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Abstract

We investigate concentration properties of spectral measures of Hermitian random
matrices with partially dependent entries. More precisely, let Xn be a Hermitian
random matrix of the size n× n that can be split into independent blocks of the size at
most dn = o(n2). We prove that under some mild conditions on the distribution of the
entries of Xn, the empirical spectral measure of Xn concentrates around its mean.

The main theorem is a strengthening of the recent result by Kemp and Zimmerman,
where the size of the blocks grows as o(logn). As an application, we are able to
upgrade the results of Schenker and Schulz on the convergence in expectation to
the semicircle law of a class of random matrices with dependent entries to weak
convergence in probability. Other applications include patterned random matrices,
e.g. matrices of Toeplitz, Hankel or circulant type and matrices with heavy tailed
entries in the domain of attraction of the Gaussian distribution.
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1 Introduction

Throughout this paper we denote by Mn the space of n× n matrices over the scalar
field C equipped with the Hilbert–Schmidt norm ‖A‖HS =

√
trAA∗, where (A∗)ij = Aji.

We set Msa
n to be the vector subspace of Mn consisting of Hermitian matrices (i.e.

matrices satisfying the condition A∗ = A). A (general) random matrix is a random
variable taking values in the space Mn.

Let X be a random n× n Hermitian matrix. Its all eigenvalues lie on the real line and
thus we may consider its empirical spectral distribution (ESD)

LXn =
1

n

n∑
i=1

δλi
,

where λ1 ≤ . . . ≤ λn are the eigenvalues of X. It is worth remarking that since X

is random then so is LXn as a distribution on the real line. One can thus consider its
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Concentration of the spectral distribution of random matrices

expected value, which is now a deterministic probability measure ELXn s.t. for every
Borel set A

ELXn (A) = E(LXn (A)) .

Studying the asymptotic properties of such distributions was first motivated by
questions that arose in various models of quantum physics (cf. [40, 14, 37]). Since then,
random matrix theory has evolved significantly, becoming an independent and influential
branch of mathematics (we refer to [4, 8, 32, 39] for a detailed exposition of the subject).
While the first results in this theory considered matrices with independent entries (up
to a symmetry condition), over the last 20 years more and more attention has been
directed towards investigation of matrices with dependencies between entries (see e.g.
[1, 13, 15, 28, 31, 42]).

This paper is organized in the following way. We begin with presenting the results in
Section 2. In Section 3 we show some applications, which cover Wigner-type theorems,
matrices with heavy tailed entries in the domain of attraction of the Gaussian distribution,
patterned and band matrices. Section 4 contains some facts from linear algebra and
concentration of measure theory that are used in Section 5 to prove the results.

2 Main results

In this paper we restrict our attention to matrices with the block dependency struc-
ture, i.e. matrices whose entries can be divided into (not necessarily rectangular) blocks
which form independent random vectors. The following definition makes this notion
precise.

Definition 2.1. A random matrix X of the size n×m satisfies the property S(d) whenever
there exists a partition Π = {P1, . . . , Pk} of the set {1, . . . , n} × {1, . . . ,m} such that the
vectors Yr = {Xij}(i,j)∈Pr

are stochastically independent and the size of each partition
set Pr does not exceed d, i.e. |Pr| ≤ d for all r = 1, . . . , k. We write shortly X ∈ S(d).

The starting point of our considerations is the main theorem of [23], stated below.

Theorem 2.2. Let Xn ∈ Msa
n be a sequence of random matrices such that Xn ∈ S(dn)

for every n with dn = o(log n). If the family {|(Xn)ij |2}1≤i,j≤n∈N is uniformly integrable,
then

∀ f ∈ CL(R)

∫
fdL

1√
n
Xn

n − E
∫
fdL

1√
n
Xn

n →P 0 ,

with CL(R) denoting the set of all real 1-Lipschitz functions on R and (Xn)ij denoting
the entries of the matrix Xn.

The proof is based on the concentration argument by Guionnet and Zeitouni [17] and
log-Sobolev inequalities for compactly supported measures convolved with the standard
Gaussian distribution derived by Kemp and Zimmerman.

The main result of this work may be seen as a stronger version of Theorem 2.2
where more dependency is allowed, i.e. dn = o(n2). Before stating it, let us clarify some
notation.

Definition 2.3. A sequence of probability measures µn converges weakly to some mea-
sure µ if

∫
f dµn →

∫
f dµ for all continuous bounded functions f .

A sequence of random probability measures µn converges weakly in probability to
a (possibly random) measure µ if d(µn, µ)→P 0 for some (equivalently for all) metric d
that metrizes the above notion of weak convergence.

