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Abstract: This paper considers a deconvolution regression problem in a
multivariate setting with anisotropic structure and constructs an estimator
of the function of interest using the hyperbolic wavelet basis. The deconvo-
lution structure assumed is an anisotropic version of the smooth type (either
regular-smooth or super-smooth). The function of interest is assumed to be-
long to a Besov space with anisotropic smoothness. Global performances
of the presented hyperbolic wavelet estimators is measured by obtaining
upper bounds on convergence rates in the ZP-risk with 1 < p < 2 and
1 < p < oo in the regular-smooth and super-smooth cases respectively. The
results are compared and contrasted with existing convergence results in
the literature.
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1. Introduction

This paper considers the deconvolution problem of estimation of f that is ob-
served indirectly in an m-dimensional noisy signal,

dY (z) = g * f(x)dx + edB(z), (1)

where f: T™ — R is defined on the torus, T™ = [0,1]"™. The function f has
anisotropic structure and observed through the convolution operator,

fro@ = [ttt at
Additive noise is present with B(z) denoting a m-dimensional Brownian sheet.
Namely, B(x) is a mean zero Gaussian process with covariance, EB(x)B(y) =
IT%, (il + lyi| = |2 — vi]) /2 and the level of noise in model (1) is governed by
the normalisation factor, e € (0,e~1). Asymptotically the normalisation factor
€ — 0 as n — oo where n represents the sample size.
Deconvolution models such as (1) have examples in econometrics, physics,
astronomy and medical image processing. In particular, an important and inter-
esting application is the recovery of features in images that have been distorted.
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This paper presents new convergence results using the #ZP-risk in the setting
of (1) where the dimension of the problem is arbitrary but fixed and there is
anisotropic structure in f and g.

A similar recent body of work includes the functional deconvolution prob-
lem with anisotropy in [7, 6] and [8] with applications in geophysical data to
invert seismic signals and medical imaging. In that body of work the convolu-
tion structure was only used in one single dimension of the variables and the
anisotropy was apparent in the other dimensions of the functions. The work
presented here allows deconvolution to occur on any subset of the possible di-
mensions with a judicious choice of parameters. Another recent related work is
that of [38]. Their paper considers a multivariate regression deconvolution prob-
lem similar to our context. The focus of their paper is on uniform convergence
of a kernel smoother estimator to construct confidence bands of f. There are
also studies that focus on the estimation of f in the direct setting ((1) without
the convolution operator) in [24, 25] and [4].

This paper examines the convergence rates in the estimation of f in (1) using
the ZP-risk when both f and g have anisotropic smoothness. In particular,
a hyperbolic wavelet deconvolution estimator is constructed and convergence
rates are established. As expected, the results generalise known results in the
literature and the hyperbolic wavelet basis is able to adapt to the anisotropic
structure in both f and g. In particular, it is shown that in the case when the
signal of interest f is in a Besov space with anisotropic smoothness, it can be
recovered with respect to an upper bound on the £P-risk with accuracy up to
extra logarithmic terms,

£2PYs/ (2754t ut1/2) - and (logs_(l—C)/m>7mpS ’YBﬂ;

for the case of regular-smooth and super-smooth convolutions respectively. The
degree of anisotropic smoothness in f is represented with parameter s € R
In the regular-smooth case, the smoothness is evident in the rate with the har-
monic sum vs = (>, s[l)_l. The degree of ill-posedness is represented with
parameter v € R and has a detrimental affect on the rate with the harmonic
mean term, 5, q/9 = MYy11/2- In the super-smooth case, a logarithmic rate of
convergence is attained and controlled by the degree of ill-posedness parameter
B € R, the dimension of the problem m, and a modified smoothness index
s* = s+ 1/p—1/(p A w) where 7 is a Besov space parameter for f (and
p A= min(p,)).

Even in the univariate case with m = 1, wavelet methods have been a pop-
ular choice in deconvolution problems in recent history due to their ability to
spatially adapt to functions and capture transient sharp bumps and disconti-
nuities (see [17, 43, 19] and [23] and references therein). Various extensions in
the univariate case have arisen from this earlier work with multichannel meth-
ods, generalised inverse problem operators and functional deconvolution given
in [15, 1, 36, 33, 34, 35] and [9]. Relaxing the noise structure to have strong
correlations was studied in [44], and both a multichannel deconvolution with
correlated noise in [29].
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In the case of direct observations without the convolution structure, the mul-
tivariate case has received attention with various multivariate wavelets being
proposed. In the case where f has an isotropic structure with similar behaviour
in all dimension directions, the wavelet-tensor methods of [30] are favoured
since they preserve the multi-resolution analysis behaviour of standard wavelets.
However, in the multivariate case of anisotropic functions, with behaviour being
different in different dimension directions, the wavelet-tensor basis is no longer
optimal. The anisotropic or hyperbolic wavelet basis (see [13]) is better suited
in this scenario since it achieves a superior rate of convergence adapting to the
varying smoothness in different directions while the wavelet-tensor isotropic ba-
sis is restricted by the dimensional direction that has the coarsest smoothness
(see [32] and [31]). Recently, [3] and [4] studied the hyperbolic wavelet basis in
depth, with the latter comparing and contrasting the isotropic and anisotropic
wavelet bases using the maxiset performance criterion. The anisotropic wavelet
basis is better suited being able to capture a large class of Besov style spaces with
anisotropy while the isotropic basis is unable to capture the same anisotropic
Besov spaces. Applications of the hyperbolic wavelets have received recent at-
tention in ultrasound imaging and texture analysis in [41, 39, 2, 12] and[20].
A convolution model that uses a hyperbolic wavelet estimation technique is
considered in [40] but not with the same structure as considered in this paper.

1.1. Outline of the article

The paper is organised as follows. Section 2 contains more detailed information
and discussion about the context of the paper and related situations already
present in the literature. It also contains some preliminary information on the
types of smooth convolution, a wavelet basis of interest and its extension to
the anisotropic hyperbolic basis, and definitions of related Besov spaces on the
torus T™. The construction of the wavelet thresholding estimators is given in
Section 3. The upper bound results are shown in Section 4 over those Besov
spaces and for the ZP-risk with 1 < p < 2 when the convolution type is regular-
smooth and 1 < p < oo when the convolution type is super-smooth. Conclusions
and discussion are given in Section 5 with the proofs of the theoretical results
and some required auxiliary results given in Section 6.

2. Preliminaries
2.1. Notation

For convenience to describe the multi-resolution levels in the wavelet expansion
and the decay in Fourier coefficients, the multi-index notation is useful. A multi-
index is an ordered m-tuple of non-negative integers. If @ = (a1, o, ..., ay,) €
Z7 is a multi-index, define |a| = Y7, a;. If A is a set, |A| denotes the
cardinality or number of elements in the set. For generic real valued vectors

x = (x1,22,...,Tm) € R™, then &* = [[I-,z0. If € R, then |z] =
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l{z>0p — l{z<0}, the absolute value of = (where 14 denotes the indicator
function).

