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1. Introduction

Nowadays, the Ornstein-Uhlenbeck (O-U) process is applied in different fields,
such as physical sciences (Lansky and Sacerdote (2001)) [11] and biology (Rohlfs
et al. (2010)) [17]. Such a process is also called mean-reverting process since the
mean reverting level is the component which has large effect on it. For the classi-
cal O-U process, the mean reverting level is constant. However, the classical O-U
process does not fit well the data whose mean reverting level may change with
the time. This is particularly the case for some phenomena which heavily depend
on the factors which change with the time. For instance, government policies
are examples of the factors which affect the stock price. Thus, if the government
policies are changed in different time periods, the mean reverting level of the
stock price may change. As a result, the stock price is changed. To solve such a
problem, Dehling et al. (2010) [6] proposed generalized Ornstein-Uhlenbeck pro-
cesses which have a time-dependent periodic mean reverting function. Further,
Dehling et al. (2014) [7], Nkurunziza and Zhang (2018) [15] considered inference
problems in generalized O-U processes with change-point. The problem stud-
ied here was mainly inspired by the work in Chen et al. (2017) [4]. Namely,
Chen et al. (2017) [4] proposed a method for detecting multiple change points
in generalized O-U processes.

In this paper, we study the inference problem in generalized O-U processes
with multiple unknown change points in the context where the drift parameter
is suspected to satisfy some restrictions. The proposed method generalizes the
work of Chen et al. (2017) [4] in five ways. First, we consider the model which
incorporates the uncertain prior information. Second, we derive the unrestricted
estimator (UE) and the restricted estimator (RE), and we study their asymp-
totic properties. Third, we derive a test for testing the hypothesized restriction
and we derive its asymptotic power. The proposed test is also useful for testing
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the absence of change points. Fourth, we construct a class of shrinkage esti-
mators (SEs) which are expected to be robust with respect to the restriction.
Fifth, we study the relative risk dominance of the proposed estimators. With
respect to the established asymptotic power and risk dominance, the novelty of
the proposed methods consist in the fact that the dimensions of the UE and
RE are random variables. To overcome the difficulty due to the randomness
of the dimensions of the UE and RE, we establish an asymptotic result which
is of interest in its own. Further, we weaken some conditions underlying the
main results in Chen et al. (2017) [4]. Specifically, we establish that the findings
in Chen et al. (2017) [4] hold without their Assumption 2. We also provide a
condition, about the initial value of the generalized O-U, which was omitted in
Chen et al. (2017) [4] although required for their main results to hold.

The remainder of this paper is organized as follows. In Section 2, we introduce
the statistical model and assumptions. In Section 3, we study the joint asymp-
totic normality of the UE and the RE in the case of known change-points. In
Section 4, we study the joint asymptotic normality of UE and RE in the case
of unknown change-points given a known number of the change-points. In Sec-
tion 5, we present inference methods in the case of unknown change-points and
unknown number of change-points. In Section 6, we construct a class of SEs and
test the restriction. In Section 7, we compare the relative performance of the
proposed estimators. In Section 8, we present some simulation results, and in
Section 9 we give some concluding remarks. For the convenience of the reader,
some technical results and proofs are given in the Appendix A.

2. Statistical model and preliminary results

In this section, we introduce the statistical model and set up some notations and
assumptions. Inspired by the statistical model in Chen et al. (2017) [4], we study
the inference problem about the drift parameter in generalized O-U processes.
To introduce some notations, let (Ω,F,P) be a probability space where F is
S-field on the sample space Ω, and P is a probability measure. Further, let Lp

denote the space of measurable p-integrable functions, for some p � 1. Let A′

denote the transpose of a given matrix A, let θ = (θ′1, . . . , θ
′
m+1)

′ with θj =
(μ1,j , μ2,j , . . . , μp,j , aj)

′, for j = 1, . . . ,m + 1, k = 1, . . . , p, μk,j is real valued
and aj > 0. Let ϕk(t) be real-valued function on (0, T ), k = 1, . . . , p, and let
ϕ(t) = (ϕ1(t), . . . , ϕp(t))

′, t � 0. Let {Wt, t � 0} be a one-dimensional standard
Brownian motion defined on (Ω, F, P ) and let σ > 0. Let IA be the indicator

function of the event A. We also use the notations
d−−−−→

T→∞
,

P−−−−→
T→∞

,
a.s−−−−→

T→∞
, and

Lp

−−−−→
T→∞

to denote, respectively, the convergence in distribution, in probability,

almost surely and in Lp-space, as T tends to infinity. Further, let OP (a(T )) stand
for a random quantity such that OP (a(T ))a

−1(T ) is bounded in probability and
let oP (a(T )) stand for a random quantity such that oP (a(T ))a

−1(T ) converges
in probability to 0 as T tends to infinity. We say that a stochastic process
{Yt, t � 0} is Lp-bounded if there exists K > 0 such that E (|Yt|p) < K, for all
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t � 0, for some p � 1.
As in Chen et al. (2017) [4], we consider that {Xt : t � 0} is a solution of the

stochastic differential equation (SDE)

dXt = S(θ, t,Xt)dt+ σdWt, 0 � t � T, (2.1)

where the drift coefficient, S(θ, t,Xt), is given by

S(θ, t,Xt) =
m+1∑
j=1

(ϕ′(t),−Xt)
′
θjI{τj−1<t�τj}, 0 � t � T. (2.2)

We assume that m (m � 1) is unknown as well as the change-points τ1 < τ2 <
· · · < τm, τ1 > 0, and τm < T . For the sake of simplicity, we suppose that
τj = φjT , where j = 1, . . . ,m and 0 < φ1 < · · · < φm < 1. For mathematical
convenience, let τ0 = 0, τm+1 = T , φ0 = 0, and let φm+1 = 1. The parameter of
interest is θ while τ1, τ2, . . . , τm and m are unknown nuisance parameters. In
the sequel, let {Ft, t � 0} denote the natural filtration of the Brownian motion
given in the SDE (2.1).

In this paper, we also suppose that there exists a vague prior knowledge
about the target parameter, θ. In particular, we consider the scenario where θ
may satisfy the linear restriction Bθ = r, where B is a known q× (m+1)(p+1)
full rank matrix with q < (m + 1)(p + 1), r is a known q-column vector. This
restriction leads to the testing problem

H0 : Bθ = r vs H1 : Bθ �= r. (2.3)

Particularly, let Ip be p-dimensional identity matrix, if we choose r = 0 and

B =

⎛
⎜⎜⎜⎝
Ip+1 −Ip+1 0 . . . 0 0
0 Ip+1 −Ip+1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Ip+1 −Ip+1

⎞
⎟⎟⎟⎠ = B0,

the restriction in (2.3) corresponds to the case where there are no change points.
Thus, the testing problem in (2.3) includes as a special case testing the absence
of change points. The optimality of the proposed method requires the following
assumptions.

Assumption 1. The distribution of the initial value, X0, of the SDE in (2.1)
does not depend on the drift parameter θ. Further, X0 is independent of {Wt :

t � 0} and E[|X0|d] < ∞, for some d � 2.

Assumption 2. The p-valued function ϕ(t) is square Riemann-integrable on
[0, T ], for any T > 0, and satisfies
(1) Periodicity: there exists v > 0 such that ϕ(t+ v) = ϕ(t), ∀t > 0 (v is the
period);

(2) Orthonormality in L2([0, v], 1
vdλ):

∫ v

0

ϕ(t)ϕ′(t)dt = vIp.
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Since, ϕ(t) is bounded on [0, T ] and it is periodic, it is bounded on R+. As
in Chen et al. (2017) [4], without loss of generality, we assume that v = 1.

Remark 2.1. It should be noticed that Assumption 1 is not explicitly men-
tioned in Chen et al. (2017) [4]. However, their main results require this as-
sumption to hold. For example, if the distribution of X0 depends on θ, from
Theorem 1.12 of Kutoyants (2004, p 34) [10], it is clear that the likelihood func-
tion given in Chen et al. (2017, see p. 2204) [4] does not hold. Moreover, if

E [|X0|2] = +∞, the relation (3.8) in Chen et al. (2017, see p.2208) [4] does not
hold.

The following lemma shows that the SDE in (2.1) and (2.2) admits a strong
and unique solution.

Lemma 2.1. Suppose that (2.1) and (2.2) hold along with Assumptions 1.
Then, the SDE admits a strong and unique solution given by

Xt =

m+1∑
j=1

Xj(t)I(τj−1,τj ](t), (2.4)

with, for j = 1, 2, . . . ,m+ 1,

Xj(t) = (e−aj(t−τj−1)Xτj−1 + hj(t− τj−1) + zj(t− τj−1)), t � τj−1,

hj(t) = e−ajt

p∑
k=1

μk,j

∫ t

0

eajsϕk(s+ τj−1)ds, t � 0, (2.5)

zj(t) = σe−ajt

∫ t

0

eajsdW (τj−1)
s , W

(u)
t = Wt+u −Wu, t � 0, u � 0.

Further, sup
t�0

E[|Xt|2] < ∞.

The proof of this lemma is given in the Appendix. By using the last statement
of Lemma 2.1, we establish the following corollary which is useful in deriving
the likelihood function of the SDE in 2.1.

Corollary 2.1. If Assumptions 1-2 hold, then,

P

(∫ T

0

S2(θ, t,Xt)dt < ∞
)

= 1.

Proof. By some algebraic computations, we have

S2(θ, t,Xt) � (m+ 1)‖θ‖2
(
‖ϕ(t)‖2 + |Xt|2

)
,

for all t � 0. Then, from Lemma 2.1 and Assumption 2, we have

E

(∫ T

0

S2(θ, t,Xt)dt

)
< ∞ then P

(∫ T

0

S2(θ, t,Xt)dt < ∞
)

= 1.
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Remark 2.2. To make a connection with the work in Chen et al. (2017) [4]
which inspired the most this paper, it should be noticed that Corollary 2.1 is
given as Assumption 2 in Chen et al. (2017) [4]. Thus, Corollary 2.1 shows that
the results established in Chen et al. (2017) [4] work without requiring their
Assumption 2.

The process {Xt; t � 0} is not stationary. Thus, it is convenient to introduce
the following auxiliary stochastic processes. For j = 1, ...,m+ 1, let

X̃t =

m+1∑
j=1

X̃j(t)I(τj−1,τj ](t) with X̃j(t) = h̃j(t) + z̃j(t) (2.6)

where the function h̃j(t) : [0,∞] → R and the process {z̃j(t) : t � 0} are given
by

h̃j(t) = e−ajt

p∑
k=1

μk,j

∫ t

−∞
eajsϕk(s)ds, z̃j(t) = σe−ajt

∫ t

−∞
eajsdB̃s, (2.7)

where {B̃s}s∈R denotes a bilateral Brownian motion, i.e.

B̃s = BsIR+(s) + B̄−sIR−(s)

with {Bs}s�0 and {B̄−s}s�0 are two independent standard Brownian motion.

The following theorem gives some relationship between X(t) and X̃(t).

Theorem 2.1. Let a(1) = min
1�j�m+1

aj. If Assumptions 1-2 hold, then

(i) |X(t)−X̃(t)| � C0e
−a(1)t where C0 is a random variable such that E(|C0|2) <

∞;

(ii) |X(t)− X̃(t)| a.s. and L2

−−−−−−−−→
t→∞

0, and |X2(t)− X̃2(t)| a.s. and L1

−−−−−−−−→
t→∞

0;

(iii) sup
0�a<b�1

∣∣∣∣∣∣
1

T

bT∫
aT

X̃tϕ(t)dt−
1

T

bT∫
aT

Xtϕ(t)dt

∣∣∣∣∣∣
a.s. and L2

−−−−−−−−→
T→∞

0;

(iv) sup
0�a<b�1

∣∣∣∣∣∣
1

T

bT∫
aT

X̃2
t dt−

1

T

bT∫
aT

X2
t dt

∣∣∣∣∣∣
a.s. and L1

−−−−−−−−→
T→∞

0.