We denote these facts by µn ⇒ µ and µn ⇒P µ respectively.
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Definition 2.4. A sequence of random matrices Xn ∈Mn has the property L, (Xn)n∈N ∈
L if it satisfies the following Lindeberg-type condition

∀ ε > 0 lim
M→∞

lim sup
n→∞

P

 1

n2

n∑
i,j=1

|(Xn)ij |21{|(Xn)ij |>M} > ε

 = 0 .

Remark 2.5. By Markov’s inequality, if the family {|(Xn)ij |2}1≤i,j≤n∈N is uniformly
integrable, then (Xn)n∈N ∈ L.

The main result of this work is the following theorem.

Theorem 2.6. Let Xn ∈ Msa
n be a sequence of random matrices such that Xn ∈ S(dn)

for every n with dn = o(n2). If (Xn)n∈N ∈ L, then for any metric d that metrizes weak
convergence of probability measures

d(L
1√
n
Xn

n ,EL
1√
n
Xn

n )→P 0 .

In particular, if EL
1√
n
Xn

n ⇒ µ, then L
1√
n
Xn

n ⇒P µ.

The following observations show connection between Theorems 2.2 and 2.6.

Proposition 2.7. If (Xn)n∈N ∈ L, then the sequence EL
1√
n
Xn

n is tight.

Proposition 2.8. If the sequence EL
1√
n
Xn

n is tight, then the following conditions are
equivalent:

i) d(L
1√
n
Xn

n ,EL
1√
n
Xn

n ) →P 0 for any metric d that metrizes weak convergence of
probability measures,

ii)
∫
fdL

1√
n
Xn

n − E
∫
fdL

1√
n
Xn

n →P 0 for all f ∈ Cb(R),

iii)
∫
fdL

1√
n
Xn

n − E
∫
fdL

1√
n
Xn

n →P 0 for all f ∈ Cc(R) ∩ CL(R),

where Cb(R) (resp. Cc(R)) denotes the set of all bounded (resp. compactly supported)
real continuous functions on R.

If additionally the family {|(Xn)ij |2}1≤i,j≤n∈N is uniformly integrable, then all the
above conditions become equivalent to

iv)
∫
fdL

1√
n
Xn

n − E
∫
fdL

1√
n
Xn

n →P 0 for all f ∈ CL(R).

Combining the above observations and Remark 2.5 asserts that Theorem 2.6 strength-
ens Theorem 2.2.

Remark 2.9. The assumption dn = o(n2) in Theorem 2.6 is optimal for the convergence
in probability. To see that, consider two random matrix ensembles Xn, Yn ∈Mn, whose
ESDs converge a.s. to distinct limits µ and ν. Set

Zn =

[
εXntn + (1− ε)Yntn 0

0 In(1−tn)

]
,

where Ik ∈ Mk is the identity matrix, ε is a Bernoulli random variable (P (ε = 1) =

P (ε = 0) = 1/2) independent of all Xn and Yn and tn ∈ (0, 1) is a sequence converging
to some t ∈ (0, 1), s.t. ntn and n(1 − tn) are integers for every n. One can see that
Zn ∈ S(dn) with dn = (tnn)2. On the other hand LZn

n ⇒ t(εµ + (1 − ε)ν) + (1 − t)δ1
a.s., whence d(LZn

n ,ELZn
n ) cannot converge in probability to zero for any metric d that

metrizes weak convergence of probability measures.
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Using the standard hermitization technique one can extend the result of Theorem 2.6
onto the convergence of the distribution of singular values of not necessarily Hermitian
ensembles.

Theorem 2.10. Let Xn be a sequence of n × N random matrices (with N = N(n))
such that Xn ∈ S(dn) for every n with dn = o(n2) and set Yn =

√
XnX∗n. Assume

n/N → c ∈ (0,∞). If the family {Xn}n∈N satisfies the Lindeberg-type condition

∀ ε > 0 lim
M→∞

lim sup
n→∞

P

 1

nN

n∑
i=1

N∑
j=1

|(Xn)ij |21{|(Xn)ij |2>M} > ε

 = 0 ,

then for any metric d that metrizes weak convergence of probability measures

d(L
1√
n
Yn

n ,EL
1√
n
Yn

n )→P 0 .

Finally, we deduce Theorem 2.6 from another, more general result, stated below.

Definition 2.11. A sequence of random matrices Xn ∈ Mn has the property L(an),
(Xn)n∈N ∈ L(an), for some sequence an →∞ if it satisfies the following Lindeberg-type
condition

∀ ε > 0 lim sup
n→∞

P

 1

n2

n∑
i,j=1

|(Xn)ij |21{|(Xn)ij |>εan} > ε

 = 0 .

