d−1)
kd−2

sinϑkd−2
Pmd−2,md−1

(
cosϑ

(d−1)
kd−2

)

· Pm′
d−2,md−1+2rM

(
cosϑ

(d−1)
kd−2

)
, (57)

where

cm =

(
(2m)!

2m (m)!

)−1

.

In analogy to [LN97, Theorem 2.1], using (26), given in Lemma 3, for j = d−1,
in (57) leads to

IQd−2
md−2,md−1

(
m′

d−2,md−1 + 2rM
)
= 0

for any m′
d−1 = md−2 + 2sd−2 + 1, sd−2 ∈ N0.

In other words, the d − 1-th aliasing factor is not null only for even values of∣∣m′
d−2 −md−2

∣∣, that is,
m′

d−2 = md−2 + 2sd−2,

where sd−2 ∈ Dmd−2
, given by

Dmd−2
=
{
sd−2 ∈ Z : sd−2 ≥ −md−2

2

}
,

which guarantees that m′
d−2 ≥ 0 and, thus, a well-defined aliasing factor in (56).

On the one hand, using m′
d−2 = md−2 +2sd−2 in the set concerning the d-th

aliasing factor, we have that r ∈ RM
md−1

(md−2 + 2sd−2), as given by (36).
On the other hand, following (4) and (6), it holds that m′

d−2 = md−2 +

2sd−2 ≤ m′
d−3. Thus, sd−2 ∈ Rmd−2

(
m′

d−3

)
, where

Rmd−2

(
m′

d−3

)
=

{
sd−2 ∈ Z : sd−2 ≤

m′
d−3 −md−2

2

}
.

Therefore we obtain that sd−2 ∈ H
(d−2)
md−2

(
m′

d−3

)
, where

H(d−2)
md−2

(
m′

d−3

)
= Dmd−2

∩Rmd−2

(
m′

d−3

)
.

Consider now 2 ≤ j ≤ d − 2. For each component, we use a suitable Gauss-
Gegenbauer quadrature rule described above (see also [DKSG18, Lemma 3.1]).

Using Lemma 3 yields the following outcome. If I
Qj
mj ,mj+1

(
m′

j ,m
′
j+1

)
�= 0 only
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when m′
j = mj + 2sj , for sj ∈ H

(j+1)
mj

(
m′

j−1

)
, then I

Qj−1
mj−1,mj

(
m′

j−1,m
′
j

)
�= 0

only when m′
j−1 = mj−1 + 2sj−1, sj−1 ∈ H

(j)
mj−1

(
m′

j−2

)
.

On the one hand, Formula (27) in Lemma 3 with m′
j = mj + 2sj yields

I
Qj−1
mj−1,mj

(
m′

j−1,mj + 2sj
)
�= 0 only for m′

j−1 = mj−1 + 2sj−1, so that the
aliases with respect to the j-th component are identified by the function

IQj−1
mj−1,mj

(mj−1 + 2sj−1,mj + 2sj)

=

Qj−1−1∑
kj−1=0

w
(j)
kj−1

(
sinϑ

(j)
kj−1

)2(mj+sj)+d−j

C
(mj+

d−j
2 )

mj−1−mj

(
cosϑ

(j)
kj−1

)

· C(mj+2sj+
d−j
2 )

mj−1+2sj−1−(mj+2sj)

(
cosϑ

(j)
kj−1

)
.

It is straightforward to set sj−1 ∈ Dmj−1 , where

Dmj−1 =
{
sj−1 ∈ Z : sj−1 ≥ −mj−1

2

}
,

so that the polynomials in I
Qj−1
mj−1,mj (mj−1 + 2sj−1,mj + 2sj),

ω
(j)
kj−1

(
1− t

(j)
kj−1

)(mj+sj)

C
(mj+

d−j
2 )

mj−1−mj

(
t
(j)
kj−1

)
C
(mj+2sj+

d−j
2 )

mj−1+2sj−1−(mj+2sj)

(
t
(j)
kj−1

)
= w

(j)
kj−1

(
sinϑ

(j)
kj−1

)2(mj+sj)+d−j

C
(mj+

d−j
2 )

mj−1−mj

(
cosϑ

(j)
kj−1

)
· C(mj+2sj+

d−j
2 )

mj−1+2sj−1−(mj+2sj)

(
cosϑ

(j)
kj−1

)
is of degree mj−1 + 2sj−1 ≥ 0.

