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Abstract: Various problems in manifold estimation make use of a quan-
tity called the reach, denoted by τM , which is a measure of the regularity of
the manifold. This paper is the first investigation into the problem of how
to estimate the reach. First, we study the geometry of the reach through an
approximation perspective. We derive new geometric results on the reach
for submanifolds without boundary. An estimator τ̂ of τM is proposed in
an oracle framework where tangent spaces are known, and bounds assess-
ing its efficiency are derived. In the case of i.i.d. random point cloud Xn,
τ̂(Xn) is showed to achieve uniform expected loss bounds over a C3-like
model. Finally, we obtain upper and lower bounds on the minimax rate for
estimating the reach.
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1. Introduction

1.1. Background and related work

Manifold estimation has become an increasingly important problem in statistics
and machine learning. There is now a large literature on methods and theory
for estimating manifolds. See, for example, [31, 25, 24, 10, 33, 8, 26].
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Estimating a manifold, or functionals of a manifold, requires regularity con-
ditions. In nonparametric function estimation, regularity conditions often take
the form of smoothness constraints. In manifold estimation problems, a common
assumption is that the reach τM of the manifold M is non-zero.

First introduced by Federer [22], the reach τM of a set M ⊂ R
D is the largest

number such that any point at distance less than τM from M has a unique
nearest point onM . If a set has its reach greater than τmin > 0, then one can roll
freely a ball of radius τmin around it [15]. The reach is affected by two factors:
the curvature of the manifold and the width of the narrowest bottleneck-like
structure of M , which quantifies how close M is from being self-intersecting.

Positive reach is the minimal regularity assumption on sets in geometric mea-
sure theory and integral geometry [23, 37]. Sets with positive reach exhibit a
structure that is close to being differential — the so-called tangent and nor-
mal cones. The value of the reach itself quantifies the degree of regularity of
a set, with larger values associated to more regular sets. The positive reach
assumption is routinely imposed in the statistical analysis of geometric struc-
tures in order to ensure good statistical properties [15] and to derive theoretical
guarantees. For example, in manifold reconstruction, the reach helps formalize
minimax rates [25, 31]. The optimal manifold estimators of [1] implicitly use
reach as a scale parameter in their construction. In homology inference [33, 7],
the reach drives the minimal sample size required to consistently estimate topo-
logical invariants. It is used in [16] as a regularity parameter in the estimation of
the Minkowski boundary lengths and surface areas. The reach has also been ex-
plicitly used as a regularity parameter in geometric inference, such as in volume
estimation [5] and manifold clustering [4]. Finally, the reach often plays the role
of a scale parameter in dimension reduction techniques such as vector diffusions
maps [36]. Problems in computational geometry such as manifold reconstruction
also rely on assumptions on the reach [10].

In this paper we study the problem of estimating reach. To do so, we first
provide new geometric results on the reach. We also give the first bounds on
the minimax rate for estimating reach. As a first attempt to study reach es-
timation in the literature, we will mainly work in a framework where a point
cloud is observed jointly with tangent spaces, before relaxing this constraint
in Section 6. Such an oracle framework has direct applications in digital imag-
ing [32, 28], where a very high resolution image or 3D-scan, represented as a
manifold, enables to determine precisely tangent spaces for arbitrary finite set
of points [28].

There are very few papers on this problem. When the embedding dimension
is 3, the estimation of the local feature size (a localized version of the reach)
was tackled in a deterministic way in [19]. To some extent, the estimation of the
medial axis (the set of points that have strictly more than one nearest point on
M) and its generalizations [17, 6] can be viewed as an indirect way to estimate
the reach. A test procedure designed to validate whether data actually comes
from a smooth manifold satisfying a condition on the reach was developed in [24].
The authors derived a consistent test procedure, but the results do not permit
any inference bound on the reach. When a sample is uniformly distributed over
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a full-dimensional set, [35] proposes a selection procedure for the radius of r-
convexity of the set, a quantity closely related to the reach.

1.2. Outline

In Section 2 we provide some differential geometric background and define the
statistical problem at hand. New geometric properties of the reach are derived in
Section 3, and their consequences for its inference follow in Section 4 in a setting
where tangent spaces are known. We then derive minimax bounds in Section 5.
An extension to a model where tangent spaces are unknown is discussed in
Section 6, and we conclude with some open questions in Section 7. For sake of
readability, the proofs are given in the Appendix.

2. Framework

2.1. Notions of differential geometry

In what follows,D ≥ 2 and R
D is endowed with the Euclidean inner product 〈·, ·〉

and the associated norm ‖·‖. The associated closed ball of radius r and center x is
denoted by B(x, r). We will consider compact connected submanifolds M of RD

of fixed dimension 1 ≤ d < D and without boundary [20]. For every point p in
M , the tangent space of M at p is denoted by TpM : it is the d-dimensional linear
subspace of RD composed of the directions that M spans in the neighborhood of
p. Besides the Euclidean structure given by R

D ⊃ M , a submanifold is endowed
with an intrinsic distance induced by the ambient Euclidean one, and called
the geodesic distance. Given a smooth path c : [a, b] → M , the length of c is

defined as Length(c) =
∫ b
a
‖c′(t)‖ dt. One can show [20] that there exists a path

γp→q of minimal length joining p and q. Such an arc is called geodesic, and the
geodesic distance between p and q is given by dM (p, q) = Length(γp→q). We
let BM (p, s) denote the closed geodesic ball of center p ∈ M and of radius s.
A geodesic γ such that ‖γ′(t)‖ = 1 for all t is called arc-length parametrized.
Unless stated otherwise, we always assume that geodesics are parametrized by
arc-length. For all p ∈ M and all unit vectors v ∈ TpM , we denote by γp,v
the unique arc-length parametrized geodesic of M such that γp,v(0) = p and
γ′
p,v(0) = v. The exponential map is defined as expp(vt) = γp,v(t). Note that

from the compactness of M , expp : TpM → M is defined globally on TpM . For

any two nonzero vectors u, v ∈ R
D, we let ∠(u, v) = dSD−1( u

‖u‖ ,
v

‖v‖ ) be the

angle between u and v.

2.2. Reach

First introduced by Federer [22], the reach regularity parameter is defined as
follows. Given a closed subset A ⊂ R

D, the medial axis Med(A) of A is the
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subset of RD consisting of the points that have at least two nearest neighbors
on A. Namely, denoting by d(z,A) = infp∈A ‖p− z‖ the distance function to A,

Med(A) =
{
z ∈ R

D|∃p �= q ∈ A, ‖p− z‖ = ‖q − z‖ = d(z,A)
}
. (2.1)

The reach of A is then defined as the minimal distance from A to Med(A).

Definition 2.1. The reach of a closed subset A ⊂ R
D is defined as

τA = inf
p∈A

d (p,Med(A)) = inf
z∈Med(A)

d (z,A) . (2.2)

Some authors refer to τ−1
A as the condition number [33, 36]. From the defini-

tion of the medial axis in (2.1), the projection πA(x) = argminp∈A ‖p− x‖ onto
A is well defined outside Med(A). The reach is the largest distance ρ ≥ 0 such
that πA is well defined on the ρ-offset

{
x ∈ R

D|d(x,A) < ρ
}
. Hence, the reach

condition can be seen as a generalization of convexity, since a set A ⊂ R
D is

convex if and only if τA = ∞. In the case of submanifolds, one can reformulate
the definition of the reach in the following manner.

Theorem 2.2 (Theorem 4.18 in [22]).

τM = inf
q �=p∈M

‖q − p‖2

2d(q − p, TpM)
. (2.3)

Fig 1. Geometric interpretation of quantities involved in (2.3).

This formulation has the advantage of involving only points on M and its
tangent spaces, while (2.2) uses the distance to the medial axis Med(M), which
is a global quantity. The formula (2.3) will be the starting point of the estimator
proposed in this paper (see Section 4).

The ratio appearing in (2.3) can be interpreted geometrically, as suggested
in Figure 1. This ratio is the radius of an ambient ball, tangent to M at p and
passing through q. Hence, at a differential level, the reach gives a lower bound
on the radii of curvature of M . Equivalently, τ−1

M is an upper bound on the
curvature of M .

Proposition 2.3 (Proposition 6.1 in [33]). Let M ⊂ RD be a submanifold, and
γp,v an arc-length parametrized geodesic of M . Then for all t,∥∥γ′′

p,v(t)
∥∥ ≤ 1/τM .
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In analogy with function spaces, the class
{
M ⊂ R

D|τM ≥ τmin > 0
}

can
be interpreted as the Hölder space C2(1/τmin). In addition, as illustrated in
Figure 2, the condition τM ≥ τmin > 0 also prevents bottleneck structures where
M is nearly self-intersecting. This idea will be made rigorous in Section 3.

Fig 2. A narrow bottleneck structure yields a small reach τM .

2.3. Statistical model and loss

Let us now describe the regularity assumptions we will use throughout. To avoid
arbitrarily irregular shapes, we consider submanifolds M with their reach lower
bounded by τmin > 0. Since the parameter of interest τM is a C2-like quantity,
it is natural — and actually necessary, as we shall see in Proposition 2.9 —
to require an extra degree of smoothness. For example, by imposing an upper
bound on the third order derivatives of geodesics.

Definition 2.4. Let Md,D
τmin,L

denote the set of compact connected d-dimen-

sional submanifolds M ⊂ R
D without boundary such that τM ≥ τmin, and for

which every arc-length parametrized geodesic γp,v is C3 and satisfies∥∥γ′′′
p,v(0)

∥∥ ≤ L.

The regularity bounds τmin and L are assumed to exist only for the purpose
of deriving uniform estimation bounds. However, we emphasize the fact that the
forthcoming estimator τ̂ (4.1) does not require them in its construction.

It is important to note that any compact d-dimensional C3-submanifold M ⊂
R

D belongs to such a class Md,D
τmin,L

, provided that τmin ≤ τM and that L is

large enough. Note also that since the third order condition
∥∥γ′′′

p,v(0)
∥∥ ≤ L needs

to hold for all (p, v), we have in particular that
∥∥γ′′′

p,v(t)
∥∥ ≤ L for all t ∈ R. To

our knowledge, such a quantitative C3 assumption on the geodesic trajectories
has not been considered in the computational geometry literature.

Any submanifold M ⊂ RD of dimension d inherits a natural measure volM
from the d-dimensional Hausdorff measure Hd on R

D [23, p. 171]. We will con-
sider distributions Q that have densities with respect to volM that are bounded
away from zero.

Definition 2.5. We let Qd,D
τmin,L,fmin

denote the set of distributions Q having

support M ∈ Md,D
τmin,L

and with a Hausdorff density f = dQ
dvolM

satisfying
infx∈M f(x) ≥ fmin > 0 on M .
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As for τmin and L, the knowledge of fmin will not be required in the con-
struction of the estimator τ̂ (4.1) described below.

In order to focus on the geometric aspects of the reach, we will first con-
sider the case where tangent spaces are observed at all the sample points. As
mentioned in the introduction, the knowledge of tangent spaces is a reasonable
assumption in digital imaging [32]. This assumption will eventually be relaxed
in Section 6.

We let Gd,D denote the Grassmannian of dimension d of RD, that is the set
of all d-dimensional linear subspaces of RD.

Definition 2.6. For any distribution Q ∈ Qd,D
τmin,L,fmin

with support M we asso-

ciate the distribution P of the random variable (X,TXM) on R
D×G

d,D, where

X has distribution Q. We let Pd,D
τmin,L,fmin

denote the set of all such distributions.

Formally, one can write P (dx dT ) = δTxM (dT )Q(dx), where δ· denotes the
Dirac measure. An i.i.d. n-sample of P is of the form (X1, T1), . . . , (Xn, Tn) ∈
R

D × G
d,D, where X1, . . . , Xn is an i.i.d. n-sample of Q and Ti = TXiM with

M = supp(Q). For a distribution Q with support M and associated distribution
P on R

D ×G
d,D, we will write τP = τQ = τM , with a slight abuse of notation.

Note that the model does not explicitly impose an upper bound on τM . Such
an upper bound would be redundant, since the lower bound on fmin does impose
such an upper bound, as we now state in the following result. The proof relies
on a volume argument (Lemma A.2), leading to a bound on the diameter of M ,
and on a topological argument (Lemma A.3) to link the reach and the diameter.

Proposition 2.7. Let M ⊂ R
D be a connected closed d-dimensional manifold,

and let Q be a probability distribution with support M . Assume that Q has a
density f with respect to the Hausdorff measure on M such that infx∈M f(x) ≥
fmin > 0. Then,

τdM ≤ Cd

fmin
,

for some constant Cd > 0 depending only on d.

To simplify the statements and the proofs, we focus on a loss involving the
condition number. Namely, we measure the error with the loss

�(τ, τ ′) =

∣∣∣∣1τ − 1

τ ′

∣∣∣∣
p

, p ≥ 1. (2.4)

In other words, we will consider the estimation of the condition number τ−1
M

instead of the reach τM .