The proof of this theorem is given in the Appendix. To introduce some no-
tations, let diag(A1, A2, . . . , An) denote a diagonal matrix (or a block diagonal
matrix) with components A1, A2, . . . , An, let φ = (φ1, φ2, . . . , φm)′, and let

r̃(a,b) =

⎛
⎜⎜⎝
∫ b

a

ϕ(t)dXt

−
∫ b

a

XtdXt

⎞
⎟⎟⎠ , Q(a,b) =

⎡
⎢⎢⎣
∫ b

a

ϕ(t)ϕ′(t)dt −
∫ b

a

Xtϕ(t)dt

−
∫ b

a

ϕ′(t)Xtdt

∫ b

a

X2
t dt

⎤
⎥⎥⎦ , a < b,

(2.8)
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R̃(φ,m) = (r̃(0,τ1), ..., (r̃(τm,T ))
′, and

Q(φ,m) = diag
(
Q(0,τ1), Q(τ1,τ2), . . . , Q(τm,T )

)
, (2.9)

M(a,b) =

(∫ b

a

ϕ′(t)dWt,−
∫ b

a

XtdWt

)′

, M(φ,m) = (M(0,τ1), ...,M(τm,T ))
′.

(2.10)

for 0 � a < b � T . In Proposition A.3, we show that Q(φ,m) is a positive
definite matrix. This is useful in deriving the existence of the unrestricted max-
imum likelihood estimator (UMLE) and the restricted maximum likelihood es-
timator (RMLE), in case φ is known.

3. Estimation in case of known change points

In this section, we assume that the change point τj = φjT is known, j = 1, ...,m
with m known. By using Proposition A.3, we derive the following lemma which
gives the UMLE and the RMLE. We also derive in this section, the joint asymp-
totic normality of the UMLE and the RMLE. Let θ̂(φ,m) and θ̃(φ,m) be the
UMLE and the RMLE respectively, let G = Q−1(φ,m)B′(BQ−1(φ,m)B′)−1.

Lemma 3.1. If Assumptions 1-2 hold, then the log likelihood function is
logL(θ,Xt) =

1
σ2 θ

′R̃(φ,m)− 1
2σ2 θ

′Q(φ,m)θ. Further, the UMLE and the RMLE

are given by θ̂(φ,m) = Q−1(φ,m)R̃(φ,m) and θ̃(φ,m) = θ̂(φ,m)−G(Bθ̂(φ,m)−
r), respectively.

Proof. The derivation of logL(θ,Xt) follows from Theorem 1.12 of Kutoyants
(2004) [10] or Theorem 7.6 of Lipster and Shiryaev (2001) [12] along with some
algebraic computations. Further, by optimizing the function logL(θ,Xt), with-
out and with the constraint in (2.3), we get the UMLE and the RMLE.

In order to derive the asymptotic normality of the UE, we first establish three
preliminary propositions. To simplify some mathematical expressions, let

Σj =

[
Ip Λj

Λ′
j ωj

]
, Λj = −

∫ 1

0

h̃j(t)ϕ(t)dt, ωj =

∫ 1

0

h̃2
j (t)dt+

σ2

2aj
, (3.1)

j = 1, ...,m+ 1, and let

Σ = diag (φ1Σ1, (φ2 − φ1) Σ2, . . . , (φm − φm−1) Σm, (1− φm) Σm+1) . (3.2)

By Proposition A.4 in the Appendix A, Σj , j = 1, 2, . . . ,m + 1 and Σ are
invertible. From (3.2), we have

Σ−1 = diag
(
φ−1
1 Σ−1

1 , (φ2 − φ1)
−1

Σ−1
2 , . . . , (φm − φm−1)

−1
Σ−1

m ,

(1− φm)
−1

Σ−1
m+1

)
. (3.3)

Below, we present a theorem and three propositions which play a crucial role in
deriving the joint asymptotic normality of the UMLE and the RMLE.
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Theorem 3.1. If Assumptions 1-2 hold, for 0 � φj−1 < φj � 1, j = 1, ...,m+1,
then

(i) lim
T→∞

1

T

∫ φjT

φj−1T

ϕ(t)ϕ′(t)dt = (φj − φj−1)Ip;

(ii)
1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
a.s. and L1

−−−−−−−−→
T→∞

−(φj − φj−1)Λj ;

(iii)
1

T

∫ φjT

φj−1T

X̃2
t dt

a.s. and L1

−−−−−−−−→
T→∞

(φj − φj−1)ωj .

The proof is given in the Appendix A. By combining Theorems 2.1 and 3.1,
we derive the following proposition.

Proposition 3.1. If Assumptions 1-2 hold, for 0 � φj−1 < φj � 1, j =
1, ...,m+ 1, then

(i)
1

T

∫ φjT

φj−1T

Xtϕ(t)dt
a.s. and L1

−−−−−−−−→
T→∞

−(φj − φj−1)Λj ;

(ii)
1

T

∫ φjT

φj−1T

X2
t dt

a.s. and L1

−−−−−−−−→
T→∞

(φj − φj−1)ωj .

The proof follows directly from Theorems 2.1 and 3.1. By using Proposi-
tions A.4 and 3.1, we establish the following proposition.

Proposition 3.2. If Assumptions 1-2 hold, then, for 0 � φj−1 < φj � 1,
j = 1, ...,m+ 1,
T−1Q(τj−1,τj)

a.s.−−−−→
T→∞

(φj − φj−1)Σj, TQ−1
(τj−1,τj)

a.s.−−−−→
T→∞

1
φj−φj−1

Σ−1
j ,

T−1Q(φ,m)
a.s.−−−−→

T→∞
Σ, and TQ−1(φ,m)

a.s.−−−−→
T→∞

Σ−1.

The proof is given in the Appendix A. By using Proposition 3.2, we establish
below the asymptotic normality of the θ̂(φ,m). Let ρT (φ,m) =

√
T (θ̂(φ,m)−θ).

Proposition 3.3. Suppose that Assumptions 1-2 hold. Then,
(i) θ̂(φ,m) = θ + σQ−1(φ,m)M(φ,m);

(ii) 1√
T
M(φ,m)

d−−−−→
T→∞

M0 ∼ N(m+1)(p+1)(0,Σ);

(iii) ρT (φ,m)
d−−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1).

The proof is given in the Appendix A. By using this proposition, we derive the
joint asymptotic normality of θ̂(φ,m) and θ̃(φ,m). Let ζT (φ,m) =

√
T (θ̃(φ,m)−

θ) and let ξT (φ,m) =
√
T (θ̂(φ,m) − θ̃(φ,m)). We consider the following set of

local alternative restrictions,

Ha,T : Bθ − r =
r0√
T
, T > 0, (3.4)

where r0 is a fixed q-column vector. First, note that

√
T (θ̃(φ,m)− θ) = (I(m+1)(p+1) −GB)

√
T (θ̂(φ,m)− θ)−

√
TG(Bθ− r). (3.5)
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From Proposition 3.2, G
a.s.−−−−→

T→∞
G∗ = Σ−1B′(BΣ−1B′)−1. Then,

I(m+1)(p+1)−GB
a.s.−−−−→

T→∞
I(m+1)(p+1)−G∗B;

√
TG(Bθ− r)

a.s.−−−−→
T→∞

G∗r0. (3.6)

The following proposition presents the asymptotic distribution of
(ρ′T (φ,m), ζ ′T (φ,m), ξ′T (φ,m))′. Let Λ22 = Σ−1 −G∗BΣ−1.

Proposition 3.4. If Assumptions 1-2 hold along with the set of local alterna-

tives in (3.4), then, if r0 �= 0, (ρ′T (φ,m), ζ ′T (φ,m), ξ′T (φ,m))′
d−−−−→

T→∞
(ρ′, ζ ′, ξ′)′

where⎛
⎝ρ
ζ
ξ

⎞
⎠ ∼ N3(m+1)(p+1)

⎛
⎝
⎛
⎝ 0
−G∗r0
G∗r0

⎞
⎠ , σ2

⎛
⎝ Σ−1 Λ22 Σ−1 − Λ22

Λ22 Λ22 0
Σ−1 − Λ22 0 Σ−1 − Λ22

⎞
⎠
⎞
⎠ .

Further, if r0 = 0, (ρ′T (φ,m), ζ ′T (φ,m), ξ′T (φ,m))′
d−−−−→

T→∞
(ρ′0, ζ

′
0, ξ

′
0)

′ where

⎛
⎝ρ0
ζ0
ξ0

⎞
⎠ ∼ N3(m+1)(p+1)

⎛
⎝0, σ2

⎛
⎝ Σ−1 Λ22 Σ−1 − Λ22

Λ22 Λ22 0
Σ−1 − Λ22 0 Σ−1 − Λ22

⎞
⎠
⎞
⎠ .

The proof is given in Appendix A. Proposition 3.4 generalizes the result given
in relation (3.19) of Chen et al. (2017) [4].

4. Estimation in case of unknown change points

4.1. The unrestricted and restricted estimators

In the previous section, the locations of change-points and the number of change
points are assumed to be known. Nevertheless, in practice, the change points is
also unknown. Thus, the change points have to be estimated from the data. In
this section, we assume that the number of the change points, m, is known but
the positions of change points are unknown. We show that Proposition 3.4 holds
when one replaces φ by one of its consistent estimators. Let φ̂j be a consistent

estimator of the parameter φj , j = 1, ...,m, and for convenience, let φ̂0 = 0 and

φ̂m+1 = 1. Let φ̂ = (φ̂1, φ̂2, . . . , φ̂m)′.
First, for estimating the positions of change points, one can use the least sum

of squared errors (LSSE) method, which is similar to that in Chen et al. (2017)
[4]. We divide the time period [0, T ] into n partitions, i.e., 0 = t0 < · · · < tn = T .
For the sake of simplicity, we consider that the time increments are equal, i.e.
Δ̃ = ti+1 − ti, i = 0, ..., n − 1. Moreover, we define Yi = Xti+1 −Xti and zi =
(ϕ1(ti), ..., ϕp(ti),−Xti)Δ̃, and let τ = (τ1, ..., τm). From the Euler-Maruyama
discretisation method, we have

Yi = ziθi + εi, i = 1, ..., n (4.1)
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where εi is the error term σ
√
Δ̃ωi, and ωi is the ith independent draw from a

standard normal variable. From (4.1), the estimators for the m change points,
τ , are given by

τ̂ = argmin
τ

SSE([0, T ], τ, θ̂(τ)), (4.2)

where
SSE([0, T ], τ, θ̂(τ)) =

∑
ti∈[0,T ]

(Yi − ziθ̂i)
′(Yi − ziθ̂i) (4.3)

Assumption 3. For every j = 1, ...,m, there exists an L0 > 0 such that for all

L > L0 the minimum eigenvalues of 1
L

∑
ti∈(τj ,τj+L]

zTi zi and of 1
L

∑
ti∈(τj−L,τj ]

zTi zi

as well as their respective continuous-time versions 1
LQ(τj ,τj+L) and

1
LQ(τj−L,τj),

are all bounded away from 0.

For more details about this assumption, we refer to Chen et al. (2017) [4]
and references therein.

Remark 4.1. The estimator of φ is computed as φ̂ =
τ̂

T
. The consistency of

φ̂ can be established by using the similar techniques as in Chen et al. (2017)

[4]. The estimator φ̂ is FT -measurable [0, 1]-valued, and there exists δ0 > 0 such

that φ̂− φ = OP (T
−δ0).

For convenience, let φ̂0 = 0 and φ̂m+1 = 1. Let M(φ̂,m) be as M(φ,m) in

(2.10) by replacing φ by φ̂. Let R̃(φ̂,m) and Q(φ̂,m) be as R̃(φ,m) and Q(φ,m)

by replacing φ by φ̂. The UE is given by θ̂(φ̂,m) and the RE is given by

θ̃(φ̂,m) = θ̂(φ̂,m)− J(Bθ̂(φ̂,m)− r) (4.4)

where J = Q−1(φ̂,m)B′(BQ−1(φ̂,m)B′)−1.
As in Chen et al. (2017) [4], another estimation method of the locations of

the change points is the one which is based on the Maximum log-likelihood
estimation. In particular, by Theorem 7.6 of Lipster and Shiryaev (2001) [12],
the log-likelihood function is given by

logL(τ, θ) =
1

σ2

∫ T

0

S(θ, t,Xt)dXt−
1

2σ2

∫ T

0

S2(θ, t,Xt)dt, τ = (τ1, . . . , τm)′.