On the other hand, taking into account (4) and (6), it follows that m′
j−1 =

mj−1 + 2sj−1 ≤ m′
j−2. Thus we obtain that sj−1 ∈ Rmj−1

(
m′

j−2

)
, where

Rmj−1

(
m′

j−2

)
=

{
sj−1 ∈ Z : sj−1 ≤

m′
j−2 −mj−1

2

}
,

with m′
j−2 = mj−2 +2sj−2. Combining these two results and recalling (35), for

j = 2, . . . , d− 1, it holds that

sj−1 ∈ H(j−1)
mj−1

(
m′

j−2

)
, where H(j−1)

mj−1

(
m′

j−2

)
= Dmj−1 ∩Rmj−1

(
m′

j−2

)
.

Furthermore, the following step of the backward procedure yields m′
j−2 =

mj−2 + 2sj−2, so that

sj−1 ∈ H(j−1)
mj−1

(mj−2 + 2sj−2) ,

for j = 2, . . . , d−1. Consider, finally, the case j = 1. This aliasing factor is given
by

IQ0

�,m1
(�′,m1 + 2s1) for s1 ∈ H(1)

m1
(�′) .
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Here we can thus select �′ = �+ 2s0, s0 ∈ D0 (�), where D0 (�) is given by (34).
Note that s0 is the only index that is not selected from a set of finitely many
elements.

Part 2 - Here our aim is to use the order of the used quadrature formula

to convert, when possible, the sums of I
Qj−1
mj−1,mj

(
m′

j−1,m
′
j

)
to integrals. Then,

we exploit the orthogonality of the Gegenbauer polynomials (see Section 2) to
establish further combinations of indices s0, . . . , sd−1, r which lead to a null
aliasing function.

First of all, for any j = 1, . . . , d− 1, as stated in Remark 2, the following
decomposition holds

D0 (�) = A0 ∪B0,

H(j)
mj

(mj−1 + 2sj−1) = Aj ∪Bj ,

where A0, B0, Aj , and Bj are given by (37), (38), (39), and (40) respectively.

Recall also that Aj and Bj are defined by (41), and (42) if sj−1 ≤ Qj−mj−1+mj

2 .
Now, let hd−2 : [−1, 1] → R be a polynomial function of degree strictly smaller
than 2Qd−2; hence, by using the aforementioned Gauss-Legendre quadrature
formula (of order 2Qd−2) we obtain that

Qd−2−1∑
kd−2=0

w
(d−1)
kd−2

sinϑ
(d−1)
kd−2

hd−2

(
cosϑ

(d−1)
kd−2

)
=

Qd−2−1∑
kd−2=0

ω
(d−1)
kd−2

hd−2 (tp)

=

∫ 1

−1

hd−2 (t) dt. (58)

As a straightforward consequence, (cf. [LN97, Section 2.2]), for 0 ≤ md−2 ≤
(Qd−2 − 1) and sd−2 ∈ Z ∩ [−md−2/2, Qd−2 −md−2 − 1], (58) holds with
hd−2 (t) = Pmd−2,md−1

(t)Pmd−2+2sd−2,md−1
(t), a polynomial of degree smaller

than 2Qd−2. Hence, we obtain that

IQd−2
md−2,md−1

(md−2 + 2sd−2,md−1) =

∫ 1

−1

Pmd−2,md−1
(t)Pmd−2+2sd−2,md−1

(t) dt

=

(
(md−2 −md−1)!

(md−2 +md−1)!

(2md−2 + 1)

2

)−1

.δ0sd−2

Hence, in the uniform sampling approach, all the aliases of a�,m corresponding
to the values r = 0 and −md−2/2 ≤ sd−2 ≤ Qd−2 − md−2, sd−2 �= 0, are
annihilated. Aliases of a�,m exist for the following combinations of the indices
sd−2, r:

• sd−2 ∈ Ad−2 and r ∈ RM ;0
md−1

(md−2 + 2sd−2);

• sd−2 ∈ Bd−2 and r ∈ RM
md−1

(md−2 + 2sd−2),

where RM ;0
md−1

(md−2 + 2sd−2) is given by (44). Thus, if we define sd−1 = rM , it
holds that sd−1 ∈ Δd−1, where Δd−1 is defined by (46).
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Take now 1 ≤ j ≤ d− 2 and let hj−1 : [−1, 1] → R be a polynomial function
of degree strictly smaller than 2Qj−1. The Gauss-Gegenbauer quadrature rule
leads thus to

