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Some conditional limiting theorems for symmetric Markov
processes with tightness property
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Abstract

Let X be an pu-symmetric irreducible Markov process on I with strong Feller property.
In addition, we assume that X possesses a tightness property. In this paper, we
prove some conditional limiting theorems for the process X. The emphasis is on
conditional ergodic theorem. These results are also discussed in the framework of
one-dimensional diffusions.
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1 Introduction

Let X = (Q, X;,P,,T) be an pu-symmetric irreducible Markov process on a locally
compact separable metric space I, where p is a positive Radon measure with full support
and T is the lifetime. We denote by B(I) the Borel o-field. Adjoining an extra point J to
the measurable set (I, B(I)). Set Iy = TU{90} and B(Iy) = B(I)U{AU{0} : A€ B(I)}. As
usual, we denote by P, the law of the process starting from = and by P, the law of the
process starting from a distribution 7. The corresponding expectations are respectively
denoted by E, and IE,. We assume that the process X is a right Markov process on [
with a finite lifetime T := inf{¢t > 0: X, = 0}, i.e,, forallz € I,

Py(T < o0)=1.

For such a process, one of the fundamental problems is to study its long-term asymptotic
behavior conditional on {T > t}. A closely related topics is quasi-ergodic distribution
(see, e.g., [1]), i.e., a probability distribution m on I satisfying that for any « € I and
A e B(I),
1 t
lim E, (t/ 14(X)ds|T > t> =m(A),
0

t—o0

where 14 denotes the indicator function of the set A.
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Some conditional limiting theorems for symmetric Markov processes

The quasi-ergodic distribution is substantially different from the following quasi-
limiting distribution p, (see, e.g., [1, 6, 9, 10, 19]), i.e., there exists a probability measure
7 on I such that for all A € B(I),

tl_i)m IPTF(Xt S A‘T > t) = ,00(14)

Note that, if pg is a quasi-limiting distribution, then pg is a quasi-stationary distribution
(see, e.g., [12]), i.e., a probability distribution v on [ satisfying that for all ¢ > 0 and
A e B(I),

P,(X: € AIT >t) =v(A).

When T = oo, under some suitable conditions, it is well-known that m coincides with
po. When T' < o0, it’s a little surprising that they have this difference. This difference is
worth further study. This paper is a continuation of studying quasi-ergodic distributions
for symmetric Markov processes. Our aim of this work is to study the existence of a
quasi-ergodic distribution and prove some mixing properties for the symmetric Markov
processes.

Recently, the study of quasi-ergodic distributions has received more and more at-
tention. When the absorbing boundary is fixed, the study on quasi-ergodic distribution
in a very general framework can be found in [1, 4, 5, 6, 7, 10, 19]. In these works,
some works need to assume that the process is A-positive (see, e.g., [1, 6, 7]). Most of
these works assume that the reference measure is a finite measure. If the reference
measure is an infinite measure, it is more difficult to prove that the A-invariant measure
is a finite measure, which is the basis for the existence of quasi-stationary distributions
and quasi-ergodic distributions. In the present paper, we will consider this case. To
be exact, our main results are true whether the reference measure is finite or infinite.
When the absorbing boundary is moving, the quasi-stationarity and quasi-ergodicity of
discrete-time Markov chains were also studied by Ocafrain [14].

In this work, under suitable assumptions, we prove some mixing properties and
provide a conditional ergodic theorem for the symmetric Markov processes. These results
can give some interpretation of ‘quasi-stationarity’ of the quasi-ergodic distribution m.
These results also exhibit a phase transition due to the limiting distribution changes from
0 < p < 1top=1. Finally, we are committed to studying these results in the framework
of one-dimensional diffusions absorbed at 0.

The content of this paper is organized as follows. In Section 2, we present some
preliminaries that will be needed in the sequel. Our main results and their proofs are
presented in Section 3. In Section 4, we study the case of one-dimensional diffusions
taking values in [0, c0), where 0 is an absorbing regular boundary and +oc is an entrance
boundary.

