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Abstract

We prove the existence and uniqueness of a discrete nonnegative harmonic function
for a random walk satisfying finite range, centering and ellipticity conditions, killed
when leaving a globally Lipschitz domain in Zd. Our method is based on a systematic
use of comparison arguments and discrete potential-theoretical techniques.
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1 Introduction and main results

Random walks conditioned to live in domains C ⊂ Zd are of growing interest because
of the range of their applications in enumerative combinatorics, in probability theory
and in harmonic analysis (cf. [7], [9], [11], [17], [18], [30]). Doob h-transforms, where h
is harmonic for the random walk, positive within C and vanishing on its boundary ∂C,
are used to perform such conditioning. It is therefore crucial to identify the set of all
positive harmonic functions associated with a killed random walk.

General results for homogeneous random walks with non-zero drift killed at the
boundary of a half-space or an orthant were obtained in [20], [22], [25]. For random
walks with zero drift, only few results are available [6], [11], [19], [30], [31]. The first
systematical result was obtained by Raschel, who introduced in [31] a new approach
based on the investigation of a functional equation satisfied by the generating function
of the values taken by the harmonic function. This approach allows him to establish the
existence of positive harmonic functions for random walks with small steps and zero
drift killed at the boundary of the quadrant N2. It should be also mentioned that [31]
provides explicit expressions for these harmonic functions.

In a recent work Ignatiouk-Robert [21] investigated the properties of harmonic
functions for random walks via ladder heights. Applying her general results to random
walks in convex cones she deduced the uniqueness (up to a multiplicative constant) of
the harmonic function constructed by Denisov and Wachtel in [11] under some moment
condition on the jumps. Alternative constructions of this harmonic function are proposed
by Denisov and Wachtel in [12]. These new constructions allow them to remove quite
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Discrete harmonic functions in Lipschitz domains

restrictive extendability assumptions imposed in [11]. In [32] Raschel and Tarrago
studied the behavior of the Green function for random walks in convex cones which gives
the uniqueness of the harmonic function (see also [14]).

Regarding spatially inhomogeneous random walks, the problem is more difficult.
Uniqueness of positive harmonic functions for random walks with symmetric spatially
inhomogeneous increments, killed at the boundary of a half-space, was established in
[28] and more recently in the case of an orthant [8].

The main purpose of the present paper is to extend the results of [8] for the whole
class of spatially inhomogeneous centered random walks satisfying finite span and
ellipticity conditions and killed when leaving a globally Lipschitz unbounded domain in
Zd.

Consider Γ ⊂ Zd a finite subset of Zd and let π : Zd × Γ→ [0, 1] such that∑
e∈Γ

π(x, e) = 1,
∑
e∈Γ

π(x, e)e = 0; e ∈ Γ, x ∈ Zd.

Then, we let {S(n), n ∈ N} = (Sn)n∈N be the Markov chain on Zd defined by

P[Sn+1 = x+ e/Sn = x] = π(x, e); e ∈ Γ, x ∈ Zd, n = 0, 1, . . .

(Sn)n∈N is a centered random walk with bounded increments which becomes spatially
homogeneous if we assume that the probabilities π(x, e) are independent of x. We
shall assume that the set Γ contains all unit vectors in Zd, i.e. all the vectors ek =

(0, . . . , 0, 1, 0, . . . 0) ∈ Zd, where the 1 is the k-th component. We shall impose to the
random walk (Sn)n∈N to satisfy the following uniform ellipticity condition:

π(x, e) ≥ α, e ∈ Γ, x ∈ Zd, (1.1)

for some α > 0.
We shall denote by:
• C a globally Lipschitz domain of Zd that is, a domain C = D ∩Zd where

D =
{

(x1, x
′) ∈ R×Rd−1;x1 > ϕ(x′)

}
for some Lipschitz function on Rd−1 satisfying

|ϕ(x′)− ϕ(y′)| ≤ A|x′ − y′|, x′, y′ ∈ Rd−1,

for some A > 0, where |.| denote the Euclidean norm. We shall assume that ϕ(0) = 0.
• τ the first exit time from C, i.e.,

τ = inf{n = 0, 1, . . . ; Sn /∈ C}.