Remark 2.8. For a distribution P ∈ Pd,D
τmin,L,fmin

, Proposition 2.7 asserts that

τmin ≤ τP ≤ τmax := (Cd/fmin)
1/d

. Therefore, in an inference set-up, we can
always restrict to estimators τ̂ within the bounds τmin ≤ τ̂ ≤ τmax. Conse-
quently,

1

τ2pmax

|τP − τ̂ |p ≤
∣∣∣∣ 1τP − 1

τ̂

∣∣∣∣
p

≤ 1

τ2pmin

|τP − τ̂ |p ,
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so that the estimation of the reach τP is equivalent to the estimation of the
condition number τ−1

P , up to constants.

With the statistical framework developed above, we can now see explicitly
why the third order condition ‖γ′′′‖ ≤ L < ∞ is necessary. Indeed, the following
Proposition 2.9 demonstrates that relaxing this constraint — i.e. setting L = ∞
— renders the problem of reach estimation intractable. Its proof is to be found
in Section D.3. Below, σd stands for the volume of the d-dimensional unit sphere
Sd.

Proposition 2.9. There exists a universal constant c > 1/100 such that given
τmin > 0, provided that fmin ≤ (2d+1τdminσd)

−1, we have for all n ≥ 1,

inf
τ̂n

sup
P∈Pd,D

τmin,L=∞,fmin

EPn

∣∣∣∣ 1τP − 1

τ̂n

∣∣∣∣
p

≥
(

c

τmin

)p

,

where the infimum is taken over the estimators τ̂n = τ̂n (X1, T1, . . . , Xn, Tn).

Thus, one cannot expect to derive consistent uniform approximation bounds
for the reach solely under the condition τM ≥ τmin. This result is natural,
since the problem at stake is to estimate a differential quantity of order two.
Therefore, some notion of uniform C3 regularity is needed.

3. Geometry of the reach

In this section, we give a precise geometric description of how the reach arises.
In particular, below we will show that the reach is determined either by a bot-
tleneck structure or an area of high curvature (Theorem 3.4). These two cases
are referred to as global reach and local reach, respectively. All the proofs for
this section are to be found in Section B.

Consider the formulation (2.2) of the reach as the infimum of the distance
between M and its medial axis Med(M). By definition of the medial axis (2.1),
if the infimum is attained it corresponds to a point z0 in Med(M) at distance
τM from M , which we call an axis point. Since z0 belongs to the medial axis
of M , it has at least two nearest neighbors q1, q2 on M , which we call a reach
attaining pair (see Figure 3b). By definition, q1 and q2 belong to B(z0, τM ) and
cannot be farther than 2τM from each other. We say that (q1, q2) is a bottleneck
of M in the extremal case ‖q2 − q1‖ = 2τM of antipodal points of B(z0, τM )
(see Figure 3a). Note that the ball B(z0, τM ) meets M only on its boundary
∂B(z0, τM ).

Definition 3.1. Let M ⊂ RD be a submanifold with reach τM > 0.

• A pair of points (q1, q2) in M is called reach attaining if there exists
z0 ∈ Med(M) such that q1, q2 ∈ B(z0, τM ). We call z0 the axis point of
(q1, q2), and ‖q1 − q2‖ ∈ (0, 2τM ] its size.

• A reach attaining pair (q1, q2) ∈ M2 is said to be a bottleneck of M if its
size is 2τM , that is ‖q1 − q2‖ = 2τM .
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As stated in the following Lemma 3.2, if a reach attaining pair is not a
bottleneck — that is ‖q1 − q2‖ < 2τM , as in Figure 3b —, then M contains
an arc of a circle of radius τM . In this sense, this “semi-local” case — when
‖q1 − q2‖ can be arbitrarily small — is not generic. Though, we do not exclude
this case in the analysis.

Lemma 3.2. Let M ⊂ R
D be a compact submanifold with reach τM > 0.

Assume that M has a reach attaining pair (q1, q2) ∈ M2 with size ‖q1 − q2‖ <
2τM . Let z0 ∈ Med(M) be their associated axis point, and write cz0(q1, q2) for
the shorter arc of the circle with center z0 and endpoints as q1 and q2.

Then cz0(q1, q2) ⊂ M , and this arc (which has constant curvature 1/τM ) is
the geodesic joining q1 and q2.

In particular, in this “semi-local” situation, since τ−1
M is the norm of the

second derivative of a geodesic of M (the exhibited shorter arc of the circle of
radius τM ), the reach can be viewed as arising from directional curvature.

Now consider the case where the infimum (2.2) is not attained. In this case,
the following Lemma 3.3 asserts that τM is created by curvature.

Lemma 3.3. Let M ⊂ R
D be a compact submanifold with reach τM > 0.

Assume that for all z ∈ Med(M), d(z,M) > τM . Then there exists q0 ∈ M and
a geodesic γ0 such that γ0(0) = q0 and ‖γ′′

0 (0)‖ = 1
τM

.

To summarize, there are three distinct geometric instances in which the reach
may be realized:

• (See Figure 3a) M has a bottleneck: by definition, τM originates from a
structure having scale 2τM .

• (See Figure 3b) M has a reach attaining pair but no bottleneck: then M
contains an arc of a circle of radius τM (Lemma 3.2), so that M actually
contains a zone with radius of curvature τM .

• (See Figure 3c) M does not have a reach attaining pair: then τM comes
from a curvature-attaining point (Lemma 3.3), that is a point with radius
of curvature τM .

From now on, we will treat the first case separately from the other two. We are
now in a position to state the main result of this section. It is a straightforward
consequence of Lemma 3.2 and Lemma 3.3.

Theorem 3.4. Let M ⊂ R
D be a compact submanifold with reach τM > 0. At

least one of the following two assertions holds.

• (Global Case) M has a bottleneck (q1, q2) ∈ M2, that is, there exists z0 ∈
Med(M) such that q1, q2 ∈ ∂B(z0, τM ) and ‖q1 − q2‖ = 2τM .

• (Local Case) There exists q0 ∈ M and an arc-length parametrized geodesic
γ0 such that γ0(0) = q0 and ‖γ′′

0 (0)‖ = 1
τM

.

Let us emphasize the fact that the global case and the local case of Theo-
rem 3.4 are not mutually exclusive. Theorem 3.4 provides a description of the
reach as arising from global and local geometric structures that, to the best of
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Fig 3. The different ways for the reach to be attained, as described in Lemma 3.2 and
Lemma 3.3.

our knowledge, is new. Such a distinction is especially important in our problem.
Indeed, the global and local cases may yield different approximation properties
and require different statistical analyses. However, since one does not know a
priori whether the reach arises from a global or a local structure, an estimator
of τM should be able to handle both cases simultaneously.

4. Reach estimator and its analysis

In this section, we propose an estimator τ̂(·) for the reach and demonstrate its
properties and rate of consistency under the loss (2.4). For the sake of clarity in
the analysis, we assume the tangent spaces to be known at every sample point.
This assumption will be relaxed in Section 6.

We rely on the formulation of the reach given in (2.3) (see also Figure 1),
and define τ̂ as a plugin estimator as follows: given a point cloud X ⊂ M ,

τ̂(X) = inf
x �=y∈X

‖y − x‖2

2d(y − x, TxM)
. (4.1)
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In particular, we have τ̂(M) = τM . Since the infimum (4.1) is taken over a set
X smaller than M , τ̂(X) always overestimates τM . In fact, τ̂(X) is decreasing in
the number of distinct points in X, a useful property that we formalize in the
following result, whose proof is immediate.

Corollary 4.1. Let M be a submanifold with reach τM and Y ⊂ X ⊂ M be two
nested subsets. Then τ̂(Y) ≥ τ̂(X) ≥ τM .

We now derive the rate of convergence of τ̂ . We analyze the global case
(Section 4.1) and the local case (Section 4.2) separately. In both cases, we first
determine the performance of the estimator in a deterministic framework, and
then derive an expected loss bounds when τ̂ is applied to a random sample.

Respectively, the proofs for Section 4.1 and Section 4.2 are to be found in
Section C.1 and Section C.2.

4.1. Global case

Consider the global case, that is, M has a bottleneck structure (Theorem 3.4).
Then the infimum (2.3) is achieved at a bottleneck pair (q1, q2) ∈ M2. When X

contains points that are close to q1 and q2, one may expect that the infimum
over the sample points should also be close to (2.3): that is, that τ̂(X) should
be close to τM .

Proposition 4.2. Let M ⊂ R
D be a submanifold with reach τM > 0 that has a

bottleneck (q1, q2) ∈ M2 (see Definition 3.1), and X ⊂ M . If there exist x, y ∈ X

with ‖q1 − x‖ < τM and ‖q2 − y‖ < τM , then

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y}) ≤ 4

τ2M
max {dM (q1, x), dM (q2, y)} .

The error made by τ̂(X) decreases linearly in the maximum of the distances
to the critical points q1 and q2. In other words, the radius of the tangent sphere
in Figure 1 grows at most linearly in t when we perturb by t < τM its basis
point p = q1 and the point q = q2 it passes through.

Based on the deterministic bound in Proposition 4.2, we can now give an
upper bound on the expected loss under the model Pd,D

τmin,L,fmin
. We recall that,

throughout the paper, Xn = {X1, . . . , Xn} is an i.i.d. sample with common
distribution Q associated to P (see Definition 2.6).

Proposition 4.3. Let P ∈ Pd,D
τmin,L,fmin

and M = supp(P ). Assume that M has

a bottleneck (q1, q2) ∈ M2 (see Definition 3.1). Then,

EPn

[∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣
p]

≤ CτM ,fmin,d,pn
− p

d ,

where CτM ,fmin,d,p depends only on τM , fmin, d, and p, and is a decreasing
function of τM .

Proposition 4.3 follows straightforwardly from Proposition 4.2 combined with
the fact that with high probability, the balls centered at the bottleneck points
q1 and q2 with radii O(n−1/d) both contain a sample point of Xn.
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4.2. Local case

Consider now the local case, that is, there exists q0 ∈ M and v0 ∈ Tq0M such
that the geodesic γ0 = γq0,v0 has second derivative ‖γ′′

0 (0)‖ = 1/τM (Theo-
rem 3.4). Estimating τM boils down to estimating the curvature of M at q0 in
the direction v0.

We first relate directional curvature to the increment ‖y−x‖2

2d(y−x,TxM) involved in

the estimator τ̂ (4.1). Indeed, since the latter quantity is the radius of a sphere
tangent at x and passing through y (Figure 1), it approximates the radius of
curvature in the direction y − x when x and y are close. For x, y ∈ M , we let
γx→y denote the arc-length parametrized geodesic joining x and y, with the
convention γx→y(0) = x.

Lemma 4.4. Let M ∈ Md,D
τmin,L

with reach τM and X ⊂ M be a subset. Let
x, y ∈ X with dM (x, y) < πτM . Then,

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y}) ≤ 1

τM
−
∥∥γ′′

x→y(0)
∥∥+ 1

3
LdM (x, y).

Let us now state how directional curvatures are stable with respect to per-
turbations of the base point and the direction. We let κp denote the maximal
directional curvature of M at p ∈ M , that is,

κp = sup
v∈BTpM (0,1)

∥∥γ′′
p,v(0)

∥∥ .
Lemma 4.5. Let M ∈ Md,D

τmin,L
with reach τM and q0, x, y ∈ M be such that

x, y ∈ BM

(
q0,

πτM
2

)
. Let γ0 be a geodesic such that γ0(0) = q0 and ‖γ′′

0 (0)‖ =
κq0 . Write

θx := ∠(γ′
0(0), γ

′
q0→x(0)), θy := ∠(γ′

0(0), γ
′
q0→y(0)),

and suppose that |θx − θy| ≥ π
2 . Then,∥∥γ′′

x→y(0)
∥∥ ≥ κq0 − (κx − κq0)− 2LdM (q0, x)− (2κx + 6κq0) sin

2(|θx − θy|).
In particular, geodesics in a neighborhood of q0 with directions close to v0

have curvature close to 1
τM

. Combining Lemma 4.4 and Lemma 4.5 yields the
following deterministic bound in the local case.

Proposition 4.6. Let M ∈ Md,D
τmin,L

be such that there exist q0 ∈ M and a

geodesic γ0 such that γ0(0) = q0 and ‖γ′′
0 (0)‖ = 1

τM
. Let X ⊂ M and x, y ∈ X

be such that x, y ∈ BM

(
q0,

πτM
2

)
. Write

θx := ∠(γ′
0(0), γ

′
q0→x(0)), θy := ∠(γ′

0(0), γ
′
q0→y(0)),

and suppose that |θx − θy| ≥ π
2 . Then,

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})

≤ 8 sin2(|θx − θy|)
τM

+ L

(
1

3
dM (x, y) + 2dM (q0, x)

)
.
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In other words, since the reach boils down to directional curvature in the
local case, τ̂ performs well if it is given as input a pair of points x, y which are
close to the point q0 realizing the reach, and almost aligned with the direction
of interest v0. Note that the error bound in the local case (Proposition 4.6) is
very similar to that of the global case (Proposition 4.2) with an extra alignment
term sin2(|θx − θy|) . This alignment term appears since, in the local case, the
reach arises from directional curvature τM =

∥∥γ′′
q0,v0(0)

∥∥ (Theorem 3.4). Hence,
it is natural that the accuracy of τ̂(X) depends on how precisely X samples the
neighborhood of q0 in the particular direction v0.