Theorem 2.12. Let Xn ∈Msa
n be a sequence of random matrices such that Xn ∈ S(dn)

for every n with dn = O(n2/a2
n) for some sequence an →∞. If (Xn)n∈N ∈ L(an), then

∀ f ∈ Cc(R) ∩ CL(R)

∫
fdL

1√
n
Xn

n − E
∫
fdL

1√
n
Xn

n →P 0 .

3 Consequences and examples

3.1 Wigner-type theorems

One of the most classical results in the theory of asymptotic behaviour of the spectrum
of random matrices dates back to [40]. It states that if (Xn) is a sequence of real
Hermitian random matrices with i.i.d. entries (up to the symmetry constraint) with zero

mean and variance equal to one, then L
1√
n
Xn

n converges almost surely to the semicircular
distribution σ, that is

P

(
L

1√
n
Xn

n ⇒ σ

)
= 1 ,

where

σ(x) =
1

2π

√
4− x21|x|≤2

is the Wigner semicircular distribution playing the analogous role in free probability as
the Gaussian distribution plays in classical probability.

Recently Schenker and Schultz-Baldes [35] proved a version of Wigner Theorem in
which one allows some degree of dependence between the entries of a matrix and the
price paid is the weaker notion of convergence obtained, i.e. convergence in expectation
instead of probability.

More precisely, let ∼n denote an equivalence relation on {1, 2, . . . , n}2 = [n]2 and let
Xn be a sequence of Hermitian random matrices s.t. random vectors made of entries
of Xn belonging to distinct equivalence classes are independent (and the dependence
between elements of the same class can be arbitrary). We impose the following conditions
on Xn and ∼n:
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(C0) sup{E |(Xn)ij |k : 1 ≤ i, j ≤ n ∈ N } <∞ for all k ∈ N,

(C1) maxi∈[n] #{ (j, i′, j′) ∈ [n]3 : (i, j) ∼n (i′, j′) } = o(n2),

(C2) max(i,j,i′)∈[n]3 #{ j′ ∈ [n] : (i, j) ∼n (i′, j′) } ≤ B for some B > 0 and all n ∈ N,

(C3) #{ (i, j, i′) ∈ [n]3 : (i, j) ∼n (j, i′), i′ 6= i } = o(n2).

The main theorem of [35] can be stated as follows.

Theorem 3.1. If a sequence (Xn,∼n)n∈N satisfies conditions (C0)–(C3), then

EL
1√
n
Xn

n ⇒ σ .

The above result was highly motivated by applications, in particular by the analysis
of the Anderson model. The standard Anderson model is given by the following random
Hamiltonian acting on the space `2(Zd):

Hψ(x) =
∑
|y−x|=1

ψ(y) + V (x)ψ(x) ,

where {V (x)}x∈Zd is a family of standard Gaussian i.i.d. random variables. In [33],
it was shown that the above model at small disorder can be analyzed by dividing the
space into small cubes Λ. If VΛ is the restriction of H to one such cube Λ, then it can
be effectively approximated by a finite random matrix whose coefficients are centered
complex Gaussian random variables with a given dependency structure (see [9, 35] for
more details). Finding the limiting spectral distribution of such matrices for d = 2 was
solved in [10]. The case d ≥ 3 was dealt with in [35], where the authors showed that
VΛ falls into the regime of Theorem 3.1 and thus the limiting distribution of VΛ under
appropriate normalization is semicircular.

Note that the condition dn = o(n2) from Theorem 2.6 can be written in the above
language as

max
(i,j)∈[n]2

#{ (i′, j′) ∈ [n]2 : (i, j) ∼n (i′, j′) } = o(n2) ,

which is clearly implied by (C1). Moreover, (C0) implies uniform integrability of
{|(Xn)ij |2}1≤i,j≤n∈N, which by Remark 2.5 implies that (Xn)n∈N ∈ L. Theorem 2.6
gives therefore the following strengthening of Theorem 3.1.

Corollary 3.2. If a sequence (Xn,∼n)n∈N satisfies conditions (C0)–(C3), then

L
1√
n
Xn

n ⇒P σ .

The above may be seen as a special case of application of Theorem 2.6, which
in general allows (whenever the assumptions are met) to strengthen convergence in
expectation to convergence in probability. The very same scheme may be applied to
strengthen Theorem 5.1 from [20] where the authors develop further the method of
Schenker and Schultz to deal with matrices of the form

A =

[
0 X

X∗ 0

]
for X ∈ Cs×t ,

where the limiting measure is the Marchenko-Pastur distribution.
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3.2 Matrices with heavy tailed entries

Let us recall that a mean zero random variable x is in the domain of attraction of the
Gaussian distribution if there exists a sequence bn s.t.

