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Abstract: In the multiple testing problem with independent tests, the
classical linear step-up procedure controls the false discovery rate (FDR)
at level π0α, where π0 is the proportion of true null hypotheses and α is the
target FDR level. Adaptive procedures can improve power by incorporating
estimates of π0, which typically rely on a tuning parameter. Fixed adaptive
procedures set their tuning parameters before seeing the data and can be
shown to control the FDR in finite samples. We develop theoretical results
for dynamic adaptive procedures whose tuning parameters are determined
by the data. We show that, if the tuning parameter is chosen according to a
stopping time rule, the corresponding dynamic adaptive procedure controls
the FDR in finite samples. Examples include the recently proposed right-
boundary procedure and the widely used lowest-slope procedure, among
others. Simulation results show that the right-boundary procedure is more
powerful than other dynamic adaptive procedures under independence and
mild dependence conditions. The right-boundary procedure is implemented
in the Bioconductor R package calm.
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1. Introduction

Powerful modern computers have introduced large data sets to diverse fields
of research, and testing of hundreds or even thousands of hypotheses simulta-
neously has become commonplace in statistical applications such as genetics,
neuroscience, and astronomy. Since its inception in Benjamini and Hochberg
[2], the false discovery rate (FDR), the expected proportion of false positives,
has been widely adopted as an error measure for such large-scale problems.
Much research effort has been made to improve Benjamini and Hochberg’s ini-
tial method, in particular developing efficient estimators of the FDR that lead to
powerful procedures which maintain FDR control. In this paper, we provide the
proof of finite sample FDR control for a large class of data-adaptive procedures.
First, we briefly review the literature.

Consider the classical problem of testing m independent simultaneous null
hypotheses, of which m0 are true and m1 = m − m0 are false. Denote the
associated p-values by p1, p2, ..., pm and the ordered p-values by p(1) ≤ · · · ≤
p(m). For t ∈ [0, 1], define the following empirical processes [19]:

V (t) = #{true null pi : pi ≤ t},
S(t) = #{false null pi : pi ≤ t},
R(t) = V (t) + S(t).

Then the FDR at a p-value cut-off t ∈ (0, 1] is defined as

FDR(t) = E

[
V (t)

R(t) ∨ 1

]
.

For a fixed FDR threshold α, Benjamini and Hochberg [2] proposed a linear
step-up FDR controlling procedure (the BH procedure) which sets the p-value
cut off at p(k), where k = max{i : p(i) ≤ iα/m}. The procedure has been
shown to control the FDR conservatively at level π0α under independence, where
π0 = m0/m is the proportion of true nulls [5]. To tighten the FDR control, we
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could use the adaptive procedure that applies the BH procedure at the threshold
of α/π̂0, where π̂0 is preferably a conservative estimate of π0.

Instead of finding a rejection region to control the FDR, Storey [18] proposed
to estimate the FDR for a fixed rejection region. When R(t) > 0 and under
the usual assumptions that true null p-values are independent and uniformly
distributed on (0, 1), a natural estimator for FDR(t) arises as

F̂DR(t) =
Ê[V (t)]

R(t)
=

mπ̂0t

R(t)
.

The FDR control and FDR estimation approaches are intricately connected.
With π̂0 = 1, the BH procedure can be viewed as finding the largest p-value
whose FDR estimate is below or equal to α.

For a fixed tuning parameter λ ∈ [0, 1), Storey [18] proposed a widely used
π0-estimator as

π̂0(λ) =
m−R(λ)

(1− λ)m
.

Using π̂0(λ) in F̂DR leads to

F̂DRλ(t) =
mπ̂0(λ)t

R(t) ∨ 1
,

and Liang and Nettleton [15] showed that F̂DRλ(t) is a conservative estimator

of F̂DR(t), i.e.,

E[F̂DRλ(t)] ≥ FDR(t).

To control the FDR in the adaptive procedure, it is a good practice to bound
π̂0 away from zero, and Storey et al. [19] proposed an asymptotically equivalent
estimator:

π̂∗
0(λ) =

m−R(λ) + 1

(1− λ)m
.