Similarly to the analysis of the global case, the deterministic bound in Propo-
sition 4.6 yields a bound on the risk of τ̂(Xn) when Xn = {X1, . . . , Xn} is
random.

Proposition 4.7. Let P ∈ Pd,D
τmin,L,fmin

and M = supp(P ). Suppose there exists

q0 ∈ M and a geodesic γ0 with γ0(0) = q0 and ‖γ′′
0 (0)‖ = 1

τM
. Then,

EPn

[∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣
p]

≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

where Cτmin,d,L,fmin,p depends only on τmin, d, L, fmin and p.

This statement follows from Proposition 4.6 together with the estimate of
the probability of two points being drawn in a neighborhood of q0 and subject
to an alignment constraint.

Proposition 4.3 and 4.7 yield a convergence rate of τ̂(Xn) which is slower in
the local case than in the global case. Recall that from Theorem 3.4, the reach
pertains to the size of a bottleneck structure in the global case, and to maxi-
mum directional curvature in the local case. To estimate the size of a bottleneck,
observing two points close to each point in the bottleneck gives a good approx-
imation. However, for approximating maximal directional curvature, observing
two points close to the curvature attaining point is not enough, but they should
also be aligned with the highly curved direction. Hence, estimating the reach
may be more difficult in the local case, and the difference in the convergence
rates of Proposition 4.3 and 4.7 accords with this intuition.

Finally, let us point out that in both cases, neither the convergence rates nor
the constants depend on the ambient dimension D.

5. Minimax estimates

In this section we derive bounds on the minimax risk Rn of the estimation of
the reach over the class Pd,D

τmin,L,fmin
, that is

Rn = inf
τ̂n

sup
P∈Pd,D

τmin,L,fmin

EPn

∣∣∣∣ 1τP − 1

τ̂n

∣∣∣∣
p

, (5.1)

where the infimum ranges over all estimators τ̂n
(
(X1, TX1), . . . , (Xn, TXn)

)
based

on an i.i.d. sample of size n with the knowledge of the tangent spaces at sample
points. The minimax risk Rn corresponds to the best expected risk that an es-
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timator, based on n samples, can achieve uniformly over the model Pd,D
τmin,L,fmin

without the knowledge of the underlying distribution P .
The rate of convergence of the plugin estimator τ̂n = τ̂(Xn) studied in the

previous section leads to an upper bound on Rn, which we state here for com-
pleteness.

Theorem 5.1. For all n ≥ 1,

Rn ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

for some constant Cτmin,d,L,fmin,p depending only on τmin, d, L, fmin and p.

We now focus on deriving a lower bound on the minimax risk Rn. The method
relies on an application of Le Cam’s Lemma [38]. In what follows, let

TV (P, P ′) =
1

2

∫
|dP − dP ′|

denote the total variation distance between P and P ′, where dP, dP ′ denote
the respective densities of P, P ′ with respect to any dominating measure. Since
|x − z|p + |z − y|p ≥ 21−p|x − y|p , the following version of Le Cam’s lemma
results from [38, Lemma 1] and (1− TV (Pn, P ′n)) ≥ (1− TV (P, P ′))n.

Lemma 5.2 (Le Cam’s Lemma). Let P, P ′ ∈ Pd,D
τmin,L,fmin

with respective sup-
ports M and M ′. Then for all n ≥ 1,

Rn ≥ 1

2p

∣∣∣∣ 1τM − 1

τM ′

∣∣∣∣
p

(1− TV (P, P ′))
n
.

Lemma 5.2 states that in order to derive a lower bound on Rn one needs
to consider distributions (hypotheses) in the model that are stochastically close
to each other — i.e. with small total variation distance — but for which the
associated reaches are as different as possible. A lower bound on the minimax
risk over Pd,D

τmin,L,fmin
requires the hypotheses to belong to the class. Luckily, in

our problem it will be enough to construct hypotheses from the simpler class
Qd,D

τmin,L,fmin
. Indeed, we have the following isometry result between Qd,D

τmin,L,fmin

and Pd,D
τmin,L,fmin

for the total variation distance, as proved in Section D.2. We
use here the notation of Definition 2.6

Lemma 5.3. Let Q,Q′ ∈ Qd,D
τmin,L,fmin

be distributions on R
D with associated

distributions P, P ′ ∈ Pd,D
τmin,L,fmin,

on RD ×Gd,D. Then,

TV (P, P ′) = TV (Q,Q′) .

In order to construct hypotheses in Qd,D
τmin,L,fmin

we take advantage of the fact

that the class Md,D
τmin,L

has good stability properties, which we now describe.
Here, since submanifolds do not have natural parametrizations, the notion of
perturbation can be well formalized using diffeomorphisms of the ambient space
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R
D ⊃ M . Given a smooth map Φ : RD → R

D, we denote by dixΦ its differential
of order i at x. Given a tensor field A between Euclidean spaces, let ‖A‖op =
supx ‖Ax‖op, where ‖Ax‖op is the operator norm induced by the Euclidean norm.
The next result states, informally, that the reach and geodesics third derivatives
of a submanifold that is perturbed by a diffeomorphism that is C3-close to the
identity map do not change much. The proof of Proposition 5.4 can be found in
Section D.3.

Proposition 5.4. Let M ∈ Md,D
τminL

be fixed, and let Φ : RD → R
D be a global

C3-diffeomorphism. If ‖ID − dΦ‖op,
∥∥d2Φ∥∥

op
and

∥∥d3Φ∥∥
op

are small enough,

then M ′ = Φ(M) ∈ Md,D
τmin

2 ,2L
.

Fig 4. Hypotheses of Proposition 5.5.

Now we construct the two hypotheses Q,Q′ as follows (see Figure 4). Take
M to be a d-dimensional sphere and Q to be the uniform distribution on it. Let
M ′ = Φ(M), where Φ is a bump-like diffeomorphism having the curvature of
M ′ to be different of that of M in some small neighborhood. Finally, let Q′ be
the uniform distribution on M ′. The proof of Proposition 5.5 is to be found in
Section D.3.

Proposition 5.5. Assume that L ≥ (2τ2min)
−1 and fmin ≤ (2d+1τdminσd)

−1.

Then for � > 0 small enough, there exist Q,Q′ ∈ Qd,D
τmin,L,fmin

with respective
supports M and M ′ such that∣∣∣∣ 1τM − 1

τM ′

∣∣∣∣ ≥ cd
�

τ2min

and TV (Q,Q′) ≤ 12

(
�

2τmin

)d

.

Hence, applying Lemma 5.2 with the hypotheses P, P ′ associated to Q,Q′

of Proposition 5.5, and taking 12 (�/2τmin)
d
= 1/n, together with Lemma 5.3,

yields the following lower bound.

Proposition 5.6. Assume that L ≥ (2τ2min)
−1 and fmin ≤ (2d+1τdminσd)

−1.
Then for n large enough,

Rn ≥
(

cd
τmin

)p

n−p/d,

where cd > 0 depends only on d.

Here, the assumptions on the parameters L and fmin are necessary for the
model to be rich enough. Roughly speaking, they ensure at least that a sphere
of radius 2τmin belongs to the model.
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From Proposition 5.6, the plugin estimation τ̂(Xn) provably achieves the
optimal rate in the global case (Theorem 4.3) up to numerical constants. In the
local case (Theorem 4.7) the rate obtained presents a gap, yielding a gap in
the overall rate. As explained above (Section 4.2), the slower rate in the local
case is a consequence of the alignment required in order to estimate directional
curvature. Though, let us note that in the one-dimensional case d = 1, the
rate of Proposition 5.6 matches the convergence rate of τ̂(Xn) (Theorem 5.1).
Indeed, for curves, the alignment requirement is always fulfilled. Hence, the rate
is exactly n−p for d = 1, and τ̂(Xn) is minimax optimal.

Here, again, neither the convergence rate nor the constant depend on the
ambient dimension D.

6. Towards unknown tangent spaces

So far, in our analysis we have used the key assumption that both the point
cloud and the tangent spaces were jointly observed. We now focus on the more
realistic framework where only points are observed. We once again rely on the
formulation of the reach given in Theorem 2.3 and consider a new plug-in esti-
mator in which the true tangent spaces are replaced by estimated ones. Namely,
given a point cloud X ⊂ RD and a family T = {Tx}x∈X of linear subspaces of
R

D indexed by X, the estimator is defined as

τ̂(X, T ) = inf
x �=y∈X

‖y − x‖2

2d(y − x, Tx)
. (6.1)

In particular, τ̂(X) = τ̂(X, TXM), where TXM = {TxM}x∈X. Adding uncertainty
on tangent spaces in (6.1) does not change drastically the estimator as the
formula is stable with respect to T . We state this result quantitatively in the
following Proposition 6.1, the proof of which can be found in Section E. In what
follows, the distance between two linear subspaces U, V ∈ G

d,D is measured
with their principal angle ‖πU − πV ‖op.

Proposition 6.1. Let X ⊂ R
D and T = {Tx}x∈X, T̃ = {T̃x}x∈X be two families

of linear subspaces of RD indexed by X. Assume X to be δ-sparse, T and T̃ to
be θ-close, in the sense that

inf
x �=y∈X

‖y − x‖ ≥ δ and sup
x∈X

‖Tx − T̃x‖op ≤ sin θ.

Then, ∣∣∣∣ 1

τ̂(X, T )
− 1

τ̂(X, T̃ )

∣∣∣∣ ≤ 2 sin θ

δ
.

In other words, the map T �→ τ̂(X, T )−1 is smooth, provided that the basis
point cloud X contains no zone of accumulation at a too small scale δ > 0.
As a consequence, under the assumptions of Proposition 6.1, the bounds on∣∣τ̂(X)−1 − τM

−1
∣∣ of Proposition 4.2 and Proposition 4.6 still hold with an extra

error term 2 sin θ/δ if we replace τ̂(X) by τ̂(X, T ).
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For an i.i.d. point cloud Xn, asymptotic and nonasymptotic rates of tangent
space estimation derived in C3-like models can be found in [2, 14, 36], yielding

bounds on sin θ of order (logn/n)
1/d

. In that case, the typical scale of minimum
interpoint distance is δ � n−2/d, as stated in the asymptotic result Theorem 2.1
in [29] for the flat case of Rd. However, the typical covering scale of M used in
the global case (Theorem 4.3) is ε � (1/n)1/d. It appears that we can sparsify
the point cloud Xn — that is, removing accumulation points — while preserving

the covering property at scale ε = 2δ � (logn/n)
1/d

. This can be performed
using the farthest point sampling algorithm [1, Section 3.3]. Such a sparsification
pre-processing allows to lessen the possible instability of τ̂(Xn, ·)−1. Though,
whether the alignment property used in the local case (Theorem 4.7) is preserved
under sparsification remains to be investigated.

7. Conclusion and open questions

In the present work, we gave new insights on the geometry of the reach. In-
ference results were derived in both deterministic and random frameworks. For
i.i.d. samples, non-asymptotic minimax upper and lower bounds were derived
under assumptions on the third order derivative of geodesic trajectories. Let us
conclude with some open questions.

• Interestingly, the derivation of the minimax lower bound (Theorem 5.6) in-
volves hypotheses that correspond to the local case, but yields the rate n−p/d.
But, on the upper bound side, this rate matches with that of the global case
(Theorem 4.3), the local case being slower (Theorem 4.7). The minimax upper
and lower bounds given in Theorem 5.1 and Theorem 5.6 do not match. They
are yet to be sharpened. This results into minimax upper and lower bounds
that do not match. They are yet to be sharpened.

• As mentioned earlier, Section 6 is only a first step towards a framework where
tangent spaces are unknown. A minimax upper bound in this case is still an
open question. Considering smoother Ck models (k ≥ 3) such as those of [2],
or data with additive noise would also be of interest.

• In practice, since large reach ensures regularity, one may be interested with
having a lower bound on the reach τM . Studying the limiting distribution of
the statistic τ̂(Xn) would allow to derive asymptotic confidence intervals for
τM .

• Other regularity parameters such as local feature size [10] and λ-reach [13]
could be relevant to estimate, as they are used as tuning parameters in com-
putational geometry techniques.

Appendix A: Some technical results on the model

A.1. Geometric properties

The following Proposition A.1 garners geometric properties of submanifolds of
the Euclidean space that are related to the reach. We will use them numerous
times in the proofs.
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Proposition A.1. Let M ⊂ R
D be a closed submanifold with reach τM > 0.

(i) For all p ∈ M , we let IIp denote the second fundamental form of M at x.
Then for all unit vector v ∈ TpM , ‖IIp(v, v)‖ ≤ 1

τM
.

(ii) The injectivity radius of M is at least πτM .
(iii) The sectional curvatures K of M satisfy − 2

τ2
M

≤ K ≤ 1
τ2
M
.

(iv) For all p ∈ M , the map expp :
◦
BTpM (0, πτM ) →

◦
BM (0, πτM ) is a diffeo-

morphism. Moreover, for all ‖v‖ < πτM
2
√
2
and w ∈ TpM ,(

1− ‖v‖2

6τ2M

)
‖w‖ ≤

∥∥dv expp ·w∥∥ ≤
(
1 +

‖v‖2

τ2M

)
‖w‖ .