2 Preliminaries

Before we state the main results of this paper, let us present some preliminaries. We
define the semigroup and the resolvent by

Pf(2) = Bo(f(X0)t <T),  Raf(x) = / et ()t

for all f € By(I), where B,(I) denotes the space of bounded Borel functions on I.
Denote by r(t, z,y) the transition density function of the process X. We assume that the
process X is symmetric with respect to the reference measure y, i.e., for f,g € B,(1),
(P:f,9)n = (f, P.g), where the inner product

. g = / £ (w)g(u)(du).
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In this paper, we will use the following hypothesis (H).
Definition 2.1. We say that hypothesis (H) holds, if the following three conditions are
all satisfied:
(H1) (Irreducibility) If a Borel set A is P;-invariant, i.e., for any f € 12(I, ) N By (1)
andt >0, P,(1af)(xz) = 14P,f(z) p-a.e. then A satisfies either u(A) =0 or u(I'\ A) = 0.
(H2) (Strong Feller property) For each t, P,(By(I)) C Cy(I), where Cy(I) is the
space of bounded continuous functions on I.
(H3) (Tightness) For any ¢ > 0, there exists a compact set K such that
sup Ri1ke(z) <e,
xzel
where K¢ denotes the complement of the compact set K.
The hypothesis (H) implies that for any a > 0, there exists a compact set K such that

sup E, (e?™%°) < oo,
zel

where 7x. denotes the first exit time from K¢ (see [17]).
Let (£,D(€)) be the Dirichlet form on L.?(I, 1) generated by X:

1
— 2 - lim = _
D(S)—{uéE(I,u).}g%t(u Ptu,u>u<oo},
E(u,v) = }E}% ;(u — P, v),.

Let A be the bottom of spectrum of the infinitesimal operator of the process X, defined
by
A =inf{E(u,u) : u € D(E), ||ulls = 1},

where || - ||2 denotes the I.2-norm. Studying the existence of quasi-stationary distributions
and quasi-ergodic distributions, it needs the condition that A > 0. Under hypothesis (H),
from [15, Corollary 3.8], we know that A > 0 and for 0 < a < ), sup E,(e*T) < oc.

er

A function ¢o(x) on I is called a ground state of (£,D(E)), if ¢o(x) € D(E), ||Poll2 =1
and

E(¢o, ¢0) = nf{&(u, u) : u € D(E), |[ullz = 1}.

The results of this paper are based on the existence of ground states. On the existence
of the ground state of the Dirichlet form (£, D(£)), from [8, Lemma 6.4.5], we can get
the following important result.

Proposition 2.2. ([8, Lemma 6.4.5]) Assume that hypothesis (H) holds. Then, there
exists a ground state ¢ of (£, D(€)) uniquely up to sign and ¢, can be taken to be strictly
positive on 1.

Under the conditions that hypothesis (H) holds and ¢o € L!(Z, ) N L>°(1, i), Miura
proved that for all A € B(I),

tlim P,(X: € AT > t) =v(A), p-a.e.,
—00

where

o(dy) = Po(y)uldy) 2.1)

<¢)07 1>M
He has also proved that v is the unique quasi-stationary distribution of the process X
(see [13, Theorem 2.4]). Recently, however, Takeda obtained the following important
results.
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Proposition 2.3. ([16, Lemma 3.4]) Assume that hypothesis (H) holds. Then, the ground
state ¢g € L1 (I, ).

Proposition 2.4. ([17, Theorem 5.4]) Assume that hypothesis (H) holds. Then, the
ground state ¢y has a bounded continuous version.

From the above results, we can see that, under hypothesis (H), ¢g € ! (I, u)NL>(I, ).
Only under hypothesis (H), Takeda also showed that v is the unique quasi-stationary
distribution of the process X (see [16, Theorem 3.1]). Inspired by [13] and [16], in this
paper, we study quasi-ergodic distributions for the process X, which is substantially
different from the above limit distribution.

