Real zeros of random Dirichlet series

Marco Aymone*

Abstract

Let $F(\sigma)$ be the random Dirichlet series $F(\sigma)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$, where \mathcal{P} is an increasing sequence of positive real numbers and $\left(X_{p}\right)_{p \in \mathcal{P}}$ is a sequence of i.i.d. random variables with $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. We prove that, for certain conditions on \mathcal{P}, if $\sum_{p \in \mathcal{P}} \frac{1}{p}<\infty$ then with positive probability $F(\sigma)$ has no real zeros while if $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$, almost surely $F(\sigma)$ has an infinite number of real zeros.

Keywords: random series; zeros of random analytic functions; Dirichlet series.
AMS MSC 2010: Primary 60G50, Secondary 11M41.
Submitted to ECP on April 6, 2019, final version accepted on July 30, 2019.

1 Introduction

A Dirichlet series is an infinite sum of the form $F(\sigma):=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$, where \mathcal{P} is an increasing sequence of positive real numbers and $\left(X_{p}\right)_{p \in \mathcal{P}}$ is any sequence of complex numbers. If $F(\sigma)$ converges then $F(s)$ converges for all $s \in \mathbb{C}$ with real part greater than σ (see [4] Theorem 1.1). The abscissa of convergence of a Dirichlet series is the smallest number σ_{c} for which $F(\sigma)$ converges for all $\sigma>\sigma_{c}$.

The problem of finding the zeros of a Dirichlet series is classical in Analytic Number Theory. For instance, the Riemann hypothesis states that the zeros of the analytic continuation of the Riemann zeta function $\zeta(\sigma):=\sum_{k=1}^{\infty} \frac{1}{k^{\sigma}}$ in the half plane $\{\sigma+i t \in$ $\mathbb{C}: \sigma>0\}$ all have real part equal to $1 / 2$. This analytic continuation can be described in terms of a convergent Dirichlet series - The Dirichlet η-function $\eta(s)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{s}}$ satisfies $\eta(s)=\left(1-2^{1-s}\right) \zeta(s)$, for all complex s with positive real part. Thus, to find zeros of $\eta(s)$ for $0<\operatorname{Re}(s)<1$ is the same as finding non-trivial zeros of ζ.

In this paper we are interested in the real zeros of the random Dirichlet series $F(\sigma):=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$, where the coefficients $\left(X_{p}\right)_{p \in \mathcal{P}}$ are random and \mathcal{P} satisfies:
$(P 1) \mathcal{P} \cap[0,1)=\varnothing$,
(P2) $\quad \sum_{p \in \mathcal{P}} \frac{1}{p^{\sigma}}$ has abcissa of convergence $\sigma_{c}=1$.
For instance, \mathcal{P} can be the set of the natural numbers. The conditions ($P 1-P 2$) imply, in particular, that the series $\sum_{p \in \mathcal{P}} \frac{1}{p^{2} \sigma}$ converges for each $\sigma>1 / 2$. Therefore, if $\left(X_{p}\right)_{p \in \mathcal{P}}$ is a sequence of i.i.d. random variables with $\mathbb{E} X_{p}=0$ and $\mathbb{E} X_{p}^{2}=1$, then, by the Kolmogorov one-series Theorem, the series $F(\sigma)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$ has a.s. abscissa of

[^0]convergence $\sigma_{c}=1 / 2$. Moreover, the function of one complex variable $\sigma+i t \mapsto F(\sigma+i t)$ is a.s. an analytic function in the half plane $\{\sigma+i t \in \mathbb{C}: \sigma>1 / 2\}$. In the case $X_{p}= \pm 1$ with equal probability, the line $\sigma=\sigma_{c}$ is a natural boundary for $F(\sigma+i t)$, see [2] (pg. 44 Theorem 4).

Our main result states:
Theorem 1.1. Assume that \mathcal{P} satisfies $P 1-P 2$ and let $\left(X_{p}\right)_{p \in \mathcal{P}}$ be i.i.d. and such that $\mathbb{P}\left(X_{p}=1\right)=\mathbb{P}\left(X_{p}=-1\right)=1 / 2$. Let $F(\sigma)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$.
i. If $\sum_{p \in \mathcal{P}} \frac{1}{p}<\infty$, then with positive probability F has no real zeros;
ii. If $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$, then a.s. F has an infinite number of real zeros.