Law

(∑n
i=1 xi
bn

)
⇒ N (0, 1) ,

where xi’s are i.i.d. copies of x. It can be shown that this is the case if and only if the
function

l(t) = Ex21{|x|≤t}

is slowly varying at infinity (see e.g. [6, 21]).
Assume that x has infinite variance, define

b = inf{ t > 0 : l(t) > 0 } , bn = inf{ t > b+ 1 : nl(t) ≤ t2 } (3.1)

and consider a matrix Xn ∈ Msa
n , whose entries are i.i.d. copies of x. It was shown in

[42] (see also [2]) that LXn/bn
n ⇒ σ almost surely. The results of this paper allow us to

prove the convergence in probability in case of dependent entries, yielding the following
proposition.

Proposition 3.3. Let Xn ∈Msa
n be a sequence of random matrices satisfying Xn ∈ S(dn)

with dn = O(n), whose entries have the same distribution as a random variable x with
zero mean, infinite variance and in the domain of attraction of the Gaussian distribution.
Then for any metric d that metrizes weak convergence of probability measures

d(LXn/bn
n ,ELXn/bn

n )→P 0 .

The proof is moved to the last section. In the above we can observe a drop in the size
dn of the blocks compared to Theorem 2.6. It is not straightforward to see if this result
can be improved.

3.3 Patterned matrices

Many ensembles of random matrices considered in the literature can be seen as
special cases of the so-called patterned matrices. Following [12], let us consider a
family of functions G = { In : {1, . . . , n}2 → Zd }n∈N, which we will call a link family.
A patterned matrix Xn is a matrix of the form (Xn)ji = (Xn)ij = [ZIn(i,j)] for i ≤ j where
Z = {Zz}z∈Zd is a family of independent random variables (note that by construction
we demand that Xn ∈ Msa

n , which gives some constrains on G and Z). We say that
the sequence Xn is associated with the link family G. Theorems 2.6 and 2.10 yield the
following corollary.

Corollary 3.4. If a sequence {Xn}n∈N associated with G belongs to the class L,
(Xn)n∈N ∈ L, and

∣∣I−1
n (z)

∣∣ = o(n2) for every z ∈ Zd, then for any metric d that metrizes
weak convergence of probability measures

d(L
1√
n
Xn

n ,EL
1√
n
Xn

n )→P 0 .

Setting In(i, j) = (min(i, j),max(i, j)) restores the generic Wigner ensemble.
Setting In(i, j) = |i− j| or In(i, j) = i + j with Z being an i.i.d. family results in

Toeplitz (Tn) and Hankel (Hn) ensembles respectively, considered firstly in the influential
paper [7]. The problem of the convergence of their ESDs was solved in [15], where
the authors prove almost sure convergence of Tn/

√
n and Hn/

√
n to some deterministic

distributions that do not depend on the law of Z0 and have unbounded support.

ECP 24 (2019), paper 78.
Page 6/15

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP277
http://www.imstat.org/ecp/


Concentration of the spectral distribution of random matrices

Setting In(i, j) = i + j (mod n) or In(i, j) = n/2 − |n/2− |i− j|| results in reversed
circulant and symmetric circulant ensembles respectively. These ensembles (and more
general G-circulants) were extensively studied (cf. [3, 12, 28, 29]).

It can be easily seen that, under some mild assumptions on the family Z, all these
ensembles satisfy hypothesis of Corollary 3.4. Moreover, whenever all elements of
Z are with zero mean, infinite variance and in the domain of attraction of the Gaus-
sian distribution, then all these ensembles satisfy assumptions of Proposition 3.3 as
well.

Additionally, Theorem 2.6 allows us to simplify the proofs from [3] and [29] where the
authors strengthen convergence in expectation to convergence in probability (cf. [29,
Proof of Theorem 4.1] and [3, Proof of Theorem 1.5]).

3.4 Band and block matrices with correlation structure

A classical band matrix ensemble consists of matrices whose entries are independent
and equal zero at far distance from the diagonal. It is known (cf. [5]) that if one
assumes some regularity of the distribution of the entries, then the ESD of such matrices
converges almost surely to the semicircular measure.