Because π̂∗
0(λ) ≥ π̂0(λ), using π̂∗

0(λ) in F̂DR leads to conservative estimation of
the FDR. On the other hand, Storey et al. [19] showed that the adaptive pro-
cedure with π̂∗

0(λ) controls the FDR. Furthermore, if we use π0-estimators that
are more conservative than π̂∗

0(λ) in the adaptive procedures, the FDR control
can also be guaranteed [15]. Such examples include the two-stage procedure of
Benjamini et al. [4] and the one-stage and two-stage procedures of Blanchard
and Roquain [6]. We will refer to the adaptive procedures that use fixed λ pa-
rameters as fixed adaptive procedures. In summary, it is well established in the
literature that for fixed adaptive procedures, conservative FDR estimation and
FDR control are closely related.

In practice, the selection of λ amounts to a trade-off between the bias and vari-
ance of π̂∗

0(λ) and should depend on the data at hand. We will refer to the adap-
tive procedures that use data to select λ as the dynamic adaptive procedures.
Interestingly, Liang and Nettleton [15] showed that if λ is chosen according to
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a certain stopping time rule, then conservative π0 and FDR estimation can still
be guaranteed. Examples include the lowest-slope procedure of Benjamini and
Hochberg [3] and the right-boundary procedure of Liang and Nettleton [15]. In
spite of their conservative estimation, it is unclear whether such procedures will
still maintain FDR control. Recently, Heesen and Janssen [12] have proposed a
class of weighted Storey π0-estimators with data-dependent weights and showed
that the corresponding dynamic adaptive procedures control the FDR in finite
samples. However, the weight measurability condition required by Heesen and
Janssen [12] is not compatible with the stopping time condition required in the
lowest-slope and right-boundary procedures, for which a proof of FDR control
remains elusive.

In this paper, we strive to prove the FDR control for a large class of dynamic
adaptive procedures, which include the right-boundary and lowest-slope proce-
dures as special cases. The lowest-slope procedure is historically important in
the field of multiple testing and especially in the FDR literature. The lowest-
slope π0-estimator was first proposed in Hochberg and Benjamini [13] to control
familywise error rate (FWER), and its idea can be traced back to Schweder
and Spjøtvoll [17]. According to Benjamini [1], Benjamini and Hochberg at-
tempted but could not show that the least-slope procedure controls the FDR
and presented the non-adaptive BH procedure in Benjamini and Hochberg [2] as
a result. As the earliest adaptive FDR procedure, the lowest-slope procedure is
widely used, but its control of the FDR has not been theoretically established.

We organize the rest of the paper as follows. In Section 2, we show finite sam-
ple FDR control for a very general class of dynamic adaptive procedures and
give specific examples of possible λ selection rules. In Section 3, we conduct sim-
ulation studies to demonstrate the advantages of dynamic adaptive procedures.
Finally, we discuss the issues of identifiability, dependence, and discrete p-values,
and conclude Section 4. Technical proofs are postponed until Appendix A.

2. Dynamic adaptive procedures

Throughout this paper, we will assume that the true null p-values are indepen-
dent and identically distributed as Unif(0, 1) random variables, and are indepen-
dent of the false null p-values. Under this model, arbitrary dependence is allowed
among the false null p-values. This is the same condition adopted by Benjamini
and Hochberg [2], Storey et al. [19], and Liang and Nettleton [15], who call it
the null independence model. Notice that under this model, the number of true
nulls m0 is fixed. A more general model with possibly random m0 is termed as
the basic independence model by Heesen and Janssen [11]; note that results in
the fixed m0 model can be easily extended to the random case by conditioning
on m0 and integrating. We begin by presenting our main theoretical result.