3 Main results

We will present our main results and their proofs in this section. Note that, our
main results are true whether the reference measure is finite or infinite. The following
theorem is one of our main results. Under the assumptions that the reference measure
is a finite measure and the semigroup { P, };>o is ultracontractive, that is, for any ¢ > 0,
there exists a constant ¢; > 0 such that

r(t,x,y) <c¢ <oo forx, yel,

such a form of theorem has been given in [19, Theorem 3.2]. Compared with [19], we
don’t need harsh constraints and our approach only uses elementary probability tools
and can be easily applied to many other settings.

Theorem 3.1. Assume that hypothesis (H) holds. Then, for any bounded and measurable
functions f,gon I and 0 < p < ¢ < 1, we have

(1) Jim By f(Xp)g(X)|T > ] = [} f(y)m(dy) [; 9(y)v(dy), p-a.e.,
(i) Yim By [f(Xp)g(Xo)|IT > ] = [} f(y)m(dy) [; 9(y)m(dy), p-a.e.,
(iii) lim B, ( Jo F(X)ds|T > t) = [; fy)m(dy), p-a.e.

where

m(dy) = ¢5(y)(dy)

and v is as in (2.1).

Proof. (i) Our results depend on the existence of the ground state ¢y. Thanks to Proposi-
tion 2.2, we know that the ground state ¢q of the Dirichlet form (£, D(£)) exists. Thus, we
have [; ¢3(y)u(dy) = 1. Then, m is a probability measure on I. Besides, from Proposition
2.3 and Proposition 2.4, we know that the ground state ¢g € L' (I, u) N IL>°(I, ).

Next, we first assume that f and g are nonnegative and bounded. According to [13]
and [16], we have

At

gg;;m = /Ig(y)%(y)u(dy% pi-a.e. (3.1)

For fixed u, we set

hy(x) = inf{e* Pog(z)/do(z) : r > u}.
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For each u, when (1 — p)t > u, by the Markov property, we obtain
Eq [f (Xpe)g(Xe), T > ]
P.(T > t)
By [f(Xpt)Lrspry - AP By, (9(Xa-p)Lir>0-nty)]

Eo[f(Xp)g(X)[T > 1] =

MNP, (T > 1)
e)\ptEa: [f(Xpt>]—{T>pt} . ek(l_p)tp(lfp)t (g(Xpt))]
eMP (T > t)
e)\ptEw [f(Xpt)hu(Xpt)¢0 (Xpt)l{T>pt}]
eMP,(T > t)

e Pyt (fhudo)(2)
CAtPt 1 (.17)

Y

For all r > u, by the definition of h,(z), we get

|f(@)hu(@)po(2)| < | f(2)eX Prg(z)] < e[| flloolglloo-

Therefore, the function fh, ¢ is bounded and measurable. Thus, by (3.1), we obtain
.. . eAptht(fhu(bO)(m)
liminf By [f(Xpe)g(Xo)|T > 1] 2 lim —— Pi(x)
Ji F(W)hu(y)m(dy)
<¢07 ]->,u

From the definition of h,(z), we can see that

ho(z) 1 (o, 1>H/g(y)u(dy), as u — 0o.

I

Then, letting u — oo, by the monotone convergence theorem, we obtain

im0 B [ (X,)0 (5T > 0> [ f@midy) - [ awvian). (3.2)

Conversely, since f and g are bounded, we can repeat the argument, replacing
f(Xpt)g(X:) by

(Iflloe = F(Xpe))([lglloo + 9(X2)) and ([ fllec + f(Xpt))([glloc — 9(X2)),
which gives
2/lflloolglloe — lim sup Eq (2 (Xpe)g (X0)| T > £]

tim inf B, ([ £l — (X)) (]l + 9(X0))IT > 1]
+ liminf By (1o + F(Xp0)) (o — 9(X)IT > 1

v

> A llgll =2 [ fmias) - [ atw)etan).
So, we have
limsup B f(X,a)a (50T > ] < [ Flypm(a) - [ atwyotan) (33)
For nonnegative and bounded functions f and g, by (3.2) and (3.3), we have
Jim B [f(Xpe)g(X) [T > t] = /If(y)m(dy) : /Ig(y)V(dy)- (3.4)
ECP 24 (2019), paper 60. http://www.imstat.org/ecp/