Note that

1

σ2

∫ T

0

S(θ, t,Xt)dXt =
1

σ2

m+1∑
j=1

∫ τj

τj−1

(
p∑

k=1

μk,jϕk(t)− ajXt

)
dXt,

and, one can verify that

1

2σ2

∫ T

0

S2(θ, t,Xt)dt =
1

2σ2

m+1∑
j=1

∫ τj

τj−1

(
p∑

k=1

μk,jϕk(t)− ajXt

)2

dt.
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For the change points τ1, . . . , τm, its log-likelihood function for SDE (2.1) is
given by

logL(τ, θ) =
1

σ2

m+1∑
j=1

∫ τj

τj−1

Sj(θj , t,Xt)dXt −
1

2σ2

m+1∑
j=1

∫ τj

τj−1

S2
j (θj , t,Xt)dt

(4.5)

where Sj(θj , t,Xt) =

p∑
k=1

μk,jϕk(t) − ajXt. From (4.5), when the number of

change points, m, is known, the estimator of τ = (τ1, . . . , τm), is given by

τ̂ = argmax
τ

logL(τ, θ̂(τ)) (4.6)

where θ̂(τ) is the MLE of θ for a given change points τ . Auger and Lawrence
(1989) [2] introduced a numerical method to approximate the integrals inside

the log-likelihood function. We use this method to calculate logL(τ, θ̂(τ)) in
(4.6). Divide the interval [0, T ] into n partitions, i.e. 0 = t∗0 < · · · < t∗n = T
with Δ∗

t = t∗i+1 − t∗i . By the Riemann sum, the log-likelihood function in (4.6)
is approximated by

logL∗([0, T ], τ, θ̂(τ)) =
1

σ2

m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

θ̂(j)�V (t)(Xt∗i+1
−Xt∗i

)

− 1

2σ2

m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

(
θ̂(j)�V (t)

)2
Δ∗

t (4.7)

where V (t) = (ϕ1(t), . . . , ϕp(t),−Xt)
′. Then, one can estimate τ by

τ̂ = argmax
τ

logL∗([0, T ], τ, θ̂(τ)). (4.8)

In the sequel, let φ̂j and φ̂j−1 be the estimators of φj and φj−1 respectively,
j = 1, ...,m+1, obtained from (4.2) or (4.8). Below, we present three lemma and
two propositions which are useful in deriving the joint asymptotic normality of
θ̂(φ̂,m) and θ̃(φ̂,m).

Lemma 4.1. Let â and b̂ be FT -measurable and consistent estimators for a and
b respectively, with 0 � a < b � 1, and 0 � â < b̂ � 1 a.s. Let {Yt, t � 0} be a
stochastic process {Ft, t � 0}-adapted and L2-bounded. Then,

(i)
1

T

∫ b̂T

âT

Ytdt−
1

T

∫ bT

aT

Ytdt
L1

−−−−→
T→∞

0.

Further, if max(|â− a|, |b̂− b|) = OP (T
−δ0) with 1/2 < δ0 � 1, then

(ii)
1

T

∫ b̂T

âT

Ytdt−
1

T

∫ bT

aT

Ytdt
L2δ0−−−−→
T→∞

0;

(iii)
1√
T

∫ b̂T

âT

Ytdt−
1√
T

∫ bT

aT

Ytdt
P−−−−→

T→∞
0.



Improved inference in generalized mean-reverting processes 1411

The proof is outlined in Appendix A.

Lemma 4.2. Let â and b̂ be FT -measurable and consistent estimators for a and
b respectively, with 0 � a < b � 1, and 0 � â < b̂ � 1 a.s. Let {Yt, t � 0} be a
Rp-valued deterministic and bounded function. Then,

1√
T

∫ b̂T

âT

YtdWt −
1√
T

∫ bT

aT

YtdWt
L2

−−−−→
T→∞

0.

The proof is outlined in Appendix A. For the case where the process is not
purely deterministic, we derive the following lemma.

Lemma 4.3. Let â and b̂ be FT -measurable and consistent estimators for a and
b respectively, with 0 � a < b � 1, 0 � â < b̂ � 1 a.s, and max(|â− a|, |b̂− b|) =
OP (T

−δ0) with 1/2 < δ0 � 1. Let {Yt, t � 0} be a solution of SDE

dYt =

m+1∑
k=1

f(μk, Yt)I{τj−1<t�τj}dt+ σdWt, 0 � t � T (4.9)

where f(θ, x) is a real-valued function such that the processes {Yt, t � 0} and
{f(θ, Yt), t � 0} are L2-bounded. Then,

1√
T

∫ b̂T

âT

YtdWt −
1√
T

∫ bT

aT

YtdWt
P−−−−→

T→∞
0.

The proof is outlined in the Appendix A. By combining Lemma 4.1 and
Proposition A.1, we establish the following proposition.

Proposition 4.1. If Assumptions 1-3 hold, then, for 0 � φj−1 < φj � 1,
j = 1, ...,m+ 1,

(i)
1

T

∫ φ̂jT

φ̂j−1T

ϕ(t)ϕ′(t)dt− 1

T

∫ φjT

φj−1T

ϕ(t)ϕ′(t)dt
P−−−−→

T→∞
0;

(ii)
1

T

∫ φ̂jT

φ̂j−1T

(
ϕ(t)
−Xt

)
Xtdt−

1

T

∫ φjT

φj−1T

(
ϕ(t)
−Xt

)
Xtdt

P−−−−→
T→∞

0.

The proof follows from Lemma 4.1 and Proposition A.1 in the Appendix A.
By combining Propositions 3.2, A.4 and 4.1, we derive the following propositions
which give the similar results as Proposition 3.2 in case one replaces the change
points φj and φj−1 by their consistent estimators φ̂j and φ̂j−1 respectively.
Let Q(τ̂j−1,τ̂j) be as defined in (2.8) by replacing (τj−1, τj) by (τ̂j−1, τ̂j), where

τ̂j = φ̂jT , τ̂j−1 = φ̂j−1T for j = 1, ...,m+ 1.

Proposition 4.2. If Assumptions 1-3 hold, then, for 0 � φj−1 < φj � 1,
j = 1, ...,m+ 1,

T−1Q(τ̂j−1,τ̂j)
P−−−−→

T→∞
(φj − φj−1)Σj, TQ−1

(τ̂j−1,τ̂j)

P−−−−→
T→∞

1
φj−φj−1

Σ−1
j ,

T−1Q(φ̂,m)
P−−−−→

T→∞
Σ, and TQ−1(φ̂,m)

P−−−−→
T→∞

Σ−1.
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Proof. The proof of the first statement follows from Propositions 4.1 and A.1.
The proof of the second statement follows from the first statement along with
Proposition A.4. The proof of the third statement follows from the first state-
ment. The fourth statement follows from the third statement along with Propo-
sition A.4.

By using Propositions 3.4, 4.2 and Lemma 4.3, we derive the joint asymp-
totic distribution of the UE θ̂(φ̂,m) and the RE θ̃(φ̂,m). Let ρT (φ̂,m) =√
T (θ̂(φ̂,m)− θ).

Proposition 4.3. If Assumptions 1-3 hold, then,
1√
T

(
M(φ̂,m)−M(φ,m)

)
P−−−−→

T→∞
0,

1√
T
M(φ̂,m)

d−−−−→
T→∞

M0 ∼ N(m+1)(p+1)(0,Σ), and

ρT (φ̂,m)
d−−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1).

The proof of this proposition is given in the Appendix A. By using Proposition
4.3, we derive the joint asymptotic distribution of UE θ̂(φ̂,m) and RE θ̃(φ̂,m).
Let
ζT (φ̂,m) =

√
T (θ̃(φ̂,m) − θ), and let ξT (φ̂,m) =

√
T (θ̂(φ̂,m) − θ̃(φ̂,m)). We

have

ζT (φ̂,m) = (I(m+1)(p+1) − JB)
√
T (θ̂(φ̂,m)− θ)−

√
TJ(Bθ − r), (4.10)

with J = TQ−1(φ̂,m)B′(BTQ(φ̂,m)−1B′)−1. Then, under the set local alter-
native restrictions in (3.4), from Proposition 4.2, we have

J = TQ(φ̂,m)−1B′(BTQ(φ̂,m)−1B′)−1 P−−−−→
T→∞

Σ−1B′(BΣ−1B′)−1 = G∗.

I(m+1)(p+1)−JB
P−−−−→

T→∞
I(m+1)(p+1)−G∗B,

√
TJ(Bθ−r)

P−−−−→
T→∞

G∗r0. (4.11)

Proposition 4.4. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.4). Then, if r0 �= 0, (ρT (φ̂,m)′, ζT (φ̂,m)′, ξT (φ̂,m)′)′
d−−−−→

T→∞

(ρ′, ζ ′, ξ′)′, and if r0 = 0, (ρT (φ̂,m)′, ζT (φ̂,m)′, ξT (φ̂,m)′)′
d−−−−→

T→∞
(ρ′0, ζ

′
0, ξ

′
0)

′

where ρ, ζ, ξ, ρ0, ζ0 and ξ0 are defined as in Proposition 3.4.

The proof follows from the similar steps as of the proof of Proposition 3.4.
Proposition 4.4 generalizes Corollary 4.2 in Chen et al. (2017).

5. Inference in the case of unknown number of change points

In Sections 3 and 4, we suppose that the number of change points, m, is known.
However, for a given data set, m is also unknown. Thus, in this section, we solve
a more general problem where the nuisance parameters m, τ1, τ2, . . . , τm are
unknown.
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5.1. Estimation of the number of change points and algorithm

In this subsection, we describe the algorithm which is used to estimate m and τ .
The algorithm is given here for the completeness as it can be found in Chen et
al. (2017) [4]. Thus, we consider estimating m as selecting the best fitting model
i. e. among models with different numbers of change points, we choose the model
which fits the data best. To choose the best fitting model, we are looking for
the one which minimizes the log-likelihood-based information criterion

IC(m) = −2 logL(τ, θ̂(φ,m)) + (m+ 1)h(p)Υ(T ) + λ′(Bθ̂(φ,m)− r) (5.1)

where logL(τ, θ̂(φ,m)) is defined in (4.5); τ̂ is established by (4.6) corresponding
to each m; h(p) = p + 1 if there is no change in σ or h(p) = p + 2 if there is
a change in σ; Υ(T ) is a non-decreasing function of T , the total time period
of the data set; and m is the potential number of change points; B and r are
defined in (2.3). By Riemann sum approximation of logL(τ, θ̂), the information
criterion is given by

IC(m) = −2 logL∗([0, T ], τ, θ̂(τ)) + (m+ 1)h(p)Υ(T ) + λ′(Bθ̂(τ)− r) (5.2)

where logL∗([0, T ], τ, θ̂(τ)) is defined in (4.7); and τ̂ is established by (4.8)
corresponding to eachm. It should be noticed that, ifm is known, the term (m+
1)h(p)Υ(T ) is fixed. The approach involving (5.2) is the same as the maximum
log-likelihood method introduced in Section 4. Note that (5.2) leads to the
well known information criterion so-called Akaike information criterion (AIC)
Akaike (1973) [1] when Υ(T ) = 2. However, as mentioned in Chen et al. (2017)
[4], due to the problem of consistency of AIC, it is convenient to use the function
which yields the Schwarz information criterion (SIC) as given in Schwarz (1978)
[19]. In SIC, Υ(T ) is set as the logarithm of the sample size. Thus, in the sequel,
we use the SIC. One can verify that, as T is large, IC(m) given in (5.2) reaches
its minimum value when m = m0 where m0 is the exact value of the number
of change points. Hence, detecting m0 is same as finding the IC(m) in (5.2)
which reaches its minimum. Then, its corresponding m is the number of change
points we would like to estimate. Below, we present an algorithm which is useful
in finding τ and m. Let m̂ be a consistent estimator of m and let τ̂(m̂) be a
consistent estimator for τ(m). In passing, note that, in the steps of the algorithm
for the estimation of τ(m), we apply the LSSE method or the Maximum log-
likelihood method in Section 4 along with the dynamic programming algorithm
from Bai and Perron (1998) [3], Perron and Qu (2006) [16].

