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Abstract

We consider the linear stochastic wave equation driven by a Gaussian noise which is
white in time and colored in space. We show that the solution satisfies a certain form
of strong local nondeterminism and we use this property to derive the exact uniform
modulus of continuity for the solution.
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1 Introduction

Let k ≥ 1 and β ∈ (0, k ∧ 2), or k = 1 = β. We consider the linear stochastic wave
equation 

∂2

∂t2
u(t, x) = ∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0.

(1.1)

Here, Ẇ is the space-time Gaussian white noise if k = 1 = β; and is a Gaussian noise
that is white in time and has a spatially homogeneous covariance given by the Riesz
kernel with exponent β if k ≥ 1 and β ∈ (0, k ∧ 2), i.e.

E(Ẇ (t, x)Ẇ (s, y)) = δ(t− s)|x− y|−β .

The existence of real-valued process solution to (1.1) was discussed in [13, 4]. Regarding
the sample path properties of the solution, results on the Hölder regularity and hitting
probability have been proved in [5]. In this present paper, we determine the exact
uniform modulus of continuity of the solution u(t, x) in the time and space variables (t, x).
For this purpose, we show that the Gaussian random field {u(t, x), t ≥ 0, x ∈ Rk} satisfies
a form of strong local nondeterminism.
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Local nondeterminism and modulus of continuity for stochastic wave equation

The property of local nondeterminism is useful for investigating sample paths of
Gaussian random fields. This notion was first introduced by Berman [3] for Gaussian
processes and extended by Pitt [11] for Gaussian random fields to study their local
times. Later, the property of strong local nondeterminism was developed to study exact
regularity of local times, small ball probability and other sample paths properties for
Gaussian random fields (see, e.g., [15, 16]).

It is well known that the Brownian sheet does not satisfy the property of (strong) local
nondeterminism (in the sense of Pitt [11]) but it satisfies sectorial local nondeterminism
[7, Proposition 4.2]. Recall from [13, Theorem 3.1] that when k = 1 = β and Ẇ is the
space-time white noise, the solution u(t, x) of (1.1) has the representation

u(t, x) =
1

2
Ŵ

(
t− x√

2
,
t+ x√

2

)
, (1.2)

where Ŵ is a modified Brownian sheet (cf. [13, p.281]). In this case, many properties of
the solution u(t, x) can be derived from those of Ŵ (t, x). For β 6= 1 or k ≥ 2, there are few
precise results (such as the exact modulus of continuity, modulus of non-differentiability,
multifractal analysis of exceptional oscillations) for the sample function u(t, x). Investi-
gation of these problems naturally leads to the study of local nondeterminism for the
solution u(t, x).

In this paper, we investigate the property of local nondeterminism for the solution
of (1.1) and use this property to study the uniform modulus of continuity of its sample
functions. The main results of this paper are Proposition 2.1 and Theorem 3.1. Proposi-
tion 2.1 shows that for a general dimension k, the solution u(t, x) satisfies an integral
form of local nondeterminism. When k = 1 and β = 1, this property (see (2.4) below)
can also be derived from the sectorial local nondeterminism for the Brownian sheet in
[7, Proposition 4.2] after a change of coordinates. While for k = 1 and β ∈ (0, 1), the
property (2.4) is similar to the sectorial local nondeterminism in [14, Theorem 1] for
a fractional Brownian sheet, which suggests that the sample function u(t, x) may have
some subtle properties that are different from those of Gaussian random fields with
stationary increments (an important example of the latter is fractional Brownian motion).
We believe that Proposition 2.1 is useful for studying precise regularity and other sample
path properties of u(t, x). In Theorem 3.1, we apply Proposition 2.1 to derive the exact
uniform modulus of continuity of u(t, x).