There are few papers however covering the behavior of the ESD of band matrices
with dependent entries. Some of the best known results can be found in [36] and [34].
The former work deals with a wider class of block matrices. Such ensembles arise
naturally in applications, e.g. in wireless communication theory in the Multiple-Input
Multiple-Output (MIMO) systems with Intersymbolic Interference (ISI). The capacity of
such system with n transmit antennas and m receive antennas can be described in terms
of the ESD of the matrix GG∗, where G is a band random matrix consisting of the finite
number of matrices (Al) of the size n×m. The elements of Al are independent and the
correlation structure between Ai and Aj is given (for a more precise formulation we
refer to [24, Chapter 2]). In [34], the authors have proved (in the Gaussian case), that the
ESD of (appropriately normalized) GG∗ converges almost surely, as n,m tend to infinity,
to some deterministic probability measure described in terms of its Cauchy transform.
Using Theorem 2.10, one immediately deduces that the empirical spectral measure is
concentrated around its expectation, which in combination with their analysis of the
expected spectral measure gives a weaker property of weak convergence in probability.
However, as can be easily seen from the proof of Theorem 2.12, in this case our argument
gives in fact almost sure convergence, since the size of independent blocks remains
bounded.

4 Auxiliary lemmas, facts and definitions

We start with recalling some definitions and important results.

Definition 4.1. We say that a random vector X satisfies the (subgaussian) concentration
property with positive constants C and c with respect to the family F if

P (|f(X)−Mf(X)| > t) ≤ Ce−t
2/c (4.1)

for all t ≥ 0 and for every every f ∈ F , with Mf(X) denoting some (any) median of f(X).

Remark 4.2. A standard observation is that in (4.1) one can replace the median by
the mean (at the cost of enlarging of c by some multiplicative factor c̃ depending only
on C).
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Recall that CL(R) denotes the set of all 1-Lipschitz functions on R. Substituting in
the above F = CL(R) restores the definition of the classical subgaussian concentration
property, to which we refer simply as CP (C, c) and substituting

F = { f ∈ CL(R) : f is convex }

restores the weaker notion of the convex concentration property (as stated in e.g. [30]),
to which we refer as CCP (C, c).

Some convex concentration results concerning the spectral distribution of random
matrices were firstly discovered by Guionnet and Zeitouni (cf. [17]). The proofs are
mostly based on the famous theorem due to Talagrand (cf. [38, 25]), whose corollary we
state below.

Theorem 4.3 ([27, Corollary 4]). Let V be the direct sum of normed vector spaces

(Vi, ‖·‖i)1≤i≤N , equipped with the norm ‖(v1, . . . , vN )‖ =
√∑

‖vi‖2i and Xi be random

variables taking values in Vi s.t. ess sup ‖Xi‖i ≤ ρ. Then the V -valued random vector
(X1, . . . , XN ) satisfies CCP(4, 16ρ2).

The following is the so-called Hoffman–Wielandt lemma and its immediate corollary.

Lemma 4.4 ([19, Theorem 1]). Let A,B ∈ Msa
n with eigenvalues λA1 ≤ . . . ≤ λAn and

λB1 ≤ . . . ≤ λBn respectively. Then

n∑
i=1

∣∣λAi − λBi ∣∣2 ≤ ‖A−B‖2HS .
Corollary 4.5. For every f ∈ CL(R) the map Msa

n (C) 3 X →
∫
f dL

1√
n
X

n is 1
n -Lipschitz

with respect to the Hilbert–Schmidt norm.

We also need the following classical observation (sometimes called Klein’s lemma).
For a proof we refer to [17, Lemma 1.2] or [26, Theorem 9.G.1].

Lemma 4.6. If f is a real valued convex function on R, then the mapping Msa
n (C) 3

X →
∫
fdLXn is convex.

As a consequence of the above observations, we obtain that whenever the entries
of a random matrix X ∈ Msa

n are compactly supported, then Xn satisfies convex
concentration property (w.r.t. the Hilbert–Schmidt norm) which allows to estimate∫
f dLn−E

∫
f dLn for large n. This fact plays a crucial role in the proof of Theorem 2.12.

A similar argument was used to prove convex concentration in [18] (cf. the proof of The-
orem 6 therein). For other results concerning convex concentration of random matrices
see e.g. [27, 16].

Finally, the following facts are important for the proof of Proposition 3.3.

Lemma 4.7 ([8, Theorem A.43]). Let X and Y be two n× n Hermitian matrices. Then

∥∥LAn − LBn ∥∥ ≤ 1

n
rank(A−B) ,

where ‖·‖ denotes the Kolomogorov distance between probability measures.

Lemma 4.8 ([41, Proof of Theorem 3.32]). Let X ∈Msa
n with rows x1, . . . , xn and eigen-

values λ1, . . . , λn. Then for every 0 < r ≤ 2

n∑
i=1

|λi|r ≤
n∑
i=1

‖xi‖r2 .
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5 Proofs

Proofs of Propositions 2.7 and 2.8

In what follows, we keep the notation Ln = L
1√
n
Xn

n .