(v) For all p ∈ M and r ≤ πτM
2
√
2
, given any Borel set A ⊂ BTpM (0, r) ⊂ TpM ,

(
1− r2

6τ2M

)d

Hd(A) ≤ Hd(expp(A)) ≤
(
1 +

r2

τ2M

)d

Hd(A).

Proof of Proposition A.1. (i) is stated as in [33, Proposition 2.1], yielding (ii)
from [3, Corollary 1.4]. (iii) follows using (i) again and the Gauss equation [20,
p. 130]. (iv) is derived from (iii) by a direct application of [21, Lemma 8]. (v)
follows from (iv) and [4, Lemma 6].

A.2. Comparing reach and diameter

Let us prove Proposition 2.7. For this aim, we first state the following analogous
bound on the (Euclidean) diameter diam(M) = supx,y∈M ‖x− y‖.

Lemma A.2 (Lemma 2 in [1]). Let M ⊂ R
D be a connected closed d-dimen-

sional manifold, and let Q be a probability distribution having support M with
a density f ≥ fmin with respect to the Hausdorff measure on M . Then,

diam(M) ≤ Cd

τd−1
M fmin

,

for some constant Cd > 0 depending only on d.

Proposition A.3. If K ⊂ R
D is not homotopy equivalent to a point,

τK ≤
√

D

2(D + 1)
diam(K).

Proof of Proposition A.3. Combine Lemma A.4 and Lemma A.5.

Let us recall that for two compact subsets A,B ⊂ R
D, the Hausdorff dis-

tance [12, p. 252] between them is defined by

dH(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
.

We denote by conv(·) the closed convex hull of a set.
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Lemma A.4. For all K ⊂ R
D, dH (K, conv(K)) ≤

√
D

2(D+1)diam(K).

Proof of Lemma A.4. It is a straightforward corollary of Jung’s Theorem 2.10.41
in [23], which states that K is contained in a (unique) closed ball with (minimal)

radius at most
√

D
2(D+1)diam(K).

Lemma A.5. If K ⊂ R
D is not homotopy equivalent to a point, then τK ≤

dH (K, conv(K)).

Proof of Lemma A.5. Let us prove the contrapositive. For this, assume that
τK > dH (K, conv(K)). Then,

conv(K) ⊂
⋃
x∈K

B (x, dH (K, conv(K))) ⊂
⋃
x∈K

◦
B (x, τK) ⊂ Med(K)c.

Therefore, the map πK : conv(K) → K is well defined and continuous, so that
K is a retract of conv(K) (see [27, Chapter 0]). Therefore, K is homotopy
equivalent to a point, since the convex set conv(K) is.

We are now in position to prove Proposition 2.7.

Proof of Proposition 2.7. From [27, Theorem 3.26], M has a non trivial homol-
ogy group of dimension d over Z/2Z, so that it cannot be homotopy equivalent
to a point. Therefore, Proposition A.3 yields τM ≤ diam(M), and we conclude
by applying the bound diam(M) ≤ Cd/(τ

d−1
M fmin) given by Lemma A.2.

Appendix B: Geometry of the reach

Lemma B.1. Let V ⊂ R
D be a 2-dimensional affine space and q1, q2, z, p ∈ V

be such that ‖p− q1‖ = ‖p− q2‖ = rp and ‖z − q1‖ = ‖z − q2‖ = rz. If rp < rz,
then

V ∩ ∂BRD(z, rz) ∩ BRD (p, rp) = cz(q1, q2),

where cz(q1, q2) is the shorter arc of the circle with center z and endpoints as
q1 and q2.

Fig 5. Layout of Lemma B.1.

Proof of Lemma B.1. Since everything is intersected with the 2-dimensional
space V , we can assume that D = 2 without loss of generality. For short, we
write K = ∂BR2(z, rz) ∩ BR2(p, rp).
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First note that {q1, q2} ⊂ K, so that K �= ∅. Furthermore, for all x ∈ K,
d(x,Med(∂BR2(z, rz)) = rz > rp, so that τK > rp from [34, Lemma 3.4 (i)].
Hence, applying [34, Lemma 3.4 (ii)], we get thatK is contractible. In particular,
K is connected.

Since K is a closed connected subset of the circle ∂BR2(z, rz), K is an arc of
a circle. Let c1, c2 denote its endpoints.

Let us now show that {c1, c2} ⊂ ∂BR2(z, rz)∩∂BR2(p, rp), or equivalently that
‖c1 − p‖ = ‖c2 − p‖ = rp. Indeed, if x ∈ K is such that ‖x− p‖ < rp then there
exists rx > 0 such that BR2(x, rx) ⊂ BR2(p, rp). Then ∂BR2(z, rz)∩BR2(x, rx) �=
∅, so ∂BR2(z, rz)∩BR2(x, rx) is also an arc of a circle, and since x ∈ ∂BR2(z, rz),
x cannot be an end point of the arc ∂BR2(z, rz) ∩ BR2(x, rx).

The two circles ∂BR2(z, rz) and ∂BR2(p, rp) are different (rz > rp), so their
intersection contains at most two points. Since q1 �= q2 ∈ K = ∂BR2(z, rz) ∩
BR2(p, rp), in fact {q1, q2} = ∂BR2(z, rz) ∩ ∂BR2(p, rp). Consequently, {c1, c2} =
{q1, q2}. That is, q1 and q2 are the endpoints of the arc K.

Note that there are two arcs of the circle ∂BR2(z, rz) with endpoints q1 and
q2. Since K = ∂BR2(z, rz) ∩ BR2(p, rp) ⊂ BR2(p, rp) and rp < rz, K cannot
contain two points at distance equal to 2rz. Hence, K is the shorter arc of the
circle ∂BR2(z, rz) with endpoints q1 and q2, which is exactly cz(q1, q2).

Lemma B.2. Let V ⊂ R
D be a 2-dimensional affine space and q1, q2, z, x ∈ V .

Denote by L be the line passing q1 and q2. Assume that x, z /∈ L, and that
the segment joining z and x intersects L. Let p ∈ R

D be such that ‖p− q1‖ =
‖z − q1‖ and ‖p− q2‖ = ‖z − q2‖. Then ‖p− x‖ ≤ ‖z − x‖ , and the equality
holds if and only if p = z.

Proof of Lemma B.2. Let y denote the intersection point of L and the line seg-
ment between z and x. Since ‖p− q1‖ = ‖z − q1‖ and ‖p− q2‖ = ‖z − q2‖,

cos(∠(p− q1, q2 − q1)) = cos(∠(z − q1, q2 − q1))

=
‖z − q1‖2 + ‖q2 − q1‖2 − ‖z − q2‖2

2 ‖z − q1‖ ‖q2 − q1‖
,

from which we derive

‖p− y‖2 = ‖p− q1‖2 + ‖y − q1‖2 − 2 ‖p− q1‖ ‖y − q1‖ cos(∠(p− q1, q2 − q1))

= ‖z − q1‖2 + ‖y − q1‖2 − 2 ‖z − q1‖ ‖y − q1‖ cos(∠(z − q1, q2 − q1))

= ‖z − y‖2 .

Using the fact that y belongs to the segment joining x and z, we get

‖z − x‖ = ‖z − y‖+ ‖y − x‖
= ‖p− y‖+ ‖y − x‖
≥ ‖p− x‖ .

Finally, note that since x, z /∈ L and y ∈ L, the equality holds if and only if
∠(x− y, p− y) = π. But ‖p− y‖ = ‖z − y‖ and x, y, and z are colinear, so this
is possible if and only if p = z.
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The following lemma can be seen as an extension of [34, Lemma 3.4 (i)].

Lemma B.3. Let A ⊂ R
D be a set with positive reach τA > 0, and let {Bi}i∈I

be a collection of balls indexed by I. Suppose
⋂

i∈I Bi ∩ A is nonempty. Let ri
be the radius of Bi, and suppose ri < τA for all i ∈ I.

(i) If I is finite, then τ⋂
i∈I Bi∩A > mini∈I ri.

(ii) If I is countably infinite, then τ⋂
i∈I Bi∩A ≥ infi∈I ri.

Proof of Lemma B.3. (i) Since I is finite, we can assume that I = {1, . . . , k}
and that the sequence (ri)1≤i≤k is nonincreasing. We use an induction on
k:

• If k = 1, since for all x ∈ A ∩ B1, d(x,Med(A)) ≥ τA > r1, [34, Lemma
3.4 (i)] gives that τB1∩A > r1.

• Suppose now that τ⋂j
i−1 Bi∩A > rj for some j < k. Then for all x ∈⋂j+1

i=1 Bi∩A =
(⋂j

i=1 Bi ∩A
)
∩Bj+1, d

(
x,Med

(⋂j
i=1 Bi ∩A

))
> rj ≥

rj+1. Applying again [34, Lemma 3.4 (i)] gives

τ⋂j+1
i=1 Bi∩A = τ(

⋂j
i=1 Bi∩A)∩Bj+1

> rj+1 = min
1≤i≤j+1

ri.

By induction on k, we get the result.
(ii) Note that if infi∈I ri = 0, there is nothing to prove. Hence we only consider

the case where infi∈I ri > 0.
Since I is countable, we can assume that I = N. For k ∈ N, let Ck :=⋂k

i=1 Bi ∩ A. In particular, C∞ := ∩∞
k=1Ck = ∩∞

i=1Bi ∩ A. From the finite
case (i),

τCk
> min

1≤i≤k
ri ≥ inf

i∈N

ri.

Now, since {Ck}∞k=1 is a decreasing sequence of sets, the distance func-
tions d(·, Ck) converge to d(·, C∞). As the distance functions d(·, Ck) are
1-Lipschitz, the convergence is uniform on any compact subset of R

D.
Hence, [22, Theorem 5.9] yields τC∞ ≥ infi∈N ri, which concludes the proof.

Proof of Lemma 3.2. Let p0 := z0+q1+q2
3 and τ0 = ‖p0 − q1‖ < τM . Consider

the subset C0 of the median hyperplane of q1 and q2 defined by

C0 :=
{
p ∈ R

D| ‖p− q1‖ = ‖p− q2‖ ∈ (τ0, τM )
}
,

and let {pi}i∈N ⊂ C0 be its countable dense subset. Write τi := ‖pi − q1‖ and
Bi := BRD (pi, τi). Let A∞ :=

⋂∞
k=0 Bk. Note that {q1, q2} ⊂ M ∩ A∞ which

implies that M ∩ A∞ is nonempty. Note also that by definition, τi ∈ (τ0, τM )
for all i ∈ N ∪ {0}. Hence from Lemma B.3 (ii), τM∩A∞ ≥ τ0. In addition,

M ⊂ R
D \

◦
BRD (z0, τM ), so that

{q1, q2} ⊂ M ∩A∞ ⊂ A∞ \
◦
BRD(z0, τM ).
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Note that it is sufficient to show that A∞\
◦
BRD(z0, τM ) = cz0(q1, q2) to conclude

the proof. Indeed, since τM∩A∞ ≥ τ0 > ‖q2−q1‖
2 and ∅ �= M ∩A∞ ⊂ cz0(q1, q2) ⊂

BRD

(
q1+q2

2 , ‖q2−q1‖
2

)
, [34, Lemma 3.4 (ii)] implies that M ∩A∞ is contractible.

In other words, M ∩ A∞ is a contractible subset of the shorter arc of a circle
cz0(q1, q2) containing its endpoints q1 and q2, and hence M ∩A∞ = cz0(q1, q2).
Therefore, cz0(q1, q2) ⊂ M, which concludes the proof.

It is left to show that A∞\
◦
BRD (z0, τM ) = cz0(q1, q2). To this aim, let us write

V := z0 + span {q1 − z0, q2 − z0} for the 2-dimensional plane passing through
q1, q2, and z0. Then τ0 = ‖p0 − q1‖ = ‖p0 − q2‖ < ‖z0 − q1‖ = ‖z0 − q2‖ = τM ,
and hence from Lemma B.1, cz0(q1, q2) can be represented as

cz0(q1, q2) = V ∩ ∂BRD(z0, τM ) ∩ BRD(p0, τ0). (B.1)

The proof will hence be complete as soon as we have showed the equality

A∞ \
◦
BRD(z0, τM ) = V ∩ ∂BRD(z0, τM ) ∩ BRD(p0, τ0),

which we tackle by showing the two inclusions.

• (Direct inclusion) Let x ∈ R
D \ BRD (z0, τM ). Since ‖z0 − q1‖ = ‖z0 − q2‖ =

τM , their exists pi satisfying ‖pi − z0‖ < ‖z0−x‖−τM
2 . Then,

‖pi − x‖ ≥ ‖z0 − x‖ − ‖pi − z0‖ ≥ ‖z0 − x‖+ τM
2

> τM > ‖pi − q1‖ ,

so that x /∈ Bi = BRD (pi, ‖pi − q1‖), and x /∈ A∞ =
⋂∞

i=1 Bi as well. Hence
this implies that

(RD \ BRD (z0, τM )) ∩A∞ = ∅. (B.2)

Let now x ∈ (∂BRD(z0, τM )) \ V . Since x, q1, and q2 are not colinear, we can
find p′ ∈ Vx = x+span {q1 − x, q2 − x} such that ‖p′ − q1‖ = ‖p′ − q2‖ = τM
and the line segment between p′ and x intersects the line L passing by q1 and
q2. Then q1, q2, x, and p′ are lying on a 2-dimensional plane Vx, and x /∈ L.

