
Electronic Journal of Statistics
Vol. 13 (2019) 1580–1607
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1556

A preferential attachment model for the

stellar initial mass function

Jessi Cisewski-Kehe

Department of Statistics & Data Science
Yale University

New Haven, CT 06511
e-mail: jessica.cisewski@yale.edu

Grant Weller

UnitedHealth Group Research & Development
Minneapolis, MN 55430

e-mail: gweller57@gmail.com

and

Chad Schafer

Department of Statistics & Data Science
Carnegie Mellon University

Pittsburgh, PA, 15213
e-mail: cschafer@cmu.edu

Abstract: Accurate specification of a likelihood function is becoming in-
creasingly difficult in many inference problems in astronomy. As sample
sizes resulting from astronomical surveys continue to grow, deficiencies in
the likelihood function lead to larger biases in key parameter estimates.
These deficiencies result from the oversimplification of the physical pro-
cesses that generated the data, and from the failure to account for obser-
vational limitations. Unfortunately, realistic models often do not yield an
analytical form for the likelihood. The estimation of a stellar initial mass
function (IMF) is an important example. The stellar IMF is the mass distri-
bution of stars initially formed in a given cluster of stars, a population which
is not directly observable due to stellar evolution and other disruptions and
observational limitations of the cluster. There are several difficulties with
specifying a likelihood in this setting since the physical processes and obser-
vational challenges result in measurable masses that cannot legitimately be
considered independent draws from an IMF. This work improves inference
of the IMF by using an approximate Bayesian computation approach that
both accounts for observational and astrophysical effects and incorporates
a physically-motivated model for star cluster formation. The methodology
is illustrated via a simulation study, demonstrating that the proposed ap-
proach can recover the true posterior in realistic situations, and applied to
observations from astrophysical simulation data.
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1. Introduction

The Milky Way is home to billions of stars (McMillan, 2016), many of which are
members of stellar clusters - gravitationally bound collections of stars. Stellar
clusters are formed from low temperature and high density clouds of gas and
dust called molecular clouds, though there is uncertainty as to how the stars in
a cluster form (Beccari et al., 2017). Each theory of star formation yields a dif-
ferent prediction for the distribution of the masses of stars that initially formed
in a cluster. Hence, it is of fundamental interest to estimate this distribution,
referred to as the stellar initial mass function (IMF), and assess the validity of
these competing theories. The IMF can be thought of as a continuous density
describing the distribution of star masses that initially form in a stellar cluster.
In fact, research advances in many areas of stellar, galactic, and extragalactic
astronomy are at least somewhat reliant upon accurate understanding of the
IMF (Bastian, Covey and Meyer, 2010). For example, the IMF is a key compo-
nent of galaxy and stellar evolution and planet formation (Bally and Reipurth,
2005; Bastian, Covey and Meyer, 2010; Shetty and Cappellari, 2014), along with
chemical enrichment and abundance of core-collapse supernovae (Weisz et al.,
2013).

There is also ongoing discussion surrounding the universality of the IMF, i.e.,
if a single IMF describes the generative distribution of stellar masses for all star
clusters (Bastian, Covey and Meyer, 2010). The consensus of the astronomical
community is that the IMF is not universal, however, most of the observations
had been consistent with universality (Kroupa, 2001; Bastian, Covey and Meyer,
2010; Ashworth et al., 2017). With further research and growing sample sizes,
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however, there is increased theoretical (e.g., Bonnell, Clarke and Bate 2006; Dib
et al. 2010) and observational (e.g., Treu et al. 2010; van Dokkum and Conroy
2010; Spiniello et al. 2014; Geha et al. 2013; Dib, Schmeja and Hony 2017)
support for an IMF that can vary cluster to cluster.

Salpeter (1955) studied the evolutionary properties of certain populations of
stars, and in the process defined the first IMF (which he called the “original
mass function”). This work put forth the now-classic model for the IMF, a power
law with a finite upper bound equal to the physical maximum mass of a star
that could form in a cluster (Salpeter, 1955). More recent studies continue to
use this power law form for the IMF, especially for stars of mass greater than
half that of our sun (e.g., Massey 2003; Bastian, Covey and Meyer 2010; Da Rio
et al. 2012; Lim et al. 2013; Weisz et al. 2013, 2015; Jose et al. 2017). Similar
models have been proposed and used in the astronomical literature for inference
of the stellar IMF; these will be discussed in the next section. The estimation of
the parameters of these proposed models typically relies on the assumption that
the observed stars in a stellar cluster form independently; more specifically,
the assumption that the masses of the individual stars form independently.
The proposed model in this work loosens the assumption of independence in
order to explore one of several possible physical formation mechanisms of cluster
formation and avoids specification of a parametric model form by using on a
new simulation model.

Despite this seemingly simple form of the power law model, the statistical
challenges of estimating the IMF using observed stars from a cluster are signifi-
cant. Many of the limitations are related both to observational issues and to the
adequate modeling of the evolution of a star cluster after the initial formation.
For example, since stars of greater mass die more rapidly, the upper tail of the
IMF is not observed in a cluster of sufficient age. Also, the death of massive
stars can trigger additional star formation, contaminating the lower end of the
IMF with new stars (Woosley and Heger, 2015). There are also issues related to
missing lower-mass stars due to the sensitivity of the instruments. The observa-
tional astronomers will often estimate a completeness function of an observed
cluster, which is the probability of observing a star of a particular mass. The
completeness function is discussed in more detail below.

The observational limitations and the challenge of modeling cluster evolution
make approximate Bayesian computation (ABC) appealing for estimation of
the IMF, as ABC allows for relatively easy incorporation of such effects. The
difficulty of addressing these limitations is implied by the fact that observational
effects are often ignored or accounted for in an ad hoc or unspecified manner
(e.g., Da Rio et al. 2012; Ashworth et al. 2017; Jose et al. 2017; Kalari et al.
2018), though Weisz et al. (2013) discuss how some observational limitations
can be incorporated into their proposed Bayesian model. A primary appeal of
ABC for this application is the ability to incorporate more complex models for
cluster formation. Standard IMF models do not specify the process by which a
large mass of gas (the molecular cloud) transforms into a gravitationally bound
collection of stars. ABC is based on a simple rejection-sampling approach, in
which draws of model parameters from a prior distribution are fed through a
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simulation model to generate a sample of data. If the generated sample is “close”
(based on an appropriately chosen metric) to the observed data, the prior draw
that produced that generated sample is retained. The collection of accepted
parameter values comprise draws from an approximation to the posterior. The
simulations (the forward model) can include any of the complex processes that
make it challenging to derive a likelihood function for the observable data.