Qj−1−1∑
kj−1=0

w
(j)
kj−1

(
sinϑ

(j)
kj−1

)d−j

hj−1

(
cosϑ

(j)
kj−1

)
=

Qj−1−1∑
kj−1=0

ω
(j)
kj−1

hj−1

(
t
(j)
kj−1

)

=

∫ 1

−1

hj−1 (t) dt. (59)

Then, for 0 ≤ mj−1 ≤ (Qj−1 − 1) and sj−1 ∈ Z ∩ [−mj−1/2, Qj−1 −mj−1) ,
(59) holds with

hj−1 (t) =
(
1− t2

)(mj+sj)
C
(mj+

d−j
2 )

mj−1−mj
(t)C

(mj+2sj+
d−j
2 )

mj−1+2sj−1−(mj+2sj)
(t) ,

a polynomial of degree 2 (mj−1 + sj−1) < 2Qj−1. Hence, from the orthogonality
of the Gegenbauer polynomials (cf. (8)), it follows that

IQj−1
mj−1,mj

(mj−1 + 2sj−1,mj)

=

∫ 1

−1

C
(mj+

d−j
2 )

mj−1−mj
(t)C

(mj+
d−j
2 )

mj−1+2sj−1−mj
(t)
(
1− t2

)mj+
d−j−1

2

=
π21−2(mj+

d−j
2 )Γ (mj−1 +mj + d− j)

(mj−1 −mj)!
(
mj−1 +

d−j
2

)
Γ2
((

mj +
d−j
2

))δ0sj−1
. (60)

Thus, I
Qj−1
mj−1,mj (mj−1 + 2sj−1,mj) is annihilated for sj = 0 and −mj−1/2 ≤

sj−1 ≤ Qj−1 −mj−1, sj−1 �= 0. For any j = 1, . . . , d− 2, aliases a�+s0,m+s exist
for

• sj−1 ∈ Aj−1 and sj ∈ H
(j);0
mj (mj−1 + 2sj−1);

• sj−1 ∈ Bj and sj ∈ H
(j)
mj (mj−1 + 2sj−1),

where H
(j);0
mj (mj−1 + 2sj−1) is given by (43). In other words, for any j =

1, . . . , d− 2, it holds that sj ∈ Δj , where Δj is defined by (45).
Recombining all these results for j = 1, . . . , d yields the fact that the aliases

a�+2s0,m+2s exist for s ∈ ZQ
�,m, where ZQ

�,m is defined by (47), as well as for
s0 ∈ D0 (�) (cf. Part 1), as claimed.

Proof of Theorem 3. Let us fix � ≥ 0 and m ∈ M�, and recall furthermore that

the random variables
{
a�+2s0,m+s, s0 ∈ D0 (�) , s ∈ ZQ

�,m

}
are uncorrelated with

variance C�+2s0 . The variance of ã�,m is, thus, given by

Var (ã�,m) =
∑

s0∈D0(�)

∑
s∈ZQ

�,m

⎛
⎝d−1∏

j=1

h2
mj−1,mj ;jh

2
mj−1+2sj−1,mj+2sj ;j

·
(
IQj−1
mj−1,mj

(mj−1 + 2sj−1,mj + 2sj)
)2)
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·Var
(
a�+2s0,m1+2s1,...,md−1+2sd−1

)
=
∑

s0∈D0(�)

∑
s∈ZQ

�,m

⎛
⎝d−1∏

j=1

h2
mj−1,mj ;jh

2
mj−1+2sj−1,mj+2sj ;j

·
(
IQj−1
mj−1,mj

(mj−1 + 2sj−1,mj + 2sj)
)2)

C�+2s0

=
∑

s0∈D0(�)

V Q
�,′m (�′)C�+2s0 .

Using this result in (51) completes the proof.

Proof of Theorem 4. First of all, let us consider the harmonic coefficient a�,m
and study its aliases, denoted by a�′,m′ , under Condition 2, with Q = Q0 =
. . . = Qd−2 > L0 and M > L0. For any �′ ≥ m′

1 ≥ . . . ≥ m′
d−2, note that

a�′,m′ = a�′,m′
1,...,m

′
d−2,m

′
d−1

= 0, for any m′
d−1 > M > L0.

Thus a�,m1,...,md−2,md−1+2rM = 0 for any r �= 0. Recalling that

a�′,m′
1,...,m

′
d−2,md−1

= 0 for any m′
d−2 ≥ Q > L0,

we obtain that

a�′,m′
1,...,md−2+2sd−2,md−1

= 0 for any sd−2 ≥ Q−md−2.