• Gyx, x, y ∈ C, the Green function defined by

Gyx =
∑
n∈N

Px(Sn = y, τ > n).

We are interested in positive functions h which are discrete harmonic for the random
walk (Sn)n∈N killed at the boundary of C, i.e. in functions h : C → R+ such that:

i) For any x ∈ C, h(x) =
∑
e∈Γ

π(x, e)h(x+ e);

ii) If x ∈ ∂C, then h(x) = 0;

iii) If x ∈ C, then h(x) > 0;
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Discrete harmonic functions in Lipschitz domains

where C = ∂C ∪ C. The boundary of a set A ⊂ Zd is defined by

∂A = {x ∈ Ac, x = z + e for some z ∈ A and e ∈ Γ}.

In terms of the first exit time of the random walk from C, we have that

h(x) = Ex (h(S1), τ > 1) , x ∈ C.

Theorem 1.1. Let (Sn)n∈N be a centered random walk satisfying the above finite support
and ellipticity conditions. Assume that C is a globally Lipschitz domain of Zd. Then, up
to a multiplicative constant, there exists a unique positive function, harmonic for the
random walk killed at the boundary.

The previous result has an important consequence on the Martin boundary theory
attached to the random walk (Sn)n∈N killed on the boundary of C. Recall that for a
(transient) Markov chain on a countable state space E, the Martin compactification
of E is the unique smallest compactification EM of the discrete set E for which the
Martin kernels y → kxy = Gxy/G

x0
y (where x0 is a given reference state in E) extend

continuously for all x ∈ E. The minimal Martin boundary ∂mEM is the set of all those
γ ∈ ∂EM for which the function x → kxγ is minimal harmonic. Recall that a harmonic
function h is minimal if 0 ≤ g ≤ h with g harmonic implies g = ch with some c > 0. By the
Poisson-Martin boundary representation theorem, every nonnegative harmonic function
h can be written as

h(x) =

∫
∂mEM

kxγµ(dγ),

for some positive Borel measure µ on ∂mEM (cf. [13], [27], [29]).
An immediate consequence of Theorem 1.1 is the following.

Theorem 1.2. Let (Sn)n∈N be a centered random walk satisfying the above finite support
and ellipticity conditions. Assume that C is a globally Lipschitz domain of Zd. Then the
minimal Martin boundary of (Sn)n∈N killed at the boundary of C is reduced to one point.

Figure 1: The domain above the graph of a Lipschitz function ϕ and its boundary with
the respect to simple random walk.

A basic example of globally Lipschitz domain is a convex cone C of Zd with vertex 0,
contained in the half-space {x1 ≥ 0} and containing e1 as an interior vector. The defining
function ϕ is given in this case by ϕ(x′) = inf {x1 ≥ 0, (x1, x

′) ∈ C}.
Lipschitz domains naturally appear in the study of boundary behavior of harmonic

functions even in the case of smooth domains. This is well illustrated by Fatou theorem
[10] which reduces to studying existence of nontangential boundary values for a bounded
(or positive) harmonic function in a union of nontangential circular cones. Such union
constitutes a Lipschitz domain.
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Discrete harmonic functions in Lipschitz domains

Beyond cones and union of cones other Lipschitz domains can be naturally considered
in probability theory or combinatorics. Consider for example a nondecreasing step
function and its corresponding epigraph in R2. A simple change of axis allows us to
transform such domain in a Lipschitz one.

We can also consider a harmonic function globally defined in Z2, for example

u(x1, x2) = x4
1 − 6x2

1x
2
2 + x4

2 − x2
1 − x2

2,

which is harmonic with respect to the simple random walk (i.e., the value of u at any
point of Z2 is equal to the average of the four values at the adjacent points), and look at
a connected component of the set of points (x1, x2) such that u(x1, x2) > 0, for example

C =

(x1, x2) ∈ Z2, x1 >

√
6x2

2 + 1 +
√

32x4
2 + 16x2

2 + 1

2

 .

It is easy to see that C defines a discrete Lipschitz domain in Z2. We notice that adding
constants allows to produce a whole family of Lipschitz domains whose associated
harmonic functions (by Theorem 1.1) have a growth controlled by that of the function u,
a fact which is easily verified by a direct application of Theorem 2.3.