It follows as corollary to the proof of item i. that in the case $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$, with positive probability $F(\sigma)$ has no zeros in the interval $[1 / 2+\delta, \infty)$, for fixed $\delta>0$.

Since a Dirichlet series $F(s)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{s}}$ is a random analytic function, it can be viewed as a random Taylor series $\sum_{k=0}^{\infty} Y_{k}(s-a)^{k}$, where $a>\sigma_{c}$ and $\left(Y_{k}\right)_{k \in \mathbb{N}}$ are random and dependent random variables. The case of random Taylor series and random polynomials where $\left(Y_{k}\right)_{k \in \mathbb{N}}$ are i.i.d. has been widely studied in the literature, for an historical background we refer to [3] and [5] and the references therein.

2 Preliminaries

2.1 Notation

We employ both $f(x)=O(g(x))$ and Vinogradov's $f(x) \ll g(x)$ to mean that there exists a constant $c>0$ such that $|f(x)| \leq c|g(x)|$ for all sufficiently large x, or when x is sufficiently close to a certain real number y. For $\sigma \in \mathbb{R}, \mathbb{H}_{\sigma}$ denotes the half plane $\{z \in \mathbb{C}: \operatorname{Re}(z)>\sigma\}$. The indicator function of a set S is denoted by $\mathbb{1}_{S}(s)$ and it is equal to 1 if $s \in S$, or equal to 0 otherwise. We let $\pi(x)$ to denote the counting function of \mathcal{P} :

$$
\pi(x):=|\{p \leq x: p \in \mathcal{P}\}| .
$$

2.2 The Mellin transform for Dirichlet series

In what follows $\mathcal{P}=\left\{p_{1}<p_{2}<\ldots\right\}$ is a set of non-negative real numbers satisfying $P 1-P 2$ above. A generic element of \mathcal{P} is de noted by p, and we employ $\sum_{p \leq x}$ to denote $\sum_{p \in \mathcal{P} ; p \leq x}$. Let $A(x)=\sum_{p \leq x} X_{p}$ and $F(s)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{s}}$. Let $\sigma_{c}>0$ be the abscissa of convergence of $F(\sigma)$. Then F can be represented as the Mellin transform of the function $A(x)$ (see, for instance, Theorem 1.3 of [4]):

$$
\begin{equation*}
F(s)=s \int_{1}^{\infty} A(x) \frac{d x}{x^{1+s}}, \text { for all } s \in \mathbb{H}_{\sigma_{c}} . \tag{2.1}
\end{equation*}
$$

In particular, we can state:
Lemma 2.1. Let $F(s)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{s}}$ be such that $F(1 / 2)$ is convergent. Then for each $\sigma \geq 1 / 2$ and all $\epsilon>0$, for all $U>1$:

$$
F(\sigma+\epsilon)=\sum_{p \leq U} \frac{X_{p}}{p^{\sigma+\epsilon}}+O\left(U^{-\epsilon} \sup _{x>U}\left|\sum_{U<p \leq x} \frac{X_{p}}{p^{\sigma}}\right|\right)
$$

where the implied constant in the $O(\cdot)$ term above can be taken to be 1 .

Proof. Put $A(x)=\sum_{p \leq x} \mathbb{1}_{(U, \infty)}(p) \frac{X_{p}}{p^{\sigma}}$. By (2.1) it follows that

$$
\begin{aligned}
\sum_{p>U} \frac{X_{p} p^{-\sigma}}{p^{\epsilon}} & =\epsilon \int_{1}^{\infty} A(x) \frac{d x}{x^{1+\epsilon}}=\epsilon \int_{U}^{\infty}\left(\sum_{U<n \leq x} \frac{X_{p}}{p^{\sigma}}\right) \frac{d x}{x^{1+\epsilon}} \\
& \ll \sup _{x>U}\left|\sum_{U<p \leq x} \frac{X_{p}}{p^{\sigma}}\right| \int_{U}^{\infty} \frac{\epsilon}{x^{1+\epsilon}} d x=U^{-\epsilon} \sup _{x>U}\left|\sum_{U<p \leq x} \frac{X_{p}}{p^{\sigma}}\right|
\end{aligned}
$$