Page 5/11


https://doi.org/10.1214/19-ECP265
http://www.imstat.org/ecp/

Some conditional limiting theorems for symmetric Markov processes

We can extend (3.4) to arbitrary bounded f and g by subtraction. So (i) holds.
(ii) For each u, when (1 — ¢)t > v and (¢ — p)t > u, by the Markov property, we obtain

Em[f(Xpt)g(th)vT > t]

By [f(Xpt)g(Xog)|T > t] =

P.(T >t)
_ B [f(Xp)9(Xa) Lirsgn P (T > (1 = g)1)]
- P.(T >1t)
o QOB [F(Xp)g(Xot)Lgrsan b (Xat)bo(X )]
= P.(T >t)
_ MV, [F(Xp)p(Xgt) Lirs g1y
P, (T > t)

ME, [f(Xpt)l{T>pt} ) e)\(q_p)tEXm (p(X(qu)t)l{T>(q7p)t})]
eMP, (T > t)
e)\pth [f(Xpt)l{T>pt} . e)\(q_p)tp(qu)t (p<Xpt))]
eMP (T > t)
eAptEx [f(Xpt)hZ(Xpt)¢0(Xpt)1{T>pt}}
eMP (T > t)
P By (fhiygo) ()
eMP1(x) ’

Y]

where p(z) = g(x)h;,(x)¢o(x), and
B! (z) = inf{e* P.1(x)/¢o(z) : 7 > u}, h'(z) =inf{e " Pp(x)/¢o(z) : 7 > u}.
For all r > u, by the definition of A/,(x) and h!/(x), we get

(@) (@)po(x)] < [£(@)eX Prp(a)] < | fllosllglloo-

Therefore, the function fh! ¢, is bounded and measurable. Moreover, as seen from the
proof of (i), we have

hy () 1 (¢, 1>M/Ig(y)m(dy), as u — 00.

Thus, the proof of (ii) then follows from the same arguments as in the proof of (i).
(iii) By (i) or (ii) and the dominated convergence theorem, we get

. 1 . '
tll>r(r>1OIEw <t/0 f(Xs)ds|T > t) = flggoEx </0 f(Xp)dp|T > t)

1
= lim [ E.(f(Xp)|T > t)dp

t—o0 0
= [ tmidy.
I
Hence, there exists a quasi-ergodic distribution for the process X. O

Remark 3.2. Suppose the assumptions of Theorem 3.1 hold and the semigroup {P,};>o
is ultracontractive. Then,“u-a.e. z” in Theorem 3.1 can be strengthened to “all 2”. In
fact, based on [16, Corollary 2.1], using the same method as in [13, Theorem 2.4], it
can prove that for all x € I, the equality (3.1) holds. And then, the conclusion can be
established.
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As an interesting application of Theorem 3.1, we obtain the following conditional
functional weak laws of large numbers. Under an admittedly more restricted setting,
such a form of result has appeared in [19, Theorem 3.6]. However, compared with [19],
we don’t need harsh constraints.

Proposition 3.3. Assume that hypothesis (H) holds. Then, for any bounded and mea-
surable function f on I and any ¢ > 0, we have

lim P, (]1 [ sxoas- [ f<y>m<dy>| 2 elT > 1) =0, e

Proof. First note that for any bounded and measurable function f on I, we have
lim E, < / f(X > |T >t

t—o0
= tlggoEz </0 f(Xpt)dp) T >t

r 1 1
= ImE, / F(Xp)dp / f(th)dq|T>t}

_ ggi/‘/i (X,0)|T > t]dpdq
_ E&(/(/ qu>t@@+/a/ qu>ﬂ®@)
(ﬁf@ﬁnww>-

Let h(x) - f . So, by Markov inequality, we have

mupq /f @—/f ‘>aT>Q

< lim 3
t—o0 I
2
{ ) |T > t}
= lim
t—o00

(J; hy)m(d yf

= 0.