A fundamental property of globally Lipschitz domains is that they satisfy both uniform
interior and exterior cone conditions. More precisely each point x ∈ ∂D is the common
vertex of two closed circular cones C+(x) and C−(x) such that C+(x)\ {x} lies inside D
and C−(x)\ {x} lies inside the complement of D. Moreover all these cones are congruent
to a fixed circular cone C0 = {x = (x1, x

′); x1 ≥ µ|x′|}, where µ > 0 is sufficiently small
and depends on the Lipschitz constant A.

It should be mentioned that satisfying both interior and exterior cone conditions is
not sufficient to characterize globally Lipschitz domains.

To see this, consider in R3 the open cone obtained by bringing together the four
orthants [x1 > 0, x2 < 0, x3 < 0], [x1 < 0, x2 < 0, x3 < 0], [x1 < 0, x2 > 0, x3 > 0] and
[x1 > 0, x2 < 0, x3 < 0]. The boundary of this cone includes the second and fourth
quadrants in the (x1, x2)-plan. These quadrants intersect at the origin and the normals
for the corresponding two surfaces point in opposite directions. As a consequence, the
boundary of this cone cannot be represented as the graph of a Lipschitz function and
such cone is not a globally Lipschitz domain.

We conclude this introduction with some comments which may be helpful in placing
the results of this paper in their proper perspective.

(i) The proof of Theorem 1.1 given in [8] uses in a crucial way the parabolic Harnack
principle. We noted in [8] that a more satisfactory approach should dispense with
parabolic information and restrict to elliptic tools. A way to get round the difficulties
encountered in [8] is to use a lower estimate for superharmonic extensions of discrete
positive harmonic functions derived by Kuo and Trudinger in [23]. This lower estimate
encompasses three powerful ingredients: the Aleksandrov-Bakel’man-Pucci’s maximum
principle, cut-off techniques and a Calderón-Zygmund type lemma. Going trough the
superharmonic extension gives an alternative to the use of [8, Lemma 2.5] and provides
a purely elliptic derivation of [8, Proposition 2.6]. An advantage of this approach is that
it allows us to relax the assumptions 0 ∈ Γ and Γ = −Γ made in [8].

(ii) In case of homogeneous symmetric random walks on unbounded Lipschitz do-
mains, the main results of this paper follow from [19]. Although the work of Gyrya and
Saloff-Coste concerns diffusion on Dirichlet spaces in the context of infinite graphs G,
to derive the desired results for symmetric random walks, it suffices to consider the
corresponding cable process (see [3, §2]). More precisely, each edge can be thought of
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as an interval of the real line: a “cable”. A metric space consisting of G together with
cables, one for each edge can be defined. The distance between two points x and y is
defined as follows: if x and y are on the same cable, one uses the Euclidean distance.
For points on different cables one uses the distance given by the length of a shortest
path between the two points. A diffusion X on the resulting metric space is defined
as follows. On the interior of each cable, X performs a linear Brownian motion until it
reaches an end point. When X is at a vertex, it makes excursions along each of the cables
joining x to other vertices according to the transition probabilities given on G. Such
process generalizes Walsh’s Brownian motion [33]. Since the harmonic functions for
cable process and the random walk on the graph G are essentially the same [3, Lemma
2.4] one has all the desired results (namely Theorem 1.1, Theorem 1.2 and Theorem 2.4).

(iii) Spatially inhomogeneous random walks can be considered as the discrete ana-
logues of diffusions generated by second-order differential operators in nondivergence
form. As in [8], the main tools in this paper are discrete versions of Carleson estimate
and boundary Harnack inequality (cf. [4], [5], [15], [16]).

(iv) We restrict ourselves in this paper to random walks in Lipschitz domains. How-
ever, the proofs given below should work for a larger class of domains, for instance
uniform or inner uniform domains (cf. [1]). A domain D is called uniform if there is a
constant A such that each pair of points x, y ∈ D can be jointed by a path γ ⊂ D for
which `(γ) ≤ A|x− y| and min {`(γ(x, z), γ(y, z))} ≤ A dist(z, ∂D) for all z ∈ γ; where `(γ)

denotes the length of γ and γ(x, z) (resp. γ(y, z)) denotes the subpath of γ that connects
x (resp. y) and z. Inner uniform domains are defined by replacing the Euclidean distance
by the intrinsic distance associated with D. The main advantage of inner uniformity is
that, being an intrinsic notion, it can be used in rather general metric spaces.