Algorithm: Let H1(r, Tr) be either H1(r, Tr) = minτ SSE([0, Tr], τ, θ̂(τ)),

the least sum squared error for (4.2) or H1(r, Tr) = maxτ logL
∗([0, Tr], τ, θ̂(τ)),

the maximum Riemann sum approximation of log-likelihood for (4.8) computed
based on the optimal partition of time interval [0, Tr] that contains r change
points. Also, let H2(a, b) be the SSE for (4.2) or Riemann sum approximation
of log-likelihood for (4.8) computed based on a time regime (a, b]. Further, let
h = εT be the minimal permissible length of a time regime. Then, (4.2) or (4.8)
with m change points can be computed as follows.
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Step 1: Compute and saveH2(a, b) for all time periods (a, b] that satisfy b−a � h.
Step 2: Compute and save H1(1, T1) for all T1 ∈ [2h, T − (m − 1)h] by solving
the optimization problem

H1(1, T1) =

{
mina∈[h,T1−h][H2(0, a) +H2(a, T1)] for (4.2)

maxa∈[h,T1−h][H2(0, a) +H2(a, T1)] for (4.8).

Step 3: Sequentially compute and save

H1(r, Tr) =

{
mina∈[rh,Tr−h][H1(r − 1, a) +H2(a, Tr)] for (4.2)

maxa∈[rh,Tr−h][H1(r − 1, a) +H2(a, Tr)] for (4.8).

for r = 2, . . . ,m− 1, and Tr ∈ [(r + 1)h, T − (m− r)h].
Step 4: Finally, the estimated change points are obtained by solving

H1(m,T ) =

{
mina∈[mh,T−h][H1(m− 1, a) +H2(a, T )] for (4.2)

maxa∈[mh,T−h][H1(m− 1, a) +H2(a, T )] for (4.8),

and H1(m− 1, a) = H2(0, a) if m = 1.
Step 5: Follow steps 1-4 to search for the optimal locations of the m estimated
change points then store the computed value of (5.2) for m = 0, 1, 2. Note that
the results of H2(a, b) for all (a, b] such that a−b � h as well as the optimization
results of H1(r, Tr) for all r = 1, . . . ,m and Tr ∈ [(r + 1)h, T − (m − r)h] need
to be stored for future use.
Step 6: For m = 3, . . . ,mmax, first let r = m−1 and Tr ∈ [(r+1)h, T −(m−r)h]
then compute and store H1(r, Tr). Next let r = m and the estimated change
points are obtained by solvingH1(m,T ), whereH1(r, Tr) andH1(m,T ). Finally,
based on the estimated m change points, compute and store IC(m).
Step 7: m̂ is obtained from m = 1, . . . ,mmax that returns the smallest value of
(5.2).

To find m̂, at first, we need to find the range of m, 0 < m � mmax where
0 � mmax � �[T/h]�. The mmax can be determined by observing and analyzing
the given process. By Proposition A.2 in Appendix A, m̂ is consistent, provided
that the exact value of the number of the change-points m0 ∈ [0,mmax].

5.2. Asymptotic properties of the UE and the RE

In this subsection, we derive a lemma and a theorem which allows us to overcome
the difficulty due to the randomness of the dimensions of the UE and the RE.
The established results are of interest on their own in addition to be useful in
deriving the asymptotic power of the proposed test as well as in studying the
asymptotic risk dominance of the UE, the RE and the SEs. Let m̂ be a consistent
estimator for m and let τ̂(m̂) be the estimator of τ(m). The UE and RE are

obtained as in Section 4, by plug-in i.e. by replacing, in θ̂(φ̂,m) and θ̃(φ̂,m),

m by m̂. Thus, the UE is given by θ̂(φ̂, m̂) and the RE is given by θ̃(φ̂, m̂).
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Note that since the dimensions of θ̂(φ̂, m̂) and θ̃(φ̂, m̂) are functions of m̂, it is

challenging or rather impossible to derive the limiting distribution of θ̂(φ̂, m̂)

and θ̃(φ̂, m̂). Because of that, neither the relative risk dominance of the UE and
the RE nor the construction of shrinkage estimators follow from the results in
literature, as for example in Saleh (2006) [18], Chen and Nkurunziza (2015) [5],
Nkurunziza and Zhang (2018) [15] among others. Below, we derive some results
which are useful to overcome the problem related to the randomness fact of the
dimensions of θ̂(φ̂, m̂) and θ̃(φ̂, m̂). To this end, let ρT (φ̂, m̂) =

√
T (θ̂(φ̂, m̂)−θ),

ζT (φ̂, m̂) =
√
T (θ̃(φ̂, m̂)− θ) and ξT (φ̂, m̂) =

√
T (θ̂(φ̂, m̂)− θ̃(φ̂, m̂)). Below, we

derive the limiting distribution of g
(
ρT (φ̂, m̂), ζT (φ̂, m̂), ξT (φ̂, m̂)

)
for a given

continuous function g : R(m+1)(p+1) ×R
(m+1)(p+1) ×R

(m+1)(p+1) −→ R
q with q

no depending on m. As a preliminary result, we prove the following lemma.

Lemma 5.1. Let q be a positive integer, let m̂ be nonnegative integer valued

random variable and let m be a nonrandom integer number such that m̂
P−−−−→

T→∞

m. Let XT (m̂), XT (m) and X(m) be q-random vectors such that XT (m)
d−−−−→

T→∞

X(m). Then, XT (m̂)
d−−−−→

T→∞
X(m).

The proof of this proposition is given in the Appendix A. By combining
Proposition 4.4 and Lemma 5.1, we establish the following theorem.

Theorem 5.1. Suppose that Assumptions 1-3 hold along with the set of local

alternatives in (3.4) and let g
(
ρT (φ̂, m̂), ζT (φ̂, m̂), ξT (φ̂, m̂)

)
for a given contin-

uous function g : R(m+1)(p+1)×R
(m+1)(p+1)×R

(m+1)(p+1) −→ R
q with q no de-

pending on m. Then, if r0 �= 0, g(ρT (φ̂, m̂), ζT (φ̂, m̂), ξT (φ̂, m̂))
d−−−−→

T→∞
g(ρ, ζ, ξ),

and
if r0 = 0, g(ρT (φ̂, m̂), ζT (φ̂, m̂), ξT (φ̂, m̂))

d−−−−→
T→∞

g(ρ0, ζ0, ξ0) where ρ, ζ, ξ, ρ0,

ζ0 and ξ0 are defined as in Proposition 3.4.

The proof follows from Proposition 4.4 and Lemma 5.1. Theorem 5.1 plays
a crucial role in deriving a test for the testing problem in (2.3) as well as in
constructing a class of shrinkage estimators.

6. Testing and shrinkage estimators

In this section, we construct a test for testing the restriction, and derive a class
of shrinkage estimators which includes as special cases the UE, the RE, the
shrinkage estimator (SE) and positive-part shrinkage estimator (PSE).

6.1. Testing the restriction

In this section, we develop a test for the hypothesis testing problem in (2.3).
First, note that, in the continuous time observation, σ2 is considered as known
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as it is equal to the quadratic variation of the process. Let σ̂2 be the discretized
version of quadratic variation of the process, and note that σ̂2 is a consistent
estimator for σ2. Let χ2

q(λ) be a chi-square random variable (r.v.) with q-degrees
of freedom (df), and non-centrality parameter λ; let χ2

q be a chi-square r.v.
with q degrees of freedom. Let χ2

α;q be the αth-quantile of a χ2
q where 0 <

α � 1. Also, define Δ = 1
σ2 r

′
0(BΣ−1B′)−1r0 where r0 is given as in (3.4), Γ̂ =

1
σ̂2B

′(BTQ−1(φ̂, m̂)B′)−1B, Γ = 1
σ2B

′(BΣ−1B′)−1B. From Proposition 5.1, we
derive the following corollary which is the foundation for testing H0 : Bθ = r
versus Ha : Bθ �= r.

Let ψT (m̂) = ξT (φ̂, m̂)′Γ̂ξT (φ̂, m̂), let ψ(m) = ξ′Γξ, and let ψ0(m) = ξ′0Γξ0.

Corollary 6.1. Suppose that the conditions of Theorem 5.1 hold, then, if r0 �= 0,

ψT (m̂)
d−−−−→

T→∞
ψ(m) ∼ χ2

q(Δ). Moreover, if r0 = 0, then ψT (m̂)
d−−−−→

T→∞
ψ0(m) ∼

χ2
q.

Proof. By combining Theorem 5.1 and Proposition 4.2, we have

ψT (m̂) = ξT (φ̂, m̂)′Γ̂ξT (φ̂, m̂)
d−−−−→

T→∞
ψ(m) = ξ′Γξ. Hence, by Theorem 5.1.3 in

Mathai and Provost (1992), we get ξ′Γξ ∼ χ2
q(Δ), this completes the proof.

From Corollary 6.1, we propose a test for the testing problem in (2.3). We
suggest

κ(φ̂, T ) = I{ψT (m̂)>χ2
α;q}. (6.1)

The following corollary shows that the test κ(φ̂, T ) is consistent.

Corollary 6.2. Suppose that the conditions of Corollary 6.1 hold. Then, the
asymptotic power function of the test in (6.1) is given by Π(Δ) = P(χ2

q(Δ) �
χ2
α;q).

The proof follows directly from Corollary 6.1. It is obvious that, under the
null hypothesis in (2.3), r0 = 0, then Δ = 0, and by Corollary 6.2, Π(0) = α.
Moreover, the asymptotic power tends to 1 as Δ tends to infinity. The nov-
elty of the proposed test and its asymptotic power consists in the fact that,
their derivation is not based on the joint asymptotic normality between θ̂(φ̂, m̂)

and θ̃(φ̂, m̂), as this is the case in Saleh (2006) [18], Nkurunziza (2012) [14],
Nkurunziza and Zhang (2018) [15] and references therein.

6.2. A class of shrinkage estimators

Usually, the RE should dominate the UE if the restriction holds. In contrast,
when the restriction is wrong, the UE is more efficient than RE. As an alternative
method, we construct shrinkage estimators (SEs) by combining the RE and the
UE in the optimal way. Although the construction of SEs has been proposed by
several authors, here, the main difficulty consists in the fact that the dimensions
of θ̂(φ̂, m̂) and θ̃(φ̂, m̂) depend on m̂ which is a random variable. Because of
that, the construction of SEs cannot follow from the existing techniques in
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statistical literature, as for example in Saleh (2006) [18], Nkurunziza (2012) [14],
Nkurunziza and Zhang (2018) [15] among others. We consider the following class
of shrinkage type estimators

θ̂s(β) = θ̃(φ̂, m̂) + β(‖θ̂(φ̂, m̂)− θ̃(φ̂, m̂)‖Γ̂)(θ̂(φ̂, m̂)− θ̃(φ̂, m̂)), (6.2)

where ‖x‖A = x′Ax, β(.) is continuous real-valued function on (0,+∞). In
particular, if
β(x) = (1− (q − 2)/x), x > 0, we get the shrinkage estimator (SE) given by

θ̂s = θ̃(φ̂, m̂) + [1− (q − 2)ψ−1
T (m̂)](θ̂(φ̂, m̂)− θ̃(φ̂, m̂)), (6.3)

where 2 < q = rank(B) < (m + 1)(p + 1), and ψT (m̂) is given as in Corollary
6.1. Let
a+ = max{0, a}. If β(x) = [1 − (q − 2)/x]+, x > 0, we get the positive-part
shrinkage estimator (PSE) given by

θ̂s+ = θ̃(φ̂, m̂) + [1− (q − 2)ψ−1
T (m̂)]+(θ̂(φ̂, m̂)− θ̃(φ̂, m̂)). (6.4)

Note that the proposed class of estimators includes also the UE and the RE by
taking β ≡ 1 and β ≡ 0, respectively.

At first glance, the SEs in (6.3) and (6.4) are similar to that in Sen and
Saleh (1987) [20], Saleh (2006) [18] among others. However, due to the ran-

domness of the dimensions of the estimators θ̂s, θ̂s+ , θ̂(φ̂, m̂) and θ̃(φ̂, m̂), the
asymptotic distributional risk analysis of these estimators do not follow from the
results in statistical literature (e.g. in Sen and Saleh (1987) [20], Saleh (2006)
[18], Nkurunziza and Zhang (2018) [15] and references therein).