The inner product operator (-, -) is defined for both vectors and functions.
For z,y € R™, (z,y) = > ., x;y;. For functions f,g € L*(T™), (f,g9) =
me f (w)@ dx. Note throughout the paper, inequalities applied to vectors
apply component-wise. That is, for x € R™, y € R™ and ¢ € R, the statements
x > yand x > cimply that x; > y; and x; > cforalli =1,2,...,m; and similar
definitions apply for the other types of inequality statements. The statement
A =< B means there exists constants C7,Cy > 0 such that C1A < B < C)A.

2.2. Convolution types

The types of convolution in this work are restricted to the smooth type, defined
in the Fourier domain. Define the Fourier transform and operator on the space
T™ for a function f: T™ — R,

Fflw) = fo ::/ efzﬂi“wa(w) dz.
In the univariate case, the smooth type convolution functions are of the form,

lgw| = |w|7”exp{—0|w|ﬁ}7 where 6 > 0,v > 0.

The super-smooth case requires # > 0 and the exponential decay dominates
g(w). In the regular-smooth or polynomial smooth case, # = 0 and the Fourier
decay of the convolution function is at a polynomial rate in v. These are the
typical cases considered [19], [23] and references therein.

The smoothness assumption in multivariate context of convolution is much
less studied. An extension from m =1 to m = 2 is given by [16] with,

[gw| =< (lw1] + Jwe|)™  where v > 0.

The most general assumption of the regular-smooth type appears in [37]
which broadly defines the decay in terms of

(gw)il = Z Caw®,

aeN™ |a|<M

where C,, are constants with C,, # 0 for at least one multi-index c.

In this work, the focus is on the case of anisotropy where the behaviour is
different in the co-ordinate directions only. Thus motivates the following as-
sumption of smooth decay,

m
l9w| = H(l + |wi|?) 7"/ exp {—0;|w;

i=1

Bi} . (2)

The definition in (2) generalises the assumptions made in earlier univariate
cases such as [29, 36] and [18]. It is still not as general as the multi-index case for
the regular-smooth decay presented in [37] but does include the super-smooth
case when components of @ > 0. Note that the regular smooth decay in (2)
takes the form similar to [19] to avoid singularity at zero.



1698 J.R. Wishart

2.3. Anisotropic multivariate wavelet bases

For the context of univariate deconvolution, a pragmatic choice of basis functions
is the standard periodised Meyer wavelet basis (¢,1) defined on T. The Meyer
basis is band-limited allowing a simple mathematical formulation in the Fourier
domain to simplify the convolution structure (cf. [23]). This approach will be
adopted here for the multivariate framework.

Start with the standard periodised Meyer wavelet basis (c.f. [23]). A periodic
function f: T — R has wavelet expansions,

291 290 1 291
F@) =Y babin(@) = D aiondion(@) + D> > bistk(e),
JEZ k=0 k=0 §>jo k=0

known as the homogeneous and inhomogeneous expansion respectively. The co-
efficients, b;  are given by the inner product,

bk = (s i) = / f (@) 050 da,

with aj, » defined similarly in terms of ¢; . The translated and dilated wavelet
functions are defined, ¢, 1 (x) = 2//2¢(27z — k) with an equivalent definition for
®jok-

An anisotropic wavelet basis allows different scale levels in each dimension and
are computed as a tensor product of the univariate inhomogeneous wavelet ba-

sis, {quo,m@bj,k;j > jo,k=0,1,...,2 — 1}. To generalise, each dimension can
start its expansion at a possibly different coarse jy scale. To this end, define a
vector of coarse scales j, = (Jo,1,0,25---»Jo,m) € 7. Then the inhomogeneous

hyperbolic wavelet basis is defined over a set of scales 5 € J* and locations
k € K; with,

W) (p) = o P@), =0
- {wm, if i = 1.

m
(@) = 22 [T (200, — k)
=1
I=1{0,1}".
V=0 ={3=(rdo--rJm)i je = jiie + jo jy € N,i €I}
Kj = {k = (k1,ka, ... km); ke € {0,1,...,27 —1}}.
Then a hyperbolic wavelet expansion of a function f : T — R takes the form,
F@) =323 > atsu
i€l jeJi kekK,

where now the wavelet coefficients are defined by an equivalent inner product,

b= i) = [ F@)if (@) da.
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In the forthcoming presentation, to ease the notation in places, A = (i, j, k) will
denote a triplet index and ¥\ = 5 ;.

2.4. Besov spaces

The classical anisotropic Besov spaces are defined in [10] and [42]. It is defined

via the iterated difference operator, A% (z) = Z?io (kj‘)(—l)kf_jf(ac + jtey)
where e, = (0,...,0,1,0,...,0) € R™ is the unit vector in variable ¢. Then the

resulting classical anisotropic Besov space can be defined,

»S i 1 (W dh 1/T
B (R )={f€$ (R )zz(/o N fﬁ) <oo}.

i=1
where [-] is the ceiling function. As is standard in the literature, the above Besov
space can be extended to include the case of 7 = oo and/or ¢ = co with an
appropriate modification to use the sup norm. The interested reader is referred
to [10], [42] and references therein for more treatment and links between Besov
spaces and other spaces such as the anisotropic Hoélder and Sobolev spaces.

As is common in wavelet methodology, wavelets characterise functions in
Besov spaces by their wavelet coefficients and their decay. For our purposes,
define the equivalent anisotropic Besov spaces introduced by [21],

Definition 1. A function f: T™ — R with anisotropic wavelet expansion f =
> ik U5 V5 k belongs to By =By (T™) with 1 < < oo, if and only if,

1/q
1

. o1l 1 ;
ZZQq((g,s>+\J|(2 ,,r))( Z |b;7k|7r)q/7r = ||f||Bfr~q < Q0.

i€l §>0 keK;

The equivalence of the two spaces and the link to the hyperbolic wavelet basis
is established in [21].

2.5. Unconditional bases and Temlyakov’s property

Important properties of univariate wavelets and their multivariate extensions
were investigated and analysed in the 90s and the 2000s, see for example the
results in [14, 17, 22, 26] and [27]. Two such properties that were instrumental in
deriving the convergence rate results were the unconditional basis property and
the Temlyakov property. The unconditional basis property and its consequences
below will be used later in the proofs.