2.3 A few facts about sums of independent random variables

In what follows we use
Levy's maximal inequality: Let X_{1}, \ldots, X_{n} be independent random variables. Then

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq m \leq n}\left|\sum_{k=1}^{m} X_{k}\right| \geq t\right) \leq 3 \max _{1 \leq m \leq n} \mathbb{P}\left(\left|\sum_{k=1}^{m} X_{k}\right| \geq \frac{t}{3}\right) \tag{2.2}
\end{equation*}
$$

Hoeffding's inequality: Let X_{1}, \ldots, X_{n} be i.i.d. with $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. Let a_{1}, \ldots, a_{n} be real numbers. Then for any $\lambda>0$

$$
\begin{equation*}
\mathbb{P}\left(\sum_{k=1}^{n} a_{k} X_{k} \geq \lambda\right) \leq \exp \left(-\frac{\lambda^{2}}{2 \sum_{k=1}^{n} a_{k}^{2}}\right) . \tag{2.3}
\end{equation*}
$$

3 Proof of the main result

Proof of item i. Since $\sum_{p \in \mathcal{P}} \frac{1}{p}<\infty$ we have by the Kolmogorov one series theorem that the series $\sum_{p \in \mathcal{P}} \frac{X_{p}}{\sqrt{p}}$ converges almost surely. In what follows $U>0$ is a large fixed number to be chosen later, A_{U} is the event in which $X_{p}=1$ for all $p \leq U$ and B_{U} is the event in which

$$
\sup _{x>U}\left|\sum_{U<p \leq x} \frac{X_{p}}{\sqrt{p}}\right|<\frac{1}{10} .
$$

We claim that for sufficiently large U on the event $A_{U} \cap B_{U}$ the function $F(s)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{s}}$ does not vanish for all $s \geq \frac{1}{2}$. Further for sufficiently large U we will show that $\mathbb{P}\left(A_{U} \cap\right.$ $\left.B_{U}\right)>0$.

On the event $A_{U} \cap B_{U}$ we have by lemma 2.1 that

$$
\begin{equation*}
F(1 / 2+\epsilon) \geq \sum_{p \leq U} \frac{1}{p^{1 / 2+\epsilon}}-\frac{1}{10 U^{\epsilon}} \geq \frac{\pi(U)}{U^{1 / 2+\epsilon}}-\frac{1}{10 U^{\epsilon}} \tag{3.1}
\end{equation*}
$$

where $\pi(U)=\#\{p \leq U: p \in \mathcal{P}\}$. We claim that for each $\delta>0$ we have that

$$
\limsup _{U \rightarrow \infty} \frac{\pi(U)}{U^{1-\delta}}=\infty
$$

In fact, this is a consequence from P2: For any $\delta>0$ the series diverges $\sum_{p \in \mathcal{P}} \frac{1}{p^{1-\delta}}=\infty$. To show that this is true we argue by contraposition: Assume that for some fixed $\delta>0$ $\limsup _{U \rightarrow \infty} \frac{\pi(U)}{U^{1-\delta}}<\infty$ and hence that there exists a constant $c>0$ such that for all $U>0, \pi(U) \leq c U^{1-\delta}$. In that case we have for $0<\epsilon<\delta$

$$
\begin{aligned}
\sum_{p \leq U} \frac{1}{p^{1-\epsilon}} & =\int_{1}^{U} \frac{d \pi(x)}{x^{1-\epsilon}}=\frac{\pi(U)}{U^{1-\epsilon}}-\pi(1)+(1-\epsilon) \int_{1}^{U} \frac{\pi(x)}{x^{2-\epsilon}} d x \\
& \leq \frac{c U^{1-\delta}}{U^{1-\epsilon}}+1+(1-\epsilon) \int_{1}^{U} \frac{c x^{1-\delta}}{x^{2-\epsilon}} d x \ll 1+\int_{1}^{U} \frac{1}{x^{1+(\delta-\epsilon)}} d x \ll 1
\end{aligned}
$$

and hence that the series $\sum_{p \in \mathcal{P}} \frac{1}{p^{1-\epsilon}}$ converges. Therefore, we showed that