This completes the proof of the proposition. O

Next, we remark that if the semigroup {P,},>¢ is intrinsically ultracontractive, then
for any probability measure 7 on I, Theorem 3.1 is still holds. The semigroup {P;}:>0
is said to be intrinsically ultracontractive, if for any ¢ > 0, there exist two constants
ay, c; > 0 such that

arpo(x)po(y) < r(t,x,y) < crpo(x)o(y) forax, yel. (3.5)

Before we give the result, let’s first prove the following result.
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Proposition 3.4. Assume that hypothesis (H) holds. If the semigroup {P;};>¢ is intrinsi-
cally ultracontractive, then there exist a probability measure v on I and two constants
C,~ > 0 such that, for all initial distribution m on I,

P, (X; €T >t) —v()|lry < Ce™ ™, vt >0, (3.6)
where || - ||rv is the total variation norm.

Proof. The main method of the proof is similar to that in [2, Theorem 5.1]. The ap-
proach is to use the following condition, which is actually equivalent to the exponential
convergence (3.6) (see [3, Theorem 2.1])

Condition (A) There exists a probability measure v; on I such that
(A1) there exist tp, c; > 0 such that, for all x € I,

Pz(Xto S |T > to) > 611/1(');
(A2) there exists ¢y > 0 such that, forallx € I and ¢ > 0,
P, (T >1t) > P, (T > t).

If the semigroup { P, };>¢ is intrinsically ultracontractive, then for all x € I, by (3.5),
we have
Qg Ct
—v() S P (Xy, €T > to) < —v(), (3.7)
Cy Qi
where v is as in (2.1). Hence, (A1) holds with ¢; = ‘z—: and vy = v.

If t < to, from (3.5), we have P.(T" > t) > P.(T > ty) > a;m(¢o)(¢o,1),, where
m(po) == [; do(y)m(dy). We can adjust the value of ¢;||¢ || such that for any = € I,

Pr(T>t) > am(do){¢o,1)p

> Oét”(%)
~ ¢tl|olloo

at7(¢0)

aemPo) .
Aol w1

Ift > ty, from (3.5), we get

Pr(Xy, € )

Y

oy (go)v () (%o, 1)

po() .
H¢0||ooam(¢0)y( ) (o, 1)
am(do)

ctl|polloo

v

Vv

P,(X:, € ).

Thus, by the Markov property, we obtain

P (T>t) = Eq(Px, (T>t—tg))
e (do)
Ct||¢0||oo
)

= &m0 p 7>y,
ool =L >

IEQE(IPXtO (T >t—ty))

Therefore, forallxz € Tand t > 0, P.(T > t) > @i 7(go) P.(T > t). Thus, taking 7 = 14 = v,

Ct H¢0Hoo
OCH"(¢0)

ool This completes the proof of the proposition. O

this entails (A2) for ¢y =
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As seen from the proof of Theorem 3.1, the proof only uses the fact that the equality
(3.1) holds and ¢ € L' (1, u) NL>(I, u). If the semigroup {P;}+>o is intrinsically ultracon-
tractive, we know from Proposition 3.4 or [16, Lemma 3.7] that for any initial distribution
monl,

eMP,g(z)m(dx
Jim J; j;og(l;ﬂ (dz) _ /Ig(y)qﬁo(y)u(dy). (3.8)

That is to say, for any initial distribution 7 on I, the equality (3.1) holds. Thus, due to
the reason mentioned above, by using a similar argument as in the proof of Theorem
3.1, we have the following result. We point out that Theorem 3.5 complements results of
[19] for the reference measure being a finite measure and the semigroup {P,};>¢ being
ultracontractive.