7. Comparison between estimators

In this section, we derive asymptotic distributional risk (ADR) functions of the
proposed class of estimators as well as that of SEs, UE and RE. We also com-
pare the performance of these estimators. The novelty of the proposed methods
consists in the fact fact the derivation of the ADR is not based on the joint
asymptotic normality between θ̂(φ̂, m̂) and θ̃(φ̂, m̂), as this is the case in Sen
and Saleh (1987) [20], Saleh (2006) [18], Nkurunziza (2012) [14], Nkurunziza
and Zhang (2018) [15] among others.

7.1. Asymptotic distributional risk (ADR)

Let Ω be (m+1)(p+1)×(m+1)(p+1) positive symmetric semi-definite weighting

matrix. The ADR of an estimator θ̂0 is defined as

ADR
(
θ̂0, θ,Ω

)
= E[ε′Ωε], (7.1)

where ε is the random vector such that T (θ̂0 − θ)′Ω(θ̂0 − θ)
d−−−−→

T→∞
ε′Ωε. Note

a slight difference with the ADR in Nkurunziza and Zhang (2018) [15] which is
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defined as in (7.1) with ε a random vector such that
√
T (θ̂0 − θ)

d−−−−→
T→∞

ε. This

last concept implies the one we use in this paper. Let Δ = 1
σ2 r

′
0(BΣ−1B′)−1r0.

Theorem 7.1. If Assumptions 1-3 hold along with the set of local alternatives
in (3.4), then,

ADR(θ̂s(β), θ,Ω)

= σ2trace(ΩΛ22) + r′0G
∗�ΩG∗r0 − 2E[β(χ2

q+2(Δ))]r′0G
∗�ΩG∗r0

+ σ2E[β2(χ2
q+2(Δ))]trace(Ω(Σ−1 − Λ22)) + E[β2(χ2

q+2(Δ))]r′0G
∗�ΩG∗r0.

The proof follows from Theorem 5.1 along with Theorems 2.1-2.3 of Nkurun-
ziza (2012) [14] by taking L1 ≡ B, L2 ≡ 1, Ξ1 ≡ 1

σ2B
′(BΣ−1B′)−1B, δ ≡ G∗r0,

Σ∗ ≡ Σ−1 − Λ22, p ≡ 1.

Corollary 7.1. If Assumptions 1-3 and the set of local alternatives in (3.4)
hold, then,

(i) ADR
(
θ̂(φ̂, m̂), θ,Ω

)
= σ2trace(ΩΣ−1);

(ii) ADR
(
θ̃(φ̂, m̂), θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
− σ2trace(ΩG∗BΣ−1) + r′0G

∗�ΩG∗r0;

(iii) ADR
(
θ̂s, θ,Ω

)
= ADR

(
θ̂(φ̂, m̂), θ,Ω

)
+ (q + 2)(q − 2)r′0G

∗�ΩG∗r0E[χ
−4
q+4(Δ)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2E[χ−2
q+2(Δ)]− (q − 2)E[χ−4

q+2(Δ)]);

(iv) ADR
(
θ̂s+, θ,Ω

)
= ADR

(
θ̂s, θ,Ω

)
+ 2r′0G

∗�ΩG∗r0E[(1− (q − 2)χ−2
q+2(Δ))I{χ2

q+2(Δ)<q−2}]

− σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(Δ))2I{χ2

q+2(Δ)<q−2}]

− r′0G
∗�ΩG∗r0E[(1− (q − 2)χ−2

q+4(Δ))2I{χ2
q+4(Δ)<q−2}].

The proof follows directly from Theorem 7.1 by taking β ≡ 1, β ≡ 0,
β(x) = 1− (q − 2)/x and β(x) = [1− (q − 2)/x]+, respectively, along with the
identity
E[χ2

q+2(Δ)]− E[χ−2
q+4(Δ)] = 2E[χ−4

q+4(Δ)].

7.2. Risk analysis

In this section, we compare the performance of these estimators. Let λ1 and
λn denote, respectively, the smallest and the largest eigenvalues of the matrix[
(G∗�ΓG∗)−1G∗�ΩG∗]. The following result compares the UE and the RE.
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Proposition 7.1. Suppose that Assumptions 1-3 hold along with the set of local
alternatives in (3.4). If Δ �

(
σ2trace(ΩG∗BΣ−1)

) /
λn, then the RE dominates

the UE, and if
Δ �

(
σ2trace(ΩG∗BΣ−1)

) /
λ1, then the UE dominates the RE.

The proof of this proposition is outlined in the Appendix. Further, we estab-
lish the risk dominance of SEs over the UE.

Proposition 7.2. Suppose that Assumptions 1-3 hold along with the set of local
alternatives in (3.4). If σ2trace(ΩG∗BΣ−1)/λn � (q + 2)/2 with q ∈ (2, (m +

1)(p+ 1)), then ADR
(
θ̂s, θ,Ω

)
� ADR

(
θ̂s+, θ,Ω

)
� ADR

(
θ̂(φ̂, m̂), θ,Ω

)
, for

all Δ > 0.

The proof is given in Appendix A.

8. Simulation study

In this section, we illustrate the performance of the proposed method by using
the simulation studies. We use Monte-Carlo simulation to generate the gener-
alized O-U process. Two cases are reported here: 1. The case of two change
points; 2. The case of three change points. For both two cases, we generate the
generalized O-U process with a periodic two-dimensional set of basis functions{
1,
√
2 cos

(
2πt
Δ

)}
where Δ = ti+1−ti is the time increment in time period [0, T ].

Thus, the process is given as

dXt =

m∑
j=1

(
μ
(j)
1 + μ

(j)
2

√
2 cos

(
2πt

Δt

)
− αjXt

)
I(τj−1,τj)(t)dt + σdWt, t � 0,

where j = 1, . . . ,m (m is the number of change points), and X0 = 0.05. To
simplify, we take σ = 1 and Ω = I(p+1)(m+1). In each case, 500 iterations are
performed. In each iteration, the positions of change points and the number of

change points are estimated. To estimate σ2, we use σ2 =
1

T

n∑
i=1

(Xti −Xti−1)
2.

We also compute the empirical power of the proposed test and we compare the
relative performance of estimators via empirical ADR.

8.1. Performance comparison

We consider first the case of two change points so that we let m = 2, with
φ1 = 0.35 and φ2 = 0.7. Second, we consider the case of three change points
with φ1 = 0.25, φ2 = 0.5 and φ3 = 0.75. In order to evaluate the effect of the time
period T , we generate the O-U process with T = 20 and T = 50, with the time
increment of Δ = 0.001. Table 1 presents the components of θ which are used to
generate the O-U for the case of m = 2 and m = 3. For the restriction, we take
r = 0 and the matrix B given by B = [(I3, 0)

′, (−I3, I3)
′, (0,−I3)

′], for m =
2. For, m = 3, we choose B = [(I3, 0, 0)

′, (−I3, I3, 0)
′, (0,−I3, I3)

′, (0, 0,−I3)
′].

From 500 iterations, we estimate the locations of change points based on LSSE
method in (4.2). For the case of two change-points, the mean of the estimates of
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Table 1

Coefficients

Parameter m = 2 m = 3
j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 4

μ1,j 10 5 15 10 5 15 20
μ2,j 5 2 8 5 2 7 10
αj 3 1 4 3 1 3 5

Table 2

The mean of estimates of φ1, φ2

T = 20 T = 50

φ̂1 0.3522 0.3492

φ̂2 0.6996 0.7

Table 3

The mean of estimates of φ1, φ2, φ3

T = 20 T = 50

φ̂1 0.2519 0.2501

φ̂2 0.4995 0.5002

φ̂3 0.7497 0.7502

φ1 and φ2 are recorded in Table 2. Further, for the case of three change-points,
the mean of the estimates of φ1, φ2 and φ3 are reported in Table 3. From
Tables 2 and 3, it is obvious that, as T becomes large, the estimates of the rate
of the change points are closer to the pre-assigned values. In other words, the
method is more accurate as T increases.

Further, Figure 1, Figure 2 and Figure 3 show that all the histograms are
quite symmetric and unimodal with the mode which corresponds to the exact
value. As T increases, the estimates become closer to the pre-assigned values.

We also estimate the number of change points based on the algorithm in
Section 5. To estimate the number of change points, we take mmax = 6. From
500 iteration, the cumulative frequency (CF) and the relative frequency (RF)

are shown in Table 4. The CF and RF are defined as CF =
500∑
i=1

I(m̂i=m) and

RF =
1

500

500∑
i=1

I(m̂i=m) × 100%. From Table 4, the cumulative frequency and

relative frequency become larger when we change T from 20 to 50. Thus, it
seems that the proposed method performs very well when T is relatively large.

To evaluate the performance of the proposed test in short and medium time
period of observation, we present the variation of the empirical power versus
the noncentrality parameter Δ = 1

σ2 r
′
0(BΣ−1B′)−1r0 with r0 = 0.5nr, n =

1, 2, 3, 4, 5, 6. To save the space, we only report here empirical power function
for the case of three change-points. Figure 4 corroborates the established theo-
retical results for which the proposed test is consistent. As in Nkurunziza and
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Fig 1. Histogram of estimates of φ̂, m = 3, T = (35, 50), φ = (0.25, 0.5, 0.75)

Zhang (2018), the relative mean squared efficiency (RMSE) is given as

RMSE(θ̂0) = ADR(θ̂(φ̂, m̂), θ; Ω)/ADR(θ̂0, θ; Ω) (8.1)

where θ̂0 represents an estimator such as θ̂s, θ̂s+, θ̂(φ̂, m̂) and θ̃(φ̂, m̂).
From Figures 5, 6, 7 and 8, near Δ = 0, RMSE of RE is the highest. This
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Fig 2. Histogram of estimates of φ̂, m = 3, T = (35, 50), φ = (0.25, 0.5, 0.75)

shows that, near the restriction, RE is more efficient than the other three esti-
mators. These figures also show that the efficiency of the RE decreases as one
moves far away from the null hypothesis. Further, PSE and SE outperform over
UE. In conclusion, the numerical results are in agreement with the theoretical
results established in Section 7.

9. Conclusion

In this paper, we proposed improved estimation and testing methods in gen-
eralized O-U processes with multiple unknown change-points when the drift
parameter satisfies uncertain constraint. A Salient feature of this paper consists
in the fact that the number of change-points and the locations of the change-
points are unknown. The novelty of the established results consists in the fact
that the dimensions of the proposed estimators are random. Because of that, the
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Fig 3. Histogram of estimates of φ̂, m = 2, T = (20, 35, 50), φ = (0.35, 0.7)

asymptotic power of the proposed test and the asymptotic risk analysis do not
follow from the results in statistical literature. In comparison with the results
in recent statistical literature, we generalized the findings in Chen et al. (2017)
[4] as well as that in Nkurunziza and Zhang (2018) [15]. Specifically, we general-
ized the methods in Chen et al. (2017) [4] in five ways. First, we considered the
model which incorporates the uncertain prior knowledge. Second, we derived
the unrestricted estimator (UE) and the restricted estimator (RE). Further, in
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Table 4

Cumulative frequency and relative frequency of 500 iterations (SNS method)

T = 20 T = 20 T = 50 T = 50
case CF RF CF RF
m = 2 497 99.4% 500 100%
m = 3 492 98.4% 500 100%

Fig 4. The power function versus Δ (T = 10, T = 20, T = 30, T = 50)
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Fig 5. RMSE of UE, RE, SE, PSE versus Δ (T = 20)

Fig 6. RMSE of UE, RE, SE, PSE versus Δ (T = 50)

the known number of the change-points case, we derived the joint asymptotic
normality between the UE and the RE, under the set of local alternative re-
strictions; this generalizes particularly Corollary 4.2 in Chen et al. (2017) [4].
Third, we derived a test for testing the hypothesized restriction and we derived
its asymptotic power. The proposed test is also useful for testing the absence
of change points. Fourth, we constructed a class of shrinkage estimators (SEs)
which are expected to be robust with respect to the restriction. Fifth, we studied
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Fig 7. RMSE of UMLE, RMLE, SE, PSE versus Δ (T = 20)

Fig 8. RMSE of UMLE, RMLE, SE, PSE versus Δ (T = 50)

the relative risk dominance of the proposed estimators. Specifically, we estab-
lished that SEs dominate the UE and the RE performs very well near the null
hypothesis, but this performs poorly when the restriction is seriously violated.
On the top of these contributions, we weakened some conditions underlying the
main results in Chen et al. (2017) [4]. In particular, it was established that the
findings in Chen et al. (2017) [4] hold without their Assumption 2. We also
added a condition about the initial value, of the SDE, which is necessary for the
results in Chen et al. (2017) [4] to hold.
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Appendix A: Technical results and proofs

Proof of Lemma 2.1. To prove the existence of the unique and strong solu-
tion, it suffices to verify that the coefficients of SDE satisfy both space-variable
Lipschitz condition and the spatial growth condition. For more details, see the
proof of Proposition 3.1 in Chen et al. (2017) [4]. The relation (2.4) follows from
the relation (3.9) in Chen et al. (2017) [4]. Further, by combining Minkownsky’s
inequality along with Itô’s isometry, we get sup

t�0
E[|Xt|2] < ∞.