Proof of Proposition 2.7. Fix ε > 0, let C = [−K,K]c for some K > 0 and set

An =
{ 1

n2

n∑
i,j=1

|(Xn)ij |21{|(Xn)ij |2>M} < 1
}
.

Then

ELn(C) = ELn(C)1Ac
n

+ ELn(C)1An

≤ P (Acn) + E

∫
x2 dLn
K2

1An
≤ P (Acn) +

M + 1

K2
,

where the first inequality is an application of Markov’s inequality and the second uses
the fact that

∫
x2 dLn = 1

n2 ‖Xn‖2HS . Since Xn ∈ L, choosing appropriate M asserts that
P (Acn) < ε/2 for n large enough. Taking then K large enough yields ELn(C) < ε for
every n and the result follows.

Proof of Proposition 2.8. Recall that a sequence of random elements with values in a
metric space converges in probability to some random element if and only if from each
of its subsequences one can choose a further subsequence that converges almost surely
to that element. Moreover, by Prokhorov’s theorem, a family of measures on a Polish
space is tight if and only if it is sequentially weakly compact (cf. [22, Lemma 3.2 and
Proposition 4.21]).

i) ⇒ ii). Take any sequence N ⊂ N. We will find a further subsequence along
which

∫
f dLn − E

∫
f dLn converges a.s. to zero for any f ∈ Cb(R). By tightness, there

exist N ′ ⊂ N and a probability measure µ s.t. ELn ⇒ µ along N ′. By the triangle
inequality, d(Ln, µ)→P 0 along N ′ and thus there exists a further subsequence N ′′ ⊂ N ′
s.t. d(Ln, µ)→ 0 a.s. along N ′′, which yields the result.

Implication ii)⇒ iii) is trivial.
iii)⇒ i). Consider the metric d on the set of all probability measures on R given by

d(µ, ν) =
∑
k∈N

2−k
∣∣∣∣∫ fk dµ−

∫
fk dν

∣∣∣∣ ,
where {fk}k∈N ⊂ Cc(R) is some dense subset of the unit ball (in the sup norm) of Cc(R).
It is easy to see that d metrizes weak convergence of probability measures. We have

P (d(Ln,ELn) > ε) ≤ P

(
N∑
k=1

2−k
∣∣∣∣∫ fk dLn − E

∫
fk dLn

∣∣∣∣ > ε

2

)

≤
N∑
k=1

P

(∣∣∣∣∫ fk dLn − E
∫
fk dLn

∣∣∣∣ > 2k−1ε

N

)
,

for some N large enough, depending only on ε. Now, for every k there is some compactly
supported Lipschitz function gk s.t. ‖fk − gk‖∞ < 2k−1ε

3N . Application of the triangle
inequality yields i).

To prove the second part of Proposition 2.8, assume firstly conditions i) − iii), fix
t, ε > 0 and consider some f ∈ CL. Let fr be continuous, equal f on the interval [−r, r]
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and constant beyond it. Since fr ∈ Cb(R), then by assumption
∫
fr dLn−E

∫
fr dLn →P 0.

We have

E

∫
|f − fr| dLn ≤ E

∫
|x|1{|x|>r} dLn ≤

1

r
E

∫
|x|2 dLn =

1

r
E

1

n2
‖Xn‖2HS ≤ δ

for any δ for r large enough by the uniform integrability of {|(Xn)ij |2}1≤i,j≤n∈N. Take
now δ ≤ min( t3 ,

tε
6 ) and choose r such that the above estimate holds. Applying the

triangle and Markov inequalities yields

P

(∣∣∣∣∫ f dLn − E
∫
f dLn

∣∣∣∣ > t

)
≤ P

(∣∣∣∣∫ f dLn −
∫
fr dLn

∣∣∣∣ > t

3

)
+ P

(∣∣∣∣∫ fr dLn − E
∫
fr dLn

∣∣∣∣ > t

3

)
≤ ε

for n large enough.
The proof in the opposite direction is immediate.

Proofs of Theorems 2.6, 2.10 and 2.12

We start with proving Theorem 2.12. The argument is highly motivated by the work
of Guionnet and Zeitouni [17, Theorem 1.3]. The conclusions of Theorem 2.6 and 2.10
follow then easily.

Proof of Theorem 2.12. Denote Ln = L
Xn/
√
n

n and let f ∈ Cc(R)∩CL(R) be supported in
the interval [−M,M ] (recall that CL∩Cc is the set of 1-Lipschitz and compactly supported
functions). By Proposition 2.8, it is enough to show that for every δ, t > 0 and n large
enough

P

(∣∣∣∣∫ f dLn − E
∫
f dLn

∣∣∣∣ > t

)
< δ .