Theorem 3.5. Assume that hypothesis (H) holds. If the semigroup { P, };>¢ is intrinsically
ultracontractive, then for any bounded and measurable functions f, g on I, any probability
measuremonl and0 < p < g <1, we have

(1) Jim B [f(Xpe)g(Xo)|T > 8] = [; f(y)m(dy) [; 9(y)v(dy),
(i) Jim Bo[F(Xp)g(Xo0)[T > 1] = [, Fy)m(dy) f; o(y)m(dy)
(i) lim B, ( I (X ds|T > t) = [, fly)m(d

where m and v are as in Theorem 3.1.

4 One-dimensional diffusions

This section is devoted to study the case of one-dimensional diffusions taking values
in [0, 00), where 0 is an absorbing regular boundary and +oc is an entrance boundary.
Let Y = (Y;,t > 0) be a one-dimensional drifted Brownian motion in [0, o) such that
0 is an absorbing boundary. More formally, Y is defined as the solution of the stochastic
differential equation
dY,; = dBy — q(Y)dt, Yo=1y>0, (4.1)

where (B;,t > 0) is a standard one-dimensional Brownian motion and ¢(z) € C'[0, 00).
Define Q(y) := foy 2¢q(x)dx. In this section, we will use the following hypothesis.

Hypothesis (B). Iy €@ ([ ez dy < .

According to [18], we know that if hypothesis (B) holds, then 0 is an absorbing regular
boundary and 4o is an entrance boundary. And, for all = € (0, cc0), we have

P,(T < o0) =1,
where T' = inf{¢t > 0: Y; = 0}. Define
w(dy) == e*Q(y)dy. (4.2)

Notice that p is the speed measure of the process Y. From [18], we know that if
hypothesis (B) holds, then (0, 00) < co.

It is well known (see, e.g., [8]) that the one-dimensional diffusion process Y is
symmetric with respect to © and satisfies (H1) and (H2). When studying quasi-stationary
distributions and quasi-ergodic distributions of one-dimensional diffusion processes, it
is often necessary to classify the boundary: regular boundary, exit boundary, entrance
boundary and natural boundary. Following [11, Chapter 5], we know that:
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(a) If +oo is a regular or exit boundary, then lirf Ri1(x) = 0.
(b) If +oco is an entrance boundary, then hff sup  Ril(o0)(z) = 0.
= ° 2€(0,00)
(c) If 400 is a natural boundary, then lir}g Ril(;)(x) = 1 and thus
Tr—r+00
sup Ril, o0)(z) = 1.
z€(0,00)
Therefore, (H3) is satisfied if and only if no natural boundaries are present. Hence, under
hypothesis (B), the process Y satisfies hypothesis (H) and then Theorem 3.1 holds.

We remark that if hypothesis (B) holds, then for all « € (0, c0), the equality (3.1) holds
(see [18]). Hence, if hypothesis (B) holds, then for the process Y, “uy-a.e. ” in Theorem
3.1 can be strengthened to “all x”.

Note that, if hypothesis (B) is satisfied, then we know from the proof of [18, Theorem
4.3] that for any bounded and measurable function g on (0, c0), and any initial distribution
7 on (0, 00),

> eMP,g(x)m(dx oo
Jim J = ¢1;(i§7r)( dfj ) _ /0 9(y)po(y)u(dy).
0

This means that for any initial distribution 7 on (0, o), the equality (3.1) holds and then
$o(y)p(dy

(dy) = L)

Jo~ ¢o(2)u(dz)

is the unique quasi-stationary distribution of the process Y. Due to the same reason
mentioned in Section 3, by using a similar argument as in the proof of Theorem 3.1, we
have the following result.

(4.3)

Theorem 4.1. Assume that hypothesis (B) holds. Then, for any bounded and measurable
functions f, g on (0, 00), any probability measure 7 on (0,00) and 0 < p < g < 1, we have

() Jim B[/ (V)9 (VO[T > 1] = [ fw)mldy) [; o(w)w(dy),
(i) Jim Bx[f (Vo) g (Vo) IT > ] =[5 F)m(dy) 5~ aw)m(dy).

(ifi) lim E, ( Iy f(Yy)ds|T > t) = Jo_ fly)m(dy),

where
m(dy) = &5 (y)u(dy)

and v is as in (4.3).
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