Using now (60) leads to sd−2 = 0. Reiterating this backward procedure for the
other harmonic numbers m′

j , j = d− 3, . . . , 1 and �′ yields (52).
To prove (53), it suffices to use the band-width in the expansion (11), that

is,

T (x) =

L∑
�=0

∑
m∈M�

ã�,mY�,m (x) .

Using now in the equation above (29), (49), and (52) yields the claimed re-
sult.

Proof of Theorem 5. First, since the power spectrum is band-limited, it holds
that C�+2s0 = 0 for s0 ≥ (Q− �)/2. Furthermore, for 0 ≤ � ≤ Q and m ∈ M�,
if s0 ∈ [−�/2, (Q− �) /2− 1], we obtain that

s1 ∈
[
−m1/2,

�−m1

2
+ s0

]
⊆
[
−m1/2,

Q−m1

2
− 1

]
.

Consequently, simple algebraic manipulations leads to

sj ∈
[
−mj/2,

�−mj

2
+ sj−1

]
⊆
[
−mj/2,

Q−mj

2
− 1

]
,

for any j = 1, . . . , d− 2.
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Thus, it follows that, for sd−2 ∈
[
−md − 2/2, Q−md

2 − 1
]
and Q ≥ M > PL,

RM
md−1

(md−2 + sd−2) = {0}, and, then, r = 0. Then, by using (60) backward
from j = d−2 to j = 1 with any element of the product in (33) yields sj = 0 for

j = 0, . . . , d− 2. It follows that V Q
�,m (�′) = 0 and Var (ã�,m) = C� = Var (a�,m),

as claimed.

8.2. Proofs of the auxiliary results

Proof of Lemma 2. The symmetry of the sampling angles follow the symmetry
of the roots of the Gegenbauer polynomials. Furthermore, note that

sinϑ
(j)
Qj−1−kj−1−1 = sin

(
π − ϑ

(j)
kj−1

)
= sinϑ

(j)
kj−1

.

Then, we have that

ω
(j)
Qj−1−kj−1−1

=
1∫ 1

−1
(1− t2)

d−1−j
dt

∫ 1

−1

(
1− t2

)d−1−j
λQj−1−kj−1−1 (t) dt

=
1∫ 1

−1
(1− t2)

d−1−j
dt

∫ 1

−1

(
1− t2

)d−1−j
r−1∏
i=0,

i �=(Qj−1−kj−1−1)

t− ti
ti − tQj−1−kj−1−1

dt

=
1∫ 1

−1
(1− t2)

d−1−j
dt

∫ 1

−1

(
1− t2

)d−1−j
r−1∏
i=0,

i �=(kj−1)

t− ti
ti − tkj−1

dt

= ω
(j)
kj−1

,

so that w
(j)
kj−1

= w
(j)
Qj−1−kj−1−1, as claimed.

Proof of Lemma 3. First of all, note that this result for d = 2, involving thus
Legendre polynomials, has been already claimed in [LN97, Theorem 2.1].

As far as d > 2 is concerned, let us preliminarily recall that, for t ∈ [−1, 1],

C
(α)
n (−t) = (−1)

n
C

(α)
n (t) (see, for example, [Sze75, Formula 4.7.4]). Thus,

simple trigonometric identities yield

Gj (π − ψ) = C
(mj+

d−j
2 )

mj−1−mj
(cos (π − ψ))C

(m′
j+

d−j
2 )

m′
j−1−m′

j
(cos (π − ψ)) sin (π − ψ)

d−j

= C
(mj+

d−j
2 )

mj−1−mj
(− cosψ)C

(m′
j+

d−j
2 )

m′
j−1−m′

j
(− cosψ) (sinψ)

d−j

= (−1)
mj−1+m′

j−1−mj−m′
j C

(mj+
d−j
2 )

mj−1−mj
(cosψ)

· C(m′
j+

d−j
2 )

m′
j−1−m′

j
(cosψ)

(
sinC

(m′
j+

d−j
2 )

m′
j−1−m′

j

)d−j

= (−1)
mj−1+m′

j−1−mj−m′
j Gj (ψ) ,
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as claimed.