$$
\limsup _{U \rightarrow \infty} \frac{\pi(U)}{U^{1-\delta}}<\infty
$$

implies that $\sum_{p \in \mathcal{P}} \frac{1}{p^{\sigma}}$ has abscissa of convergence $\sigma_{c} \leq 1-\delta$.
Now we may select arbitrarily large values of $U>1$ for which $\pi(U) \geq U^{1-1 / 4}$ and $\sum_{p \leq U} \frac{1}{\sqrt{p}}>\frac{1}{10}$, and hence, by (3.1), for all $\epsilon>0$ we obtain that

$$
F(1 / 2+\epsilon) \geq \frac{U^{1-1 / 4}}{U^{1 / 2+\epsilon}}-\frac{1}{10 U^{\epsilon}}=\frac{1}{U^{\epsilon}}\left(U^{1 / 4}-\frac{1}{10}\right)>0
$$

This proves that on the event $A_{U} \cap B_{U}$ we have that $F(s) \neq 0$ for all $s \in[1 / 2, \infty)$.
Observe that A_{U} and B_{U} are independent and A_{U} has probability $\frac{1}{2^{\pi(U)}}>0$. Now we will show that the complementary event B_{U}^{c} has small probability. Indeed, by applying the Levy's maximal inequality and the Hoeffding's inequality, we obtain:

$$
\begin{aligned}
\mathbb{P}\left(B_{U}^{c}\right) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(\max _{U<x \leq n}\left|\sum_{U<p \leq x} \frac{X_{p}}{\sqrt{p}}\right| \geq \frac{1}{10}\right) \leq 3 \lim _{n \rightarrow \infty} \max _{U<x \leq n} \mathbb{P}\left(\left|\sum_{U<p \leq x} \frac{X_{p}}{\sqrt{p}}\right| \geq \frac{1}{30}\right) \\
& \leq 6 \lim _{n \rightarrow \infty} \max _{U<x \leq n} \mathbb{P}\left(\sum_{U<p \leq x} \frac{X_{p}}{\sqrt{p}} \geq \frac{1}{30}\right) \leq 6 \lim _{n \rightarrow \infty} \exp \left(\frac{-1 / 30^{2}}{2 \sum_{U<p \leq n} \frac{1}{p}}\right) \\
& \leq 6 \exp \left(-\frac{1}{2 \cdot 30^{2} \sum_{p>U} \frac{1}{p}}\right) .
\end{aligned}
$$

Since $\sum_{p \in \mathcal{P}} \frac{1}{p}$ is convergent, the tail $\sum_{p>U} \frac{1}{p}$ converges to 0 as $U \rightarrow \infty$. Therefore, for sufficiently large U we can make $\mathbb{P}\left(B_{U}^{c}\right)<1 / 2$.

Now we are going to prove Theorem 1.1 part $i i$. We present two different proofs. In the first proof we assume that the counting function of \mathcal{P}

$$
\begin{equation*}
\pi(x) \ll \frac{x}{\log x} \tag{3.2}
\end{equation*}
$$

In this case, for instance, \mathcal{P} can be the set of prime numbers. In this proof we show that, for σ close to $1 / 2$, the infinite sum $\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$ can be approximated by the partial sum $\sum_{p \leq y} \frac{X_{p}}{\sqrt{p}}$ for a suitable choice of y (Lemma 3.1). Then we show that these partial sums change sign for an infinite number of y, and hence, $F(\sigma)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$ changes sign for an infinite number of $\sigma \rightarrow 1 / 2^{+}$.

The case in which \mathcal{P} is the set of natural numbers, the infinite sum $\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$ can not be approximated by the finite sum $\sum_{p \leq y} \frac{X_{p}}{\sqrt{p}}$, i.e., Lemma 3.1 fails in this case. Thus, our approach is different in the general case. First we show (Lemma 3.3) that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$ implies that

$$
\begin{equation*}
\frac{\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}}{\sqrt{\sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}}}} \rightarrow_{d} \mathcal{N}(0,1), \text { as } \sigma \rightarrow \frac{1}{2}^{+} \tag{3.3}
\end{equation*}
$$

and second, for each $L>0$, the event

$$
\limsup _{\sigma \rightarrow \frac{1}{2}^{+}} \frac{\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}}{\sqrt{\sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}}}} \geq L
$$

is a tail event, and by (3.3), it has positive probability. Similarly,

$$
\liminf _{\sigma \rightarrow \frac{1}{2}^{+}} \frac{\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}}{\sqrt{\sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}}}} \leq-L
$$

also is a tail event and has positive probability. Thus, by the Kolmogorov $0-1$ Law, with probability $1, \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$ changes sign for an infinite number of $\sigma \rightarrow 1 / 2^{+}$.