Also, x /∈ V , q1, q2 ∈ V , and ‖p′ − q1‖ = ‖p′ − q2‖ = τM > ‖q1−q2‖
2 implies

that p′ /∈ V , and hence p′ �= z0. Hence from Lemma B.2,

‖p′ − x‖ > ‖z0 − x‖ = τM .

Now, since ‖p′ − q1‖ = ‖p′ − q2‖ = τM , there exists pi′ be satisfying ‖pi′ − p′‖
<

‖p′−x‖−τM

2 . Then

‖pi′ − x‖ ≥ ‖p′ − x‖ − ‖pi′ − p′‖ ≥ ‖p′ − x‖+ τM
2

> τM > ‖pi′ − q1‖ ,

and hence x /∈ Bi′ = BRD (pi′ , ‖pi′ − q1‖), x /∈ A∞ =
⋂∞

i=1 Bi as well. Hence
this implies that

((∂BRD (z0, τM )) \ V ) ∩A∞ = ∅. (B.3)
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Finally, by construction, A∞ ⊂ BRD(p0, τ0). Combining this last inclusion
with (B.2) and (B.3) yields the desired inclusion

A∞ \
◦
BRD (z0, τM ) ⊂ V ∩ ∂BRD(z0, τM ) ∩ BRD (p0, τ0). (B.4)

• (Reverse inclusion) Let x ∈ V ∩ ∂BRD(z0, τM ) ∩ BRD(p0, τ0), and fix Bi =
BRD (pi, ‖pi − q1‖). Let z′0 ∈ V be such that ‖z′0 − q1‖ = ‖z′0 − q2‖ = ‖pi − q1‖
and the line segment between z′0 and x intersects the line passing q1 and q2.
Then q1, q2, x, z

′
0 ∈ V , and x is not lying on the line passing q1 and q2. Hence

from Lemma B.2,
‖pi − x‖ ≤ ‖z′0 − x‖ . (B.5)

Since x ∈ cz0(q1, q2) and ‖z′0 − q1‖ = ‖z′0 − q2‖ < τM = ‖z0 − q1‖ = ‖z0 − q2‖,
Lemma B.1 yields

‖z′0 − x‖ ≤ ‖z′0 − q1‖ . (B.6)

Hence (B.5) and (B.6) gives the upper bound on ‖pi − x‖ as

‖pi − x‖ ≤ ‖z′0 − x‖ ≤ ‖z′0 − q1‖ = ‖pi − q1‖ .

Hence x ∈ Bi, and since choice of x and Bi were arbitrary, V ∩∂BRD (z0, τM )∩
BRD (p0, τ0) ⊂ A∞. But ∂BRD(z0, τM ) ∩

◦
BRD (z0, τM ) = ∅, so that we get the

desired inclusion

V ∩ ∂BRD(z0, τM ) ∩ BRD(p0, τ0) ⊂ A∞ \
◦
BRD (z0, τM ). (B.7)

Putting together (B.1), (B.4), and (B.7) we get

A∞ \
◦
BRD(z0, τM ) = cz0(q1, q2).

Lemma B.4. Let M ⊂ R
D be a compact submanifold with reach τM > 0. If

there exist p �= q ∈ M such that τM = ‖q−p‖2

2d(q−p,TpM) , then there exists z0 ∈
Med(M) with d(z0,M) = τM .

Proof of Lemma B.4. Write z0 := p+ τM
π
TpM⊥ (q−p)∥∥∥πTpM⊥ (q−p)

∥∥∥ . Clearly, ‖z0 − p‖ = τM ,

and z0 − p ∈ TpM
⊥, so [22, Theorem 4.8 (12)] implies that for all λ ∈ (0, 1),

πM (p + λ(z0 − p)) = p, and hence d(p + λ(z0 − p),M) = ‖λ(z0 − p)‖ = λτM .
Sending λ → 1 yields that d(z0,M) = τM . Let us show that ‖z0 − q‖ = τM ,
which will imply that ‖z0 − p‖ = ‖z0 − q‖ = d(z0,M) = τM , and hence that
z0 ∈ Med(M), which will conclude the proof.

Let z1 := p+ πTpM⊥(q − p) (see Figure 6). Note that z0 − z1 and q − z1 are
simplified as

z0 − z1 =

(
τM∥∥πTpM⊥(q − p)

∥∥ − 1

)
πTpM⊥(q − p),

q − z1 = (q − p)− πTpM⊥(q − p) = πTpM (q − p).
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Fig 6. Layout of the proof of Lemma B.4.

In particular, z0 − z1 ⊥ q − z1, which yields

‖z0 − q‖2 = ‖z0 − z1‖2 + ‖q − z1‖2

=
(
τM −

∥∥πTpM⊥(q − p)
∥∥)2 + ∥∥πTpM (q − p)

∥∥2 .
Noticing that

∥∥πTpM⊥(q − p)
∥∥ = d(q − p, TpM) =

‖q − p‖2

2τM
,

and

∥∥πTpM (q − p)
∥∥2 = ‖q − p‖2 −

∥∥πTpM⊥(q − p)
∥∥2 = ‖q − p‖2

(
1− ‖q − p‖2

4τ2M

)
,

we finally get

‖z0 − q‖2 =

(
τM − ‖q − p‖2

2τM

)2

+ ‖q − p‖2
(
1− ‖q − p‖2

4τ2M

)

= τ2M .

Lemma B.5. Let M ⊂ R
D be a closed submanifold with reach τM > 0. Then

for all p, q ∈ M with t0 := dM (p, q) ≤ τM/2,

∥∥γ′′
p→q(0)

∥∥ ≤ 2d(q − p, TpM)

‖q − p‖2
+

2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′
p→q(s)− γ′′

p→q(0))dsdt

∥∥∥∥ ,
and

∥∥γ′′
p→q(0)

∥∥ ≥ 2d(q − p, TpM)

‖q − p‖2
−3 ‖q − p‖

τ2M
− 2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′
p→q(s)− γ′′

p→q(0))dsdt

∥∥∥∥.
In particular, when M is C2,

sup
p∈M

v∈TpM,‖v‖=1

∥∥γ′′
p,v(0)

∥∥ = lim sup
q→p
q∈M

2d(q − p, TpM)

‖q − p‖2
.
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To prove Lemma B.5 we need the following straightforward result.

Lemma B.6. Let U be a linear space and u ∈ U , n ∈ U⊥. If v = u + n + e,
then

|d(v, U)− ‖n‖| ≤ ‖e‖ .
Proof of Lemma B.5. First note that from Proposition A.1 (ii), dM (x, y) < πτM
ensures the existence and uniqueness of the geodesic γ. For short, let us write
γ = γp→q.

The Taylor expansion of γ at order two yields

q − p = γ(t0)− γ(0) = t0γ
′(0) +

∫ t0

0

∫ t

0

γ′′(s)dsdt

= t0γ
′(0) +

t20
2
γ′′(0) +

∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt. (B.8)

Since γ′(0) ∈ TpM and γ′′(0) ∈ TpM
⊥, Lemma B.6 shows that∣∣∣∣2d(q − p, TpM)

t20
− ‖γ′′(0)‖

∣∣∣∣ ≤ 2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt

∥∥∥∥ .
Now, from t0 = dM (p, q) ≥ ‖q − p‖, we derive the upper bound

‖γ′′(0)‖ ≤ 2d(q − p, TpM)

dM (p, q)2
+

2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt

∥∥∥∥
≤ 2d(q − p, TpM)

‖q − p‖2
+

2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt

∥∥∥∥ .
For the lower bound, we apply [33, Proposition 6.3] to get

dM (p, q)2 ≤ τ2M

⎛
⎝1−

√
1− 2 ‖q − p‖

τM

⎞
⎠

2

≤ τ2M

(
‖q−p‖
τM

)2
(
1− 2‖q−p‖

τM

)3/2 ≤ ‖q − p‖2

1− 3‖q−p‖
τM

,

or equivalently,
1

‖q − p‖2
− 1

dM (p, q)2
≤ 3

τM ‖q − p‖ .

As d(q − p, TpM) ≤ ‖q−p‖2

2τM
(2.3), we finally derive

‖γ′′(0)‖ ≥ 2d(q − p, TpM)

dM (p, q)2
− 2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt

∥∥∥∥
=

2d(q − p, TpM)

‖q − p‖2
− 2d(q − p, TpM)

(
1

‖q − p‖2
− 1

dM (p, q)2

)
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− 2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt

∥∥∥∥
≥ 2d(q − p, TpM)

‖q − p‖2
− 3 ‖q − p‖

τ2M
− 2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)−γ′′(0))dsdt

∥∥∥∥.
Proof of Lemma 3.3. For r > 0, let Δr :=

{
(p, q) ∈ M2| ‖p− q‖ < r

}
, and Δ̄ =

∩r>0Δr denote the diagonal of M2. Consider the map ϕ : M2 \ Δ̄ → R defined

by ϕ(p, q) = 2d(q − p, TpM)/‖q − p‖2. By assumption, d(z,M) > τM for all z ∈
Med(M). From Lemma B.4, this implies that for all p �= q ∈ M , ϕ(p, q) < τ−1

M .
By compactness of M2 \ Δr, this yields supM2\Δr

ϕ < τ−1
M . Hence, from the

decomposition of (2.3) as

1

τM
= sup

(p,q)∈M2\Δ̄
ϕ(p, q) = max

{
sup

(p,q)∈M2\Δr

ϕ(p, q), sup
(p,q)∈Δr\Δ̄

ϕ(p, q)

}
,

we get supΔr\Δ̄ ϕ = τ−1
M . By letting r > 0 go to zero and applying Lemma B.5,

this yields

sup
p∈M

v∈TpM,‖v‖=1

∥∥γ′′
p,v(0)

∥∥ = lim
r→0

sup
(p,q)∈Δr\Δ̄

ϕ(p, q) =
1

τM
.

Finally, the unit tangent bundle T (1)M = {(p, v), p ∈ M, v ∈ TpM, ‖v‖ = 1}
being compact, there exists (q0, v0) ∈ T (1)M such that γ0 = γq0,v0 attains
the supremum, i.e. ‖γ′′

0 (0)‖ = τ−1
M , which concludes the proof.

Appendix C: Analysis of the estimator

C.1. Global case

Proof of Proposition 4.2. The two left hand inequalities are direct consequences
of Corollary 4.1, let us then focus on the third one.

We set t to be equal to max {dM (q1, x), dM (q2, y)}, and z1 := x + (q2 − q1).
We have ‖z1 − x‖ = ‖q2 − q1‖ = 2τM and ‖y − q2‖ , ‖q1 − x‖ ≤ t. Therefore,
from the definition of τ̂ in (4.1) and the fact that the distance function to a
linear space is 1-Lipschitz, we get

1

τ̂({x, y}) ≥ 2d(y − x, TxM)

‖y − x‖2

=
2d ((y − q2) + (z1 − x) + (q1 − x), TxM)

‖(y − q2) + (z1 − x) + (q1 − x)‖2

≥ d(z1 − x, TxM)− 2t

2(τM + t)2
.



1384 E. Aamari et al.

Since q1, q2 ∈ B(z0, τM ) and ‖q1 − q2‖ = 2τM , z1 − x = q2 − q1 ∈ Tq1M
⊥.

Furthermore, from [11, Lemma 11], sin∠(TxM,Tq1M) ≤ t/τM and hence

d(z1 − x, TxM) ≥ d(z1 − x, Tq1M)− ‖z1 − x‖ sin∠(TxM,Tq1M)

≥ d(q2 − q1, Tq1M)− ‖q2 − q1‖
t

τM

= 2τM

(
1− t

τM

)
.

Combining the two previous bounds finally yields the announced result

1

τM
− 1

τ̂({x, y}) ≤ 1

τM
− d(z1 − x, TxM)− 2t

2(τM + t)2

≤ 1

τM

(
1− 1− 2t/τM

(1 + t/τM )
2

)

≤ 4

τ2M
t,

where the last inequality follows from the concavity of [0, 1] � u �→ 1 −
1−2u
(1+u)2 .

Proof of Proposition 4.3. Let Q be the distribution on R
D associated to P . Let

s < 1
τM

and t =
τ2
M

4 s ≤ τM/4. Write ωd := Hd(BRd(0, 1)) for the volume of the
d-dimensional unit ball. From Proposition A.1 (v), for all q ∈ M ,

Q (BM (q, t)) ≥ fminHd (BM (q, t))

≥ ωdfmin

(
1−
(

t

6τM

)2
)d

td

≥ ωdfmin

(
575

576

)d

td.

Moreover, Proposition 4.2 asserts that
∣∣∣ 1
τM

− 1
τ̂(Xn)

∣∣∣ > s implies that either

BM (q1, t) ∩ Xn = ∅ or BM (q2, t) ∩ Xn = ∅. Hence,

P

(∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ P (BM (q1, t) ∩ Xn = ∅) + P (BM (q2, t) ∩ Xn = ∅)

≤ 2

(
1− ωdfmin

(
575

576

)d

td

)n

≤ 2 exp

(
−nωdfmin

(
575

2304

)d

τ2dM sd

)
.