A basis {e;,i € N} of a space X is said to be an unconditional basis of X
if for every € X there exists a unique set of scalars {a,},y such that x =
ZneN anén. The periodised Meyer wavelets are known to be unconditional bases
for £P(T) (see Theorem 9.1.4 of [11]) and therefore from Lemma 2.1 and Lemma
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2.2 of [13] it follows that the hyperbolic Meyer wavelet basis {5} in Section 2.3
are unconditional bases for .ZP(T™) and satisfy the Littlewood-Paley condition
below,

1> extoally < 10 [exval )2, 1< p<oo. (3)
A A

An unconditional basis also has the shrinkage property that if a set of scalars is
dominated by another set (|6;| < |0}]) then there exists an absolute constant C'
such that,

1Y 6xvally < CID_ 03¢l (4)
A A

The other important property is the Temlyakov property that is not used in
our scenario. The Temlyakov property assumes that a basis {e;, 7 € N} satisfies,

/. (Dei(mn?)mdwx | Sle@)r

The unconditional basis and Temlyakov’s property enabled the convergence
rate results to be easily extended from the .#2-loss to the general .#P-loss for
1 < p < 0. In particular, the Temlyakov property was the instrumental tool
to ensure the results extend to 2 < p < oo, see for example [26] and [27].
In those papers, the focus is on univariate wavelet bases and the associated
wavelet-tensor basis. The wavelet-tensor basis extends the univariate basis to a
multivariate basis via a tensor product albeit with the same single parameter
j € Z used in the tensor. One of the major benefits of the wavelet-tensor basis is
that it still retains the Temlyakov property. However, the wavelet-tensor basis
is unable to optimally reconstruct functions with anisotropic smoothness while
the hyperbolic wavelet basis can (see [4]). On the other hand, the hyperbolic
wavelet basis does not satisfy the Temlyakov property in general. Consequently,
the results presented here are constrained to 1 < p < 2 for the regular-smooth
scenario as it uses the inhomogeneous hyperbolic wavelet expansion. The super-
smooth scenario is able to cover the full spectrum 1 < p < oo in the rate results
since it uses a raw hyperbolic projection expansion instead of the inhomogeneous
wavelet expansion and has no need for the Temlyakov property.

3. Estimation

The estimation of f is tempered with a hard-threshold inhomogeneous expansion
or raw projection expansion depending on the severity of the decay. In the case
of super-smooth convolution, only a linear projection expansion is considered
since the decay in the Fourier domain is exponentially fast. In the case of regular
smooth convolution, an inhomogeneous non-linear expansion is used.

To simplify problem, the convolution operator is reduced to a simple product
of coefficients when viewed in the Fourier domain. Define the Fourier basis
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functions, e, (x) = 62’”4“"%7 with w € Z™ and € R™. Then the noisy model
can be computed in the Fourier domain,

.
o= [T Y (@) = guf + e (5)
T

where z, = [r e~ e B(z) and f., = (f,en) = Jpa fz)e 27" g and
9w = (9, €w). From the noisy Fourier coefficients y,,, the wavelet coefficients can
be estimated with,

%
J.k

D UV /00 =V te Y 2V /00 = Ukt Brw,
web? web?

T = / e_QWi“’Tw@[J)\(:E) dex,
where the sums are finite over the sets defined below,

ID);- = {w:(wl,wg,...,wm) GZm:wgéD;i,£:1,2,...,m},

j+1 o
23 , if 1 =0;

wGZ:%jS\w|§2j;2}, ifi=1.

; weZ:|w <
D; =

3.1. Non-linear and projection estimators

In the case of regular-smooth convolution, the non-linear estimator fR is a hard-
thresholded inhomogeneous wavelet expansion with,

Fr@) =3 3" 3 bk (@), (6)

icl jeJie keK;

where the index set depends on the rate of decay in the regular-smooth convo-
lution function with,

Jte = {j € J;O 2 {7,2v+1) < |—2log, {m/logs—l}J = C:L} , (7
J— Y3
o bj”“]l{\b;':IZR
boundary for truncation, T}, is defined in the forthcoming section. Note that
the index set, J%, has the calibration of j, = 0. Namely, the coarse resolution
multi-index starts at the origin 0. This is for mathematical convenience since,
asymptotically, the coarse index, j,, does not affect the convergence rate.

In the case of super-smooth convolution, there is no hard thresholding and
the raw estimates are used in the projection. The resolution level to conduct
the projection needs to occur at,

(1-9

egm

and the coefficients are hard-thresholded with b/;vk } The

j07gxﬂé_110g2{ logetl}7 0=1,2,...,m; (8)
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for some 0 < ¢ < 1. The projection estimator, fs is then given by,

Fs@) = 3" 10 00 (). (9)

kGKjO

3.2. Threshold boundaries for the regular-smooth case

The resolution level thresholds are of the form T ; = d7; jc, decomposed into
three terms,

e J: a thresholding or smoothing parameter: § > 0.

o 72 jia variance factor for the wavelet coefficients in direction 7 and at

2,
resolution level 7,
A —
= 2 WPl
wG]D);

e ¢, =¢/loge~1: an asymptotic scaling parameter.

4. Convergence results of the hyperbolic wavelet estimators

Consider the two scenarios of regular-smooth and super-smooth separately. In
particular, consider the cases when either the entire convolution function is
regular-smooth or super-smooth in all dimensions. That is, @ = 0 or 8 > 0,
so that there isn’t a situation where there is regular-smooth behaviour in one
dimension but super-smooth behaviour in another direction.

Theorem 1. Consider a target function f € BS .(T%) wherew > 1 and s > 1/
is observed indirectly in model (1). In the case of regular-smooth convolution
when 6 = 0 set,

207y —1
0<r<ro=min{_ P Phvi1/2 }

Vo122 + Vs 2 (’Ys - %) + 2112

Estimate f with the hard-threshold estimator, fR in (6) with the resolution trun-
cation choice imposed by (7) and threshold choices specified in Section 3.2. For
the £LP-risk with 1 < p < 2, there exists a constant C > 0 such that for all
n>1,

E|lfr — fllh < Ce” (logge™!)" ", (10)
where p takes the following form,

p= 2ps
279s + 27u+1/2 ’

2p<vs—%—%,)

2 (73 — %) +2Y,41)2

i s> m(v+1/2)(7 - 1) (1)

p= . if 1/7T—(V+1/2)SsSm(v-ﬁ-l/Q)(g—l).

(12)
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In the super-smooth case when @ > 0, f € B;,.(Td) where 1 > 1, r > 0, and
s > 1/m is observed indirectly in model (1). Estimate f with the raw linear
projection estimator fs in (9) with coarse resolution multi-index in (8). For the
LP-risk with 1 < p < 00, there exists a constant C' > 0 such that for allm > 1,

E|f - flp<C (log2 {10g€7(170/m})m <10g 5*(170/”’) e , o (13)

with s* =~vs+1/p—1/(p A 7).

Remark 1. For the reqular-smooth case there is an elbow effect or phase tran-
sition in the upper bound of the £P-risk (1 < p < 2). These are typically known
as the dense and sparse phase in (11) and (12) respectively. This is a result of
the decreasing amount of smoothness present in the underlying function f mov-
ing from (11) to (12) and appears in similar structures throughout the literature
(see [38, 34, 28, 7, 44, 29] along with [24] and [25] where the dense and sparse
case are treated in separate papers).