This situation is typical of inference challenges that arise in astronomy. See
Schafer and Freeman (2012); Akeret et al. (2015); Ishida et al. (2015) for re-
views. Recent years have seen a rapid increase in the use of ABC methods for
estimation in this field, including specific application to Milky way properties
(Robin et al., 2014), strong lensing of galaxies (Killedar et al., 2018; Birrer,
Amara and Refregier, 2017), large scale structure of the Universe (Hahn et al.,
2017), estimating the redshift distribution (Herbel et al., 2017), galaxy evolu-
tion (Hahn, Tinker and Wetzel, 2017), weak lensing (Peel et al., 2017; Lin and
Kilbinger, 2015), exoplanets (Parker, 2015), galaxy morphology (Cameron and
Pettitt, 2012), and supernovae (Weyant, Schafer and Wood-Vasey, 2013).

Hence, our motivation for using the proposed stochastic model for the stellar
IMF includes both scientific and practical considerations. We model the ob-
servable data in a star cluster using a formation mechanism that incorporates
realistic dependency in the masses of the stars. Further, this model generalizes
commonly used IMF models, i.e., it can capture, but also distinguish, popular
competing IMF model shapes. Flexible models of this type have great poten-
tial to test widely-held assumptions of more restrictive parametric forms, and
eliminate the need for (often arbitrary) model selection exercises. Finally, the
generative approach allows for the incorporation of observation effects and un-
certainties within an ABC framework.

This paper is organized as follows. In Section 2, background on the IMF along
with inference challenges are presented along with an introduction of ABC. The
proposed stochastic model for stellar formation is discussed in Section 3. A
simulation study, including an application of the proposed methodology to the
estimation of the IMF of a realistic astrophysical simulation (Bate, 2012), can
be found in Section 4. Finally, Section 5 provides a discussion.

2. Background

2.1. Stellar initial mass function

As noted above, Salpeter (1955) introduced the power law model for the shape
of the IMF for masses larger than 0.5M�, where M� is the mass of the Sun.
Kroupa (2001) extended the range of the IMF by proposing a three-part broken
power law model over the range 0.01M� < m < Mmax, where Mmax is the
mass of the largest star that could form with nonzero probability. This model
postulates different forms for the IMF for stars of masses 0.01M� < m <
0.08M�, 0.08M� < m < 0.5 and m > 0.5M�. To illustrate the form of the IMF
model of Salpeter (1955), consider the upper tail where m > 0.5M�, and define
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θ = (α,Mmax), then the probability density function for mass m in the upper
tail of the stellar IMF is assumed to be given by

fM (m | θ) = cm−α, m ∈ [0.5M�,Mmax], (2.1)

where the constant c is chosen such that fM is a valid probability density. (For
the form of the IMF model of Kroupa (2001), see Equation (3.2).) Alternative
models have been proposed that include log-normal distributions, joint power
law and log-normal parts, and truncated exponential distributions (Chabrier,
2003a,b, 2005; Corebelli, Palla and Zinnecker, 2005; Bastian, Covey and Meyer,
2010; Offner et al., 2014). The Kroupa (2001) and Chabrier (2003a,b) models
are displayed in Figure 1 along with observational challenges discussed §2.1.1.
Power law distributions and log-normal distributions are closely related and
may be the result of subtle differences in the underlying formation mechanism
(Mitzenmacher, 2004). The IMF model we propose will include, as a special
case, a family of formation mechanisms that generate power law tails, but also
allow for a wider range of tail behaviors (see Appendix A).

2.1.1. Observational challenges

Observing all stars comprising an IMF is not feasible, as the most massive
stars (m > 10M�) have lifetimes of only a few million years. The lifetime of
a star (the time it takes for the star to burn through its hydrogen) depends
strongly on its mass: the most massive stars have shorter lives due to the hotter
temperatures they must maintain to avoid collapse from the strong gravitational
forces. In particular, stellar life is approximately proportional to m−ρ where
ρ ≈ 3 (Hansen, Kawaler and Trimble 2004, p. 30, Chaisson and McMillan 2011,
p. 439). Hence, the mass of the largest star observed in a given cluster depends
on the cluster age.

Furthermore, the IMF is estimated using a noisy, incomplete view of that
cluster. Whether or not a star is observed is dependent on several factors in-
cluding its mass, its location in the cluster, and its neighbors. Some of these
factors are described by a data set’s completeness function, which quantifies a
given star’s probability of being observed. This depends on its luminosity (i.e.
intrinsic brightness) since it needs to be sufficiently bright to be observable; in
particular, completeness depends on stellar flux in comparison with the flux lim-
its of the observations. There are also issues with mass segregation: stars with
lower mass tend to be on the edge of the cluster, while the most massive stars
are often found in the center (Weisz et al., 2013). Due to stellar crowding in the
center, stars in this region can be more difficult to observe. Additionally, binary
stars (star systems consisting of a pair of stars) are difficult to distinguish from
a single star, creating the potential for overstating the mass of an object and
understating the number of stars in the cluster.

There are additional uncertainties involved in translating the actual observ-
ables (e.g. photometric magnitudes) into a mass measurement; that is, the mass
values for observable stars are only estimates. The Hertzsprung-Russell (H-R)
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Fig 1. The broken power law model of Kroupa (2001) (red, dashed) and the log-normal with a
power law tail model of Chabrier (2003a,b) (black, solid) are displayed along with vertical lines
representing several observational challenges. The blue vertical dotted-dashed lines indicate
the range of values (Cmin, Cmax) on which the completeness function may be defined, and
the vertical green dotted line indicates the maximum observable mass (Mobsmax) due to the
aging cutoff. The observational challenges are discussed further in §3.2.

Diagram is a classic visual summary of the distribution of the luminosity and
temperature of a collection of stars. A typical H-R Diagram includes a main
sequence of stars that trace a line from bright and hot stars to dim and cool
stars. Stellar mass also evolves along this one-dimensional feature, and since lu-
minosity and temperature are estimable, mass can thus also be estimated. The
mass of binary stars can be determined via Kepler’s Laws, and hence a mass-
luminosity relationship can be fit to binaries and then extended to other stars
on the main sequence. Unfortunately, luminosity and temperature are nontriv-
ial to estimate, as corrections for effects such as accretion and extinction are
required, along with an accurate estimate of the distance to the stars (Da Rio
et al., 2010). The process is further complicated by the dependence of how these
transformations are made on the spectral type of the star. Careful budgeting of
the errors that accumulate is required in order to produce a reasonable error
bars on mass estimates; Da Rio et al. (2010) utilize a Monte Carlo approach in
which the errors in magnitudes are propagated forward through to uncertainties
in the spectral type, the accretion and reddening corrections, and finally to an
uncertainty on the mass.