Integrating the above bound gives

EPn

[∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣
p]

=

∫ 1

τ
p
M

0

P

(∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣
p

> s

)
ds
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≤ 2

∫ ∞

0

exp

(
−nωdfmin

(
575

2304

)d

τ2dM s
d
p

)
ds

=
2
(
2304
575

) p
d

(nωdfmin)
p
d τ2pM

∫ ∞

0

x
p
d−1e−xdx

:= CτM ,fmin,d,pn
− p

d .

where CτM ,fmin,d,p depends only on τM , fmin, d, p, and is a decreasing function
of τM when the other parameters are fixed.

C.2. Local case

Proof of Lemma 4.4. First note that from Proposition A.1 (ii), dM (x, y) < πτM
ensures the existence and uniqueness of the geodesic γx→y. The two left hand
inequalities are direct consequences of Corollary 4.1. Let us then focus on the
third one. We write t0 = dM (x, y) and γ = γx→y for short. By the definition (4.1)
of τ̂ ,

1

τ̂({x, y}) ≥ 2d(y − x, TxM)

‖y − x‖2
. (C.1)

Furthermore, from Lemma B.5,

2d(y − x, TxM)

‖y − x‖2
≥ ‖γ′′(0)‖ − 2

t20

∥∥∥∥
∫ t0

0

∫ t

0

(γ′′(s)− γ′′(0))dsdt

∥∥∥∥ . (C.2)

But by definition of Md,D
τmin,L

� M (Definition 2.4), the geodesic γ satisfies
‖γ′′(s)− γ′′(0)‖ ≤ L|s|, so that

2

t20

∫ t0

0

∫ t

0

‖γ′′(s)− γ′′(0)‖ dsdt ≤ 2

t20

∫ t0

0

∫ t

0

L|s|dsdt = 1

3
Lt0. (C.3)

Combining (C.1), (C.2) and (C.3) gives the announced inequality.

To prove Lemma 4.5, we will use the following lemma on bilinear maps.

Lemma C.1. Let (V, 〈·, ·〉) and (W, 〈·, ·〉) be Hilbert spaces. Let B : V ×V → W
be a continuous bilinear map, and write

λmax := sup
v∈V
‖v‖=1

‖B(v, v)‖ .

Then for all unit vectors v, w ∈ V ,

(i)
∥∥∥B(w,w)− 2 〈v, w〉2 B(v, v)

∥∥∥ ≤ (3− 2 〈v, w〉2)λmax .

(ii) If v ∈ V satisfies that for all ṽ ⊥ v, 〈B(v, v), B(v, ṽ) +B(ṽ, v)〉 = 0, then

‖B(w,w)‖ ≥ 〈v, w〉2 ‖B(v, v)‖ − (1− 〈v, w〉2)λmax.

In particular, this holds whenever ‖v‖ = 1 with ‖B(v, v)‖ = λmax.
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Proof of Lemma C.1. Let θ = arccos(〈v, w〉) ∈ [0, π], and write w = cos θv +
sin θv⊥ for some unit vector v⊥ ∈ V with v⊥ ⊥ v. Then B(w,w) can be ex-
panded as

B(w,w) = cos2 θB(v, v) + cos θ sin θ(B(v, v⊥) +B(v⊥, v)) + sin2 θB(v⊥, v⊥).
(C.4)

(i) Consider w̄ := − cos θv+sin θv⊥ ∈ V . Then w̄ is a unit vector, and B(w̄, w̄)
can be similarly expanded as

B(w̄, w̄) = cos2 θB(v, v)−cos θ sin θ(B(v, v⊥)+B(v⊥, v))+sin2 θB(v⊥, v⊥),
(C.5)

and hence summing up (C.4) and (C.5) gives

B(w,w) +B(w̄, w̄) = 2 cos2 θB(v, v) + 2 sin2 θB(v⊥, v⊥).

As
∥∥B(v⊥, v⊥)

∥∥ and ‖B(w̄, w̄)‖ are upper bounded by λmax, this yields∥∥B(w,w)− 2 cos2 θB(v, v)
∥∥ = ∥∥2 sin2 θB(v⊥, v⊥)−B(w̄, w̄)

∥∥
≤ (1 + 2 sin2 θ)λmax

= (3− 2 cos2 θ)λmax,

which is the announced bound.
(ii) From (C.4), ‖B(w,w)‖ can be lower bounded as

‖B(w,w)‖
≥
∥∥cos2 θB(v, v) + cos θ sin θ(B(v, v⊥) +B(v⊥, v))

∥∥− sin2 θ
∥∥B(v⊥, v⊥)

∥∥ .
(C.6)

But since
〈
B(v, v), B(v, v⊥) +B(v⊥, v)

〉
= 0, Pythagoras’s theorem yields∥∥cos2 θB(v, v) + cos θ sin θ(B(v, v⊥) +B(v⊥, v))

∥∥
=

√
cos4 θ ‖(B(v, v)‖2 + cos2 θ sin2 θ ‖(B(v, v⊥) +B(v⊥, v)‖2

≥ cos2 θ ‖(B(v, v)‖ .

Applying this and
∥∥B(v⊥, v⊥)

∥∥ ≤ λmax to (C.6) gives the final bound

‖B(w,w)‖ ≥ cos2 θ ‖B(v, v)‖ − sin2 θλmax.

We now show the last claim, namely that ‖v‖ = 1 and ‖B(v, v)‖ = λmax

are sufficient conditions for

〈B(v, v), B(v, ṽ) +B(ṽ, v)〉 = 0 for all ṽ ⊥ v. (C.7)

For this aim, we take such a v ∈ V and we consider h : V → R defined by
h(u) = ‖B(u, u)‖2 and g : V → R defined by g(u) = ‖u‖2 − 1. Then v is a
solution of the optimization problem:

maximize h(u), for u ∈ V subject to g(u) = 0.
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Since h and g are continuously differentiable, the Lagrange multiplier theo-
rem asserts that their Fréchet derivatives at v satisfy ker dvg ⊂ ker dvh. As
dvh(u) = 2 〈B(v, v), B(v, u) +B(u, v)〉 and dvg(u) = 2 〈v, u〉, this rewrites
exactly as the claim (C.7).

Corollary C.2. Let M ⊂ R
D be a C2-submanifold and p ∈ M . Let v0, v1 ∈

TpM be unit tangent vectors, and let θ = ∠(v0, v1). Let γp,v be the arc length
parametrized geodesic starting from p with velocity v, and write γi = γp,vi for
i = 0, 1. Let κp = maxv∈BTpM (0,1)

∥∥γ′′
p,v(0)

∥∥. Then,
(i) ‖γ′′

1 (0)‖ ≥ 2 ‖γ′′
0 (0)‖ cos2 θ − κp(1 + 2 sin2 θ).

(ii) If v0 is a direction of maximum directional curvature, i.e. ‖γ′′
0 (0)‖ = κp,

then ‖γ′′
1 (0)‖ ≥ ‖γ′′

0 (0)‖ − 2κp sin
2 θ.

Proof of Corollary C.2. Consider the symmetric bilinear mapB : TpM×TpM →
TpM

⊥ given by the hessian of the exponential map B(v, w) := d20 expp(v, w). In
particular, for all v ∈ TpM , γ′′

p,v(0) = B(v, v) and supv∈V,‖v‖=1 ‖B(v, v)‖ = κp.
This allows us to tackle the two points of the result.

(i) Applying Lemma C.1 (i) to B with v = v0 and w = v1 yields

‖γ′′
1 (0)‖ ≥

∥∥2 cos2 θγ′′
0 (0)
∥∥− ∥∥2 cos2 θγ′′

0 (0)− γ′′
1 (0)
∥∥

≥ 2 ‖γ′′
0 (0)‖ cos2 θ − κp(1 + 2 sin2 θ)

(ii) Since v0 gives the maximal directional curvature, applying Lemma C.1 (ii)
to B, v = v0 and w = v1 precisely yields ‖γ′′

1 (0)‖ ≥ ‖γ′′
0 (0)‖−2κp sin

2 θ.

For a triangle in a Euclidean space, the sum of any two angles is upper
bounded by π. The same property holds for a geodesic triangle on a manifold if
its side lengths are not too large compared to its reach, which is formalized in
the following Lemma C.3.

Lemma C.3. Let M ⊂ R
D be a closed submanifold with reach τM > 0, and

x, y, z ∈ M be three distinct points. Consider the geodesic triangle with vertices
x, y, z, that is, the triangle formed by γx→y, γy→z, γz→x.

If at least two of the side lengths of the triangle are strictly less than πτM
2 ,

then the sum of any two of its angles is less than or equal to π.

Proof of Lemma C.3. Without loss of generality, suppose dM (x, y) is the longest
side length: dM (y, z), dM (z, x) ≤ dM (x, y). Then dM (y, z), dM (z, x) ∈

(
0, πτM

2

)
,

so that dM (x, y) ∈ (0, πτM ) by triangle inequality.

Let S2
τM be a d-dimensional sphere of radius τM . In what follows, for short,

∠abc stands for ∠(γ′
b→a(0), γ

′
b→c(0)). Let x̄, ȳ, z̄ ∈ S2

τM be such that dS2
τM

(x̄, ȳ) =

dM (x, y), dS2
τM

(ȳ, z̄) = dM (y, z), and dS2
τM

(z̄, x̄) = dM (z, x). From Proposi-

tion A.1 (ii) and the fact that dM (x, y)+ dM (y, z)+ dM (z, x) < 2πτM , Topono-
gov’s comparison theorem [30, Section 4] yields ∠xyz ≤ ∠x̄ȳz̄, ∠yzx ≤ ∠ȳz̄x̄,
and ∠xzy ≤ ∠x̄z̄ȳ. Furthermore, the spherical law of cosines [9, Proposition
18.6.8] together with dM (y, z), dM (z, x) ∈

(
0, πτM

2

)
, dM (x, y) ∈ (0, πτM ), and
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the fact that cos(·) is decreasing on [0, π] imply

cos (∠z̄x̄ȳ) =
cos
(

dM (y,z)
τM

)
− cos

(
dM (z,x)

τM

)
cos
(

dM (x,y)
τM

)
sin
(

dM (z,x)
τM

)
sin
(

dM (x,y)
τM

) ≥ 0,

so that ∠zxy ≤ ∠z̄x̄ȳ ≤ π
2 . Symmetrically, we also have ∠xyz ≤ π

2 .
If ∠yzx ≤ π

2 also holds, then the final result is trivial, so from now on we will
assume that ∠yzx ≥ π

2 .
Thus, sin(∠ȳz̄x̄) ≤ sin(∠yzx), so applying the spherical law of sines and

cosines [9, Proposition 18.6.8], dM (y, z), dM (z, x) ∈
(
0, πτM

2

)
, and ∠ȳz̄x̄ ∈

[
π
2 , π
]

yield

sin(∠zxy) ≤ sin(∠z̄x̄ȳ)

=
sin
(

dM (y,z)
τM

)
sin(∠ȳz̄x̄)√

1−
(
cos
(

dM (z,x)
τM

)
cos
(

dM (y,z)
τM

)
+ sin

(
dM (z,x)

τM

)
sin
(

dM (y,z)
τM

)
cos(∠ȳz̄x̄)

)2

≤
sin
(

dM (y,z)
τM

)
sin(∠ȳz̄x̄)√

1− cos2
(

dM (z,x)
τM

)
cos2
(

dM (y,z)
τM

) ≤ sin(∠ȳz̄x̄) ≤ sin(∠yzx).

This last bound together with ∠zxy ≤ π
2 ≤ ∠yzx yield ∠zxy + ∠yzx ≤ π.

Symmetrically, we also have ∠xxz + ∠xzy ≤ π. Hence, the sum of any two
angles is less than or equal to π.

We are now in position to prove Lemma 4.5.

Proof of Lemma 4.5. For short, in what follows, we let tx := dM (q0, x), ty :=
dM (q0, y), and θ := ∠(γ′

x→y(0), γ
′
x→q0(0)) = π − ∠(γ′

x→y(0), γ
′
q0→x(tx)) (see

Figure 7). From Corollary C.2 (i),∥∥γ′′
x→y(0)

∥∥ ≥ (2− 2 sin2 θ)
∥∥γ′′

q0→x(tx)
∥∥− (1 + 2 sin2 θ)κx. (C.8)

We now focus on the term
∥∥γ′′

q0→x(tx)
∥∥. Since the direction γ′

0(0) maximizes
the directional curvature at q0 and θx = ∠(γ′

0(0), γ
′
q0→x(0)), Corollary C.2 (ii)

yields ∥∥γ′′
q0→x(0)

∥∥ ≥ (1− 2 sin2 θx)κq0 ,

and since γ′′
q0→x is L-Lipschitz,∥∥γ′′

q0→x(tx)
∥∥ ≥ ∥∥γ′′

q0→x(0)
∥∥− ∥∥γ′′

q0→x(tx)− γ′′
q0→x(0)

∥∥
≥ (1− 2 sin2 θx)κq0 − Ltx. (C.9)

Now, consider the geodesic triangle with vertices x, y, q0, that is, the triangle
formed by γx→y, γq0→x, γq0→y, as in Figure 7. Then Lemma C.3 implies that
θ+ |θx − θy| ≤ π. Combined with the assumption that |θx − θy| ≥ π

2 , this yields

sin θ ≤ sin(|θx − θy|). (C.10)
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Fig 7. Layout of Lemma 4.5.