Let δ and t be fixed from now on. Take some ε > 0 (to be fixed later), set

(Xε
n)ij = (Xn)ij1{|(Xn)ij |≤εan}

and denote Lεn = L
Xε

n/
√
n

n . Firstly, we show that there exists ε s.t.

P

(∣∣∣∣∫ f dLεn − E
∫
f dLεn

∣∣∣∣ > t

3

)
<
δ

2

for n large enough and then that Lεn and Ln do not differ much.
Let Πn = {Pn1 , . . . , Pnk } be the partition of Xn into independent blocks and Y εr,n be the

random vector given by the entries {(Xε
n)ij}(i,j)∈Pn

r
. Since Y ε1,n, . . . , Y

ε
k,n are stochastically

independent and

ess sup
∥∥Y εr,n∥∥2

≤
√ ∑

(i,j)∈Pn
r

(ess sup |(Xε
n)ij |)2 ≤

√
dnεan ,

then Theorem 4.3 implies that Xε
n satisfies CCP(4, 16dnε

2a2
n).

The aim now is to approximate f with a finite combination of convex functions, which
will allow us to exploit CCP of Xε

n. To that end, let ∆ be small enough (to be fixed later)
and (following [17]) set

g(x) =


0 for x ≤ 0,

x for 0 ≤ x ≤ ∆,

∆ otherwise.
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Note that g is a difference of two convex functions. Define recursively g0 ≡ 0,

gn+1(x) =

{
gn(x) + g(x+M − n∆) if f(−M + (n+ 1)∆) ≥ gn(−M + n∆),

gn(x)− g(x+M − n∆) otherwise

and set f∆ = gd2M/∆e. Observe that ‖f − f∆‖∞ ≤ ∆ and f∆ can be decomposed into a
sum of at most 2d2M/∆e =: κ different convex and concave 1-Lipschitz functions {hl}.
Set ∆ < t/6. Exploiting Corollary 4.5, Lemma 4.6 and CCP of Xε

n (replacing median by
mean – cf. Remark 4.2) results in

P

(∣∣∣∣∫ f dLεn − E
∫
f dLεn

∣∣∣∣ > t

3

)
≤ P

(∣∣∣∣∫ f∆ dLεn − E
∫
f∆ dLεn

∣∣∣∣ > t− 6∆

3

)
≤ κ sup

l
P

(∣∣∣∣∫ hl dL
ε
n − E

∫
hl dL

ε
n

∣∣∣∣ > t− 6∆

3κ

)
≤ 4κ exp

(
− (t− 6∆)2

144c̃κ2

n2

dna2
nε

2

)
,

where c̃ is some universal constant (cf. Remark 4.2). Fix ε s.t. for all n the above quantity
is smaller than δ

2 – it is possible to do so since dn = O(n2/an) implies that n2/(dnan) is
bounded away from zero.

By Corollary 4.5 and since (Xn)n∈N ∈ L(an),

P

(∣∣∣∣∫ f dLn −
∫
f dLεn

∣∣∣∣ > t

3

)
≤ P

(
‖Xn −Xε

n‖HS >
tn

3

)

= P

 1

n2

n∑
i,j=1

|(Xn)ij |21{|(Xn)ij |>εan} >
t2

9

 ≤ δ

2

for n large enough. Moreover, since the last quantity actually converges to zero with n
(for any ε and t), we have

∫
f dLn −

∫
f dLεn →P 0, whence boundedness of f implies that

E
∣∣∫ f dLn − ∫ f dLεn∣∣ ≤ t/3 for n large enough.

For n such that all the above estimates hold, the triangle inequality yields

P

(∣∣∣∣∫ f dLn − E
∫
f dLn

∣∣∣∣ > t

)
≤ P

(∣∣∣∣∫ f dLn −
∫
f dLεn

∣∣∣∣ > t

3

)
+ P

(∣∣∣∣∫ f dLεn − E
∫
f dLεn

∣∣∣∣ > t

3

)
≤ δ .

Since f was chosen arbitrarily from Cc ∩ CL, Proposition 2.8 yields the proof.

Proof of Theorem 2.6. It can be easily checked that (Xn)n∈N ∈ L implies (Xn)n∈N ∈
L(an) for any sequence an →∞. Taking a2

n = n2/dn we have trivially an →∞ and dn =

O(n2/a2
n), whenceXn satisfies the assumptions of Theorem 2.12. Finally, Propositions 2.7

and 2.8 allow us to conclude the proof.

Proof of Theorem 2.10. The proof boils down to the use of the so-called hermitization
technique. Consider the matrix

An =

[
0 Xn

X∗n 0

]
.