2 Local nondeterminism

Let G be the fundamental solution of the wave equation. Recall that if k = 1,
G(t, x) = 1

21{|x|<t}; if k ≥ 2 and k is even,

G(t, x) = ck

(
1

t

∂

∂t

)(k−2)/2

(t2 − |x|2)
−1/2
+ ;

if k ≥ 3 and k is odd,

G(t, x) = ck

(
1

t

∂

∂t

)(k−3)/2
σkt (dx)

t
,

where σkt is the uniform surface measure on the sphere {x ∈ Rk : |x| = t}, see [6, Chapter
5]. Note that for k ≥ 3, G is not a function but a distribution. Also recall that for any
dimension k ≥ 1, the Fourier transform of G in variable x is given by

F (G(t, ·))(ξ) =
sin(t|ξ|)
|ξ|

, t ≥ 0, ξ ∈ Rk. (2.1)
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Local nondeterminism and modulus of continuity for stochastic wave equation

In [4], Dalang extended Walsh’s stochastic integration and proved that the real-valued
process solution of equation (1.1) is given by

u(t, x) =

∫ t

0

∫
Rk
G(t− s, x− y)W (ds dy),

where W is the martingale measure induced by the noise Ẇ . The range of β has been
chosen so that the stochastic integral exists. Recall from Theorem 2 of [4] that

E

[(∫ t

0

∫
Rk
H(s, y)W (ds dy)

)2]
= ck,β

∫ t

0

ds

∫
Rk
dξ |ξ|β−k|F (H(s, ·))(ξ)|2 (2.2)

provided that s 7→ H(s, ·) is a deterministic function with values in the space of nonnega-
tive distributions with rapid decrease and∫ t

0

ds

∫
Rk
dξ |ξ|β−k|F (H(s, ·)(ξ)|2 <∞.

The following result shows that the solution u(t, x) satisfies a certain form of strong local
nondeterminism.

Proposition 2.1. Let 0 < a < a′ < ∞ and 0 < b < ∞. There exist constants
C > 0 and δ > 0 depending on a, a′ and b such that for all integers n ≥ 1 and all
(t, x), (t1, x1), . . . , (tn, xn) in [a, a′]× [−b, b]k with |t− tj |+ |x− xj | ≤ δ, we have

Var (u(t, x)|u(t1, x1), . . . , u(tn, xn)) ≥ C
∫
Sk−1

min
1≤j≤n

|(t− tj) + (x− xj) · w|2−β dw, (2.3)

where dw is the surface measure on the unit sphere Sk−1.

Remark 2.2. When k = 1, the surface measure dw in (2.3) is supported on {−1, 1}. It
follows that u(t, x) satisfies sectorial local nondeterminism:

Var(u(t, x)|u(t1, x1), . . . , u(tn, xn))

≥ C
(

min
1≤j≤n

|(t− tj) + (x− xj)|2−β + min
1≤j≤n

|(t− tj)− (x− xj)|2−β
)
.

(2.4)

When β = 1, this can be derived from (1.2) and Proposition 4.2 in [7] by a change of
coordinates (t, x) 7→ (t + x, t − x). When β 6= 1, (2.4) is similar to Theorem 1 in [14]
for a fractional Brownian sheet, after the change of coordinates.1 We remark that
(2.4) is different from the strong local nondeterminism for Gaussian random fields with
stationary increments in [8]. This suggests that the solution process u(t, x) may have
some subtle properties that are different from those of Gaussian random fields with
stationary increments such as a fractional Brownian motion.

Proof of Proposition 2.1. Take δ = a/2. For each w ∈ Sk−1, let

r(w) = min
1≤j≤n

|(tj − t)− (xj − x) · w|.

Since u is a centered Gaussian random field, the conditional variance

Var(u(t, x)|u(t1, x1), . . . , u(tn, xn))

1Professor Ciprian Tudor showed us that the relation (1.2) still holds if Ŵ is replaced by an appropriate
Gaussian random field related to a fractional Brownian sheet. This connection provides an explanation for the
similarity between (2.4) and Theorem 1 in [14].
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Local nondeterminism and modulus of continuity for stochastic wave equation

is the squared distance of u(t, x) from the linear subspace spanned by u(t1, x1), . . . ,

u(tn, xn) in L2(P). Thus, it suffices to show that there exist constants C > 0 and δ > 0

such that for all (t, x), (t1, x1), . . . , (tn, xn) in [a, a′]× [−b, b]k with |t− tj |+ |x− xj | ≤ δ, we
have

E

[(
u(t, x)−

n∑
j=1

αju(tj , xj)

)2]
≥ C

∫
Sk−1

r(w)2−β dw (2.5)

for any choice of real numbers α1, . . . , αn. Using (2.1), (2.2) and spherical coordinate
ξ = ρw, we have