Fig 8. Layout of the proof of Proposition 4.7.

Putting together (C.8), (C.9) and (C.10) gives the final bound∥∥γ′′
x→y(0)

∥∥
≥ 2(1− sin2(|θx − θy|))

(
(1− 2 sin2 θx)κq0 − Ltx

)
− (1 + 2 sin2(|θx − θy|))κx

= 2κq0 − κx(1 + 2 sin2(|θx − θy|))− 2Ltx cos
2(|θx − θy|)

− 2κq0

(
sin2(|θx − θy|)) + 2 sin2 θx − sin2 θx sin

2(|θx − θy|)
)

≥ κq0 − (κx − κq0)− 2Ltx − (2κx + 6κq0) sin
2(|θx − θy|).

Proof of Proposition 4.7. In what follows, we let t0 ≤ τmin

10 ,

B1 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′

0(0), v) ≤
√

t0
τmin

})
,

B2 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′

0(0), v) ≥ π −
√

t0
τmin

})
,

and B0 := B1 ∪ B2 (see Figure 8). Let X ⊂ M , and x, y ∈ X be such that
x ∈ B1, y ∈ B2. Writing θx := ∠(γ′

0(0), γ
′
q0→x(0)) and θy := ∠(γ′

0(0), γ
′
q0→y(0)),

then θx ≤
√

t0
τmin

≤ π
4 and θy ≥ π −

√
t0

τmin
≥ 3π

4 . Also, dM (q0, x) ≤ t0 and

dM (x, y) ≤ 2t0, so Proposition 4.6 rewrites as

0 ≤ 1

τM
− 1

τ̂(X)
≤ 8 sin2(|θx − θy|)

τM
+ L

(
1

3
dM (x, y) + 2dM (q0, x)

)
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≤
(

16

τminτM
+

8L

3

)
t0.

A symmetric argument also applies when x ∈ B2 and y ∈ B1. Now, for any

s < 1
τM

, let t0(s) :=
(

16
τ2
min

+ 8L
3

)−1

s < τmin

10 . The above argument implies that

if
∣∣∣ 1
τM

− 1
τ̂(X)

∣∣∣ > s, then for any x, y ∈ X ∩ B0, one has either x, y ∈ B1 or

x, y ∈ B2. Hence,

P

(∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣ > s

)

≤
n∑

m=0

(
n

m

){
P (X1, . . . , Xm ∈ M\B0, Xm+1, . . . , Xn ∈ B1)

+ P (X1, . . . , Xm ∈ M\B0, Xm+1, . . . , Xn ∈ B2)
}

=

n∑
m=0

(
n

m

){
(1−Q(B0))

mQ(B1)
n−m + (1−Q(B0))

mQ(B2)
n−m
}

≤ (1−Q(B2))
n + (1−Q(B1))

n. (C.11)

We now derive lower bounds for Q(B1) and Q(B2). For this purpose, let S1 :=
exp−1

q0 (B1) ∩ ∂BTq0M
(0, t0) (see Figure 8). Then exp−1

q0 (B1) ⊂ BTq0M
(0, t0) is a

cone satisfying

Hd
(
exp−1

q0 (B1)
)

Hd
(
BTq0M

(0, t0)
) = Hd−1 (S1)

Hd−1
(
∂BTq0M

(0, t0)
) .

Let ωd := Hd(BRd(0, 1)) and σd := Hd(∂BRd+1(0, 1)) denote the volumes of the
d-dimensional unit ball and sphere respectively, so that Hd

(
BTq0M

(0, t0)
)
=

ωdt
d
0 and Hd−1

(
∂BTq0M

(0, t0)
)
= σd−1t

d−1
0 . In view of deriving a lower bound

on Hd−1 (S1), consider u0 := t0γ
′
0(0) ∈ S1. Since τS1 = t0 and exp−1

u0
(S1) ⊂

BTu0S1

(
0, τ

− 1
2

mint
3
2
0

)
, applying Proposition A.1 (v) yields

Hd−1 (S1) ≥
(
1− t0

6τmin

)d−1

Hd−1
(
BTu0S1

(
0, τ

− 1
2

mint
3
2
0

))

≥
(
59

60

)d−1

ωd−1τ
− d−1

2

min t
3d−3

2
0 ,

and hence

Hd−1
(
exp−1

q0 (B1)
)
=

Hd
(
BTq0M

(0, t0)
)
Hd−1 (S1)

Hd−1
(
∂BTq0M

(0, t0)
)

≥
(
59

60

)d−1
ωd−1

d
τ
− d−1

2

min t
3d−1

2
0 .
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Finally, since exp−1
q0 (B1) ⊂ BTq0M

(q0,
τM
10 ), Proposition A.1 (v) yields

Hd (B1) ≥
(
599

600

)d

Hd
(
exp−1

q0 (B1)
)
≥
(
35341

36000

)d
1

d
τ
− d−1

2

min t
3d−1

2
0 ,

and hence,

Q(B1) ≥
(
35341

36000

)d
fmin

d
τ
− d−1

2

min t
3d−1

2
0 ≥ Cτmin,d,L,fmins

3d−1
2 .

By symmetry, the same bound holds for Q(B2). Applying these bounds to (C.11)
gives

P

(∣∣∣∣ 1τM − 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ 2
(
1− Cτmin,d,L,fmins

3d−1
2

)n
≤ 2 exp

(
−Cτmin,d,L,fminns

3d−1
2

)
.

As for the proof of Proposition 4.3, the result then follows by integration.

Appendix D: Minimax lower bounds

D.1. Stability of the model with respect to diffeomorphisms

To prove Proposition 5.4, we will use the following result stating that the reach
is a stable quantity with respect to C2-perturbations.

Lemma D.1 (Theorem 4.19 in [22]). Let A ⊂ RD with τA ≥ τmin > 0 and
Φ : RD −→ R

D is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz
with Lipschitz constants K,N and R respectively, then

τΦ(A) ≥
τmin

(K +Rτmin)N2
.

Proof of Proposition 5.4. Let M ′ = Φ(M) be the image of M by the mapping
Φ. Since Φ is a global diffeomorphism, M ′ is a closed submanifold of dimension
one. Moreover, Φ is ‖dΦ‖op ≤ (1 + ‖dΦ− ID‖op)-Lipschitz, Φ−1 is

∥∥dΦ−1
∥∥
op

≤
(1− ‖dΦ− ID‖op)−1-Lipschitz, and dΦ is

∥∥d2Φ∥∥
op
-Lipschitz. From Lemma D.1,

τM ′ ≥
τmin(1− ‖dΦ− ID‖op)2

‖d2Φ‖op τmin + (1 + ‖dΦ− ID‖op)
≥ τmin/2,

where we used that
∥∥d2Φ∥∥

op
τmin ≤ 1/2 and ‖dΦ− ID‖op ≤ 1/10. All that

remains to be proved now is the bound on the third order derivative of the
geodesics of M ′. We denote by γ and γ̃ the geodesics of M and M ′ respectively.

Let p′ = Φ(p) ∈ M ′ and v′ = dpΦ.v ∈ Tp′M ′ be fixed. Since M ∈ Md,D
τmin,L

is

a compact C3-submanifold with geodesics ‖γ′′′(0)‖ ≤ L, M can be parametrized
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locally by a C3 bijective map Ψp : BRd(0, ε) → M with Ψp(0) = p. For a smooth
curve γ on M nearby p, we let c = (c1, . . . , cd)

t denote its lift in the coordinates
x = Ψ−1

p , that is γ(t) = Ψp ◦ c(t). γ = γp,v is the geodesic of M with initial
conditions p and v if and only if c satisfies the geodesic equations (see [20, p.62]).
That is, the second order ordinary differential equation{

c′′� (t) +
〈
Γ� (c(t)) · c′(t), c′(t)

〉
= 0, (1 ≤ � ≤ d)

c(0) = 0 and c′(0) = dpx.v,
(D.1)

where Γ� =
(
Γ�
i,j

)
1≤i,j≤d

are the Christoffel symbols of the C3 chart x, which

depends only on x and its differentials of order 1 and 2. By construction, M ′

is parametrized locally by Ψ′
p′ = Φ ◦Ψp yielding local coordinates y = Ψ′−1

p′ =

Ψ−1
p ◦ Φ−1 nearby p′ ∈ M ′. Writing Γ̃� for the Christoffel’s symbols of M ′, γ̃ is

a geodesic of M ′ at p′ if its lift c̃ = Ψ′−1
p′ (γ̃) satisfies (D.1) with Γ� replaced by

Γ̃�, and initial conditions c̃(0) = c and c̃′(0) = dp′y.v′ = dpx.v. From chain rule,

the Γ̃�’s depend on Γ, dΦ, and d2Φ.
Write c′′′(0) − c̃′′′(0) by differentiating (D.1): since c(0) = c̃(0) = 0 and

c′′(0) = c̃′′(0), we get that for ‖ID − dΦ‖op,
∥∥d2Φ∥∥

op
and
∥∥d3Φ∥∥

op
small enough,

‖c′′′(0)− c̃′′′(0)‖ can be made arbitrarily small. In particular, γ̃′′′(0) gets arbi-
trarily close to γ′′′(0), so that ‖γ̃′′′(0)‖ ≤ ‖γ′′′(0)‖ + L ≤ 2L, which concludes
the proof.

D.2. Lemmas on the total variation distance

Prior to any actual construction, we show the following straightforward lemma
bounding the total variation between uniform distribution on manifolds that
are perturbations of each other. For M ⊂ R

D, write λM = 1MHd/Hd(M) for
the uniform probability distribution on M .

Lemma D.2. Let M ⊂ R
D be a compact d-dimensional submanifold and B ⊂

RD be a Borel set. Let Φ : RD → RD be a global diffeomorphism such that Φ|Bc

is the identity map and ‖dΦ− ID‖op ≤ 21/d − 1. Then Hd(Φ(M)) ≤ 2Hd(M)

and TV
(
λM , λΦ(M)

)
≤ 12λM (B).

Proof of Lemma D.2. Since Φ is (1 + ‖dΦ− ID‖op)-Lipschitz, [4, Lemma 7] as-
serts that

Hd (Φ(M ∩B)) ≤ (1 + ‖dΦ− ID‖op)dHd(M ∩B) ≤ 2Hd(M ∩B).

Therefore,

Hd (Φ(M))−Hd(M) = Hd (Φ(M ∩B))−Hd (M ∩B)

≤ Hd(M ∩B) ≤ Hd(M).

Now, writing � for the symmetric difference of sets, we have M�Φ(M) =
(B∩M)�(B∩Φ(M)) ⊂ (B∩M)∪ (B∩Φ(M)). Therefore, [4, Lemma 7] yields,

TV
(
λM , λΦ(M)

)
≤ 4

Hd (M�Φ(M))

Hd(M ∪ Φ(M))
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≤ 4
Hd (M ∩B) +Hd (Φ(M) ∩B)

Hd(M)

= 4
Hd (M ∩B) +Hd (Φ(M ∩B))

Hd(M)

≤ 12
Hd(M ∩B)

Hd(M)
= 12λM (B).

Let us now tackle the proof of Lemma 5.3. For this, we will need the following
elementary differential geometry results Lemma D.3 and Corollary D.4.

Lemma D.3. Let g : Rd → R
k be C1 and x ∈ R

d be such that g(x) = 0 and
dxg �= 0. Then there exists r > 0 such that Hd

(
g−1(0) ∩ B(x, r)

)
= 0.

Proof of Lemma D.3. Let us prove that for r > 0 small enough, the intersection
g−1(0)∩B(x, r) is contained in a submanifold of codimension one of Rd. Writing
g = (g1, . . . , gk), assume without loss of generality that ∂x1g1 �= 0. Since g1 :
R

d → R is non-singular at x, the implicit function theorem asserts that g−1
1 (0) is

a submanifold of dimension d−1 of Rd in a neighborhood of x ∈ R
d. Therefore,

for r > 0 small enough, g−1
1 (0) ∩ B(x, r) has d-dimensional Hausdorff measure

zero. The result hence follows, noticing that g−1(0) ⊂ g−1
1 (0).

Corollary D.4. Let M,M ′ ⊂ R
D be two compact d-dimensional submanifolds,

and x ∈ M ∩M ′. If TxM �= TxM
′, there exists r > 0 such that A = M ∩M ′ ∩

B(x, r) satisfies λM (A) = λM ′(A) = 0.

Proof of Corollary D.4. Writing k = D − d, we see that up to ambient diffeo-
morphism — which preserves the nullity of measure — we can assume that
locally around x, M ′ coincides with R

d × {0}k and that M is the graph of a
C∞ function g : BRd(0, r′) → R

k for r′ > 0 small enough. The assumption
TxM �= TxM

′ translates to d0g �= 0, and the previous transformation maps
smoothly M ∩M ′ ∩ B(x, r′′) to g−1(0) ∩ B(0, r′) for r′′ > 0 small enough. We
conclude by applying Lemma D.3.