2.2. Approximate Bayesian computation

Standard approaches to Bayesian inference, either analytical or built on MCMC,
require the specification of a likelihood function, f(m | θ), with data mobs ∈ D,
and parameter(s) θ ∈ Θ. In many modern scientific inference problems, such as
for some emerging models for the stellar IMF, the likelihood is too complicated
to be derived or otherwise specified. As noted previously, ABC provides an
approximation to the posterior without specifying a likelihood function, and
instead relies on forward simulation of the data generating process.

The basic algorithm for sampling from the ABC posterior is attributed to
Tavaré et al. (1997) and Pritchard, Seielstad and Perez-Lezaun (1999), used
for applications to population genetics. The algorithm has three main steps
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which are repeated until a sufficiently large sample is generated: Step 1, Sample
θ∗ from the prior; Step 2, Generate msim from the forward process assuming
θ∗; Step 3, Accept θ∗ if ρ(mobs,msim) ≤ ε, where ρ(·, ·) is a user-specified
distance function and ε is a tuning parameter that should be close to 0. This
last step typically consists of comparing low-dimensional summary statistics
generated for the observed and simulated datasets. Adequate statistical and
computational performance of ABC algorithms depends greatly on the selection
of such summary statistics (Joyce and Marjoram, 2008; Blum and François,
2010; Blum, 2010; Fearnhead and Prangle, 2012; Blum et al., 2013).

The basic ABC algorithm can be inefficient in cases where the parameter
space is of moderate or high dimension. Hence, important adaptations of the ba-
sic ABC algorithm incorporate ideas of sequential sampling in order to improve
the sampling efficiency (Marjoram et al., 2003; Sisson, Fan and Tanaka, 2007;
Beaumont et al., 2009; Del Moral, Doucet and Jasra, 2011). A nice overview of
ABC can be found in Marin et al. (2012). Here, we use a sequence of decreasing
tolerances ε1:T = (ε1, . . . , εT ) with the tolerance εt shrinking until further reduc-
tions do not significantly affect the resulting ABC posterior. The improvement
in efficiency is due to the modification that happens after the first time step:
instead of sampling from the prior distribution, the proposed θ are drawn from
the previous time step’s ABC posterior. Using this adaptive proposal distribu-
tion can help to improve the sampling efficiency. The resulting draws, however,
are not targeting the correct posterior, and so importance weights, Wt, are used
to correct this discrepancy.

3. Forward model for the IMF

Due to their simple interpretations, mathematical ease, and demonstrated con-
sistency with observations, power law IMFs (or similar variants) have been
widely adopted in the astronomy literature (Kroupa et al., 2012); however, open
questions remain about stellar formation processes. The proposed forward model
is a way to link a possible stellar formation process with the realized mass func-
tion (MF).

One known underlying mechanism for producing data with power-law tails is
based on preferential attachment (PA) (Mitzenmacher, 2004). The earliest PA
model, the Yule-Simon process, was popularized by Simon (1955), and was orig-
inally used to model biological genera and word frequencies. Other PA models
include the classic Chinese restaurant process and its generalizations (Bloem-
Reddy and Orbanz, 2017). Interest in PA models grew within the study net-
work evolution (Barabási and Albert, 1999). Such evolution is described by the
attachment function, which describes the probability that a node acquires an
additional edge, usually as an increasing function of its current degree. Most of
the work done on estimation of the attachment function makes the assumption
that observations are available regarding the full or partial evolution of the net-
work. This includes the nonparametric methods of Jeong, Néda and Barabási
(2003), Newman (2001), and Pham, Sheridan and Shimodaira (2015); the maxi-
mum likelihood approaches of Gómez, Kappen and Kaltenbrunner (2011), Wan
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et al. (2017a), Onodera and Sheridan (2014); and the Bayesian approach (us-
ing MCMC) taken by Sheridan, Yagahara and Shimodaira (2012). Wan et al.
(2017a) also describes an approximation to the MLE that can be utilized when
only a snapshot view of the network is available. Wan et al. (2017b) uses a semi-
parametric approach to fit to the upper tail of the network degree distribution.
The focus is on how the estimator performs under deviations from the linear PA
model and the “superstar” linear PA model, in which one node to which most of
the other nodes attach. Estimation is based on extreme value theory. Kunegis,
Blattner and Moser (2013) use a simple least squares method to estimate the
exponent in a nonlinear, but parametric, PA model.

In what follows, the proposed data generating process will use ideas of PA to
model the the evolution of a star cluster. The ABC approach will be well-suited
to perform inference with this model, given its complexity and the available
data.

3.1. Preferential attachment for the IMF

The formation of a star cluster is a complicated and turbulent process with
different theories on the physical processes that lead to the origin of the stellar
IMF (Chabrier, 2005; Bate, 2012; Offner et al., 2014; Pokhrel et al., 2018). It is
generally understood that the molecular cloud fragments and then forms stellar
cores with a distribution referred to as the core mass function (CMF). Whether
evolution from the CMF to the IMF is random, deterministic, or something in
between is debated (Offner et al., 2014). In the proposed work, we consider the
case where star cores can increase in mass by accreting material from the sur-
rounding cloud and a particular star’s final mass can be affected by its neighbors
through turbulence or dynamical interactions. That is, rather than assuming
that stellar masses in a cluster arise independently of each other, our PA model
proposes a resource-limited mass accretion process between stellar cores whose
ability to accumulate additional mass is a function of their existing masses. This
dependence feature is particularly important for statistical inference, as models
that assume independent observations of stellar masses are vulnerable to incor-
rect and misleading inference. Additionally, the mass of the largest star to form
in a cluster is limited by the total cluster mass.

Our proposed stochastic model for stellar formation is as follows: we first fix
a total available cluster mass Mtot. This quantity can be physically interpreted
as the total mass available for stellar formation in a molecular cloud. At each
time step t = 1, 2, . . ., a random quantity of mass mt ∼ Exponential(λ) enters
the collection of stars; M1,1 = m1 becomes the mass of the first star. Subsequent
masses entering the system form a new star with probability α or join existing
star k = 1, . . . , nt with probability πkt, defined as

πkt =
Mγ

k,t

α+
∑nt

j=1 M
γ
j,t

. (3.1)
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The generating process is complete when the total mass of formed stars first
exceeds Mtot. The possible ranges of the three parameters are λ > 0, α ∈ [0, 1),
and γ > 0.