Lemma A.1. For t ∈ [0, 1], for j = 1, 2, . . . ,m + 1, the sequence of random
variables {X̃j(k + t)}k∈N0 is stationary and ergodic.

The proof is similar to that given for Lemma 4.3 of Dehling et al. (2010) [6].

Proposition A.1. If Assumptions 1-3 hold, then, φ̂ is a consistent estima-
tor for φ, and there exists a C > 0 such that for every ε > 0, for large T ,
P(T max

1�j�m
|φ̂j − φj | > C) < ε.

The proof follows Proposition 4.2 of Chen et al. (2017) [4].

Proposition A.2. Under Assumptions 1-3, we have that for large T,
(i) IC(m0) < IC(m) a.s. ∀ m < m0 and (ii) IC(m0) < IC(m) a.s. ∀ m > m0.

The proof is similar to that given for Proposition 5.1 of Chen et al. (2017)
[4].

Proof of Theorem 2.1. (i) Note that

⎛
⎝m+1∑

j=1

bj

⎞
⎠

2

� (m + 1)
m+1∑
j=1

b2j , for all

b1, b2, . . . , bm+1 real numbers. Then, by triangle inequality, we have

|X̃t −Xt|2 � 3(m+ 1)

m+1∑
j=1

|h̃j(t)− hj(t)|2 + 3(m+ 1)

m+1∑
j=1

|z̃j(t)− zj(t)|2

+3(m+ 1)

m+1∑
j=1

e−2ajt|X0|2. (A.1)

Let

p∑
k=1

|μk,j | � Kμ < ∞ for all j = 1, ..,m+ 1. We have

[|h̃j(t)− hj(t)|] � e−ajt

p∑
k=1

|μk,j |Kϕ

∫ 0

−∞
eajsds;

|z̃j(t)− zj(t)|2 = σ2e−2ajt

∣∣∣∣
∫ 0

−∞
eajsdB̃s

∣∣∣∣
2

.
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Let K∗ = K2
μK

2
ϕ. Then,

m+1∑
j=1

|h̃j(t)− hj(t)|2 �
m+1∑
j=1

e−2ajtK∗

a2j
,

m+1∑
j=1

|z̃j(t)− zj(t)|2 = σ2
m+1∑
j=1

e−2ajt

∣∣∣∣
∫ 0

−∞
eajsdB̃s

∣∣∣∣
2

. (A.2)

Then, by (A.1) and (A.2), we have

|X̃t −Xt|2 � C2
0e

−2a(1)t (A.3)

where

C2
0 = 3(m+1)K2

μK
2
ϕ

m+1∑
j=1

1

a2j
+3σ2(m+1)

m+1∑
j=1

∣∣∣∣
∫ 0

−∞
eajsdB̃s

∣∣∣∣
2

+3(m+1)|X0|2,

the proof of Part (i) is completed if we prove that E
(
C2

0

)
< ∞. This holds iff

c1 = E

⎛
⎝m+1∑

j=1

∣∣∣∣
∫ 0

−∞
eajsdB̃s

∣∣∣∣
2
⎞
⎠ =

m+1∑
j=1

E

(∣∣∣∣
∫ 0

−∞
eajsdB̃s

∣∣∣∣
2
)

< ∞. (A.4)

Since, for s ∈ (−∞, 0), B̃s = B̄−s,

E

[(∫ 0

−∞
eajsdB̃s

)2]
= E

[(∫ 0

−∞
eajsdB̄−s

)2]
= E

[(∫ ∞

0

e−ajudB̄u

)2]
.

(A.5)

Now, we define IU =

∫ U

0

e−ajudB̄u. By Itô’s isometry,

E[I2
U ] = E

[(∫ U

0

e−ajudB̄u

)2]
= E

[∫ U

0

e−2ajudu

]
=

1

2aj
(1− e−2ajU )

(A.6)

which is bounded for all U � 0. Thus, by L2-bounded martingale convergence

theorem, IU a.s.−−−−→
U→∞

I∞ =

∫ ∞

0

e−ajudB̄u and E[I2
∞] < ∞.

c1 =

m+1∑
j=1

E

[(∫ 0

−∞
eajsdB̃s

)2]
=

m+1∑
j=1

(1/(2aj)) < ∞. (A.7)

(ii) From Part (i), we get |X̃t − Xt| a.s.−−−→
t→∞

0 and |X̃t − Xt| L2

−−−→
t→∞

0. We also

have ∣∣X̃2
t −X2

t

∣∣ �
[
|X̃t −Xt||X̃t +Xt|

]
� |X̃t −Xt||X̃t|+ |X̃t −Xt||Xt|,
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then ∣∣X̃2
t −X2

t

∣∣ � C0e
−a(1)t

(
|X̃t|+ |Xt|

)
.

This gives

sup
2n�t�2n+1

∣∣X̃2
t −X2

t

∣∣ � C0e
−a(1)2

n

(
sup

2n�t�2n+1

|X̃t|+ sup
2n�t�2n+1

|Xt|
)
. (A.8)

Then, since the processes {Xt : t � 0} and {X̃t : t � 0} have continuous
trajectories, we get

sup
2n�t�2n+1

∣∣X̃2
t −X2

t

∣∣ � C0e
−a(1)2

n
(
|X̃tn |+ |Xt∗n |

)
, 2n � tn, t

∗
n � 2n+1.(A.9)

From Lemma 2.1, sup
t�0

E[|Xt|2] < ∞. We have

E[|X̃(t)|2] � (m+ 1)

m+1∑
j=1

E[(h̃j(t) + z̃j(t))
2].

Then,

E[|X̃(t)|2] � 2(m+ 1)

m+1∑
j=1

(h̃j(t))
2 + 2(m+ 1)

m+1∑
j=1

E[(z̃j(t))
2]. (A.10)

Note that, (h̃j(t))
2 =

(
e−ajt

p∑
k=1

μk,j

∫ t

−∞
eajsϕk(s)ds

)2

. Then,

m+1∑
j=1

(h̃j(t))
2 �

m+1∑
j=1

(
e−2ajtK2

μK
2
ϕ

e2ajt

a2j

)
=

m+1∑
j=1

K2
μK

2
ϕ

a2j
< ∞, ∀ t � 0. (A.11)

Since Bs and B̄s are independent, by martingale property of Itô’s integral, we
have

E[(z̃j(t))
2] = σ2e−2ajt

(
E

[(∫ t

0

eajsdBs

)2]
+ E

[(∫ 0

−∞
eajsdB̄−s

)2])
.

Also, by Itô’s isometry, E

[(∫ t

0

eajsdBs

)2]
= E

[∫ t

0

e2ajsds

]
=

1

2aj
(e2ajt−1).

By L2-bounded martingale convergence theorem, (A.5), (A.6) and Itô’s isome-
try,

m+1∑
j=1

(z̃j(t))
2 � σ2

m+1∑
j=1

(
e−2ajt

(
1

2aj
(e2ajt − 1) +

1

2aj

))
=

m+1∑
j=1

σ2

2aj
< ∞.

(A.12)
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Then, by combining (A.10), (A.11) and (A.12), we get

E[|X̃(t)|2] � 2(m+ 1)

m+1∑
j=1

K2
μK

2
ϕ

a2j
+ 2(m+ 1)

m+1∑
j=1

σ2

2aj
< ∞,

and then, together with Lemma 2.1, we conclude that, there exists K2 > 0 such
that

E(|X̃tn |+ |Xt∗n |) � sup
t�0

{E[X2
t ]

1
2 + E[X̃2

t ]
1
2 } � K2 < ∞.

Then

E

{
sup

2n�t�2n+1

∣∣X̃2
t −X2

t

∣∣} � K∗
0K

∗
2e

−a(1)2
n

, for some K∗
0 > 0, K∗

2 > 0, and then

∞∑
n=1

E

{
sup

2n�t�2n+1

∣∣X̃2
t −X2

t

∣∣} < ∞.

Then, together with Markov’s inequality, we get

∞∑
n=1

P

{
sup

2n�t�2n+1

∣∣X̃2
t −X2

t

∣∣ � ε

}
< ∞, for all ε > 0.

Hence, by Borel-Cantelli’s lemma along with the fact that the process{
X̃2

t −X2
t : t � 0

}
has continuous paths, we get the second statement of Part

(ii).
(iii) For 0 � a < b � 1, we have∥∥∥∥∥

∫ bT

aT

X̃tϕ(t)dt−
∫ bT

aT

Xtϕ(t)dt

∥∥∥∥∥ �
∫ bT

aT

|X̃t −Xt| ‖ϕ(t)‖ dt

� Kϕ

∫ bT

aT

|X̃t −Xt|dt. (A.13)

Then,

sup
0�a<b�1

∥∥∥∥∥ 1

T

∫ bT

aT

X̃tϕ(t)dt−
1

T

∫ bT

aT

Xtϕ(t)dt

∥∥∥∥∥ � Kϕ

T

∫ T

0

|X̃t −Xt|dt. (A.14)

By using part (i) along with the continuous version of Kronecker’s lemma, we
have

Kϕ

T

∫ T

0

|X̃t −Xt|dt a.s.−−−−→
T→∞

0, and
Kϕ

T

∫ T

0

|X̃t −Xt|dt L2

−−−−→
T→∞

0,

then, by combining this last relation with (A.14), we get the statement in (iii).
(iv) For 0 � a < b � 1, we have∣∣∣∣∣ 1T

∫ bT

aT

X̃2
t dt−

1

T

∫ bT

aT

X2
t dt

∣∣∣∣∣ � 1

T

∫ bT

aT

|X̃2
t −X2

t |dt.
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Then,

sup
0�a<b�1

(∣∣∣∣∣ 1T
∫ bT

aT

X̃2
t dt−

1

T

∫ bT

aT

X2
t dt

∣∣∣∣∣
)

� 1

T

∫ T

0

|X̃2
t −X2

t |dt. (A.15)

The proof follows directly from Part (ii) along with the continuous version of
Kronecker’s lemma, this completes the proof.

Proposition A.3. Suppose that Assumptions 1-2 hold, and suppose that
T � 1

/
min

1�j�m+1
(φj − φj−1), then Q(φ,m) is positive definite.

Proof. Let b = (b1, b2, . . . , bp+1)
′
, with bi ∈ R, i = 1, 2, . . . , p + 1, let b(1) =

(b1, b2, . . . , bp)
′
, i.e. b =

(
b′(1), bp+1

)′
. We have

b′Q(τj−1,τj)b =

∫ φjT

φj−1T

‖b′ (ϕ′(t),−X(t))
′ ‖2dt. (A.16)

Then, since ‖b′ (ϕ′(t),−X(t))
′ ‖2 � 0, for all φj−1T � t � φjT , from (A.16), we

have b′Q(τj−1,τj)b � 0 for all b ∈ R
p+1. Further, if b′Q(τj−1,τj)b = 0, we must

have

‖b′ (ϕ′(t),−X(t))
′ ‖2 = 0,

almost everywhere (a.e.) on [τj−1, τj ], this implies that

b′ (ϕ′(t),−X(t))
′
= 0, a.e. on [τj−1, τj ], (A.17)

and then

P
({

ω : b′(1)ϕ(t)− bp+1X(t, ω) = 0, ∀t ∈ [τj−1, τj ]
})

= 1. (A.18)

First, one can verify that whenever bp+1 = 0 then b(1) = 0. Thus, we first
prove that bp+1 = 0. To this end, suppose that bp+1 �= 0. From Lemma 2.1, if
t ∈ [τj−1, τj ], we have

X(t)
∣∣Xτj−1 ∼ N

(
μ(t,Xτj−1), Σ0(t)

)
where μ(t,Xτj−1) = E

(
Xj(t)

∣∣Xτj−1

)
, σ0(t) = Var

(
X(t)

∣∣Xτj−1

)
, t ∈ [τj−1, τj ].