2.1. FDR control

In this section, we will show the control of the FDR for the same class of stopping
time rules used by Liang and Nettleton [15] to establish the conservative FDR
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estimation. Similar as in Heesen and Janssen [11], for 0 < κ < 1, we divide the
unit interval into a rejection region [0, κ] and an estimation region [κ, 1]. We will
first use the p-values in the estimation region to determine the tuning parameter
λ and the corresponding π̂∗

0(λ), then we decide the p-value rejection threshold
in the rejection region. It may appear restrictive to limit the rejection threshold
to be no greater than κ. In practice, we can set κ not too small, say κ = α,
and it will be unlikely that the above restriction will affect the final rejection
threshold. We refer readers to Remark 1 of Storey et al. [19] for a more detailed
justification.

We require the definition of the (forward) p-value filtration {Ft}t∈[κ,1), where
Ft = σ(R(s) : κ < s ≤ t). The σ-algebra Ft can be thought of as the information
given by all the p-values located in the interval (κ, t] plus the number of p-values
no larger than κ. The λ selection rules considered are those such that λ is a
stopping time with respect to {Ft}t∈[κ,1).

We define the following FDR estimator

F̂DR
∗
λ(t) =

{
mπ̂∗

0 (λ)t
R(t)∨1 t ≤ κ,

1 t > κ.
(1)

Furthermore, for any function F : [0, 1] → R, define the α-level thresholding
functional by

tα(F ) = sup{0 ≤ t ≤ 1 : F (t) ≤ α}.

Then tα(F̂DR
∗
λ) is the rejection threshold for the dynamic adaptive procedure

based on λ.
As our main theoretical result, we show that the dynamic adaptive procedures

control the FDR.

Theorem 1. Under the null independence model, suppose λ is a stopping time
with respect to {Ft}t∈[κ,1), and satisfies 0 < κ ≤ λ < 1 almost surely for a fixed
constant κ. Then

FDR{tα(F̂DR
∗
λ)} ≤ α.

The proof of Theorem 1 and its required lemmas are presented in the Ap-
pendix A. Briefly, the proof of Theorem 1 relies heavily on Lemma 1, whose
proof follows that of Proposition 1 of Heesen and Janssen [12]. We then con-
struct a supermartingale (Lemma 3) and invoke the optional stopping theorem
to bound the FDR below α.

The stopping time rules required in Theorem 1 form a very general class,
but it is not clear how they should be constructed in practice. For illustration
purpose, we will analyze existing stopping time rules in the literature and show
that they can be easily modified to satisfy the conditions of Theorem 1. Through
this analysis, we will also draw insight and motivate new rules.

2.2. Histogram-based λ selection rules

As an example of the stopping time λ selection rule, we begin by formally
defining the right-boundary procedure [15]. For k ≥ 1, consider a fixed and
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finite λ candidate set Λ = {λ1, . . . , λk} that divides the interval (0, 1] into k+1
bins with boundaries at λ0 ≡ 0 < λ1 < . . . < λk < λk+1 ≡ 1 such that the ith
bin is (λi−1, λi] for i = 1, . . . , k + 1. This partition resembles the construction
of a histogram of the p-values. Then the right-boundary procedure chooses the
tuning parameter λ = λj , where

j = min{1 ≤ i ≤ k : π̂∗
0(λi) ≥ π̂∗

0(λi−1)} (2)

if this set is non-empty, and otherwise chooses j = k. That is, we choose λ as
the right boundary of the first bin where the π0 estimate at its right boundary
is larger or equal to that at its left boundary. To ensure λ ≥ κ, we can simply
set λ1 = κ, or we can require that λi ≥ κ in addition to the condition π̂∗

0(λi) ≥
π̂∗
0(λi−1) in (2). Then, it is clear that λ is a stopping time with respect to

{Ft}t∈[κ,1). While in this definition we define a stopping rule using the more
conservative estimator π̂∗

0(λ), λ is still a stopping time if we substitute π̂0(λ)
in (2), as in the original right boundary procedure of [15]. Such a substitution
will only affect the λ selection rule, and Theorem 1 will still give finite sample
control of the FDR as long as the thresholding procedure uses the estimator

F̂DR
∗
λ(t) defined in (1).