3.1 Proof of Theorem 1.1 (ii) in the case $\pi(x) \ll \frac{x}{\log x}$

Lemma 3.1. Assume that \mathcal{P} satisfies $P 1-P 2$ and that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$. Further, assume that $\pi(x) \ll \frac{x}{\log x}$. Let $\sigma>1 / 2$ and $y=\exp \left((2 \sigma-1)^{-1}\right) \geq 10$. Then there is a constant $d>0$ such that for all $\lambda>0$

$$
\mathbb{P}\left(\left|\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}-\sum_{p \leq y} \frac{X_{p}}{\sqrt{p}}\right| \geq 2 \lambda\right) \leq 4 \exp \left(-d \lambda^{2}\right)
$$

Proof. If $|a+b| \geq 2 \lambda$ then either $|a| \geq \lambda$ or $|b| \geq \lambda$. This fact combined with the Hoeffding's inequality allows us to bound:

$$
\begin{aligned}
\mathbb{P}\left(\left|\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}-\sum_{p \leq y} \frac{X_{p}}{\sqrt{p}}\right| \geq 2 \lambda\right) & \leq \mathbb{P}\left(\left|\sum_{p \leq y} X_{p}\left(\frac{1}{p^{\sigma}}-\frac{1}{\sqrt{p}}\right)\right| \geq \lambda\right)+\mathbb{P}\left(\left|\sum_{p>y} \frac{X_{p}}{p^{\sigma}}\right| \geq \lambda\right) \\
& \leq \exp \left(-\frac{\lambda^{2}}{2 V_{y}}\right)+\exp \left(-\frac{\lambda^{2}}{2 W_{y}}\right)
\end{aligned}
$$

where $V_{y}=\sum_{p \leq y}\left(\frac{1}{p^{\sigma}}-\frac{1}{\sqrt{p}}\right)^{2}$ and $U_{y}=\sum_{p>y} \frac{1}{p^{2 \sigma}}$. To complete the proof we only need to estimate these quantities. By the mean value theorem

$$
\frac{1}{p^{\sigma}}-\frac{1}{\sqrt{p}}=(\sigma-1 / 2) \frac{\log p}{p^{\theta}}, \text { for some } \theta=\theta(p, \sigma) \in[1 / 2, \sigma] .
$$

Therefore

$$
\begin{aligned}
V_{y} & \leq(\sigma-1 / 2)^{2} \sum_{p \leq y} \frac{\log ^{2} p}{p}=(\sigma-1 / 2)^{2} \int_{1^{-}}^{y} \frac{\log ^{2} t}{t} d \pi(t) \\
& =(\sigma-1 / 2)^{2}\left(\frac{\pi(y) \log ^{2} y}{y}-\int_{1^{-}}^{y} \pi(t) \frac{2 \log t-\log ^{2} t}{t^{2}} d t\right) \\
& \ll(\sigma-1 / 2)^{2}\left(\log y+\int_{1^{-}}^{y} \frac{\log t}{t} d t\right) \ll(\sigma-1 / 2)^{2} \log ^{2} y . \\
U_{y} & =\int_{y}^{\infty} \frac{d \pi(t)}{t^{2 \sigma}}=-\frac{\pi(y)}{y^{2 \sigma}}-\int_{y}^{\infty} \frac{-2 \sigma \pi(t)}{t^{2 \sigma+1}} d t \\
& \ll \frac{1}{y^{2 \sigma-1} \log y}+2 \sigma \int_{y}^{\infty} \frac{1}{t^{2 \sigma} \log t} d t \ll \frac{1}{y^{2 \sigma-1} \log y}+\frac{1}{(2 \sigma-1) y^{2 \sigma-1} \log y} \\
& \ll \frac{1}{(2 \sigma-1) y^{2 \sigma-1} \log y} .
\end{aligned}
$$

In particular, the choice $y=\exp \left((2 \sigma-1)^{-1}\right)$ implies that both variances V_{y} and U_{y} are $O(1)$.