For the growth component, the model allows for linear (γ = 1), sublinear
(γ < 1), and superlinear (γ > 1) behavior; the limiting case of γ → 0 gives
a uniform attachment model. Finally, the parameter λ acts as a scaling factor
which controls the average ‘coarseness’ of masses joining the forming stellar
cores.

The proposed PA mass generation model offers considerable flexibility to
approximate existing IMF models in the literature. To illustrate the generality
of the proposed model, IMF realizations were drawn assuming the Kroupa (2001)
broken power-law model as the true model, defined as

f(m) ∝

⎧⎨
⎩

m−0.3, m ≤ 0.08
k1 ·m−1.3, 0.08 < m ≤ 0.5
k2 ·m−2.3, m > 0.5,

(3.2)

and the Chabrier (2003a,b) log-normal model, defined as

f(m) ∝
{

0.158
m × exp

(
− (log10(m)−log10(0.079))

2

2(0.69)2

)
, m ≤ 1

k3 ·m−2.3, m > 1,
(3.3)

where constants k1, k2, and k3 are defined to make the densities continuous. Our
proposed PA ABC procedure was then used for inference and Figure 2 displays
the resulting posterior predictive IMFs. The proposed model captures the gen-
eral shape of the true model. Figures 3a - 3c display ABC marginal posteriors
for the broken power-law model of Kroupa (2001) and the log-normal model
of Chabrier (2003a,b). Both the broken power-law and log-normal models have
similar ABC posterior means for α (0.293 and 0.304, respectively). However, the
ABC posterior means for γ are notably different. The broken power-law model
has an ABC posterior mean of 0.889 while the estimate for the log-normal model
is 1.050. Since the Kroupa (2001) and Chabrier (2003a,b) models use the same
power-law slope for masses greater than 0.5 M� and 1 M�, respectively, this
suggests that the differences in γ are due to differences in the shape of the lower-
mass end of the IMF. The proposed model offers an approach for discriminating
these models.

3.2. Initial mass function to the observed mass function

The PA model describes the formation of a star cluster at initial formation. In
practice, we are not generally able to observe the star cluster after the initial
formation because significant time is likely to have passed. When observation of
a cluster occurs, the initial cluster will have changed due to aging and dynamical
evolution of the cluster. Additionally, even if observation of the initial cluster
was possible, there are observational and measurement uncertainties that would
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Fig 2. The solid black lines display the IMF with 1,000 stars simulated from (a) the broken
power-law model of Kroupa (2001) (see Eq (3.2)) and (b) the log-normal model of Chabrier
(2003a,b) (see Eq (3.3)). The proposed PA ABC model was used with N = 1, 000 particles,
and 95% point-wise credible bands are displayed (blue, dashed lines) along with the posterior
median (red, dotted) for each data set. The PA model provides flexibility to approximate both
existing models. Both models have similar ABC posterior means for α (0.293 and 0.304,
respectively). However, the ABC posterior means for γ are notably different. The broken
power-law model has an ABC posterior mean of 0.889 while the estimate for the log-normal
model is 1.050.

Fig 3. Marginal ABC posteriors for data generated from the broken power-law model of
Kroupa (2001) (thick black lines) and for data generated from the log-normal model of
Chabrier (2003a,b) (thin blue lines). The vertical dashed black lines indicate the ABC pos-
terior mean for the Kroupa (2001) model, vertical dashed and dotted blue lines indicate the
ABC posterior mean for the Chabrier (2003a,b) model, and the dotted gray lines indicate the
range of the uniform prior for the parameter.

limit our capacity to get a perfect representation of the initial cluster. The actual
observed cluster is referred to as the present-day observed MF, which describes
the observed distribution of the stellar masses of a particular cluster.

Observation limitations can be easily incorporated into the ABC framework.
For simplicity, we adopt a “linear ramp” completeness function describing the
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probability of observing a star of mass m:

Pr(observing a star | m) =

⎧⎪⎨
⎪⎩
0, m < Cmin

m−Cmin

Cmax−Cmin
, m ∈ [Cmin, Cmax]

1, m > Cmax.

(3.4)

We assume that the values Cmin and Cmax are known, though we note that se-
lecting an appropriate completeness function is a difficult process which requires
quantification from the observational astronomers for each set of data. Differ-
ent models for the completeness function could also be considered, including
those which allow for spatially-varying observational completeness. A benefit of
ABC is the ease at which a new completeness function can be incorporated – it
amounts to a simple change in the forward model.

Due to measurement error and practical limitations in translating luminosi-
ties into masses, the masses of stars are not perfectly known. This uncertainty
can be incorporated in different ways; following Weisz et al. (2013), we assume
that the inferred mass of a star mi is related to its true mass Mi via

logmi = logMi + σiηi, (3.5)

where ηi is a standard normal random variable, and σi is known measurement
error. The model for mass uncertainties in (3.5) is simple and could be extended
to account for other sources of uncertainty (e.g. redshift).

As noted previously, the lifecycle of a star depends on certain characteristics
such as mass. In the proposed algorithm, stars generated in a cluster are aged
using a simple truncation of the largest masses. That is, the distribution of
stellar masses for a star cluster of age τ Myr is given by

fM (m | θ, τ) ∝ fM (m | θ)I{M ≤ τ−1/3 × 104/3}, (3.6)

corresponding to stellar lifetimes of (104/M3) Myr, where M is the mass of the
star (Hansen, Kawaler and Trimble, 2004; Chaisson and McMillan, 2011), and
fM (m | θ) represents some specified IMF model. More sophisticated models
that account for effects such as binary stars and stellar wind mass loss can be
inserted into this framework.

4. Simulation study

We propose an ABC framework to make inferences on the IMF given a cluster’s
present-day observed MF.1 Details about the proposed ABC method, including
the algorithm, are presented in Appendix B. In this section we first consider a
simulation study where the data are generated from the proposed forward model
with observational effects, and then we consider data from an astrophysical
simulation (Bate, 2012, 2014).