It is straightforward to show that the right-boundary procedure chooses the
first bin whose p-value density is less or equal to its tail average. Typically,
the overall p-value density shows a decreasing trend, and we want to choose
a λ not too small (large) to avoid high bias (variance). By design, the right-
boundary procedure is likely to stop at a bin when the expected reduction in
bias is comparable to the variation of π̂∗

0(λ). In summary, the main idea behind
the right-boundary procedure is to identify a λ that would balance the bias and
variance of the corresponding π0-estimator.

The smaller the number of λ candidates, the less sensitive the right-boundary
procedure is to the change in p-value density. In the extreme case, if k = 1, then
the right-boundary procedure reduces to choosing a fixed λ = λ1. On the other
hand, if we set k too large, then we risk stopping too early and choosing a
small λ and its associated high positive bias in π0 estimation. This is because
at each λ candidate, there is a positive probability the procedure could stop,
and checking the stopping condition too frequently will likely lead to early stop.
Past simulation studies [15, 16] suggest that an equal-distance 20-bin setup is a
reasonable choice for the number of tests m in the thousands.

2.3. Quantile-based λ selection rules

The histogram-based rules require the explicit specification of the λ candidates
beforehand. Alternatively, we can let the data to determine the candidates by
choosing λ among p-value quantiles. For example, Benjamini et al. [4] proposed
the k-quantile procedure which selects λ = p(k) for some prespecified 1 ≤ k ≤ m.
They recommended that k = �m

2 	 such that λ is approximately the median of
the p-values.
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Benjamini and Hochberg [3] proposed the lowest-slope procedure to control
the FDR, which chooses the tuning parameter λ = p(j), where

j = min{2 ≤ i ≤ m : π̂∗
0(p(i)) > π̂∗

0(p(i−1))}. (3)

Comparing to (2), it is easy to see that the right-boundary and lowest-slope
procedures are essentially identical except that they use different λ candidate
sets. Similar as our minor modification to the right-boundary procedure so that
λ ≥ κ, we can require that p(i) ≥ κ in addition to the condition π̂∗

0(p(i)) >
π̂∗
0(p(i−1)) in (3).

Because the lowest-slope procedure checks its stopping condition at every
realized p-value, it tends to stop too early and suffer high positive bias in esti-
mating π0. Not surprisingly, simulation studies in the literature have shown that
the lowest-slope procedure is one of the most conservative and least powerful
adaptive procedures, for example, see [15] and [16], among many others. In a
sense, the lowest-slope procedure is penalized by the same multiplicity it tries
to address. This undesirable result can be easily remedied by considering fewer
stopping points, similar in spirit to choosing a reasonable number of bins for
the right-boundary procedure. We analogously define a right-boundary quantile
procedure which applies the original right-boundary procedure to an arbitrary
grid of fixed quantiles of the p-value distribution. In the simulations to follow
we will show that the right-boundary and right-boundary quantile procedures
provide the best performance among dynamic adaptive procedures known to
control the FDR in finite samples.

3. Simulations

We conducted simulation studies to evaluate the FDR control, power and m0

estimation properties of the dynamic adaptive procedures in the literature. The
candidate procedures are

– BH, the original step-up procedure of Benjamini and Hochberg [2];
– ORC, the oracle procedure by applying the BH procedure at level α/π0,

assuming known π0;
– RB20, the right-boundary procedure with Λ = {0.05, 0.1, ..., 0.95};
– LSL, the modified lowest-slope procedure;
– RB20q, the right-boundary procedure that considers the 20 evenly spaced

p-value quantiles. More specifically, Λ = {q0.05, q0.1, ..., q0.95} where qγ
denote the γ quantile of the p-values;

– HJW, the weight shifting method of Heesen and Janssen [12].