E

[(
u(t, x)−

n∑
j=1

αju(tj , xj)

)2]

= ck,β

∫ ∞
0

ds

∫
Rk

dξ

|ξ|2+k−β

∣∣∣∣ sin((t−s)|ξ|)1[0,t](s)−
n∑
j=1

αje
−i(xj−x)·ξ sin((tj−s)|ξ|)1[0,tj ](s)

∣∣∣∣2

≥ ck,β
∫ a/2

0

ds

∫ ∞
0

dρ

ρ3−β

∫
Sk−1

dw

∣∣∣∣ sin((t− s)ρ)−
n∑
j=1

αje
−iρ(xj−x)·w sin((tj − s)ρ)

∣∣∣∣2
=
ck,β

8

∫ a/2

0

ds

∫ ∞
−∞

dρ

|ρ|3−β

∫
Sk−1

dw

∣∣∣∣ (ei(t−s)ρ − e−i(t−s)ρ)
−

n∑
j=1

αje
−iρ(xj−x)·w

(
ei(t

j−s)ρ − e−i(t
j−s)ρ

) ∣∣∣∣2
=:

ck,β
8

∫
Sk−1

A(w) dw.

Let λ = min{1, a/[2(a′ + 2
√
kb)]} and consider the bump function ϕ : R→ R defined by

ϕ(y) =

{
exp

(
1− 1

1−|λ−1y|2

)
, |y| < λ,

0, |y| ≥ λ.

Let ϕr(y) = r−1ϕ(y/r). For each w ∈ Sk−1 such that r(w) > 0, consider the integral

I(w) :=

∫ a/2

0

ds

∫ ∞
−∞

dρ

[(
ei(t−s)ρ − e−i(t−s)ρ

)
−

n∑
j=1

αje
−iρ(xj−x)·w

(
ei(t

j−s)ρ − e−i(t
j−s)ρ

)]
e−i(t−s)ρϕ̂r(w)(ρ).

By the inverse Fourier transform (or one can apply the Plancherel theorem), we have

I(w) = 2π

∫ a/2

0

ds

[
ϕr(w)(0)− ϕr(w)

(
2(t− s)

)
−

n∑
j=1

αj

(
ϕr(w)

(
(xj−x) · w−(tj−t)

)
− ϕr(w)

(
(xj − x) · w − (tj − t) + 2(tj − s)

))]
.

Note that r(w) ≤ |tj−t|+ |xj−x| ≤ a′+2
√
kb. For any s ∈ [0, a/2], we have 2(t−s)/r(w) ≥

a/[(a′ + 2
√
kb)] and |(xj − x) · w − (tj − t)|/r(w) ≥ 1, thus

ϕr(w)

(
2(t− s)

)
= 0 and ϕr(w)

(
(xj − x) · w − (tj − t)

)
= 0 for j = 1, . . . , n.

Also, [(xj − x) · w − (tj − t) + 2(tj − s)]/r(w) ≥ (−δ + a)/[(a′ + 2
√
kb)] ≥ λ, thus

ϕr(w)

(
(xj − x) · w − (tj − t) + 2(tj − s)

)
= 0.
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Local nondeterminism and modulus of continuity for stochastic wave equation

It follows that
I(w) = aπ r(w)−1.

On the other hand, by the Cauchy–Schwarz inequality and scaling, we obtain

(aπ)2r(w)−2 = |I(w)|2 ≤ A(w)×
∫ a/2

0

ds

∫ ∞
−∞

dρ |ϕ̂(r(w)ρ)|2|ρ|3−β

= (a/2)A(w)r(w)β−4
∫ ∞
−∞

dρ |ϕ̂(ρ)|2|ρ|3−β

= CA(w)r(w)β−4

for some finite constant C. Hence we have

A(w) ≥ C ′r(w)2−β (2.6)

and this remains true if r(w) = 0. Integrating both sides of (2.6) over Sk−1 yields (2.5).

3 Exact uniform modulus of continuity

It is known that sectorial local nondeterminism is useful for proving the exact uniform
modulus of continuity for Gaussian random fields [10]. In this section we show that the
form of local nondeterminism in Proposition 2.1 can serve the same purpose for deriving
the exact uniform modulus of continuity of u(t, x).

Let us denote
σ
[
(t, x), (t′, x′)

]
= E[(u(t, x)− u(t′, x′))2]1/2.