We are now in position to prove Lemma 5.3.

Proof of Lemma 5.3. Notice that Q and Q′ are dominated by the measure μ =
1M∪M ′Hd, with dQ(x) = f(x)dμ(x) and dQ′(x) = f ′(x)dμ(x), where f, f ′ :
RD → R+ have support M and M ′ respectively. On the other hand, P and P ′

are dominated by ν(dx dT ) = δ{TxM,TxM ′} (dT )μ (dx) with respective densities
f̄(x, T ) = 1T=TxMf(x) and f̄ ′(x, T ) = 1T=TxM ′f ′(x), where we set arbitrarily
TxM = T0 for x /∈ M , and TxM

′ = T0 for x /∈ M ′. Recalling that f vanishes
outside M and f ′ outside M ′,

TV (P, P ′)

=
1

2

∫
RD×Gd,D

|f̄ − f̄ ′|dν

=
1

2

∫
RD

1TxM=TxM ′ |f(x)− f ′(x)|+ 1TxM �=TxM ′(f(x) + f ′(x))Hd(dx).
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From Corollary D.4 and a straightforward compactness argument, we derive
that

Hd (M ∩M ′ ∩ {x|TxM �= TxM
′}) = 0.

As a consequence, the above integral expression becomes

TV (P, P ′) =
1

2

∫
RD

|f − f ′|dHd = TV (Q,Q′),

which concludes the proof.

D.3. Construction of the hypotheses

This section is devoted to the construction of hypotheses that will be used in
Le Cam’s lemma (Lemma 5.2), to derive Proposition 2.9 and Theorem 5.6.

Lemma D.5. Let R, �, η > 0 be such that � ≤ R
2 ∧
(
21/d − 1

)
and η ≤ �2

2R .
Then there exists a d-dimensional sphere of radius R that we call M , such that
M ∈ Md,D

R, 1
R2

and a global C∞-diffeomorphism Φ : RD → R
D such that,

‖dΦ− ID‖op ≤ 3η

�
,
∥∥d2Φ∥∥

op
≤ 23η

�2
,
∥∥d3Φ∥∥

op
≤ 573η

�3
,

and so that writing M ′ = Φ(M), we have Hd(M ′) ≤ 2Hd(M) = 2σdR
d,∣∣∣∣ 1τM − 1

τM ′

∣∣∣∣ ≥ η

�2
, and TV (λM , λM ′) ≤ 12

(
�

R

)d

.

Proof of Lemma D.5. Let M ⊂ R
d+1×{0}D−d−1 ⊂ R

D be the sphere of radius
R with center (0,−R, 0, . . . , 0). The reach of M is τM = R, and its arc-length
parametrized geodesics are arcs of great circles, which have third derivatives of
constant norm ‖γ′′′(t)‖ = 1

R2 . Hence we see thatM ∈ Md,D

R, 1
R2

. Let φ : RD → R+

be the map defined by φ(x) = exp
( ‖x‖2

‖x‖2−1

)
1‖x‖2<1. φ is a symmetric C∞ map

with support equal to B(0, 1) and elementary real analysis yields φ(0) = 1,
‖dφ‖op ≤ 3,

∥∥d2φ∥∥
op

≤ 23 and
∥∥d3φ∥∥

op
≤ 573. Let Φ : RD → R

D be defined by

Φ(x) = x+ ηφ (x/�) · v,

where v = (0, 1, 0, . . . , 0) is the unit vertical vector. Φ is the identity map on
B (0, �)

c
, and in B (0, �), Φ translates points on the vertical axis with a magnitude

modulated by the weight function φ(x/�). From chain rule, ‖dΦ− ID‖op =

η ‖dφ‖∞ /� ≤ 3η/� < 1. Therefore, dxΦ is invertible for all x ∈ R
D, so that Φ

is a local C∞-diffeomorphism according to the local inverse function theorem.
Moreover, ‖Φ(x)‖ → ∞ as ‖x‖ → ∞, so that Φ is a global C∞-diffeomorphism
by Hadamard-Cacciopoli theorem [18]. Similarly, from bounds on differentials
of φ we get ∥∥d2Φ∥∥

op
≤ 23

η

�2
and

∥∥d3Φ∥∥
op

≤ 573
η

�3
.
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Fig 9. The bumped sphere M ′ of Lemma D.5.

Let us now writeM ′ = Φ(M) for the image ofM by the map Φ (see Figure 9).
Denote by (Oy) the vertical axis span(v), and notice that since φ is symmetric,
M ′ is symmetric with respect to the vertical axis (Oy). We now bound from

above the reach τM ′ of M ′ by showing that the point x0 =

(
0, R+η/2

1+ �2

2Rη

, 0, . . . , 0

)
belongs to its medial axis Med(M ′) (see (2.1)). For this, write

b = (0, η, 0, . . . , 0), b′ = (0,−2R, 0, . . . , 0),

together with θ = arccos(1− �2/(2R2)), and

x = (R sin θ,R cos θ −R, 0, . . . , 0).

By construction, b, b′ and x belong to M ′. One easily checks that ‖x0 − x‖ <
‖x0 − b‖ and ‖x0 − x‖ < ‖x0 − b′‖, so that neither b nor b′ is the nearest neigh-
bor of x0 on M ′. But x0 ∈ (Oy) which is an axis of symmetry of M ′, and
(Oy) ∩ M ′ = {b, b′}. As a consequence, x0 has strictly more than one near-
est neighbor on M ′. That is, x0 belongs to the medial axis Med(M ′) of M ′.
Therefore,

1

τM ′
≥ 1

d (x0,M ′)
≥ 1

‖x0 − x‖

≥ 1

R

∣∣∣∣1− �2

2R2 − 1+ η
2R

1+ �2

2Rη

∣∣∣∣
≥ 1

R

(
1− 1+ η

2R

1+ �2

2Rη

) ≥ 1

R

(
1 +

1 + η
2R

1 + �2

2Rη

)
≥ 1

R
+

η

�2
,

which yields the bound
∣∣∣ 1
τM

− 1
τM′

∣∣∣ = ∣∣∣ 1R − 1
τM′

∣∣∣ ≥ η
�2 .

Finally, since M ′ = Φ(M) with ‖dΦ− ID‖op ≤ 21/d − 1 with Φ|B(0,�)c coin-

ciding with the identity map, Lemma D.2 yields Hd(M ′) ≤ 2Hd(M) = 2σdR
d
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and

TV (λM , λM ′) ≤ 12λM (B(0, �))

= 12
Hd
(
BSd

(
0, 2 arcsin

(
�
2R

)))
Hd (Sd)

≤ 12

(
�

R

)d

,

which concludes the proof.

Proof of Proposition 5.5. Apply Lemma D.5 with R = 2τmin. Then the sphere
M of radius 2τmin belongs to Md,D

2τmin,1/(4τ2
min)

. Furthermore, taking η = cd�
3/

τ2min for cd > 0 and � > 0 small enough, Proposition 5.4 (applied to the unit
sphere, yielding cd, and reasoning by homogeneity for the sphere of radius 2τmin)

asserts that M ′ = Φ(M) belongs to Md,D
τmin,1/(2τ2

min)
⊂ Md,D

τmin,L
, since L ≥

1/(2τ2min). Moreover,

Hd(M ′)−1 ∧Hd(M)−1 ≥
(
2d+1σdτ

d
min

)−1 ≥ fmin,

so that λM , λM ′ ∈ Qd,D
τmin,L,fmin

, which gives the result.

Let us now prove the minimax inconsistency of the reach estimation for L =
∞, using the same technique as above.

Proof of Proposition 2.9. Let M and M ′ be given by Lemma D.5 with � ≤
R
2 ∧(21/d−1), η = �2/(23R) and R = 2τmin. We have ‖dΦ− ID‖op ≤ 3η/� ≤ 0.1

and
∥∥d2Φ∥∥

op
≤ 23η/�2 ≤ 1/(2τmin). Since τM ≥ 2τmin, Lemma D.1 yields

τM ′ ≥
τM (1− ‖dΦ− ID‖op)2

‖d2Φ‖op τM + (1 + ‖dΦ− ID‖op)
≥ τmin.

As a consequence, M and M ′ belong to Md,D
τmin,L=∞. Furthermore, since we

have fmin ≤
(
2d+1τdminσd

)−1 ≤ Hd(M)−1∧Hd(M ′)−1, we see that the uniform

distributions λM , λM ′ belong to Qd,D
τmin,L=∞,fmin

. Let now P, P ′ denote the dis-

tributions of Pd,D
τmin,L=∞,fmin

associated to λM , λM ′ (Definition 2.6). Lemma 5.3
asserts that TV (P, P ′) = TV (λM , λM ′). Applying Lemma 5.2 to P, P ′, we get
that for all n ≥ 1, for � small enough,

inf
τ̂n

sup
P∈Pd,D

τmin,L=∞,fmin

EPn

∣∣∣∣ 1τP − 1

τ̂n

∣∣∣∣
p

≥ 1

2p

∣∣∣∣ 1τM − 1

τM ′

∣∣∣∣
p

(1− TV (P, P ′))
n

≥ 1

2p

( η

�2

)p(
1− 12

(
�

2τmin

)d
)n

=
1

2p

(
1

46τmin

)p
(
1− 12

(
�

2τmin

)d
)n

.

Sending � → 0 with n ≥ 1 fixed yields the announced result.
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Appendix E: Stability with respect to tangent spaces

Proof of Proposition 6.1. To get the bound on the difference of suprema, we
show the (stronger) pointwise bound. Indeed, for all x, y ∈ X with x �= y,∣∣∣∣∣2d(y − x, Tx)

‖y − x‖2
− 2d(y − x, T̃x)

‖y − x‖2

∣∣∣∣∣ ≤ 2‖πTx(y − x)− πT̃x
(y − x)‖

‖y − x‖2

≤
2‖πTx − πT̃x

‖op
‖y − x‖ ≤ 2 sin θ

δ
.
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(2018). Minimax Estimation of the Volume of a Set Under the Rolling
Ball Condition. Journal of the American Statistical Association 0 1-12.

[6] Attali, D., Boissonnat, J.-D. and Edelsbrunner, H. (2009). Stability
and computation of medial axes: a state-of-the-art report. In Mathematical
foundations of scientific visualization, computer graphics, and massive data
exploration. Math. Vis. 109–125. Springer, Berlin. MR2560510 MR2560510

[7] Balakrishnan, S., Rinaldo, A., Sheehy, D., Singh, A. and Wasser-

man, L. A. (2012). Minimax rates for homology inference. In International
Conference on Artificial Intelligence and Statistics 64–72.

[8] Belkin, M., Niyogi, P. and Sindhwani, V. (2006). Manifold regular-
ization: a geometric framework for learning from labeled and unlabeled
examples. J. Mach. Learn. Res. 7 2399–2434. MR2274444 MR2274444

http://www.ams.org/mathscinet-getitem?mr=3802310
http://www.ams.org/mathscinet-getitem?mr=3802310
http://www.ams.org/mathscinet-getitem?mr=3909931
http://www.ams.org/mathscinet-getitem?mr=3909931
http://www.ams.org/mathscinet-getitem?mr=2231159
http://www.ams.org/mathscinet-getitem?mr=2231159
http://www.ams.org/mathscinet-getitem?mr=3634876
http://www.ams.org/mathscinet-getitem?mr=3634876
http://www.ams.org/mathscinet-getitem?mr=2560510
http://www.ams.org/mathscinet-getitem?mr=2560510
http://www.ams.org/mathscinet-getitem?mr=2274444
http://www.ams.org/mathscinet-getitem?mr=2274444


1398 E. Aamari et al.

[9] Berger, M. (1987). Geometry. II. Universitext. Springer-Verlag, Berlin
Translated from the French by M. Cole and S. Levy. MR882916 MR0882916

[10] Boissonnat, J.-D. and Ghosh, A. (2014). Manifold reconstruction us-
ing tangential Delaunay complexes. Discrete Comput. Geom. 51 221–267.
MR3148657 MR3148657

[11] Boissonnat, J.-D., Lieutier, A. and Wintraecken, M. (2018). The
reach, metric distortion, geodesic convexity and the variation of tangent
spaces. In 34th International Symposium on Computational Geometry.
LIPIcs. Leibniz Int. Proc. Inform. 99 Art. No. 10, 14. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern. MR3824254 MR3824254

[12] Burago, D., Burago, Y. and Ivanov, S. (2001). A course in metric
geometry. Graduate Studies in Mathematics 33. American Mathematical
Society, Providence, RI. MR1835418 MR1835418

[13] Chazal, F. and Lieutier, A. (2005). The λ-medial axis. J. Graphical
Models 67 304–331.

[14] Cheng, S.-W. and Chiu, M.-K. (2016). Tangent estimation from point
samples. Discrete Comput. Geom. 56 505–557. MR3544007 MR3544007

[15] Cuevas, A., Fraiman, R. and Pateiro-López, B. (2012). On statistical
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