The simulation settings are similar to those in Liang and Nettleton [15]. When
true null p-values are independent, all the procedures considered are established
to control the FDR in finite samples at level α. BH controls the FDR conser-
vatively at level π0α. The finite sample control of RB20, LSL and RB20q all
follow from Theorem 1. HJW is a particular example from a class of dynamic
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adaptive procedures shown to control the FDR[12]. We implement HJW as de-
scribed in Section 5 of [12], with fixed tuning parameters ε = 0.05, k = 6, and
(λi)

k
i=0 = (0.5, 0.6, 0.7, 0.8, 0.9, 0.95).
Simulations are based on J = 10000 replications, and the nominal FDR level

is α = 0.05. For each replication, m = 10000 one-sided tests of H0 : μ = 0 are
performed, with standard normal true null statistics, and false null statistics
having N(μ, 1) distribution. Effect sizes μ are set to 0.5, 1, 2 and 4. For effect
sizes larger than 4, the false null p-values are well separated from the true null
p-values, and all procedures achieve full power relative to ORC.

3.1. Independent tests

Simulation results for independent test statistics are reported in Figure 1. The
first row plots average realized FDR, the second the power relative to ORC, and
the third the log mean-squared error (MSE) of m̂0,j = π̂0,jm, where {π̂0,j}Jj=1

are the π0 estimates from each of the J replications, and MSE is defined as

MSE =
1

J

J∑
j=1

(m̂0,j −m0)
2.

All procedures control the FDR below the nominal level 0.05 and see an increase
in the FDR and relative power as the signal strength μ increases. RB20 and RB20q

provide the greatest relative power in all settings, and this is because they have
the smallest MSE of m̂0. When the signal strength is larger, and the optimal λ
may be smaller than λ1 = 0.05, the minimal possible value from RB20, in which
case the quantile-based bins of RB20q can provide a marginal improvement over
RB20 by considering smaller stopping points, similar to the RB20* procedure in
Liang and Nettleton [15]. HJW, although similar in spirit to RB20, cannot achieve
the same power performance since it restricts its estimation region to [0.5, 1],
and its right-to-left measurability condition forces it to sometimes over-weight
the influence of smaller p-values in the estimation of π0. Since it is known that
ORC controls the FDR at exactly level α [5], all average realized FDR levels
are corrected by the difference between the FDR of ORC and the target FDR
level α.

3.2. Dependent tests

We also performed a simulation study with dependent test statistics. In particu-
lar, statistics have block auto-regressive order 1 correlation structure with block
size 50 and correlation ρ|i−j| between the ith and jth elements in any block,
and correlation coefficient ρ = −0.9. Block structure such as this has been used
by Liang and Nettleton [15], among others, to recreate the varying positive and
negative correlations expected among genes in the same biological pathway. Re-
sults are reported in Figure 2. As above, all procedures control the FDR below
the nominal level 0.05 and increase in the FDR and relative power as the signal
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Fig 1. Simulation results for independent test statistics.

strength increases. RB20 and RB20q remain the best in terms of power. There
is some evidence that all procedures, including ORC, become conservative in the
weak signal case, due to the dependence among the test statistics.

Liang and Nettleton [15] show that, under weak dependence conditions, the
dynamic adaptive procedures working with fixed grids (e.g., the right-boundary
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Fig 2. Simulation results for correlated test statistics, ρ = −0.9.

procedure) provide simultaneously conservative estimation and control of the
FDR asymptotically. For details, see Theorems 5 and 6 of Liang and Nettle-
ton [15]. Such theory explains why the FDR is under control in our dependent
simulation setting. If we limit block sizes to be a constant or below a certain
threshold and let the number of tests (m) increases, the weak dependence con-
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ditions are likely to hold. This is because although tests within the same block
are correlated, we will have more and more independent blocks as m increases.

4. Discussion and conclusions

4.1. Identifiability

All of the results proven in this paper give only conservative control and esti-
mation, rather than exact control or estimation. Benjamini and Yekutieli [5],
among others, have shown that the original BH procedure has the FDR exactly
equal to π0α, but in the adaptive case in which we incorporate an estimate
of π0, identifiability issues manifest themselves, as discussed in Section 3.1 of
Genovese and Wasserman [10].

Under the commonly used two-group model [9] where all p-values are indepen-
dent, with random M0 ∼ BIN(m,π0), and when λ is selected using a stopping
time rule from a fixed candidate set Λ, it can be shown that

FDR(tα(F̂DR
∗
λ)) ≤ α · sup

λ∈Λ
P (ith null hypothesis is true | pi > λ).