2 Proof of Theorem 1.1

2.1 Harnack principle

We say that a function u : A = A ∪ ∂A → R is harmonic in A ⊂ Zd if Lu = 0 in A,
where L is the difference operator defined by

Lu(x) =
∑
e∈Γ

π(x, e)u(x+ e)− u(x).

In addition to an obvious maximum principle, harmonic functions satisfy, when they are
positive, a Harnack principle. For convenience this principle is formulated in balls. The
discrete Euclidean ball of center y ∈ Zd and radius R ≥ 1 is denoted BR(y) and simply
BR when y is clearly understood. We shall also have to use cubes. The cube of center
y ∈ Zd and sides 2R, parallel to the coordinate axes is denoted QR(y) and simply QR
when y is clear. The following theorem (see [23, Eq. (4.21)] and [24, Eq. (3.27)]) is
a centered version of Harnack principle established by Lawler [26] for random walks
with symmetric bounded increments (as well homogeneous and inhomogeneous); see
Figure 2 for an example.

Theorem 2.1 (Harnack principle). Assume that u is a nonnegative harmonic function
associated to a random walk satisfying centering, finite support and uniform ellipticity
conditions in a ball B2R(y). Then

max
BR(y)

u ≤ C min
BR(y)

u,

where C = C(d, α,Γ) > 0.
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Discrete harmonic functions in Lipschitz domains

Figure 2: Behavior of the positive harmonic function u(x1, x2) = x1 x2 in the quarter
plane.

2.2 Carleson estimate

The classical Carleson estimate asserts that a positive harmonic function vanishing
on a portion of the boundary is bounded, up to a smaller portion, by the value at a fixed
point in the domain with a multiplicative constant independent of the function. This type
of estimate first appears in the paper of Carleson [10, Eq. (4.1)] on Fatou-type theorem
for harmonic functions in several variables.

Theorem 2.2. Assume that u is a nonnegative harmonic function in C ∩B3R(y). Assume
that u = 0 on ∂C ∩B2R(y). Then

max {u(x), x ∈ C ∩BR(y)} ≤ C u(y +Re1), R ≥ C, (2.1)

where C = C(d, α,Γ, A) > 0 is independent of y,R and u and e1 = (1, 0, . . . , 0).

The proof of Theorem 2.2 relies on the following Proposition.

Proposition 2.3. Let y ∈ ∂C and R large enough. Let u be a nonnegative harmonic
function in C ∩B3

√
dR(y) which vanishes on ∂C ∩B2

√
dR(y). Then

max
{
u(x), x ∈ C ∩BR(y)

}
≤ ρmax

{
u(x), x ∈ C ∩B2

√
dR(y)

}
, (2.2)

with a constant 0 < ρ = ρ(d, α,Γ, A) < 1.

The proof of Proposition 2.3 that we give here differs from that of the analogous
proposition in [8]. It is interesting to compare with [8, Proposition 2.6] to see that (2.2)
is equivalent to a lower estimate

Px

[
S
(
τC∩B2

√
dR(y)

)
∈ ∂C ∩B2

√
dR(y)

]
≥ 1− ρ, x ∈ C ∩BR(y),
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Figure 3: Carleson estimate. The harmonic function u is dominated in the shaded region
by its value at y +Re1.

where τC∩B2
√
dR(y) denotes the exit time from C ∩B2

√
dR(y). Another way to reformulate

the oscillations estimate of Proposition 2.3 is to say that max
{
u(x), x ∈ C ∩BR(y)

}
decreases polynomially, i.e., for r < R,

max
{
u(x), x ∈ C ∩Br(y)

}
≤
( r
R

)C
max

{
u(x), x ∈ C ∩BR(y)

}
,

which constitutes a counterpart to Harnack principle.