Remark 2. The (logye™1)™ term in the bound in (10) is conjectured to be
not optimal. It is the result of a crude bound used in the proof of Theorem 1 to
control the weighted composition of integers for the number of feasible resolution
vectors j € Jt that depend implicitly on the degree of ill-posedness vector v > 0.
To remowve this extra logarithmic term, a better approrimation for the number
of feasible resolution vectors is required.

Remark 3. The upper bound rate results in (11) supplement the already known
results for multivariate function estimation in the direct setting. For example
in [24], the rates in the dense case agree up to a logarithmic term discussed in
Remark 1. Similarly, in [4], the maziset of functions that achieves the conver-
gence rate (ev/loge=1)?/ (27 s the union of all Besov balls Ug 57— B2 o,
with harmonic mean equal to . These rate results could be captured as a special
case of our results up to the logarithmic factor in (11) with the choice v = 0.

Namely, 27,1/, = 1 when v = 0. In fact, the proof of Theorem 1 can be

modified to the case of v = 0, where the number of feasible vectors j € Jff 15
much simpler. In that situation with the modified proof, the revised rate is in
agreement.

Remark 4. The rates generalise and extend results already seen in the litera-
ture. Indeed, the extension from univariate results to anisotropic results in the
direct setting has seen the rates subordinate to the harmonic sum of the smooth-
ness parameter s (see [31] and [4]). This behaviour is exhibited here and the
harmonic sum applies in an equivalent type manner for the decay in the con-
vergence rate due to the regular smooth convolution in combination with the
well known ‘curse of dimensionality’. For example, in univariate regular smooth
deconvolution work in [23], the convergence rate in the dense case is given by
2sp/(2s + 2v + 1) where v is the univariate degree of ill-posedness parameter.
In classical multivariate methods, the curse of dimensionality is exhibited where
the rate given by 2vsp/(2vs + 1) = 29,p/(275 + m). Namely, the dimension
appearing in the denominator.
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Remark 5. Consistent with the literature (see [19]), the super-smooth case has
a logarithmic convergence rate. The indices in the rate depend on the underly-
ing smoothness s*, an adjusted harmonic sum in s; the dimension m and the
harmonic sum in the super-smooth parameter 3. As expected, the rate does not
depend on the reqular-smooth index v but the rate has an extra loglog term.
This extra loglog term is also a consequence of counting the number of feasible
multi-index resolution levels above the coarse resolution j, when computing the
bias of the estimator.

5. Conclusions

This paper examined the deconvolution Gaussian white noise model (1) in a
multivariate setting. In particular, the focus was on the behaviour of anisotropies
in both the target function f after it was distorted by the anisotropic convolution
function g. The hyperbolic wavelet basis was chosen since it is already known
to be the superior basis for anisotropic function estimation in the direct setting.
This paper has focused on the .#P-risk and extended findings in [23, 4]. In
particular, rates are established when the convolution operator is smooth and
has anisotropies in the form of a multiplier type behaviour in the Fourier domain
for each dimension, (2). Both the regular-smooth and super-smooth results are
new and not been seen before to the best of the authors knowledge.

As expected, when the degree of ill-posedness is regular-smooth, the smooth-
ness of the function f appears in the rate of convergence in the form of the
harmonic sum in both the numerator and denominator of the rate term. Also as
expected, the rate will decay as the degree of ill-posedness parameter increases
in each dimension. However, the decay of the rate is not in a linear way but by
the harmonic mean of the degree of ill-posedness vector parameter, v. When
the degree of ill-posedness is super-smooth, a logarithmic rate of convergence
is attained and this is consistent with the previous minimax results seen in the
literature for univariate cases.

It is desirable to obtain results for the case when the multivariate function
of interest is dense in some domain variables but sparse in others. This was
considered during the manuscript preparation. However, obtaining these results
would require a more delicate embedding of the anisotropic Besov spaces across
the different variable dimensions that are either dense or sparse. There is some
results on anisotropic Besov embeddings across different dimensions in the lit-
erature such as Theorem 3 of [5]. However, such embeddings cannot be readily
applied in the methodology used in the proofs given in Section 6. A different or
more complex proof is required and is left as a possible future research direction.
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6. Proof of Theorem 1

The proof of the result is based on the method used in [26] and modified to
incorporate the convolution structure and hyperbolic wavelet basis instead of
the wavelet-tensor basis. The noise terms, z,, in (5) are complex Gaussian with
Ez, = 0 and a bound for its variance is sufficient to determine a bound on all
its moments and bound on their probabilities. The covariance of the z, can be
computed,

IEZWZ:E/ e—27ri<_.;Tt dB(t)/ e—2minTx dB(x)
™m Td
— —2mizT (w—n) d

€ xr

m

1
/ e 2mime(we—ne) dxy
0

—

=

~
Il

1

=T

60«'27"%’

~
Il

1

where §, 4 is the Kronecker delta function. Therefore z,, are independent and
identically distributed complex Gaussian random variables with mean zero and
unit variance. Thus, in the case of smooth decay, when j, = 0 the variance of
the estimated anisotropic wavelet coefficients is of order,

Elby — b =& Z (W32 lg0| 2 = %77

%,J
i
wGDj

=0 D WP [T inf {1+ Imef*)" exp {260 - el }}

weD? k=15,

= 0| 2220 exp {2(0,279P)} > [W) [
weD?
= 0(5222<j’”> exp{2<0,2j®ﬁ>}>, (14)
where ® is the Hadamard product. Namely, x © y = (z1y1, Z2y2, - - -, TmYm) for
@,y € R™ and 2% = (271272 2%m) € R™,
Consider now the regular-smooth case when 6 = 0. In this case, from (14) it

follows that 7; ; = O(29*). Denoting Z ~ N(0,1) a deviation type bound is
constructed,

- —_ . 1)
P (1o = ) 2 Tig) = P (15 il = §rgen

=P (Z > g\/logs—l)
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4552/8

< EEEE—
~ 0y/loge!

O(c), (15)

it 6 > 4,/p.