There may in fact be no λ for which P (ith null hypothesis is true | pi > λ) = 1,
a result of the false null p-value distribution having a non-zero uniform com-
ponent. This is termed impurity by Genovese and Wasserman [10]. Such pu-
rity issues are the reason that we cannot, without further assumptions on F1,
find an unbiased Storey-type estimator for π0, and can only conclude conser-
vatism.

4.2. Dependence

The results of this paper are proven under the classical null independence model,
but prior FDR control literature has considered estimation and control proper-
ties under dependence assumptions on the true null p-values, in particular, the
positive regression dependence on a subset (PRDS) condition in Benjamini and
Yekutieli [5] and the reverse martingale dependence (RMD) condition in Heesen
and Janssen [11].

Proposition 6.2 of Heesen and Janssen [11] implies that finite sample con-
trol will not hold under every PRDS or RMD model, even for fixed adaptive
procedures like those described by Storey et al. [19]. Nonetheless, it may still
be possible to further limit the class of models or describe an alternative de-
pendence model such that finite sample control can be proven for adaptive or
even dynamic adaptive procedures. In particular, simulation studies in this pa-
per and Liang and Nettleton [15] motivate that finite sample control may hold
under certain types of block or autoregressive dependence.
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4.3. Discrete p-values

As most papers in the FDR literature, we have assumed that the true null
p-values follow Unif(0,1). In many practical applications, discrete p-values are
observed, and we will discuss the homogeneous and heterogeneous discrete cases
separately.

In many applications, the discrete p-values have a set of common support
points, and we call such setting as the homogeneous discrete p-values setting.
For example, in high-throughput genetic experiments, p-values obtained through
permutation tests have a set of identical support points. The common support
provides natural grid candidates, and Liang [14] proposed the discrete right-
boundary procedure that applies the idea of the right-boundary procedure to
this setting and showed its conservative π0 and FDR estimation.

For heterogeneous discrete p-values setting, which is also common in practice,
many methods have been developed, but few have been shown to be powerful and
control the FDR in finite samples. Recently, Döhler et al. [7] proved that several
new procedures control the FDR and demonstrated their power in simulation
studies. Adaptive procedures that incorporate π0 estimates are suggested, but
their control of the FDR has not been established and will be interesting future
work.

4.4. Conclusions

For the adaptive procedures with π̂∗
0(λ) estimator, we show that if λ is a forward

stopping time, then the FDR is controlled. We demonstrated through simulation
that the right-boundary procedure (RB20) and quantile-based right-boundary
procedure (RB20q) outperform the competing dynamic adaptive procedures in
terms of power and estimation accuracy of π0 while maintaining FDR control
at the nominal level. In similar simulation settings in Liang and Nettleton [15],
the right-boundary procedure, with estimator π̂0(λ) and a different candidate
set Λ than RB20, was shown to be more powerful than many other adaptive
procedures, such as λ = 0.5, the median adaptive procedure and the two-stage
procedures of Benjamini et al. [4], and the two-stage procedure of Blanchard and
Roquain [6]. The simulation results thus far show that the right-boundary pro-
cedure is one of the most powerful adaptive procedures that controls the FDR.

Our results strengthen the connection between the FDR estimation approach
and the FDR control approach. With a conservative FDR estimator, we can use
the step-up procedure to find the largest p-value whose FDR estimate is below
the target FDR level and controls the FDR as a result. This connection is the
most evident for fixed adaptive procedures through the work of Storey et al. [19]
and Liang and Nettleton [15]. It is further studied for certain dynamic adaptive
procedures by Heesen and Janssen [11]. We extend this connection to still more
dynamic adaptive procedures in this paper. The FDR estimation approach is
more direct, and conservative FDR estimation much easier to establish than
finite sample control of the FDR. Such insight could be useful in the future to
design and evaluate new FDR controlling procedures.
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Appendix A: Proofs

A.1. Lemmas for Theorem 1

We require the following three lemmas.