Proof. To prove (2.2) we first observe that it suffices to show that

max
{
u(x), x ∈ C ∩QR(y)

}
≤ ρmax

{
u(x), x ∈ C ∩Q2R(y)

}
. (2.3)

Without loss of generality, we assume y = 0 and max
{
u(x), x ∈ C ∩Q2R

}
= 1. Then

considering the function v : Q2R → R defined by v = 1 − u in C ∩Q2R and v = 1 on
Q2R \ C, we see that (2.3) reduces to the following lower estimate

v(x) ≥ λ = λ(d, α,Γ, A) > 0, x ∈ QR. (2.4)

In fact, Lv = 0 in C ∩Q2R and for all x ∈ Q2R\ C

v(x) = 1 =
∑
e∈Γ

π(x, e) ≥
∑
e∈Γ

π(x, e)v(x+ e)

which shows that Lv ≤ 0 in Q2R, that is v is superharmonic in QR, and we can use [24,
Eq. (3.24)] and we deduce that

min
QR

v ≥ γ

(∣∣QR ∩ {v ≥ 1}
∣∣

|QR|

) log γ
log κ

(2.5)

where 0 < γ, κ < 1 are two positive constants depending on d, α and Γ and where the
notation |S| is used to denote the cardinality of a subset S ⊂ Zd.

The fact that the same constant γ appears in the prefactor and the exponent of the
RHS of (2.5) is a consequence of the cube decomposition argument used by Kuo and
Trudinger in the proof of [24, Eq. (3.24)] but has no importance for the proof of (2.4).

The estimate (2.5) says that if we have a superharmonic function that goes above 1

on a non trivial portion of QR (in the sense that the cardinality of the set where v ≥ 1 is
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larger than a fraction of the cardinality of QR) then the minimum of v on QR is bounded
below by some constant.

On the other hand, the fact that C is Lipschitz allows us to find a circular cone C′ with
vertex at the origin such that C′ ⊂ Cc. It follows then that there exists a positive constant
µ (depending on A) such that for R large enough∣∣QR ∩ {v ≥ 1}

∣∣ ≥ ∣∣QR ∩ C′∣∣ ≥ µ|QR|. (2.6)

We conclude from (2.5) and (2.6) that

min
QR

v ≥ γ1+ log µ
log δ ,

which implies (2.4) and completes the proof of (2.3).

Proof of Theorem 2.2. To prove the Carleson estimate (2.1) we first observe that the
uniform ellipticity assumption implies that u(ξ) ≤ CeC |ξ−ζ|u(ζ), ξ, ζ ∈ C ∩B3R(y); where
C = C(d, α,Γ, A) > 0. This local Harnack principle allows us to assume that the distance
of x from ∂C is sufficiently large. We shall denote by δ(x) (x ∈ C ∩B2R(y)) this distance
and suppose that δ(x) ≥ C. The fact that C is Lipschitz combined with a Harnack chain
argument based on Theorem 2.1 imply that

u(x) ≤ C
(

R

δ(x)

)γ
u(y +Re1), x ∈ C ∩B2R(y), (2.7)

where γ and C are positive constants depending on d, α,Γ and A. More precisely one can
link the two points x and y +Re1 by a sequence of balls intersecting successively and
transferring the control from the point at the end of the sequence y+Re1 to x. Thanks to
the fact that the domain is Lipschitz the total number of balls needed is bounded above

by C log(
R

δ(x)
).

Let x ∈ C ∩B2R(y), and let us assume that

δ(x) <

(
1−

(
1 + ρ

2

) 1
γ

)
2R− |x− y|

8
√
d

(2.8)

where ρ is the constant obtained in (2.2) and γ the exponent that appears in (2.7). Let
x0 ∈ ∂C such that |x − x0| = δ(x). It follows easily from (2.8) and the fact that δ(x) is
sufficiently large that B3

√
dδ(x)(x0) ⊂ B2R(y). By Proposition 2.3 applied to the harmonic

function u in the domain B3
√
dδ(x)(x0) ∩ C, we have

u(x) ≤ max
{
u(x′), x′ ∈ C ∩B 3

2 δ(x)(x0)
}
≤ ρmax

{
u(x′), x′ ∈ C ∩B3

√
dδ(x)(x0)

}
. (2.9)

Let z ∈ C ∩B3
√
dδ(x)(x0) satisfying

u(z) = max
{
u(x′), x′ ∈ C ∩B3

√
dδ(x)(x0)

}
.

We have
(2R− |x− y|) ≤ (2R− |z − y|) + 8

√
dδ(x).