Clearly, the ESD of Yn can be inferred from the ESD of An. Moreover, An meets the
assumptions of Theorem 2.6, which yields the result.
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Proof of Proposition 3.3

To prove Proposition 3.3, we need the following auxiliary fact.

Remark 5.1. If x is in the domain of attraction of the Gaussian distribution, bn’s are
defined as in (3.1) and l(t) = E |x|2 1{|x|≤t}, then

lim
n→∞

nl(bn)

b2n
= 1 , P (|x| > t) = o(l(t)/t2) and E |x|1{|x|>t} = o(l(t)/t) .

The first equality follows easily from the definitions of bn and l, while to prove the
remaining equalities one has to make use of the fact that l is slowly varying – see [2,
Proof of Corollary 2.10].

In what follows, set (X̃n)ij = (Xn)ij1{|(Xn)ij |≤bn}.

Lemma 5.2. If (Xn) satisfies the assumptions of Proposition 3.3, then ELXn/bn
n is tight.

Proof of Lemma 5.2. Using Lemma 4.8 with r = 1 and denoting rows of Xn by (Xn)i, we
arrive at

E

∫
|x| dLXn/bn

n ≤ 1

nbn
E

 ∑
1≤i≤n

∥∥∥(X̃n)i

∥∥∥
2

+
∥∥∥(Xn)i − (X̃n)i

∥∥∥
2

 .
Applying arithmetic vs quadratic mean and Jensen’s inequalities together with the first
item of Remark 5.1 yield

1

nbn
E
∑

1≤i≤n

∥∥∥(X̃n)i

∥∥∥
2
≤ 1√

nbn
E

∥∥∥X̃n

∥∥∥
HS
≤ 1√

nbn

√
E
∑
ij

∣∣∣(X̃n)ij

∣∣∣2 ≤ √nl(bn)

bn
= O(1) ,

whereas the norm inequality ‖·‖2 ≤ ‖·‖1 and Remark 5.1 give

1

nbn
E
∑

1≤i≤n

∥∥∥(Xn)i − (X̃n)i

∥∥∥
2
≤ 1

nbn
E
∑

1≤i≤n

∥∥∥(Xn)i − (X̃n)i

∥∥∥
1

=
n

bn
E |x|1{|x|>bn} = o(1) .

The above estimates provide a uniform upper bound on the first moment of ELXn/bn
n ,

whence the conclusion follows.

Proof of Proposition 3.3. Denote by Ln and L̃n the ESDs of b−1
n Xn and b−1

n X̃n respec-
tively. Recall that Kolomogorov’s metric defined as the sup distance between cumulative
distribution functions dominates Lévy–Prokhorov’s metric defined as

π(µ, ν) = inf{ ε > 0: ∀ t ∈ R Fν(t− ε)− ε ≤ Fµ(t) ≤ Fν(t+ ε) + ε } ,

where Fσ denotes the c.d.f. of a measure σ. Note that the latter metrizes weak conver-
gence of probability measures (cf. [11, Theorem 6.8]). By Lemma 4.7 and the second
item of Remark 5.1

Eπ(Ln, L̃n) ≤ E
∥∥∥Ln − L̃n∥∥∥ ≤ E 1

n
rank(Xn − X̃n) ≤ E 1

n

∑
1≤i,j≤n

1{|(Xn)ij |>bn}

= nP (|x| > bn) = o(1)

and thus we reduced the problem to proving the convergence of L̃n. We achieve this goal
by showing that

√
n
bn
X̃n falls into the regime of Theorem 2.12. Take an =

√
n. Applying
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Markov’s inequality gives

P

 1

n2

n∑
i,j=1

|
√
n

bn
(X̃n)ij |21{

√
n

bn
|(X̃n)ij |>εan}

> ε


= P

 1

n2

n∑
i,j=1

|(Xn)ij |21{bn≥|(Xn)ij |>εbn} >
εb2n
n


≤ nl(bn)

εb2n
· l(bn)− l(εbn)

l(bn)
= o(1)

by the first item of Remark 5.1 and the fact that l is slowly varying. Whence (
√
n
bn
X̃n)n∈N ∈

L(
√
n). It remains to apply Theorem 2.12, Lemma 5.2 and Proposition 2.8.

Remark 5.3. As mentioned previously, Proposition 3.3 provides smaller dn compared
to Theorem 2.12. It seems this cannot be improved via the above reasoning. Indeed,
since dn = O(n2/an), obtaining dn of greater order than O(n) by the means of the above
argument would require an estimate of the form

l(bn)− l(εbn an√n )

l(bn)
= o(1) for an = o(

√
n) ,

which does not need to hold since l can by any slowly varying function. It is unclear to
us what is the optimal order of dn in this case.
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