Lemma 1. Under the conditions of Theorem 1, the dynamic adaptive procedure
with the stopping time tuning parameter 1 > λ ≥ κ > 0 has

FDR{tα(F̂DR
∗
λ)} ≤ α

κ
E

[
V (κ)

m · π̂∗
0(λ)

]
.

Lemma 1 follows immediately from Proposition 1 of Heesen and Janssen [12].
Although their Proposition 1 is established under the basic independence model,
their proof still works under our null independence model.

Alternatively, Lemma 1 can be viewed as a special case of Lemma 6.1 in
Heesen and Janssen [11] by noting that our stopping time condition satisfies
their condition (A1) and the null independence model is a special case of their
reverse martingale model.

Lemma 2. Suppose X ∼ BIN(n, p). Then

E

[
1

n−X + 1

]
≤ 1

(n+ 1)(1− p)
.

Lemma 2 is given as Lemma 1 in [4].
Similar to the definition of the forward p-value filtration in Section 2.1, define

the forward true null filtration {Gt}t∈[0,1], where

Gt = σ(V (s) : 0 ≤ s ≤ t),

and the σ-algebra generated by the false null p-values,

S = σ(S(t) : 0 ≤ t ≤ 1).

Lemma 3. Define the filtration {Ht}t∈[0,1] by

Ht = σ(Gt,S).

Then the process

M(t) =

{
1− t

m0 − V (t) + 1

}
t∈[0,1]

is a supermartingale with respect to {Ht}t∈[0,1].
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Proof. Note that 0 ≤ M(t) ≤ 1 a.s. for all t ∈ [0, 1], so certainly M(t) is a
collection of integrable random variables. Now fix 0 ≤ s ≤ t. If t = 1, then

E

[
M(t)

∣∣∣∣Hs

]
= 0 ≤ M(s).

Otherwise, s ≤ t < 1, and

E

[
M(t)

∣∣∣∣Hs

]
= E

[
M(t)

∣∣∣∣V (s)

]

= E

[
1− t

m0 − V (t) + 1

∣∣∣∣V (s)

]

= E

[
1− t

(m0 − V (s))− (V (t)− V (s)) + 1

∣∣∣∣V (s)

]
,

where the first equality follows since S is independent of M(t) by null indepen-
dence. Also by null independence, conditional on V (s),

V (t)− V (s) ∼ BIN

(
m0 − V (s),

t− s

1− s

)
.

Thus by Lemma 2,

E

[
M(t)

∣∣∣∣Hs

]
≤ 1− t

(m0 − V (s) + 1)(1− t−s
1−s )

=
1− s

m0 − V (s) + 1

= M(s).

A.2. Proof of Theorem 1

Proof. By Lemma 1, it follows that

FDR{tα(F̂DR
∗
λ)} ≤ αE

[
V (κ)

κmπ̂∗
0(λ)

]
,

and hence it suffices to show that

E

[
V (κ)

κmπ̂∗
0(λ)

]
≤ 1.

Since m−R(λ) ≥ m0 − V (λ),

E

[
V (κ)

κmπ̂∗
0(λ)

]
= E

[
1− λ

m−R(λ) + 1
· V (κ)

κ

]

≤ E

[
1− λ

m0 − V (λ) + 1
· V (κ)

κ

]
.
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= E

{
V (κ)

κ
· E

[
1− λ

m0 − V (λ) + 1

∣∣∣∣Hκ

]}

≤ E

[
1− κ

m0 − V (κ) + 1
· V (κ)

κ

]
≤ 1− κm0

≤ 1.

The third to last inequality follows from Lemma 3 and the optional stopping
theorem [8]. Note that λ is a stopping time with respect to {Ft}t∈[κ,1), and
thus is also a stopping time with respect to the larger filtration {Ht}t∈[0,1] to
which the supermartingale in Lemma 3 is adapted. The second to last inequality
follows from the binomial argument of Storey et al. [19], Theorem 3 (since κ is
a fixed constant).
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