Then,(
b′(1)ϕ(t)− bp+1X(t)

) ∣∣∣Xτj−1 ∼ N
(
b′(1)ϕ(t)− bp+1μ(t,Xτj−1), b

2
p+1σ

2
0(t)

)
,

(A.19)

t ∈ [τj−1, τj ]. Further, since aj > 0, for j = 1, 2, . . . ,m + 1, from Lemma 2.1,
we have

σ2
0(t) =

σ2

2aj

(
1− e−2aj(t−τj−1)

)
> 0, (A.20)
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for all t ∈]τj−1, τj ]. Then, if bp+1 �= 0, b2p+1σ0(t) > 0, for all t ∈]τj−1, τj ], and
then, by using (A.19), we get

P
({

ω : b′(1)ϕ(t)− bp+1X(t, ω) = 0, ∀t ∈]τj−1, τj ]
} ∣∣∣Xτj−1

)
= 0,

this gives

P
({

ω : b′(1)ϕ(t)− bp+1X(t, ω) = 0, ∀t ∈]τj−1, τj ]
})

= 0, (A.21)

this is a contradiction with the relation (A.18). Therefore, bp+1 = 0. Hence, to-
gether with the relation (A.17), we get b′(1)ϕ(t) = 0, for all τj−1 = φj−1T � t �
φjT = τj . Further, provided that T � 1/(φj −φj−1), we have [0, 1] ⊂ [0, φjT −
�φj−1T �], then, since from Assumption 2, the family {ϕ1(t), ϕ2(t), . . . , ϕp(t)}
is linearly independent on [0, 1], this implies that b(1) = 0, this completes the
proof.

Proof of Theorem 3.1. (i)We have, for a ∈ (0, 1), by the property of periodic
function we have

lim
T→∞

1

aT

∫ aT

0

ϕ(t)ϕ′(t)dt = Ip.

Therefore, for 0 � φj−1 < φj � 1, j = 1, ...,m+ 1,

1

T

∫ φjT

φj−1T

ϕ(t)ϕ′(t)dt −−−−→
T→∞

(φj − φj−1)Ip.

This proves part (i).

(ii) Define Yi =

∫ i

i−1

X̃j(t)ϕ(t)dt, and let u = t− i+ 1 ∈ [0, 1]. By Lemma A.1,

{X̃j(u+ i− 1)}i∈N is stationary and ergodic sequence, then, {Yi}i∈N is station-
ary and ergodic sequence. Then, by some algebraic computations along with
Birkhoff’s ergodic theorem, we prove that

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
a.s. and L1

−−−−−−−−−−→
T→∞

(φj − φj−1)E

[∫ 1

0

X̃j(t)ϕ(t)dt

]
. (A.22)

Since {X̃j(t), t � 0} and {ϕ(t), t � 0} are L2-bounded, with E[X̃j(t)] = h̃j(t) +
E[z̃j(t)], we have

E

[∫ 1

0

X̃j(t)ϕ(t)dt

]
=

∫ 1

0

E[X̃j(t)]ϕ(t)dt =

∫ 1

0

(
h̃j(t) + E[z̃j(t)]

)
ϕ(t)dt, (A.23)

with E[z̃j(t)] = σe−ajtE

[∫ ∞

0

e−ajudB̄u

]
+ σe−ajtE

[∫ t

0

eajsdBs

]
. As in proof

of Theorem 2.1, let IU =

∫ U

0

e−ajudB̄u, U � 0. By L2-bounded martingale
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convergence theorem, (A.5) and (A.6), IU L2

−−−−→
T→∞

I∞ =

∫ ∞

0

e−ajudB̄u, which

implies that

IU L1

−−−−→
T→∞

I∞ =

∫ ∞

0

e−ajudB̄u.

Then,

E

[∫ ∞

0

e−ajudB̄u

]
= lim

U→∞
E

[∫ U

0

e−ajudB̄u

]
= 0, and E

[∫ t

0

eajsdBs

]
= 0.

Hence, E[z̃j(t)] = 0. Then, E[X̃t] = h̃j(t), and then, by (A.22) and (A.23), we
get

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
a.s.−−−−→

T→∞
(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt,

1

T

∫ φjT

φj−1T

X̃tϕ(t)dt
L1

−−−−→
T→∞

(φj − φj−1)

∫ 1

0

h̃j(t)ϕ(t)dt,

this proves Part (ii).
(iii) As in Part (ii), by Birkhoff’s ergodic theorem, we get

1

T

∫ φjT

φj−1T

X̃2
t dt

a.s and L1

−−−−−−−→
T→∞

(φj − φj−1)E

[∫ 1

0

X̃2
j (t)dt

]
. (A.24)

One can verify that E[z̃j(t)] = 0, and E[z̃2j (t)] =
σ2

2aj
. Then,

1

T

∫ φjT

φj−1T

X̃2
j (t)dt

a.s.−−−−→
T→∞

(φj − φj−1)ωj ,

and
1

T

∫ φjT

φj−1T

X̃2
j (t)dt

L1

−−−−→
T→∞

(φj − φj−1)ωj ,

this completes the proof.

Proposition A.4. If Assumption 2 holds. Then, Σj, j = 1, ...,m + 1, and Σ
are a positive definite matrices.

Proof. By Schur complement theorem, Σj is positive definite iff

ωj−ΛT
j I

−1
P Λj = ωj−

p∑
k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

> 0. Indeed, by Bessel’s inequality,

∫ 1

0

h̃2
j (t)dt �

p∑
k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

,
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and then

ωj −
p∑

k=1

(∫ 1

0

h̃j(t)ϕk(t)dt

)2

� σ2

2aj
> 0,

this proves the first statement. The second statement follows from the fact that
Σ is a block diagonal matrix whose diagonal block-components are positive
definite, the proof is completed.

Proof of Proposition 3.2. By Proposition 3.1, we get

1

T
Q(τj−1,τj)

a.s.−−−−→
T→∞

(φj − φj−1)Σj .

Therefore, T−1Q(φ,m)
a.s.−−−−→

T→∞
Σ. Further, since Σj and Σ are positive definite

matrices,
TQ−1

(τj−1,τj)

a.s.−−−−→
T→∞

1
φj−φj−1

(Σj)
−1 and TQ−1(φ,m)

a.s.−−−−→
T→∞

Σ−1, this completes

the proof.

Proof of Proposition 3.3. (i) By combining (2.1), (2.2) and (2.10) along
with some computations, we get

r̃(τj−1,τj) =

(∫ τj

τj−1

ϕ′(t)dXt,−
∫ τj

τj−1

XtdXt

)′

= Q(τj−1,τj)θj + σM(τj−1,τj),

this proves the Part (i).
(ii) M(φ,m) is a martingale with quadratic variation Q(φ,m). Then, the proof
follows by combining martingale central limit theorem along with Proposi-
tion 3.2 and Slutsky’s theorem.
(iii) We have ρT (φ,m) = σTQ−1(φ,m) 1√

T
M(φ,m). By combining Part (ii)

and Proposition 3.2 along with Slutsky’s theorem, we get

ρT (φ,m) = σTQ−1(φ,m)
1√
T
M(φ,m)

d−−−−→
T→∞

σΣ−1M0

= ρ ∼ σΣ−1N(m+1)(p+1)(0,Σ),

this gives ρT (φ,m)
d−−−−→

T→∞
ρ ∼ N(m+1)(p+1)(0, σ

2Σ−1), this completes the proof.

Proof of Proposition 3.4. One can verify that

(ρ′T (φ,m), ζ ′T (φ,m), ξ′T (φ,m))
′
=

⎛
⎝ I(m+1)(p+1)

I(m+1)(p+1) −GB
GB

⎞
⎠ ρT (φ,m) +

⎛
⎝ 0
−Gr0
Gr0

⎞
⎠ .

By (3.6), we have

(I(m+1)(p+1), I(m+1)(p+1) −GB,GB)′
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P−−−−→
T→∞

(I(m+1)(p+1), I(m+1)(p+1) −G∗B,G∗B)′;

(0,−r′0G
′, r′0G

′)′
P−−−−→

T→∞
(0,−r′0G

∗�, r′0G
∗�)′. (A.25)

By combining Proposition 3.3 and (A.25), and by Slutsky’s theorem,

(ρ′T (φ,m), ζ ′T (φ,m), ξ′T (φ,m))
′

d−−−−→
T→∞

⎛
⎝ I(m+1)(p+1)

I(m+1)(p+1) −G∗B
G∗B

⎞
⎠ ρ+

⎛
⎝ 0
−G∗r0
G∗r0

⎞
⎠ =

⎛
⎝ρ
ζ
ξ

⎞
⎠ .

Further, one can verify that

G∗BΣ−1B′G∗� = Σ−1B′(BΣ−1B′)−1BΣ−1 = Σ−1B′G∗� = G∗BΣ−1. (A.26)

The rest of the proof follows directly from algebraic computation.

Proof of Lemma 4.1. We have

∫ b̂T

âT

Ytdt−
∫ bT

aT

Ytdt =

(∫ b̂T

0

Ytdt−
∫ bT

0

Ytdt

)
−
(∫ âT

0

Ytdt−
∫ aT

0

Ytdt

)
.

Then, the result in Part (i) follows directly from Lemma 3.1 in Nkurunziza and
Zhang (2018) [15], and the result in Parts (ii) and (iii) follow from Lemma 3.2
in Nkurunziza and Zhang (2018) [15].

Proof of Lemma 4.2. Since {Yt : t � 0} is bounded, there exits K3 > 0 such
that ‖Yt‖2 � K3 for all t � 0. Let ε > 0, we have

lim
T→∞

P

(
|b̂− b| � ε

4K3

)
= 0. (A.27)

Further, let

I11(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

0

YtdWt −
∫ bT

0

YtdWt

∥∥∥∥∥
2

I{b̂>b}I{ |b̂−b|< ε
4K3

}
⎤
⎦ ,

I12(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

0

YtdWt −
∫ bT

0

YtdWt

∥∥∥∥∥
2

I{b̂�b}I{ |b̂−b|� ε
4K3

}
⎤
⎦ ,

I21(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

0

YtdWt −
∫ bT

0

YtdWt

∥∥∥∥∥
2

I{b̂>b}I{ |b̂−b|< ε
4K3

}
⎤
⎦ , (A.28)

I22(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

0

YtdWt −
∫ bT

0

YtdWt

∥∥∥∥∥
2

I{b̂�b}I{ |b̂−b|� ε
4K3

}
⎤
⎦ .
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One can verify that

1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

0

YtdWt −
∫ bT

0

YtdWt

∥∥∥∥∥
2
⎤
⎦ = I11(T )+I12(T )+I21(T )+I22(T ). (A.29)

Hence, the proof is completed if we prove that

lim
T→∞

I11(T ) = lim
T→∞

I12(T ) = lim
T→∞

I21(T ) = lim
T→∞

I22(T ) = 0.

To this end, we have

I11(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

bT

YtdWt

∥∥∥∥∥
2

I{b̂>b}I{ |b̂−b|< ε
4K3

}
⎤
⎦

=
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

bT

YtdWt

∥∥∥∥∥
2

I{
0<b̂−b� ε

4K3

}
⎤
⎦ ,

then

I11(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

bT

YtdWt

∥∥∥∥∥
2

I{
0<T (b̂−b)� εT

4K3

}
⎤
⎦ . (A.30)

This gives

I11(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ |b̂−b|T

0

Yu+TbdWu,Tb

∥∥∥∥∥
2

I{
0<T (b̂−b)� εT

4K3

}
⎤
⎦ , (A.31)

where Wt,Tb = Wt+Tb −WTb, t � 0. From (A.31), we get

I11(T ) � 1

T
E

⎡
⎣ sup
0�t� εT

4K3

∥∥∥∥
∫ t

0

Yu+TbdWu,Tb

∥∥∥∥
2

I{
0<T (b̂−b)� εT

4K3

}
⎤
⎦ ,

then,

I11(T ) � 1

T
E

⎡
⎣ sup
0�t� εT

4K3

∥∥∥∥
∫ t

0

Yu+TbdWu,Tb

∥∥∥∥
2
⎤
⎦ . (A.32)

Note that, since {Yu : u � 0} is a deterministic process, the stochastic process{∫ t

0

Yu+TbdWu,Tb : t � 0

}
is martingale with respect to the natural filtration

generated by {Wt,Tb : t � 0}. Then, by combining (A.32) with Doob’s maximal
inequality, we have

I11(T ) � 4

T
E

[∫ εT
4K3

0

‖Yu+Tb‖2 du
]

� 4

T
E

[∫ εT
4K3

0

K3du

]
=

4

T

εT

4K3
K3 = ε.