In order to prove (27), consider initially only even values of Q. Hence, by
means of Lemma 2, we have that

Q−1∑
k=0

wkGj (ψk) =

[Q/2]∑
k=0

(wkGj (ψk) + wQ−k−1Gj (ψQ−k−1))

=

[Q/2]∑
k=0

wk (Gj (ψk) +Gj (π − ψk))

=

[Q/2]∑
k=0

wk

(
Gj (ψk) + (−1)

2c+1
Gj (ψk)

)
= 0.

Moreover, if Q is odd, since sampling points have to be symmetric with respect
to π/2, the additional point with respect to the previous case has to coincide
with π/2. Thus G (π/2) = 0 and (27) holds, as claimed.

Proof of Corollary 1. This proof follows directly from the proof of Theorem 2–
Part 2. Indeed, if M ≥ Q, it follows that r = 0. Then, combining (58), (59) and
(60) yields the claimed result.
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timal designs for regression with spherical data. arXiv, 2018.
MR3910487

[DLM13] C. Durastanti, X. Lan, and D. Marinucci. Needlet-whittle estimates
on the unit sphere. Electron. J. Stat., 7:597–646, 2013. MR3035267

[DLM14] C. Durastanti, X. Lan, and D. Marinucci. Gaussian semipara-
metric estimates on the unit sphere. Bernoulli, 20:28–77, 2014.
MR3160573

[DMP05] H. Dette, V. B. Melas, and A. Pepelyshev. Optimal design for
three-dimensional shape analysis with spherical harmonic descrip-
tors. Ann. Statist., 33:2758–2788, 2005. MR2253101

[Dur16] C. Durastanti. Adaptive global thresholding on the sphere. J. Mul-
tivariate Anal., 151:110–132, 2016. MR3545280

[ESM14] K. T. Elgindy and K. A. Smith-Miles. Optimal Gegenbauer quadra-
ture over arbitrary integration nodes. J. Comput. Appl. Math.,
242:82–106, 2014. MR2997432

[GJ11] P. Goos and B. Jones. Optimal design of experiments: a case study
approach. Wiley, 2011. MR2849558

[HCK+15] A. P. Hosseinbor, M. K. Chung, C. G. Koay, S. M. Schaefer, C.
M. van Reekum, L. P. Schmitz, M. Sutterer, A. L. Alexander, and
R. J. Davidson. 4D hyperspherical harmonic (hyperspharm) rep-
resentation of surface anatomy: a holistic treatment of multiple
disconnected anatomical structures. Med. Image Anal., 22:89–101,
2015.

[HCW+13] A. P. Hosseinbor, M. K. Chung, Y. C. Wu, A. L. Alexander, and
B. B. Bendlin. A 4D hyperspherical interpretation of q-space. Med.
Image. Comput. Comput. Assist. Interv., 16 (Pt.3):501–509, 2013.

[JN11] B. Jones and C. J. Nachtsheim. Efficient designs with minimal
aliasing. Technometrics, 53:62–71, 2011. MR2791947

[Kie74] J. Kiefer. General equivalence theory for optimum designs (approx-
imate theory). Ann. Statist., 2:849–879, 1974. MR0356386

[LM12] B. Leistedt and J. D. McEwen. Exact wavelets on the ball. IEEE
Trans. Sig. Proc., 60, 2012. MR3006417

[LN97] T.-H. Li and G. R. North. Aliasing effects and sampling theorems

http://www.ams.org/mathscinet-getitem?mr=3857854
http://www.ams.org/mathscinet-getitem?mr=1277214
http://www.ams.org/mathscinet-getitem?mr=3910487
http://www.ams.org/mathscinet-getitem?mr=3035267
http://www.ams.org/mathscinet-getitem?mr=3160573
http://www.ams.org/mathscinet-getitem?mr=2253101
http://www.ams.org/mathscinet-getitem?mr=3545280
http://www.ams.org/mathscinet-getitem?mr=2997432
http://www.ams.org/mathscinet-getitem?mr=2849558
http://www.ams.org/mathscinet-getitem?mr=2791947
http://www.ams.org/mathscinet-getitem?mr=0356386
http://www.ams.org/mathscinet-getitem?mr=3006417


Aliasing effects for random fields over Sd 3335

of spherical random fields when sampled on a finite grid. Ann. Inst.
Statist. Math., 49(2):341–354, 1997. MR1463311

[LS15] A. Lang and C. Schwab. Isotropic gaussian random fields on
the sphere: Regularity, fast simulation and stochastic partial
differential equations. Ann. Appl. Probab., 25:3047–3094, 2015.
MR3404631
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