Recall from [5, Proposition 4.1] that for any 0 < a < a′ < ∞ and 0 < b < ∞, there are
positive constants C1 and C2 such that

C1

(
|t− t′|+

k∑
j=1

|xj − x′j |
)2−β

≤ σ[(t, x), (t′, x′)]2 ≤ C2

(
|t− t′|+

k∑
j=1

|xj − x′j |
)2−β

(3.1)

for all (t, x), (t′, x′) ∈ [a, a′]× [−b, b]k.
The following result establishes the exact uniform modulus of continuity of u(t, x) in

the time and space variables (t, x).

Theorem 3.1. Let I = [a, a′]× [−b, b]k, where 0 < a < a′ <∞ and 0 < b <∞. Let

γ
[
(t, x), (t′, x′)

]
= σ

[
(t, x), (t′, x′)

]√
log (1 + σ

[
(t, x), (t′, x′)

]−1
).

Then there is a positive finite constant K such that

lim
ε→0+

sup
(t,x),(t′,x′)∈I,
σ[(t,x),(t′,x′)]≤ε

|u(t, x)− u(t′, x′)|
γ
[
(t, x), (t′, x′)

] = K, a.s. (3.2)

Proof. For any ε > 0, let

J(ε) = sup
(t,x),(t′,x′)∈I,
σ[(t,x),(t′,x′)]≤ε

|u(t, x)− u(t′, x′)|
γ
[
(t, x), (t′, x′)

] .

Since ε 7→ J(ε) is non-decreasing, we see that the limit limε→0+ J(ε) exists a.s. In order to
prove (3.2), we prove the following statements: there exist positive and finite constants
K∗ and K∗ such that

lim
ε→0+

J(ε) ≤ K∗, a.s. (3.3)
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Local nondeterminism and modulus of continuity for stochastic wave equation

and
lim
ε→0+

J(ε) ≥ K∗, a.s. (3.4)

Then the conclusion of Theorem 3.1 follows from Lemma 7.1.1 of [9] where τ is chosen
to be the Euclidean metric and d is the canonical metric σ[(t, x), (t′, x′)]. [It is a 0-1 law
for the modulus of continuity which is obtained by applying Kolmogorov’s 0-1 law to the
Karhunen–Loève expansion of u(t, x).]

The proof of the upper bound (3.3) is standard. For any ε > 0, denote by N(I, ε, σ)

the smallest number of balls of radius ε in the canonical metric σ
[
(t, x), (t′, x′)

]
that

are needed to cover the compact interval I. By the upper bound in (3.1), we have
N(I, ε, σ) ≤ Cε−(1+k)/(2−β) and thus∫ ε

0

√
logN(I, ε̃, σ) dε̃ ≤ Cε

√
log(1 + ε−1).

By Theorem 1.3.5 of [1], there is a positive finite constant K∗ such that

lim sup
ε→0+

sup
(t,x),(t′,x′)∈I,
σ[(t,x),(t′,x′)]≤ε

|u(t, x)− u(t′, x′)|
ε
√

log(1 + ε−1)
≤ K∗ a.s.

From this we can deduce (3.3) by considering εn+1 ≤ σ[(t, x), (t′, x′)] ≤ εn where εn = 1/n,
and using the fact that the function ε 7→ ε

√
log(1 + ε−1) is increasing for ε small, and

lim
n→∞

εn

√
log(1 + ε−1n )

εn+1

√
log(1 + ε−1n+1)

= 1.

Next we prove the lower bound (3.4). This is accomplished by applying Proposition
2.1, a conditioning argument and the Borel–Cantelli lemma. We first choose δ according
to Proposition 2.1 and let δ′ = min{δ/(1 +

√
k), a′ − a, 2b}. Note that δ′ depends only on

a, a′ and b. For each n ≥ 1, let

εn = [C2((1 + k)δ′)2−β2−(2−β)n]1/2.

For i = 0, 1, . . . , 2n, let tn,i = a+ iδ′2−n and xn,ij = −b+ iδ′2−n. Then

lim
ε→0+

J(ε) = lim
n→∞

sup
(t,x),(t′,x′)∈I,

σ[(t,x),(t′,x′)]≤εn

|u(t, x)− u(t′, x′)|
γ[(t, x), (t′, x′)]

≥ lim inf
n→∞

max
1≤i≤2n

|u(tn,i, xn,i)− u(tn,i−1, xn,i−1)|

εn

√
log(1 + ε−1n )

=: lim inf
n→∞

Jn.