Furthermore, consider the number of feasible vectors j € {[(j,2v + 1)] = J}
where J € Z. Due to the complexity of the problem with the weights 2v + 1,
consider the feasible j for a less constrained problem. That is, {7 : [{(F,2v+1)] =
J}C{d:[4iQ2v;+1)] < J,i=1,2,...,m}. If the weights adhere to 2v > 0,
then the crude bound can be computed quite easily with,

H{g: G 2v+ D) =T < {7 : [5i2vi + D] < Ji=1,2,...,m}|
:0<J|il 11 (2W+1)—1>. (16)
O:ip=1

For ease of notation in the expansion of the risk, define the summation sets,

DoNeA, = Diel Djeric ZkEKj and 3 0\cn = Dier D jer ZkeKj’ Define the

weighted measure,

n{A} = {5, k)} = |Imigually = 7729107270,

b q
ly(p) = {f €L (T : f= me and Z | 3| 7 59allp < 00}7
XA NeA i

lg.co(p) = {f €LP(TY: f=> ban and

AeA
AN, . = sup {ap {1 [ba] > 7 b} < OO}-

The spaces are embedded I,(1) C lg00(pt).
Consider the truncated measure,

piredy =3 p{M =303 > lImgvisly

AEA, i€l jeJie keK;

= Z Z Z T£j2lj\(p/2—1)||¢||§

i€l jeJic keK;

< CZ Z 9(3.2v+1)p/2 _ CZ Z 9(3,2v+1)p/2

i€l jeJie i€l j:(j,v+1/2)<c¥
<CY > Hi:lG.2v+1)] =727

i€l J<cj,
cOX Y g

i€l J<c

< C2m(ch)m2en P2 = O((ch)™ ;7).

n

where the second last inequality is a result of (16).
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Therefore, consider the deterministic bias for the truncated estimator where
fe Bgm where € = (v + 1/2)(1 — q/p). By the property of Besov spaces,

=200 > tiavialle=2" > 291020 N ik |

icl jeJie keK; i€l jgJie keK;
— Jl(p/2-1) i |P
D ST 5 ol
i€l j:(7,2v+1)>ck keK;

<C Z Z 9—p(3,€)

i€l j:(4,20+1)>ch

< CZ Z Jmo—J(p—a)/2

iel J>cj,
< O(ek)mo—cnlr=a)/2

— of(cymer).

The performance of the regular-smooth hard thresholded estimator takes the
decomposition,

Elfr—fI5=El > bas— > b8

A€EA, AEA

—E| Y (b =b) vl +EIlS = Y bl
AEA, AEA L,

= T1 +T2

The T5 term is the bias using the anisotropic basis. In the following consider
0<qg<p<2andp>1. The variance term in 7} is further decomposed.

Ty <2r ! {E > (bx—bA> Lty 20m gen } AR HEI > bA1{|gA|<5Ti,jcn}¢A|5}
NEA,

AEA,
= 2p71 {Tll +T12} .

The Ti1; term is further split by noting that, 1 575 im ]l{lg |>673 50} <
{\bug’T’} =0T en

1 S = 1. 575 ¢
{\bngiﬂ‘;c"} {|bx*b/\|27n’216”}7

—1 N
Tn=2 {E” > (ba-h) ﬂ{ws—‘s”gc" }1{@—@2—5”;6” }%”g

AEA,

+E[| Y (EA - bx) Jl{lbk>5n,2jcn}1{|@|zsn,jcn}wg}

AEA,
= 2071 Ty + Thia}
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Evaluate T111 using the Littlewood-Paley property (3),

Ti11 = E| Z (5)\ — bA) :ﬂ-{lb/\lgéT‘,‘léan }1{‘3)\7b)\‘267-i,2jcn }7/0\”5

AEA,

oz

If p < 2, use the P norm inequality, the Cauchy-Schwarz inequality, and (15),

T <CE [ Y b - b1 (i< s g IO

AEA,

p/2
’bk*bk‘ L ‘STT”} {\b; bx>6“ﬂ‘”}|wo|> :

€Ay,

~ 2p N e 1/2
<C Z 1 0T; 5Cn E‘b)\*l))\’ P(|b)\7b>\| > %) ||w>\||§
eA {\bx\ﬁ—z }
< Cc?P 1 - AT
<0Gy ) (imiztsgen el

AEA, 2
=0(cPu{re,}) = O(cfl (log, s*Q)m_l)

Evaluate Ti12 directly in a similar manner,

lFl(p/2=1) ¢ _
Ti12 < C'Z Z 2 ﬂ-{‘bx‘zéﬂi,jcn} {|bk|>6n,cn E ‘bx bA’
i€l AeA,

liltp/2=1)q 7P P
=C Z 2 {be|>—5“30"} Ti,§Cn
AEA,

= e/ A,

For the remaining terms,

T15 = E|| Z b,\]l{|gk|<5n,jcn}¢,\H£
AEA,

—1
<2 {EII D DLy, <sm ot L2267 g Al

AEA,

+ E| Z b/\]1{|gk|<5n,jcn}]l{b;|<257—i,jcn}¢>\g}

AEA,
=271 { Ty + Tino} .

Using an inequality of the sets, (3), (15), and Jensen’s inequality,

T <E| Y bﬂl{m|225n,,-cn}11{|grbk|257i1jcn}%HZ
AEA,

p/2

< O]E/ Z jl{I/b\A—bHEé‘ri,an} |b>‘|2 |'¢)\|2

AEAL,|bA|>28T; jcn
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p/2
SC/ > P([bx = ba| = 67i5¢a) [bal* [92]
AEAL,|bA|>20T; jcn
p/2
S S
AEAL,|bA|>26T5 jen
< CP|IfIp.

Exploit again, the unconditional basis property (4) and ¢P inequality for p < 2,

Tioo =EJ| ) O\L{5, <oy gen ) LU I<2073 s} VAT
AEA,

<C| Z L jbr| <267 00} ONUAD
Xeh,

<C Z 1{\bx\<25ﬂ',jcn}||b>\¢>\||5
XA
< caf .

where the last line follows from Lemma 2.2 of [26].
If we desire a function f € [,(p) N Bg’q then we require that (p — ¢){7,m) +

l7](p/2 — 1) = q({3,6) +14|(1/2 —1/¢)) and this occurs when § = W.
Define the dense and sparse ¢,

V0412
Ga=pPy5— if s > m(v+1/2)(p/m —1); (17)
29 + 270412
2p7u+1/2 -1 1
gs = — , if=—w+1/2) <s<m(v+1/2)(p/m—1).
2 (’Ys - %) + 2,112 ™
(18)
For the scale § we have the harmonic sum, v5 = v, 11,2 (p;'J).
We also require the following useful Besov embeddings,
B; . <= B; 1<r<g<oo, 0<s <s<oo. (19)
B, B, s>8>0 r>1, w>p. (20)
By, — B;’W sj = 83/C where ¢ =1 — (1/m — 1/¢)y;'>0and 1 <7 < q.
(21)

The embeddings (19) and (20) are shown in Lemma 7 of [5]. The last embedding,
(21) is shown on pg.62 of [10].

6.1. Dense case

Suppose s verifies the condition, s > m (1/ + %) (% — 1) =: md,, then we also
have vs > m~s_ since the Harmonic mean is monotonic. To this end, eliminate
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p using (17) with p = qa(vs + ¥y 11/2) /T +1/2- Therefore,

_ _ _ q
Vs 2= MYVs = Vpi1/2 ((’Ys +7u+1/2)/7u+1/2; - 1)

_ qd  _
=(7s +7u+1/2)? —Yvi1/2
=1>q/mr=1>q.

Consequently by (20), B3 . — ng as long as s > d,4, and r < ¢. Note that in
the dense region when ¢ = ga = PV, 412/ (Vs +Vu41/2), 8¢ = (W+1/2)(p/q—1) =
(v + 1/2)%s/Fys1/2- Thus 8 > 84, = 87,41/2 — (¥ +1/2)7s > 0. Note that,
p > qq and the inequality follows by applying Lemma 3.