Hence, thanks to (2.8)

(2R− |x− y|) ≤
(

1 + ρ

2

)− 1
γ

(2R− |z − y|).
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It follows that

(2R− |x− y|)γu(x) ≤
(

1 + ρ

2

)−1

(2R− |z − y|)γu(x),

and therefore, by (2.9)

(2R− |x− y|)γu(x) ≤ 2ρ

1 + ρ
(2R− |z − y|)γu(z) (2.10)

≤ θ0 max
x′ ∈C∩B2R(y)

(2R− |x′ − y|)γu(x′)

where

θ0 =
2ρ

1 + ρ
< 1.

It remains to consider the case where

δ(x) ≥

(
1−

(
1 + ρ

2

) 1
γ

)
2R− |x− y|

8
√
d

. (2.11)

In follows from (2.11) that

(2R− |x− y|)γu(x) ≤ ε−γ0 δ(x)γu(x) ≤ ε−γ0 max
x′ ∈C∩B2R(y)

δ(x′)γu(x′)

where 8
√
dε0 = 1−

(
1 + ρ

2

) 1
γ

and, thanks to (2.7),

(2R− |x− y|)γu(x) ≤ C ε−γ0 Rγu(y +Re1). (2.12)

Putting together (2.10) and (2.12) and taking the supremum over C ∩ B2R(y), we
deduce that

max
x∈C∩B2R(y)

(2R− |x− y|)γu(x) ≤ θ0 max
x∈C∩B2R(y)

(2R− |x− y|)γu(x) + C ε−γ0 Rγu(y +Re1).

Using the fact that (2R− |x− y|) ≥ R for x ∈ C ∩BR(y) we deduce the estimate (2.1).

2.3 Boundary Harnack principle

Carleson estimate can be extended to the ratio u/v of positive harmonic functions.

Theorem 2.4 (Boundary Harnack principle). Let y ∈ ∂C and K > 0 large enough. Assume
that u and v are two nonnegative harmonic functions in C∩B3KR(y). Assume that u, v = 0

on ∂C ∩B2KR(y). Then

max
x∈ C∩BR(y)

u(x)

v(x)
≤ C u(y +Re1)

v(y +Re1)
, R ≥ C, (2.13)

where C = C(d, α,Γ, A,K) > 0.

The above formulation of the boundary Harnack principle follows the classical formu-
lation but the proof of (2.13) which will be given below shows that the assumption v = 0

on ∂C ∩B2KR(y) is not needed so that (2.1) constitutes a special case of (2.13).
The estimate (2.13) is an immediate consequence of the lower estimate contained in

the following lemma.
For y ∈ ∂C and R ≥ r ≥ 1, we shall denote by

DR,r(y) = BR(y) ∩ {x ∈ C, δ(x) > r};
CR,r(y) = (BR(y) ∩ C) \ DR,r(y).

For R ≥ r ≥ 1, the boundary of CR,r is the union of three sets: the “bottom” ∂CR,r ∩ Cc,
the “lateral side” ∂CR,r ∩ {x ∈ C, 0 ≤ δ(x) ≤ r} and the “top” ∂CR,r ∩ DR,r.
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Lemma 2.5. There exists a constant K0 > 0 such that for all K ≥ K0 and for all y ∈ ∂C,
r ≥ 1,

min
x∈C∩Br(y)

Px
[
S(τCKr,r(y)) ∈ DKr,r(y)

]
Px
[
S(τCKr,r(y)) ∈ (∂CKr,r(y) ∩ C) \ DKr,r(y)

] ≥ 1 (2.14)

where τCKr,r(y) denotes the exit time from CKr,r(y).

Figure 4: For K large enough and x ∈ Br(y) the probability Px
[
S
(
τCKr,r(y)

)
∈ DKr,r(y)

]
is larger than P

[
S
(
τCKr,r(y)

)
∈ (∂CKr,r(y) ∩ C) \ DKr,r(y)

]
.