1Code for running the proposed ABC-IMF algorithm is available at https://

github.com/JessiCisewskiKehe/ABC_for_StellarIMF.

https://github.com/JessiCisewskiKehe/ABC_for_StellarIMF
https://github.com/JessiCisewskiKehe/ABC_for_StellarIMF
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4.1. Simulated data with observational effects

We first consider a suite of simulations which incorporate aging, completeness,
and measurement error, in order to analyze these effects on the resulting in-
ference on the IMF. The same IMF was used throughout the simulations, with
λ−1 = 0.25, α = 0.3, γ = 1, and Mtot = 1000, but we vary the range of the
linear ramp completeness function of Equation (3.4); Cmin is fixed at 0.08 M�
and Cmax ∈ {0.10, 0.25, 0.5, 0.75, 1} where low values of Cmax result in fewer
stars removed from the IMF and, hence, a larger number of stars in the MF. All
five sets of MFs are aged 30 Myr and have log-normal measurement error with
σ = 0.25. The observational effects, including the differing completeness function
upper bounds, resulted in MF’s with 800 (70.1% of IMF stars), 659 (57.7%), 488
(42.7%), 415 (36.3%), and 352 (30.8%) stars for Cmax = 0.10, 0.25, 0.5, 0.75, 1,
respectively, compared to the original IMF with 1142 stars.

We are interested in the differences among the ABC posteriors and predic-
tive IMFs among the varying Cmax values. The marginal ABC posteriors are
displayed in Figure 4, which also includes the analogous ABC marginal poste-
riors without observational effects. Except for the marginal posteriors of Mtot,
for Cmax = 0.1 and 0.25, the posteriors get broader, which is expected because
larger Cmax results in fewer observations and greater uncertainty. However, the
marginal posteriors for Cmax = 0.5, 0.75, and 1 are quite similar. The marginal
posteriors of Mtot in Figure 4d are all similar and significantly broader than the
case without observational effects. Hence, the observational effects appear to
have a profound impact on inference for Mtot. The pairwise joint ABC posteri-
ors are displayed in Figure 5 as a reference, and seem to follow the same general
patterns noted for the marginals (i.e., they are broader as Cmax increases).

Finally, the posterior predictive IMFs are combined into a single plot dis-
played in Figure 6. As in the previous section, the posterior predictive IMFs are
the pointwise medians of 1000 independent draws from the ABC posteriors of
Figure 4. Also included in the figures are 95% credible bands based on the 2.5 and
97.5 percentiles of the 1000 posterior draws. The true IMF is plotted as a thick
yellow line and the corresponding ABC posterior predictive IMF without obser-
vational effects is also displayed. The posterior predictive IMFs for Cmax = 0.1
and 0.25 overlap well with the true IMF and the posterior predictive IMF with-
out observational effects, but with wider 95% credible bands. The posterior pre-
dictive IMFs for Cmax = 0.5, 0.75, and 1 have similar shapes and 95% credible
bands. Their posterior predictive IMFs peak at a higher mass than the others.
These differences are not surprising given that there are far fewer stars below,
for example, −0.5 log10(M�): 46, 61, and 96 stars for Cmax = 1, 0.75, and 0.5
compared to 225 and 368 stars for Cmax = 0.25, and 0.1, respectively, and 685
stars in that range for the original IMF.

The conclusion drawn from these simulations is that the completeness func-
tion affects the resulting inference – when more stars are missing from the
original IMF due to the completeness function, the resulting ABC posteriors
tend to be broader to reflect the increased uncertainty.
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Fig 4. Marginal ABC posteriors for the simulation setting of Section 4.1. The different color
and types of lines indicate the differing upper limits of the linear ramp completeness func-
tion of Equation (3.4), Cmax, corresponding to the weighted kernel density estimates of the
marginal ABC posteriors for (a) λ−1, (b) α, (c) γ, and (d) Mtot. The lower limit, Cmin, is
fixed at 0.08 M�. All five datasets started with the same IMF using λ−1 = 0.25, α = 0.3,
γ = 1, and Mtot = 1000, were aged 30 Myr, and had log-normal measurement error applied
with σ = 0.25. The solid magenta line is the ABC marginal posterior using an identical IMF,
but with no observational effects applied, and is included for comparison; note that the ver-
tical axis of (d) does not extend to the full range of this ABC marginal posterior for Mtot.
The vertical dotted gray lines indicate the range of the priors for (a), (b), and (c).

4.2. Astrophysical simulation data

Next we consider a star cluster generated from the radiation hydrodynamical
simulation presented in Bate (2012) and published in Bate (2014).2 This simu-
lation resulted in 183 stars and brown dwarfs with a total mass of the resulting
objects of about 88.68 M� formed from a 500 M� molecular cloud of uniform
density. Understanding that simulations are only an approximation of reality,

2The astrophysical data is available at https://ore.exeter.ac.uk/repository/handle/

10871/14881

https://ore.exeter.ac.uk/repository/handle/10871/14881
https://ore.exeter.ac.uk/repository/handle/10871/14881
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Fig 5. Pairwise ABC posterior particles samples of (λ−1, α, γ,Mtot) for the simulation set-
tings of Section 4.1. The different color and types of points indicate the Cmax values of the
linear ramp completeness function, and the size of the plot symbol is scaled with the particle
weight. The lower limit, Cmin, is fixed at 0.08 M�. All five datasets started with the same
IMF using λ−1 = 0.25, α = 0.3, γ = 1, and Mtot = 1000, were aged 30 Myr, and had log-
normal measurement error applied with σ = 0.25. The magenta upside-down triangles are the
ABC marginal posterior using an identical IMF, but with no observational effects applied,
and is included for comparison.

Fig 6. Posterior predictive IMF for the simulation settings of Section 4.1. The thick yellow
line is the true IMF, the thicker lines of varying line type and color are the ABC posterior
predictive median IMF for the different values of Cmax, the thinner lines of the same type
and color define a point-wise 95% credible band for the Cmax with the matching color, and
the shaded regions are the different ranges of completeness (all starting at Cmin = 0.08M�
indicated by the left end of the arrows). The solid magenta line is the ABC posterior predictive
IMF using an identical IMF, but with no observational effects applied, and is included for
comparison. The posterior predictive IMFs are based off of 1000 independent draws from the
final ABC posteriors.
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this astrophysical simulation was implemented to include realistic physics of
star cluster formation such as radiative feedback. The technical details of the
simulation are beyond the scope of this work, but can be found in Bate (2012).
Figure 7 displays the resulting IMF as a density and histogram.