For the bias, it is required to find an embedding such that f € B; , < B}j

where £ = (v +1/2)(p — q)/p. In the dense case we have, §, = (v + 1/2)7><
27s
295+ Vo172 <
0 = m(r+1/2)(p/m — 1) < 0. Therefore, it is required to verify that s > &
in this case or equivalently svs + 87,11/ — (v +1/2)7s. Note that s > 0 >
m(v 4+ 1/2)(p/m — 1) and the result follows by an application of Lemma 3.

Now consider the case when 7 < p. Use embedding (21) and B , < Bg:r
where s’ = s — (1 — 1—17)% Then use embedding (20) to show B;:T — BS, —
Bg’oo. This requires that s’ > § when ¢ = qq. Namely, s > §, = (v +1/2) x

vﬁ%ﬁ = 8'(Ys + Fut1/2) — W +1/2)7s > 0. Rewrite the left hand side

equation using the definition of s/,

. If # > p, then the dense case applies since it implies (p/7 — 1)

Sl('Ys + 7u+1/2) - (V + 1/2)73

= (1= (7 = 2708 +Tusay2) = (0 + /2
= s(ve— ) +s (}D - Tzl }D)) + (i = v+ 1/207)

By assumption s > % = Vs > % and the dense phase condition, s > m(p/7m —
1)(v +1/2), along with Lemma 3 implies that s7,_,/, > (v + 1/2)7s and thus

it remains to verify that s'7, ./, — <l - %) s > 0. Since we are in the dense

s

phase we have the additional constraint that s > m(v + 1/2)(p/m — 1) = 75 >

_ 5.
Vogr/2(p/m — 1) = -2 (% — %) > -1

6.2. Sparse case

Consider now the case when = —m(v +1/2) < s < m(v +1/2)(pr — 1) and
set ¢ = ¢s given in (18). Consider now md,, = mv +1/2)(p/gs — 1) =
m(v+1/2)p(vs — £ + %)/(pﬁuH/Q — 1). Consider first the case 7 > ¢5 and
find an embedding (21). This requires two conditions, s > d,, and §,, > O.
Consider the latter condition first. By construction, 1 < p <2 and m > 2 is an
integer. Therefore, §,, > 0 if either (i) vs > 1/7 —1/p and 7,41/, > 1/p or
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(ii) vs < 1/m —1/p and ¥, /5 < 1/p. Condition (ii) is impossible since it is a
contradiction of the sparse case condition that s > 1/7 — (v + 1/2). Condition
(i) is true since the sparse condition implies vs > 1/m — 1/p and 7,4,/5 >
ming <g<m (v +1/2) > 1/2 > 1/p when 1 < p < 2. Turn attention now to the
embedding condition. Instead of s > &, consider the more restrictive condition
s > md,,. This is equivalent to the following, p(s¥,41/0 —m(v +1/2)7s) — s >
—m(v +1/2)(p/m — 1). In the sparse phase, s < m(v+1/2)(p/m — 1) im-
plying that —s > —m(v +1/2)(p/m — 1). The remaining term, s7, /5 >
m(v +1/2)(p/m —1) is true by an application of the third part of Lemma 3. On
the other hand, if 7 < g5, then use (21).

Now turning attention to the bias term in the sparse case when © < p.
Consider again a scale s’ = s(1—(1/7—1/p)y; ') and apply (21). Then complete
the embedding using (20) by checking that s’ > ¢ = (v +1/2)(1 — ¢/p) =
(v +1/2)(vs—1/m+1/p)/(vs—1/7+7,11/2)- After rearrangement, this requires,
8'(vs—1/m)+ 87,41/ — (¥ + 1/2)7s > 0. Note that, s > 0 and the sparse case
condition imply that s’ > 0 and vs > 1/7. Finally, s'5,,1/5 — (v +1/2)7s
0 is true due to result three of Lemma 3 and the fact that 0 < s’ < s
m(v+1/2)(p/m —1).

IN IV

6.3. Super-smooth case

To complete, consider the super-smooth scenario in Theorem 1. Consider the
coarse approximation directly with the elementary terms,

N — X 0
Ellfa— Flb <207 Bl Y (89,0 — 8, ) ol (22)
keKo

+ 2pil”Z: Z Z b;,k¢;,k||§~

i€l jeJi kek;
The two terms in (22) can be bounded separately. Start with the latter bias term.

From Lemma 1, we can write, |jo| > O Y%, log, {6, ' loge=(1=0/m 1787 for
some constant C' > 0. In turn, we can then write, for any ¢ > 0 constant,

m —1
9—cliol < ¢ (H 94> (10g5—<1—<>/m) R o (bgg—(l—c)/m) et

=1
(23)
The latter bias term in (22) can be controlled using this in conjunction with
using Lemma 2. Define s* =+ 1/p—1/(p A7),

12030 D Wil €330 3 Wial vl
icl jeJf keK; i€l jeJi kek;
<0 Y o pltGe) il p=1/enm)
i€l jeJi
< CZ Z 9—plil(vs+1/p—1/(pAT))

i€l jeli
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SCQm Z Jm2—sz*

J2l30]

<C Z Jmo—pJs’
J>|70l

< C|j0|m2—p8*ljo|

= (9( (log2 {log»s*(l*o/m})m

X <log5*(1*o/m) e ) (24)

The first term in (22) can then be bounded with another application of Lemma 1,
along with (23) and (8),

~ 0 . _ o~
E| Z (bgo,k - b?O,k) w},?kllg < 02lol(p/2-1) Z E”’?O,k _ bgo7k|p

keKo keKj,
< QP2 Plo2v+1)/2 oy {p(o, 2j0®ﬁ>}
< C€Cp27p|j0|’7u+l/2

—MYv41/273-1

< OelP (logé-*(l*é)/m)

= O<(10g5—(1—0/m) . 7,31) (25)

The result of (13) follows combining the results (22), (24) and (25). O
Lemma 1. For x,y € R™ and ¢,y > 0, (z,y) > |x|Vy-

The proof follows by the fact that (x,y) > maxi<e<m Teyr > |x|vy, the latter
inequality is shown in Lemma A.1 of [3].