(A.33)
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This proves that lim
T→∞

I11(T ) = 0. Further, since 0 < b < 1 and 0 < b̂ � 1 a.s.,

we have

I12(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

bT

YtdWt

∥∥∥∥∥
2

I{1�b̂>b>0}I{ |b̂−b|� ε
4K3

}
⎤
⎦

=
1

T
E

⎡
⎣
∥∥∥∥∥
∫ b̂T

bT

YtdWt

∥∥∥∥∥
2

I{
(b̂−b)> ε

4K3

} I{T�T (b̂−b)>0}

⎤
⎦ .

This gives

I12(T ) =
1

T
E

⎡
⎣
∥∥∥∥∥
∫ |b̂−b|T

0

Yu+TbdWu,Tb

∥∥∥∥∥
2

I{
(b̂−b)> ε

4K3

} I{T�T (b̂−b)>0}

⎤
⎦ , (A.34)

where Wt,Tb = Wt+Tb −WTb, t � 0. Then, by combining (A.34) with Cauchy-
Schwarz’s inequality, we have

I12(T ) � 1

T

⎧⎨
⎩E

⎡
⎣
∥∥∥∥∥
∫ |b̂−b|T

0

Yu+TbdWu,Tb

∥∥∥∥∥
4

I{T�T (b̂−b)>0}

⎤
⎦
⎫⎬
⎭

1/2

×
{
E

[
I{

(b̂−b)> ε
4K3

}
]}1/2

.

Hence,

I12(T ) � 1

T

{
E

[
sup

0�t�T

∥∥∥∥
∫ t

0

Yu+TbdWu,Tb

∥∥∥∥
4

I{T�T (b̂−b)>0}

]}1/2

×
{
P

[
b̂− b >

ε

4K3

]}1/2

,

and this gives,

I12(T ) � 1

T

{
E

[
sup

0�t�T

∥∥∥∥
∫ t

0

Yu+TbdWu,Tb

∥∥∥∥
4
]}1/2{

P

[
b̂− b >

ε

4K3

]}1/2

.

Then, by Burkholder-Davis-Gundy’s inequality, we have

I12(T ) � C4

T

⎧⎨
⎩E

⎡
⎣[∫ T

0

‖Yu+Tb‖2du
]2
⎤
⎦
⎫⎬
⎭

1/2{
P

[
b̂− b >

ε

4K3

]}1/2

� C4

T

⎧⎨
⎩E

⎡
⎣[∫ T

0

K3du

]2
⎤
⎦
⎫⎬
⎭

1/2{
P

[
b̂− b >

ε

4K3

]}1/2

,
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where C4 is a strictly positive real number. Therefore,

I12(T ) � C4K3

{
P

[
b̂− b >

ε

4K3

]}1/2

, (A.35)

then, together with (A.27), we prove that lim
T→∞

I12(T ) = 0. By using the similar

techniques as for I11(T ) and I12(T ), one proves that

lim
T→∞

I21(T ) = lim
T→∞

I22(T ) = 0,

this completes the proof.

Proof of Lemma 4.3. Let f0(μ, s) represent the drift term of the SDE in
(4.9). Let

L2(T ; b, a) =
1√
T

(∫ bT

0

Ysf0(μ, s)ds−
∫ aT

0

Ysf0(μ, s)ds

)
.

By Itô’s lemma,we have,

Y 2
t = Y 2

0 + 2

∫ t

0

Ysf0(μ, s)ds+ σ2t+ 2σ

∫ t

0

YsdWs,

t � 0. Then, by triangle inequality,

1√
T

∣∣∣∣∣
∫ b̂T

âT

YsdWs −
∫ bT

aT

YsdWs

∣∣∣∣∣ �
|Y 2

b̂T
− Y 2

bT |
2σ

√
T

+
σ

2

√
T |b̂− b|+ |L2(T ; b̂, b)|/σ

+
|Y 2

âT − Y 2
aT |

2σ
√
T

+
σ

2

√
T |â− a|+ |L2(T ; â, a)|/σ. (A.36)

Since {Yt, t � 0} is L2-bounded, we have

|Y 2
b̂T

− Y 2
bT |/(2σ

√
T )

P−−−−→
T→∞

0, and |Y 2
âT − Y 2

aT |/(2σ
√
T )

P−−−−→
T→∞

0. (A.37)

Since there exists δ0 > 1
2 such that max

(
|â− a|, |b̂− b|

)
= OP (T

−δ0), we have

σ

2

√
T |b̂− b| P−−−−→

T→∞
0, and

σ

2

√
T |â− a| P−−−−→

T→∞
0. (A.38)

By Lemma 4.1, we have |L2(T ; â, a)|/σ P−−−−→
T→∞

0 and |L2(T ; b̂, b)|/σ P−−−−→
T→∞

0.

Then, by combining this last relation with (A.36)-(A.38), we complete the proof.

Proof of Proposition 4.3. (i) Since φ̂j and φ̂j−1 are consistent estimators for
φj and φj−1, 0 � φj−1 < φj � 1, j = 1, ...,m+1, by Lemma 4.3, we have, for 0 �
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φj−1 < φj � 1, j = 1, ...,m+1,
1√
T

∫ φ̂jT

φ̂j−1T

XtdWt−
1√
T

∫ φjT

φj−1T

XtdWt
P−−−−→

T→∞
0.

Then, by Lemma 4.2, we also have

1√
T

∫ φ̂jT

φ̂j−1T

ϕ(t)dWt −
1√
T

∫ φjT

φj−1T

ϕ(t)dWt
P−−−−→

T→∞
0,

these two conditions complete the proof of Part (i).

(ii) By Propositions 3.3, we have 1√
T
M(φ,m)

d−−−−→
T→∞

M0 ∼ N(m+1)(p+1)(0,Σ)

and by Lemma 4.2 and 4.3,

1√
T

(
M(φ̂,m)−M(φ,m)

)
P−−−−→

T→∞
0.

Hence, by Slutsky’s theorem,

1√
T
M(φ̂,m) =

1√
T

(
M(φ̂,m)−M(φ,m)

)
+

1√
T
M(φ,m)

d−−−−→
T→∞

M0

∼ N(m+1)(p+1)(0,Σ),

this proves Part (ii).

(iii) It suffices to note that ρT (φ̂,m) = σTQ(φ̂,m)−1 1√
T
M(φ̂,m). Then, the

proof follows from the second statement and Proposition 4.2 along with Slutsky’s
theorem.

Proof of Lemma 5.1. For the sake of simplicity, for two q-column vectors a
and b, we denote a � b to stand for ai � bi, i = 1, 2, . . . , q. Let x be a point of
continuity of the cdf of X(m). We have

lim
T→∞

P(XT (m̂) � x) = lim
T→∞

P(XT (m̂) � x, m̂ = m)

+ lim
T→∞

P(XT (m̂) � x, m̂ �= m);

lim
T→∞

P(XT (m) � x) = lim
T→∞

P(XT (m) � x, m̂ = m)

+ lim
T→∞

P(XT (m) � x, m̂ �= m).

Since lim
T→∞

P(m̂ = m) = 1, then,

lim
T→∞

P(XT (m̂) � x) = lim
T→∞

P(XT (m) � x, m̂ = m), (A.39)

lim
T→∞

P(XT (m) � x) = lim
T→∞

P(XT (m) � x, m̂ = m). (A.40)

By combining (A.39), (A.40) and lim
T→∞

P(XT (m) � x) = P(X(m) � x),

we get lim
T→∞

P(XT (m̂) � x) = P(X(m) � x), this completes the proof.
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Proof of Proposition 7.1. By Corollary 7.1, we have

�0(Δ) = ADR
(
θ̃(φ̂, m̂), θ,Ω

)
−ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= r′0G

∗�ΩG∗r0

−σ2trace(ΩG∗BΣ−1).

We observe that, since G∗ = Σ−1B′(BΣ−1B′)−1 and Γ = 1
σ2B

′(BΣ−1B′)−1B,
G∗�ΓG∗ = 1

σ2 (BΣ−1B′)−1, which is positive definite for σ > 0.
Then, if Δ > 0, by Theorem 2.4.7 in Mathai and Provost (1992) [13], we have

λ1Δ− σ2trace(ΩG∗BΣ−1) � �0(Δ) � λnΔ− σ2trace(ΩG∗BΣ−1), (A.41)

From (A.41), provided that λ1Δ− σ2trace(ΩG∗BΣ−1) � 0,

ADR
(
θ̃(φ̂, m̂), θ,Ω

)
� ADR

(
θ̂(φ̂, m̂), θ,Ω

)
. Further, by (A.41), provided that

λnΔ − σ2trace(ΩG∗BΣ−1) � 0, ADR
(
θ̃(φ̂, m̂), θ,Ω

)
� ADR

(
θ̂(φ̂, m̂), θ,Ω

)
,

this completes the proof.

Proof of Proposition 7.2. By Theorem 7.1, we have

�1(Δ) = ADR
(
θ̂s, θ,Ω

)
−ADR

(
θ̂(φ̂, m̂), θ,Ω

)
= (q + 2)(q − 2)r′0G

∗�ΩG∗r0E[χ
−4
q+4(Δ)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2E[χ−2
q+2(Δ)]− (q − 2)E[χ−4

q+2(Δ)]).

Then, by the identity in Saleh (2006, p. 32) [18], we have
ΔE[χ−4

q+4(Δ)] = E[χ−2
q+2(Δ)]− (q − 2)E[χ−4

q+2(Δ)], this gives

�1(Δ) = (q + 2)(q − 2)r′0G
∗�ΩG∗r0E[χ

−4
q+4(Δ)]

− (q − 2)σ2trace(ΩG∗BΣ−1)(2ΔE[χ−4
q+4(Δ)] + (q − 2)E[χ−4

q+2(Δ)]).

Note that, Δ � 0 and that, Δ = 0 if and only if r0 = 0. If Δ = 0, we have

�1(Δ) = −(q − 2)2σ2trace(ΩG∗BΣ−1)E[χ−4
q+2] � 0.

Let H =
[
1− ((q + 2)r′0G

∗�ΩG∗r0)
/
(2Δσ2trace(ΩG∗BΣ−1))

]
. If Δ > 0, we

have

�1(Δ) = −(q − 2)σ2trace(ΩG∗BΣ−1)
[
2ΔE[χ−4

q+4(Δ)]H + (q − 2)E[χ−4
q+2(Δ)]

]
.

Thus, �1(Δ) � 0 for all Δ > 0 provided that q > 2 and H � 0. This last inequal-
ity holds if and only if (σ2trace(ΩG∗BΣ−1))/λn � (q+2)/2, this completes the

first part of the proof. Further, let �2(Δ) = ADR
(
θ̂s, θ,Ω

)
−ADR

(
θ̂s+, θ,Ω

)
,

from Theorem 7.1, have

�2(Δ) = −2r′0G
∗�ΩG∗r0E[(1− (q − 2)χ−2

q+2(Δ))I{χ2
q+2(Δ)<q−2}]

+ σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(Δ))2I{χ2

q+2(Δ)<q−2}]
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+ r′0G
∗�ΩG∗r0E[(1− (q − 2)χ−2

q+4(Δ))2I{χ2
q+4(Δ)<q−2}].

The proof follows from the inequalities

− 2r′0G
∗�ΩG∗r0E[(1− (q − 2)χ−2

q+2(Δ))I{χ2
q+2(Δ)<q−2}] � 0, (A.42)

σ2trace(ΩG∗BΣ−1)E[(1− (q − 2)χ−2
q+2(Δ))2I{χ2

q+2(Δ)<q−2}] � 0, (A.43)

r′0G
∗�ΩG∗r0E[(1− (q − 2)χ−2

q+4(Δ))2I{χ2
q+4(Δ)<q−2}] � 0. (A.44)
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