In Bate (2012), validation of the simulated cluster was carried out by compar-
ing its IMF with the model of Chabrier (2005), and was not able to statistically
differentiate them using a Kolmogorov-Smirnov test. The Chabrier (2005) IMF
is displayed in Figure 7 as a comparison to the simulation data. While the
general shape does appear to match well, the Bate (2012) data has a small sec-
ond mode around 1M�. The Bate (2012) data seems to have more objects on
the lower mass end and fewer between 0.5 and 1M� than expected with the
Chabrier (2005) IMF model. Additionally, because the shape of the low-mass
end of the IMF is not well-constrained observationally, Bate (2012) compares
the ratio of number of brown dwarfs to number of stars with masses < 1M�
and finds acceptable agreement with observations. Bate (2012) also carryout an
analysis of the mechanism(s) behind the shape of the IMF. They found that
larger objects have had longer accretion times, while lower mass objects tended
to have a dynamical encounter that result in the accretion terminating; hence
there ended up being, as Bate (2012) described, a “competition between accre-
tion and dynamical encounters.” This competition for material seems consistent
with the ideas underlying the proposed PA model.

The 183 objects were used as the observations in the proposed ABC algo-
rithm using 1000 particles, 5 sequential time steps, a kN of 104 (for adaptively
initializing the algorithm), and the 25th percentile for shrinking the sequential
tolerances based on the empirical distribution of the retained distances from
the preceding time step. The resulting ABC marginal posteriors are displayed
in Figure 8, the pairwise ABC joint posteriors in Figure 9, and the posterior pre-
dictive IMF in Figure 10. The ABC posterior means for λ−1, α, and γ are 0.260,
0.537, and 1.091, respectively. The ABC posterior mean of α is notably higher
than the ABC posterior means of α for the Kroupa (2001) (0.293) and Chabrier
(2003a,b) (0.304) simulated data discussed in Section 3.1 (see Figure 2). The
ABC posterior mean of γ is also slightly higher than the 1.050 posterior mean
of the Chabrier (2003a,b) data. Though the IMF has a slightly irregular shape
with a small second mode around 1 M� as noted previously, the proposed ABC
method’s posterior predictive median and 95% predictive bands generally fit the
IMF shape well.

5. Discussion

Accounting for the complex dependence structure in observable data, such as the
initial masses of stars formed from a molecular cloud, is a challenging statistical
modeling problem. A possible, but unsatisfactory, resolution is to proceed as
though the dependency is sufficiently weak that an independence assumption
is acceptable. Such approximations can be reasonable at small sample sizes,
but are often revealed to be insufficient by modern data sets. Instead, we draw
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Fig 7. Astrophysical simulation IMF. The black curve displays the IMF of the 183 stars and
brown dwarfs simulated from Bate (2012) and the red dotted curve is the IMF of Chabrier
(2005). The right axis provides the number of stars (and brown dwarfs) for the histogram
(plotted in blue).

Fig 8. Marginal ABC posteriors for astrophysical simulation data from Bate (2012). The
vertical dashed red lines indicate the ABC posterior mean, and the dotted gray lines indicate
the range of the uniform prior for the parameter.

Fig 9. Pairwise joint ABC posteriors for astrophysical simulation data from Bate (2012).
Pairwise ABC posterior particles samples of (a) (λ−1, α), (b) (λ−1, γ), and (c) (α, γ) for the
astrophysical simulation data from Bate (2012). The size of the plot symbol is scaled with the
particle weight.
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Fig 10. Posterior predictive IMF for astrophysical simulation data from Bate (2012). The
median of the posterior predictive IMF (solid black) with a corresponding 95% point-wise
predictive band (dashed black) compared to the true IMF (blue dotted). For the posterior
predictive IMF, 1000 draws were made from the final ABC posteriors and then 1000 cluster
samples were drawn from the proposed forward model.

on PA models, proposing a new forward model for star formation. Though the
new generative model was motivated by inference on stellar IMFs, the general
concept is generalizable to other applications. Simulation-based approaches to
inference, including ABC, allow for inference with such models.

The new generative model starts with the total mass of the system and
stochastically builds individuals stars of particular mass at a sub-linear, lin-
ear, or super-linear rate. A goal of the proposed model and algorithm is to
begin making a statistical connection between the observed stellar MF and the
formation mechanism of the cluster, not that the proposed model shape is supe-
rior to the standard IMF models. Rather, the proposed model is more general
in the sense that it captures the dependencies among the masses of the stars
by connecting the star masses to a possible cluster formation mechanism, and
also can accommodate standard models proposed in the astronomical literature.
Additionally, by coupling the proposed model with ABC, observational limita-
tions such as the aging and completeness of the observed cluster can easily be
accounted for. Code for running the proposed ABC-IMF algorithm is available
at https://github.com/JessiCisewskiKehe/ABC_for_StellarIMF.

In agreement with other studies that have implemented ABC algorithms (e.g.
Weyant, Schafer and Wood-Vasey 2013; Ishida et al. 2015), we found the selec-
tion of informative summary statistics to be a crucial, but challenging step in
the algorithm development. In the IMF setting, we had initially considered a
number of different possible summary statistics, but it became clear that match-
ing the shape of the IMF was important to constrain the parameters (along with
the number of stars generated in the cluster). To assess the similarity between
the observed and simulated IMFs, the L2 distance was effective, but we imag-
ine that other functional distances could also work well. In future applications
of ABC, practitioners may find it useful to consider functional summaries and
distances if the setting allows for it. To reach these conclusions, it required us to

https://github.com/JessiCisewskiKehe/ABC_for_StellarIMF
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create a simplified setting where the true posterior was available; when possible,
we suggest others consider this when trying to select useful summary statistics
and distance functions.

While the proposed model is able to account for a particular dependency
among the masses during cluster formation, there are several extensions that
would be scientifically and statistically interesting. First, the generative model
could be extended to capture the spatial dependency among the observations.
Intuitively, such an approach could account for a mechanism that limits the
formation of multiple very massive stars relatively near to each other. Under-
standing the spatial distribution of masses of stars during formation would help
advance our understanding of stellar formation and evolution. Other effects that
could be incorporated into the generative model include accounting for binary
and other multiple star systems, the possible disturbances to the observed MF
as stars die (beyond the censoring of the most massive stars), or spatial com-
pleteness functions (i.e. a completeness function that depends on not only the
mass of the object, but also its location in the cluster).

Hence, the proposed generative model, used in conjunction with ABC, pro-
vides a useful framework for dealing with complex physical processes that are
otherwise difficult to work with in a statistically rigorous fashion. As increas-
ing computational resources allow for greater model complexity in astronomy
and other fields, the proposed and other ABC algorithms may open new op-
portunities for Bayesian inference in challenging problems. There appears to be
significant potential to extend this approach to even more complicated situa-
tions.