Lemma 2. Suppose f € B . with s > 0,m > 1,7 > 0; then forp > 1,

Z |b; LlP < CcPo—p({3,8)+3l(1/2=1/(pAT)))

keK;

Proof of Lemma 2. Suppose p > m,

D 05kl = 3 16kl 10 kT

keK; keK;
}(z>—7r)/7T

< C el :

< D 0kl {,Igé%élb,
keK;

< Oremg- MG /2 1m) D g g

keK;

< oro—P((F:8)+3|(1/2=1/m)
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On the other hand, if p < 7, apply the Holder inequality,

r p/m 1-p/m
S < [ (AT [0
keK; | k€K kCK;

o p/m

— Z|b;',k|7r 9ldl(1—p/m)
| kEK;

< oro P38 +il(1/2=1/m))9pli|(1/p—1/m)
< oro—P((F:8)+31(1/2=1/p)) O

Lemma 3. Suppose, m > 2 is an integer and x,y € R™ then

1. Ifx >y >0, then 7, > YVz-
2. Ifx > 0>y, then 7, < Y7z.
3. Ifx>y >0, then y7, < Tvy.

Proof of Lemma 3. Note that, for m > 2,7, = myz > 7. Now prove the result
by contradiction, suppose now &7, < y7y,. Then since the harmonic mean is
monotone in its domain argument we have, 7,7, < Y,V = Vo < V= Which
is a contradiction since 7, = M7y, > 7, for m > 2. The result is proved for
the first claim. The second claim follows by a similar proof noting that division
by a negative common factor reverses the inequality direction. The third claim

follows by similar contradiction argument given to prove the first claim. ([
References
[1] ABRAMOVICH, F. and SILVERMAN, B. W. (1998). Wavelet decomposi-

2]

tion approaches to statistical inverse problems. Biometrika 85 115-129.
MR1627226

ABRY, P., Roux, S. G., WENDT, H., MESSIER, P., KLEIN, A. G., TREM-
BLAY, N., BORGNAT, P., JAFFARD, S., VEDEL, B., CODDINGTON, J. and
DAFFNER, L. A. (2015). Multiscale Anisotropic Texture Analysis and Clas-
sification of Photographic Prints: Art scholarship meets image processing
algorithms. IEEE Signal Processing Magazine 32 18-27.

AUTIN, F., CLAESKENS, G. and FREYERMUTH, J. M. (2014). Hyperbolic
wavelet thresholding methods and the curse of dimensionality through the
maxiset approach. Applied and Computational Harmonic Analysis 36 239—
255. MR3153655

AUTIN, F., CLAESKENS, G. and FREYERMUTH, J.-M. (2015). Asymptotic
performance of projection estimators in standard and hyperbolic wavelet
bases. Electronic Journal of Statistics 9 1852—-1883. MR3391122
BEKMAGANBETOV, K. A. and NURSULTANOV, E. D. (2009). Embedding
theorems for anisotropic Besov spaces. Izvestiya: Mathematics 73 655-668.
MR2583963


http://www.ams.org/mathscinet-getitem?mr=1627226
http://www.ams.org/mathscinet-getitem?mr=3153655
http://www.ams.org/mathscinet-getitem?mr=3391122
http://www.ams.org/mathscinet-getitem?mr=2583963

1714

[6]

[7]

[18]

[19]

[20]

[21]

J.R. Wishart

BENHADDOU, R. (2017). On minimax convergence rates under Lp-risk for
the anisotropic functional deconvolution model. Statistics and Probability
Letters 130 120-125. MR3692230

BeENHADDOU, R., PENSKY, M. and PICARD, D. (2013). Anisotropic de-
noising in functional deconvolution model with dimension-free convergence
rates. Electronic Journal of Statistics 7 1686-1715. MR3080407
BENHADDOU, R., PENSKY, M. and RAJAPAKSHAGE, R. (2019).
Anisotropic functional Laplace deconvolution. Journal of Statistical Plan-
ning and Inference 199 271-285. MR3857827

BenHADDOU, R., KuLiK, R., PENSKY, M. and SAPATINAS, T. (2014).
Multichannel deconvolution with long-range dependence: A minimax study.
Journal of Statistical Planning and Inference 148 1-19. MR3174144
Besov, O. V., IVIN, V. P. and N1koL'sk1i, S. M. (1978). Integral Repre-
sentation of Functions and Imbedding Theorems, Vol ii ed. V. H. Winston
& Sons, Washington, D.C.; Halsted Press John Wiley & Sons, New York-
Toronto, Ont.-London. MR0519341

DAUBECHIES, 1. (1992). Ten Lectures on Wavelets. Society for Industrial
and Applied Mathematics. MR1162107

DELIEGE, A., KLEYNTSSENS, T. and NIcOLAY, S. (2017). Mars topogra-
phy investigated through the wavelet leaders method: A multidimensional
study of its fractal structure. Planetary and Space Science 136 46—58.
DEVORE, R. A., KONYAGIN, S. V. and TEMLYAKOV, V. N. (1998). Hy-
perbolic Wavelet Approximation. Constructive Approximation 14 1-26.
MR1486387

Donono, D. L. (1993). Unconditional Bases are Optimal Bases for Data
Compression and for Statistical Estimation. Applied and Computational
Harmonic Analysis 1 100-115. MR1256530

DonNoHO, D. (1995). Nonlinear Solution of Linear Inverse Problems by
Wavelet—Vaguelette Decomposition. Applied and Computational Harmonic
Analysis 2 101-126. MR1325535

DonoHO, D. L. and RaiMONDO, M. E. (2004). A fast wavelet algorithm
for image deblurring. In Proc. of 12th Computational Techniques and Ap-
plications Conference CTAC-2004 46 29-46. MR2182159

Donono, D. L., JouNSTONE, I. M., KERKYACHARIAN, G. and PI-
CARD, D. (1995). Wavelet Shrinkage: Asymptopia? Journal of the Royal
Statistical Society. Series B (Methodological) 57 301-369. MR1323344
FaN, J. (1991). On the Optimal Rates of Convergence for Nonpara-
metric Deconvolution Problems. The Annals of Statistics 19 1257-1272.
MR1126324

FaAN, J. and K00, J.-Y. (2002). Wavelet deconvolution. IEEE Transactions
on Information Theory 48 734-747. MR1889978

FarouJ, Y., FREYERMUTH, J.-M., NAVARRO, L., CLAUSEL, M. and
DELACHARTRE, P. (2017). Hyperbolic Wavelet-Fisz Denoising for a Model
Arising in Ultrasound Imaging. IEEE Transactions on Computational
Imaging 3 1-10.