To obtain the inequality, we have used the fact that σ[(tn,i, xn,i), (tn,i−1, xn,i−1)] ≤ εn and
that the function ε 7→ ε

√
log(1 + ε−1) is increasing for ε small.

Let K∗ > 0 be a constant whose value will be determined later. Fix n and write
tn,i = ti, xn,i = xi to simplify notations. By conditioning, we can write

P (Jn ≤ K∗)

= P

(
max

1≤i≤2n
|u(ti, xi)− u(ti−1, xi−1)|

εn

√
log(1 + ε−1n )

≤ K∗
)

= E

[
1AP

(
|u(t2

n

, x2
n

)− u(t2
n−1, x2

n−1)|

εn

√
log(1 + ε−1n )

≤ K∗
∣∣∣∣u(ti, xi) : 0 ≤ i ≤ 2n − 1

)]
,

(3.5)
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Local nondeterminism and modulus of continuity for stochastic wave equation

where A is the event defined by

A =

{
max

1≤i≤2n−1

|u(ti, xi)− u(ti−1, xi−1)|

εn

√
log(1 + ε−1n )

≤ K∗

}
.

Since |t2n − ti|+ |x2n − xi| ≤ δ, by Proposition 2.1 we have

Var
(
u(t2

n

, x2
n

)|u(ti, xi) : 0 ≤ i ≤ 2n − 1
)

≥ C
∫
Sk−1

min
0≤i≤2n−1

|(t2
n

− ti) + (x2
n

− xi) · w|2−β dw

≥ C
∫
{w∈Sk−1: (1,...,1)·w≥0}

min
0≤i≤2n−1

|δ′(2n − i)2−n + δ′(2n − i)2−n(1, . . . , 1) · w|2−β dw

≥ C(δ′)2−β 2−(2−β)n
∫
{w∈Sk−1: (1,...,1)·w≥0}

dw

= C0 ε
2
n (3.6)

for some constant C0 > 0 depending on a, a′ and b.
Since the conditional distribution of u(t2

n

, x2
n

), given u(ti, xi), (0 ≤ i ≤ 2n − 1), is
Gaussian with conditional variance Var

(
u(t2

n

, x2
n

)|u(ti, xi) : 0 ≤ i ≤ 2n − 1
)
, it follows

from Anderson’s inequality [2] and (3.6) that

P

(
|u(t2

n

, x2
n

)− u(t2
n−1, x2

n−1)|

εn

√
log(1 + ε−1n )

≤ K∗
∣∣∣∣u(ti, xi) : 0 ≤ i ≤ 2n − 1

)

≤ P

(
|u(t2

n

, x2
n

)|

εn

√
log(1 + ε−1n )

≤ K∗
∣∣∣∣u(ti, xi) : 0 ≤ i ≤ 2n − 1

)

≤ P
(
|Z| ≤ K∗

√
C−10 log (1 + ε−1n )

)
where Z is a standard normal random variable. Using P(|Z| > x) ≥ (

√
2πx)−1 exp(−x2/2)

for x ≥ 1 and 1 + ε−1 < 2/ε for ε small, we deduce that when n is large the above
probability is bounded from above by

1− C(εn/2)K
2
∗/(2C0)

K∗
√

log (2/εn)
≤ exp

(
−C(εn/2)K

2
∗/(2C0)

K∗
√

log (2/εn)

)
≤ exp

(
− CK∗2

− (2−β)K2
∗

4C0
n

√
n

)

where CK∗ > 0 is a constant depending on K∗. Then by (3.5) and induction, we have

P
(
Jn ≤ K∗

)
≤ exp

(
− 2n

CK∗2
− (2−β)K2

∗
4C0

n

√
n

)
.

We can now choose K∗ > 0 to be a sufficiently small constant such that 1− (2−β)K2
∗

4C0
> 0.

Then
∑∞
n=1P

(
Jn ≤ K∗

)
<∞. Hence, by the Borel–Cantelli lemma, lim infn Jn ≥ K∗ a.s.

and the proof is complete.
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