Appendix A: Generating power law tails

As mentioned in Section 2, the PA model with linear evolution (the Yule-Simon
Process) is known to generate power law tails (Newman, 2005). It is worth
exploring the extent to which power law tail behavior is present in cases where
γ �= 1, as the power law model is a prevalent assumption in this application,
such as with the Kroupa (2001) and Chabrier (2003a,b) models. For example,
it would be of interest to determine if tests of H0 : γ = 1 would have power to
detect deviation from power law tails, which would be of interest to astronomers.

A small simulation study was conducted. Goodness-of-fit was assessed using
the standard Kolmogorov-Smirnov statistic, with the empirical distribution of
the masses of a collection of stars generated from our PA model compared to
the best fitting power law model. As we are only interested in fitting to the
upper tail, this analysis is restricted to the region above 1M�. We fix λ−1 =
0.25 and Mtot = 1000, and consider α ∈ {0.2, 0.4, 0.6, 0.8}, for values of γ
ranging from 0.25 to 5. Fifty data sets are generated for each (α, γ) combination.
Results are shown in Figure 11. In order to place the goodness-of-fit on a readily-
interpretable scale, the p-value is calculated for each K-S test, and the median
across the 50 repetitions is displayed. The results support the claim that the tail
follows the power law when γ = 1, but that the power law fit degrades quickly
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for γ outside (0.5, 1.5). The effect is particularly strong for smaller values of α.
In practice, one may decide to use a prior distribution on γ that places more
mass within (0.5, 1.5) if a power law model is expected, instead of the uniform
prior distribution considered in this paper.

Fig 11. Median p-values from Kolmogorov-Smirnov tests when comparing the tail distribution
of masses simulated from the proposed PA model with the best-fitting power law model. Fifty
repetitions are done at each (α, γ) combination. The 0.05 cutoff is shown as a guide. Note
that the vertical axis is on the log-scale. The first two α = 0.2 p-values drops below the range
of the vertical axis to 9.392× 10−5 and 2.991× 10−3.

Appendix B: Proposed ABC algorithm

The proposed ABC algorithm is displayed in Algorithm (1), where N is the
desired particle sample size to approximate the posterior distribution, and is
motivated by the adaptive and sequential ABC algorithm of Beaumont et al.
(2009). The forward model, F , in Algorithm (1) is where the IMF masses are
drawn and observational limitations and uncertainties, stellar evolution, and
other astrophysical elements can be incorporated as outlined in Section 3. The
other details of the proposed algorithm are discussed next.

Algorithm (1) is initialized using the basic ABC rejection algorithm at time
step t = 1 using a distance function ρ(msim,mobs) to measure the distance
between the simulated and observed datasets, msim and mobs, respectively. The
first tolerance, ε1, is adaptively selected by drawing kN particles for some k > 0.
Then the N particles that have the smallest distance are retained, and ε1 is
defined as the largest of those N distances retained. For subsequent time steps
(t > 1), rather than proposing a draw, θ∗, from the prior, π(θ), the proposed
θ∗ is selected from the previous time step’s (t − 1) ABC posterior samples.
The selected θ∗ is then moved according to some kernel, K(θ∗, ·), to ameliorate
degeneracy as the sampler evolves. In order to ensure the true posterior (which
requires sampling from the prior) is targeted, the retained draws are weighted
according to the appropriate importance weights, Wt – this incorporates the
proposal distribution’s kernel.

A key step in the implementation of an ABC algorithm is to quantify the dis-
tance between the simulated and observed stellar masses. We define a bivariate
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Data: Observed stellar masses, (mobs)
Result: ABC posterior sample of θ
At iteration t = 1:
for j = 1, . . . , kN do

Propose θ∗(j) by drawing from π(θ)
Generate cluster stellar masses msim and apply other effects from F (m | θ∗(j))
Calculate distance ρ

(j)
t ← ρ(msim,mobs)

end

θ
(j)
t ← θ∗(l), l = indices of N smallest ρ

(q)
t , q = 1, . . . , kN

εt+1 ← desired quantile of ρ
(l)
t with l defined as above

W
(j)
t ← 1/N, j = 1, . . . , N

At iterations t = 2, . . . , T :
for j = 1, . . . , N do

while ρ∗(j) > εt do

Select θ(j) by drawing from the θ
(i)
t−1 with probabilities W

(i)
t−1, i = 1, . . . , N

Generate θ∗(j) from transition kernel K(θ(j), ·)
Generate cluster stellar masses msim and apply other effects from F (m | θ∗(j))
Calculate distance ρ∗(j) ← ρ(msim,mobs)

end

θ
(j)
t ← θ∗(j), ρ

(j)
t ← ρ∗(j)

W
(j)
t ← π(θ

(j)
t )∑N

i=1 W
(i)
t−1K(θ

(i)
t−1,θ

(j)
t )

end

W
(j)
t ← W

(j)
t∑N

l=1
W

(l)
t

, εt+1 ← desired quantile of ρ
(j)
t , j = 1, . . . , N

Algorithm 1: Stellar IMF ABC algorithm with sequential sampling

summary statistic and distance function that captures the shape of the present-
day MF and the random number of stars observed, displayed in Equations (B.1)
and (B.2), respectively. For the shape of the present-day MF, we use a kernel
density estimate of the log10 masses (due to the heavy-tailed distribution of the
initial masses), and an L2 distance between the simulated and observed log10
MF estimates. The number of stars observed is the other summary statistic,
with the distance being the absolute value of the difference in the ratio of the
counts from 1. More specifically, the bivariate summary statistic is defined as

ρ1(msim,mobs) =

[∫ {
f̂logmsim(x)− f̂logmobs

(x)
}2

dx

]1/2
(B.1)

ρ2(msim,mobs) = max {|1− nsim/nobs| , |1− nobs/nsim|} , (B.2)

where the f̂z are kernel density estimates of z, and nsim and nobs are the number
of stars comprising the simulated and observed MF, respectively. These sum-
mary statistics were selected based on performance of a simulation study using
the high-mass section of the broken power-law model because the true posterior
is known in this setting. Results and additional discussion of the simulation
study is presented below in Appendix B.1.
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With the bivariate summary statistic, we use a bivariate tolerance sequence,
(ε1t, ε2t), for t = 1, . . . , T is such that εi1 ≥ εi2 ≥ · · · ≥ εiT for i = 1, 2. At
time step t, the tolerances are determined based on the empirical distribution
of the retained distances from time step t − 1 (e.g. the 25th percentile). As
noted previously, the tolerance sequence is initialized adaptively by selecting
kN proposals from the prior distributions, then the N proposals that result
in the N smallest distances were selected.3 The distance function and tol-
erance sequence displayed in Algorithm (1) are defined as ρt(msim,mobs) =
{ρ1t(msim,mobs), ρ2t(msim,mobs)}, and εt = {ε1t, ε2t} (which can also be ex-
panded to include the additional summary statistic noted below).