HepPING, W. (2004). Representation and approximation of multivariate


http://www.ams.org/mathscinet-getitem?mr=3692230
http://www.ams.org/mathscinet-getitem?mr=3080407
http://www.ams.org/mathscinet-getitem?mr=3857827
http://www.ams.org/mathscinet-getitem?mr=3174144
http://www.ams.org/mathscinet-getitem?mr=0519341
http://www.ams.org/mathscinet-getitem?mr=1162107
http://www.ams.org/mathscinet-getitem?mr=1486387
http://www.ams.org/mathscinet-getitem?mr=1256530
http://www.ams.org/mathscinet-getitem?mr=1325535
http://www.ams.org/mathscinet-getitem?mr=2182159
http://www.ams.org/mathscinet-getitem?mr=1323344
http://www.ams.org/mathscinet-getitem?mr=1126324
http://www.ams.org/mathscinet-getitem?mr=1889978

[30]
[31]

[32]

Smooth hyperbolic wavelet deconvolution with anisotropic structure 1715

functions with mixed smoothness by hyperbolic wavelets. Journal of Math-
ematical Analysis and Applications 291 698-715. MR2039080
JOHNSTONE, I. M. (1999). Wavelet shrinkage for correlated data and in-
verse problems: Adaptivity results. Statistica Sinica 9 51-83. MR1678881
JOHNSTONE, I. M., KERKYACHARIAN, G., PICARD, D. and RAI-
MONDO, M. (2004). Wavelet deconvolution in a periodic setting. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 66 547-573.
MR2088290

KERKYACHARIAN, G., LEPSKI, O. and PICARD, D. (2001). Nonlinear esti-
mation in anisotropic multi-index denoising. Probability Theory and Related
Fields 121 137-170. MR1863916

KERKYACHARIAN, G., LEPSKI, O. and PICARD, D. (2008). Nonlinear Esti-
mation in Anisotropic Multi-Index Denoising. Sparse Case. Theory of Prob-
ability & Its Applications 52 58—77. MR2354574

KERKYACHARIAN, G. and PicAarD, D. (2000). Thresholding algorithms,
maxisets and well-concentrated bases. Test 9 283-344. MR1821645
KERKYACHARIAN, G. and PICARD, D. (2003). Entropy, Universal Coding,
Approximation, and Bases Properties. Constructive Approximation 20 1—
37. MR2025412

KuLik, R. and RAiMONDO, M. LP-Wavelet regression with correlated er-
rors and inverse problems. Statistica Sinica 4 1479-1489. MR2589193
KuLIK, R., SApaTINAS, T. and WISHART, J. R. (2015). Multichannel
deconvolution with long range dependence: Upper bounds on the LP-risk
(1 <p< o0). Applied and Computational Harmonic Analysis 38 357—-384.
MR3323108

MEYER, Y. and SALINGER, D. H. (1993). Wavelets and Operators 1, 1st
ed. Cambridge University Press. MR1228209

NEUMANN, M. H. (2000). Multivariate wavelet thresholding in anisotropic
function spaces. Statistica Sinica 10 399-432. MR1769750

NEUMANN, M. H. and vON SAcHs, R. (1997). Wavelet thresholding in
anisotropic function classes and application to adaptive estimation of evo-
lutionary spectra. The Annals of Statistics 25 38-76. MR1429917
PENSKY, M. and SAPATINAS, T. (2009). Functional Deconvolution in
a Periodic Setting: Uniform Case. The Annals of Statistics 37 73-104.
MR?2488345

PENSKY, M. and SAPATINAS, T'. (2010). On convergence rates equivalency
and sampling strategies in functional deconvolution models. The Annals of
Statistics 38 1793-1844. MR2662360

PENSKY, M. and SAPATINAS, T. (2011). Multichannel boxcar deconvolu-
tion with growing number of channels. Electronic Journal of Statistics 5
53-82. MR2773608

PETSA, A. and SAPATINAS, T. (2009). Minimax convergence rates under
the -risk in the functional deconvolution model. Statistics € Probability
Letters 79 1568-1576. MR2536978

ProkscH, K., BissanTz, N. and DETTE, H. (2012). A note on asymp-
totic uniform confidence bands in a multivariate statistical deconvolution


http://www.ams.org/mathscinet-getitem?mr=2039080
http://www.ams.org/mathscinet-getitem?mr=1678881
http://www.ams.org/mathscinet-getitem?mr=2088290
http://www.ams.org/mathscinet-getitem?mr=1863916
http://www.ams.org/mathscinet-getitem?mr=2354574
http://www.ams.org/mathscinet-getitem?mr=1821645
http://www.ams.org/mathscinet-getitem?mr=2025412
http://www.ams.org/mathscinet-getitem?mr=2589193
http://www.ams.org/mathscinet-getitem?mr=3323108
http://www.ams.org/mathscinet-getitem?mr=1228209
http://www.ams.org/mathscinet-getitem?mr=1769750
http://www.ams.org/mathscinet-getitem?mr=1429917
http://www.ams.org/mathscinet-getitem?mr=2488345
http://www.ams.org/mathscinet-getitem?mr=2662360
http://www.ams.org/mathscinet-getitem?mr=2773608
http://www.ams.org/mathscinet-getitem?mr=2536978

1716

J.R. Wishart

problem. In ICNAAM 2012: International Conference of Numerical Analy-
sis and Applied Mathematics (T. E. Simos, G. PsiHOY10S, C. TSITOURAS
and Z. ANASTASSI, eds.) 1479 438-441. AIP Publishing. MR2866890
ProkscH, K., Bissantz, N. and DETTE, H. (2015). Confidence bands for
multivariate and time dependent inverse regression models. Bernoulli 21
144-175. MR3322315

REMENYI, N., NicoLris, O., NasoN, G. and VibAKovIC, B. (2014). Im-
age Denoising With 2D Scale-Mixing Complex Wavelet Transforms. IEEE
Transactions on Image Processing 23 5165-5174. MR3275060

RICHARD, F. J. P. (2018). Anisotropy of Holder Gaussian random fields:
characterization, estimation, and application to image textures. Statistics
and Computing 28 1155-1168. MR3850388

Roux, S. G., CLAUSEL, M., VEDEL, B., JAFFARD, S. and ABRY, P.
(2013). Self-similar anisotropic texture analysis: The hyperbolic wavelet
transform contribution. IEEE Transactions on Image Processing 22 4353—
4363. MR3106980

TRIEBEL, H. (2006). Theory of Function Spaces III. Monographs in Math-
ematics 100. Birkhauser Basel. MR2250142

WaNG, Y. (1997). Minimax estimation via wavelets for indirect long-
memory data. Journal of Statistical Planning and Inference 64 45-55.
MR1492360

WISHART, J. R. (2013). Wavelet deconvolution in a periodic setting with
long-range dependent errors. Journal of Statistical Planning and Inference
143 867-881. MR3011300


http://www.ams.org/mathscinet-getitem?mr=2866890
http://www.ams.org/mathscinet-getitem?mr=3322315
http://www.ams.org/mathscinet-getitem?mr=3275060
http://www.ams.org/mathscinet-getitem?mr=3850388
http://www.ams.org/mathscinet-getitem?mr=3106980
http://www.ams.org/mathscinet-getitem?mr=2250142
http://www.ams.org/mathscinet-getitem?mr=1492360
http://www.ams.org/mathscinet-getitem?mr=3011300

	Introduction
	Outline of the article

	Preliminaries
	Notation
	Convolution types
	Anisotropic multivariate wavelet bases
	Besov spaces
	Unconditional bases and Temlyakov's property

	Estimation
	Non-linear and projection estimators
	Threshold boundaries for the regular-smooth case

	Convergence results of the hyperbolic wavelet estimators
	Conclusions
	Acknowledgements
	Proof of Theorem 1
	Dense case
	Sparse case
	Super-smooth case

	References