The simple random walk $S_{n}=\sum_{k=1}^{n} X_{n}$ where $\left(X_{n}\right)_{n \in \mathbb{N}}$ is i.i.d. with $X_{1}= \pm 1$ with probability $1 / 2$ each, satisfies a.s. $\limsup _{n \rightarrow \infty} S_{n}=\infty$ and $\liminf _{n \rightarrow \infty} S_{n}=-\infty$. We follow the same line of reasoning as in the proof of this result ([6] pg. 381, Theorem 2) to prove:

Lemma 3.2. Assume that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$. Let y_{k} be a increasing sequence of positive real numbers such that $\lim y_{k}=\infty$. Then it a.s. holds that:

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty} \frac{\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}}}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}}=\infty, \\
& \liminf _{k \rightarrow \infty} \frac{\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}}}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}}=-\infty .
\end{aligned}
$$

Proof. We begin by observing that $\left(X_{p} / \sqrt{p}\right)_{p \in \mathcal{P}}$ is a sequence of independent and symmetric random variables that are uniformly bounded by 1 . It follows that

$$
\lim _{y \rightarrow \infty} \operatorname{Var} \sum_{p \leq y} \frac{X_{p}}{\sqrt{p}}=\lim _{y \rightarrow \infty} \sum_{p \leq y} \frac{1}{p}=\infty
$$

and hence this sequence satisfies the Lindenberg condition. By the Central Limit Theorem it follows that for each fixed $L>0$ there exists a $\delta>0$ such that for sufficiently large $y>0$

$$
\mathbb{P}\left(\sum_{p \leq y} \frac{X_{p}}{\sqrt{p}} \geq L \sqrt{\sum_{p \leq y} \frac{1}{p}}\right)=\mathbb{P}\left(\sum_{p \leq y} \frac{X_{p}}{\sqrt{p}} \leq-L \sqrt{\sum_{p \leq y} \frac{1}{p}}\right) \geq \delta .
$$

Next observe that the event in which $\lim \sup _{k \rightarrow \infty} \frac{\sum_{p \leq y_{k}} \frac{x_{p}}{\sqrt{p}}}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}} \geq L$ is a tail event, and hence by the Kolmogorov zero or one law it has either probability zero or one. Since

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}} \geq L \sqrt{\sum_{p \leq y_{k}} \frac{1}{p}} \text { for infinitely many } k\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcup_{k=n}^{\infty}\left[\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}} \geq L \sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}\right]\right) \geq \delta
\end{aligned}
$$

it follows that for each fixed $L>0 \lim \sup _{k \rightarrow \infty} \frac{\sum_{p \leq y_{k}} \frac{x_{p}}{\sqrt{p}}}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}} \geq L$, a.s. Similarly, we can conclude that for each fixed $L>0 \liminf _{k \rightarrow \infty} \frac{\sum_{p \leq y_{k}} \frac{x_{p}}{\sqrt{p}}}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}} \leq-L$, a.s.
Proof of item ii. Take $\lambda=\lambda(y)=\sqrt{\sum_{p \leq y} \frac{1}{p}}$ in Lemma 3.1 and let $y=\exp \left((2 \sigma-1)^{-1}\right)$. Since $\lim _{y \rightarrow \infty} \lambda(y)=\infty$, it follows that there is a subsequence $y_{k} \rightarrow \infty$ for which $\sum_{k=1}^{\infty} \exp \left(-d \lambda^{2}\left(y_{k}\right)\right)<\infty$ and hence, by the Borel-Cantelli Lemma, it a.s. holds that

$$
\limsup _{k \rightarrow \infty} \frac{\left|\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma_{k}}}-\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}}\right|}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}} \leq 2
$$

where $y_{k}=\exp \left(\left(2 \sigma_{k}-1\right)^{-1}\right)$. This combined with Lemma 3.2 gives a.s.