In practice, Mtot is an unknown quantity of interest. A prior can be assigned
to Mtot and an additional summary statistic and tolerance sequence can be
used. The summary statistic selected in this case is

ρ3(msim,mobs) =

∣∣∣∣∣∣
nsim∑
i=1

msim,i −
nobs∑
j=1

mobs,j

∣∣∣∣∣∣ , (B.3)

where msim,i and mobs,j are the masses of the individual simulated and observed
stars, respectively.

B.1. ABC summary statistic selection

In order to select effective summary statistics for the proposed model, we first
employ the ABC methodology in a simplified study that focuses on the posterior
of the power law parameter α from Equation (2.1). We generate a cluster of
n = 103 stars from an IMF with slope α = 2.35 (Salpeter, 1955), Mmin = 2,
and Mmax = 60, and a uniform prior distribution for α ∈ (0, 6). This model
was used in order to check the method against the true posterior of α after the
observational and aging effects have been incorporated into the forward model.
We use the bivariate summary statistic and distance function of Equation (B.1)
and (B.2). Defining the two-dimensional tolerance sequence as (ε1t, ε2t) where
the subscript t indicates the algorithm time step, and ε11 and ε21 were selected
using an adaptive start as discussed above using an initial number of draws
of 10N with N = 103. The algorithm ran for T = 5 time steps. At steps
t = 2, . . . , T , ε1t and ε2t were set equal to the 25th percentile of the distances
retained at the previous step from their corresponding distance functions.

The pseudo-data were aged 30 Myr, log-normal measurement error with σ =
0.25, and observation completeness defined by the linear-ramp function in (3.4)
with Cmin = 2 M� and Cmax = 4 M�. The simulated IMF and resulting MF
(after the noted observational effects were applied) are displayed in Figure 12.
The IMF is the object of interest, while the MF contain the actual observations
that can be used for analysis.

3The kN sampled distances were scaled, squared, and then added together; the N smallest
of these combined distances were retained.
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Fig 12. Simulated IMF (yellow) and MF (blue) using power law model. The IMF was sim-
ulated with n = 103 stars using a power law slope of α = 2.35. The cluster was aged 30
Myrs, simulated with log-normal measurement error with σ = 0.25, and had a linear-ramp
completeness function applied between 2 and 4 M�.

The ABC posterior resulting from the ABC algorithm along with the true
posterior for α are displayed in Figure 13a. The ABC posterior matches the true
posterior, defined as

πF (α | mobs,Mmin,Mmax, nobs, ntot, Tage) ∝ (B.4){
Pr(M > Tage) +

(
1− α

M1−α
max −M1−α

min

)∫ 4

2

M−α

(
1− M− 2

2

)
dM

}ntot−nobs

×
nobs∏
i=1

{∫ Tage

2

(2πσ2)−
1
2m−1

i e−
1

2σ2 (log(mi)−log(M))2
(

1− α

M1−α
max −M1−α

min

)
M−α

×
(
I{M > 4}+

(
M − 2

2

)
I{2 ≤ M ≤ 4}

)
dM

}

where Tage = τ−1/3×104/3 is the upper-tail mass cutoff due to aging. The close
match between the true and ABC posteriors suggests that the selected summary
statistics are useful for carrying out the ABC analysis. Figures 13b and 13c
display the ABC posterior predictive IMF and MF. Even in regions where stars
are missing due to the observational limitations, the ABC predictive median is
still able to recover the shape of the original IMF (though with wider credible
bands).
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Fig 13. Validation of summary statistics with power law model. (a) The ABC posterior
for α (solid black) compared to the true posterior (dotted blue) of Equation (B.4) using an
input value of 2.35 (dashed vertical red). (b) The median of the posterior predictive IMF
(solid black) with a corresponding 95% point-wise predictive band (dashed black) compared
to the true IMF (blue dotted) which was the simulated dataset before aging, completeness,
or uncertainty were applied, and the gray shaded region indicates where the completeness
function was less than 1. (c) The median of the posterior predictive MF (solid black) with
a corresponding 95% point-wise predictive band (dashed black) compared to the observed MF
(dotted blue) which was the simulated dataset after aging, completeness, and uncertainty were
applied. For the posterior predictive IMF, 1000 independent draws were made from the ABC
posterior of (a) and then 1000 cluster samples were drawn from the power law simulation
model. For the posterior predictive MF, the 1000 cluster samples used for (b) were then put
through the forward model to apply the aging, completeness, and measurement error effects.
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Gómez, V., Kappen, H. J. and Kaltenbrunner, A. (2011). Modeling the
Structure and Evolution of Discussion Cascades. In Proceedings of the 22Nd
ACM Conference on Hypertext and Hypermedia. HT ’11 181–190. ACM, New
York, NY, USA.

Hahn, C., Tinker, J. L. and Wetzel, A. (2017). Star Formation Quench-
ing Timescale of Central Galaxies in a Hierarchical Universe. Astrophysical
Journal 841 6.

Hahn, C., Vakili, M., Walsh, K., Hearin, A. P., Hogg, D. W. and Camp-

bell, D. (2017). Approximate Bayesian computation in large-scale structure:
constraining the galaxy-halo connection.Mon. Not. R. Astron. Soc. 469 2791-
2805.

Hansen, C. J., Kawaler, S. D. and Trimble, V. (2004). Stellar Interiors:
Physical Principles, Structure, and Evolution. Springer, New York.

Herbel, J., Kacprzak, T., Amara, A., Refregier, A., Bruderer, C.

and Nicola, A. (2017). The redshift distribution of cosmological samples: a
forward modeling approach. Journal of Cosmology and Astroparticle Physics
8 035.

Ishida, E., Vitenti, S., Penna-Lima, M., Cisewski, J., de Souza, R.,
Trindade, A., Cameron, E. et al. (2015). cosmoabc: Likelihood-free infer-
ence via Population Monte Carlo Approximate Bayesian Computation. arXiv
preprint arXiv:1504.06129.
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