$$
\begin{aligned}
\limsup _{\sigma \rightarrow 1 / 2^{+}} \frac{\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}}{\sum_{p \leq y} \frac{1}{p}} & \geq \limsup _{k \rightarrow \infty} \frac{\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}}-\left|\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma_{k}}}-\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}}\right|}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}} \\
& \geq \limsup _{k \rightarrow \infty}\left(\frac{\sum_{p \leq y_{k}} \frac{X_{p}}{\sqrt{p}}}{\sqrt{\sum_{p \leq y_{k}} \frac{1}{p}}}-3\right) \\
& =\infty .
\end{aligned}
$$

Similarly, we conclude that $\lim \inf _{\sigma \rightarrow 1 / 2^{+}} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}=-\infty$, a.s. Since $F(\sigma)$ is a.s. analytic, it follows that there is an infinite number of $\sigma>1 / 2$ for which $F(\sigma)=0$.

3.2 Proof of Theorem 1.1 (ii), the general case

The following Lemma is an adaptation of [1], Theorem 1.2:
Lemma 3.3. Assume that \mathcal{P} satisfies $P 1-P 2$ and that $\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty$. Then

$$
\begin{equation*}
\frac{\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}}{\sqrt{\sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}}}} \rightarrow_{d} \mathcal{N}(0,1), \text { as } \sigma \rightarrow \frac{1}{2}^{+} \tag{3.4}
\end{equation*}
$$

Proof. Let $V(\sigma)=\sqrt{\sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}}}$. Observe that $V(\sigma) \rightarrow \infty$ as $\sigma \rightarrow 1 / 2^{+}$: For each fixed $y>0$

$$
\liminf _{\sigma \rightarrow 1 / 2^{+}} \sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}} \geq \lim _{\sigma \rightarrow 1 / 2^{+}} \sum_{p \leq y} \frac{1}{p^{2 \sigma}}=\sum_{p \leq y} \frac{1}{p}
$$

Thus, by making $y \rightarrow \infty$ in the equation above, we obtain the desired claim.
For each fixed $\sigma>1 / 2$, by the Kolmogorov one series Theorem, we have that $\sum_{p \leq y} \frac{X_{p}}{p^{\sigma}}$ converges almost surely as $y \rightarrow \infty$. Since $\left(X_{p}\right)_{p \in \mathcal{P}}$ are independent, by the dominated convergence theorem:

$$
\begin{aligned}
\varphi_{\sigma}(t) & :=\mathbb{E} \exp \left(\frac{i t}{V(\sigma)} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}\right)=\lim _{y \rightarrow \infty} \mathbb{E} \exp \left(\frac{i t}{V(\sigma)} \sum_{p \leq y} \frac{X_{p}}{p^{\sigma}}\right) \\
& =\prod_{p \in \mathcal{P}} \cos \left(\frac{t}{V(\sigma) p^{\sigma}}\right)
\end{aligned}
$$

We will show that for each fixed $t \in \mathbb{R}, \varphi_{\sigma}(t) \rightarrow \exp \left(-t^{2} / 2\right)$ as $\sigma \rightarrow 1 / 2^{+}$. Observe that $\varphi_{\sigma}(t)=\varphi_{\sigma}(-t)$, so we may assume $t \geq 0$. Thus, for each fixed $t \geq 0$ we may choose $\sigma>1 / 2$ such that $0 \leq \frac{t}{V(\sigma) p^{\sigma}} \leq \frac{1}{100}$ and $0 \leq 1-\cos \left(\frac{t}{V(\sigma) p^{\sigma}}\right) \leq \frac{1}{100}$, for all $p \in \mathcal{P}$.

For $|x| \leq 1 / 100$, we have that $\log (1-x)=-x+O\left(x^{2}\right)$ and $\cos (x)=1-\frac{x^{2}}{2}+O\left(x^{4}\right)$. Further, $1-\cos (x)=2 \sin ^{2}(x / 2) \leq \frac{x^{2}}{2}$. Thus, we have:

$$
\begin{aligned}
\log \varphi_{\sigma}(t) & =\sum_{p \in \mathcal{P}} \log \cos \left(\frac{t}{V(\sigma) p^{\sigma}}\right) \\
& =\sum_{p \in \mathcal{P}} \log \left(1-\left(1-\cos \left(\frac{t}{V(\sigma) p^{\sigma}}\right)\right)\right) \\
& =-\sum_{p \in \mathcal{P}}\left(1-\cos \left(\frac{t}{V(\sigma) p^{\sigma}}\right)\right)+\sum_{p \in \mathcal{P}} O\left(1-\cos \left(\frac{t}{V(\sigma) p^{\sigma}}\right)\right)^{2} \\
& =-\sum_{p \in \mathcal{P}}\left(\frac{t^{2}}{2 V^{2}(\sigma) p^{2 \sigma}}+O\left(\frac{t^{4}}{V^{4}(\sigma) p^{4 \sigma}}\right)\right)+\sum_{p \in \mathcal{P}} O\left(\frac{t^{4}}{V^{4}(\sigma) p^{4 \sigma}}\right) \\
& =-\frac{t^{2}}{2 V^{2}(\sigma)} \sum_{p \in \mathcal{P}} \frac{1}{p^{2 \sigma}}+\sum_{p \in \mathcal{P}} O\left(\frac{t^{4}}{V^{4}(\sigma) p^{2}}\right) \\
& =-\frac{t^{2}}{2}+O\left(\frac{t^{4}}{V^{4}(\sigma)}\right) .
\end{aligned}
$$

We conclude that $\varphi_{\sigma}(t) \rightarrow \exp \left(-t^{2} / 2\right)$ as $\sigma \rightarrow 1 / 2^{+}$.

Proof of item ii. Let $V(\sigma)$ be as in the proof of Lemma 3.3. Since $V(\sigma) \rightarrow \infty$ as $\sigma \rightarrow 1 / 2^{+}$, we have, for each fixed $y>0$

$$
\limsup _{\sigma \rightarrow 1 / 2^{+}} \frac{1}{V(\sigma)} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}=\limsup _{\sigma \rightarrow 1 / 2^{+}} \frac{1}{V(\sigma)} \sum_{p>y} \frac{X_{p}}{p^{\sigma}} .
$$

Thus, for each fixed $L>0$,

$$
\limsup _{\sigma \rightarrow 1 / 2^{+}} \frac{1}{V(\sigma)} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}} \geq L
$$

is a tail event. By Lemma 3.3, $\frac{1}{V(\sigma)} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}} \rightarrow{ }_{d} \mathcal{N}(0,1)$, as $\sigma \rightarrow 1 / 2^{+}$. Thus, this tail event has positive probability (see the proof of Lemma 3.2). By the Kolmogorov zero or one Law, a.s.:

$$
\limsup _{\sigma \rightarrow 1 / 2^{+}} \frac{1}{V(\sigma)} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}=\infty
$$

Similarly, a.s.:

$$
\liminf _{\sigma \rightarrow 1 / 2^{+}} \frac{1}{V(\sigma)} \sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}=-\infty
$$

Since $F(\sigma)=\sum_{p \in \mathcal{P}} \frac{X_{p}}{p^{\sigma}}$ is a.s. an analytic function, with probability 1 we have that $F(\sigma)=0$ for an infinite number of $\sigma \rightarrow 1 / 2^{+}$.

References

[1] A. Bovier and P. Picco, A law of the iterated logarithm for random geometric series, Ann. Probab., 21 (1993), pp. 168-184. MR-1207221
[2] J.-P. Kahane, Some random series of functions, vol. 5 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, second ed., 1985. MR-0833073
[3] M. R. Krishnapur, Zeros of random analytic functions, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)-University of California, Berkeley. MR-2709142
[4] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, vol. 97 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007. MR-2378655
[5] H. Nguyen, O. Nguyen, and V. Vu, On the number of real roots of random polynomials, Commun. Contemp. Math., 18 (2016), 1550052, 17 pp. MR-3493213
[6] A. N. Shiryaev, Probability, vol. 95 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1996. Translated from the first (1980) Russian edition by R. P. Boas. MR-1368405

Acknowledgments. The proof of Theorem 1.1 item ii was initially presented only in the case $\pi(x) \ll \frac{x}{\log x}$. I would like to thank the anonymous referee for pointing out that this should not be a necessary condition for the existence of an infinite number of real zeros, and for pointing out the reference [1], from which I could adapt their Theorem 1.2 for random Dirichlet series (Lemma 3.3).

[^0]: *UFMG, Brazil. E-mail: aymone.marco@gmail.com