Proof of Theorem 2.4. In order to derive estimate (2.13) from (2.14), we first observe
that it is always possible to assume that u(y + Re1) = v(y + Re1) = 1. For a large R,
Carleson estimate (2.1) combined with Harnack principle imply that the function u is
dominated by a positive constant c0 in the region BKR(y) ∩ C. This constant c0 can be
chosen so that by Harnack principle the lower estimate v ≥ 1

c0
holds on DKR,R(y). Let

v0 = c0v and u0 =
u

c0
− v0. Let x ∈ BR(y) ∩ C. We have:

u0(x) ≤ Px
[
S(τCKR,R(y)) ∈ (∂CKR,R(y) ∩ C) \ DKR,R(y)

]
≤ Px

[
S(τCKR,R(y)) ∈ DKR,R(y)

]
≤ v0(x),

where the second inequality follows from (2.14). We deduce then that

u(x)

c0
− c0v(x) ≤ c0v(x), x ∈ BR(y) ∩ C.

So that
u(x)

v(x)
≤ 2c20, x ∈ BR(y) ∩ C,

which completes the proof of (2.13).

Proof of Lemma 2.5. To prove estimate (2.14) it suffices to show that if u, v : CKr,r(y)→
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R (where y ∈ ∂C, r ≥ 1 are fixed) satisfy
u(x) =

∑
e∈Γ

π(x, e)u(x+ e), x ∈ CKr,r(y)

u(x) ≥ 0 in CKr,r(y)

u(x) ≥ 1 on ∂CKr,r(y) ∩ DKr,r(y)

(2.15)


v(x) =

∑
e∈Γ

π(x, e)v(x+ e), x ∈ CKr,r(y)

v(x) ≤ 1 in CKr,r(y)

v(x) ≤ 0 on ∂CKr,r(y) ∩ DKr,r(y)

(2.16)

then we have
v(x) ≤ u(x), x ∈ Br(y) ∩ C (2.17)

provided that K ≥ K0 is large enough.
First we prove that under (2.15) the function u satisfies

u(x) ≥ 2α

(
δ(x)

r

)β
, x ∈ Br(y) ∩ C, (2.18)

for appropriate constants α, β > 0.
The proof of (2.18) relies on the following construction.
We assume K large enough and we define ũ : BMr(y) ∩ C −→ R by

ũ(x) =
∑
e∈Γ

π(x, e)ũ(x+ e), x ∈ BMr(y) ∩ C

ũ = min(u, 1) on ∂ (BMr(y) ∩ C) \DKr,r(y)

ũ = 1 on ∂ (BMr(y) ∩ C) ∩ DKr,r(y)

where 0 < M ≤ K is chosen so that ỹ = y + (M − 1)re1 satisfies

δ(ỹ) ≥ 10r.

 

Figure 5: The boundary values of ũ on ∂
(
BMr(y) ∩ C

)
.

Let U = BMr(y) ∩B2r(ỹ) and w : B2r(ỹ) −→ R be defined by

w(x) = ũ(x), x ∈ U ; w(x) = 1, x ∈ Uc ∩B2r(ỹ).

It is easy to see that w is superharmonic. Let z̃ = y + (M − 2)re1. By the same argument
used in the proof of the lower estimate (2.4) combined with Harnack principle, we see
that w(z̃) satisfies a lower estimate w(z̃) ≥ c. It follows then that ũ(z̃) = w̃(z̃) ≥ c.
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Since u ≥ 1 on ∂CKr,r(y) ∩ DKr,r(y), we deduce by the maximum principle that u ≥ ũ
on Br(y) ∩ C. It follows that u(z̃) ≥ c. Using a chain of appropriate balls connecting z̃

to x ∈ Br(y) ∩ C and applying Harnack inequality successively in each ball we deduce
(2.18).

It follows from (2.18) that if x ∈ Cr,r(y) \ Cr,r/K(y) then we have

u(x) ≥ 2αK−β . (2.19)

Let us now prove that there exists N > 0 such that

v(x) ≤ e−NK , x ∈ Cr,r(y). (2.20)

Let j = 1, . . . , bK−1
2 c and let xj ∈ ∂C(2j−1)r,r(y) be such that

v(xj) = max
{
v(x), x ∈ C(2j−1)r,r(y)

}
.

Let Uj = B2r(xj) ∩ C(2j+1)r,r(y) and τUj be the exit time from Uj . By the same argument
used in the proof of (2.4) we see that

Pxj
[
S(τUj ) ∈ DKr,r(y)

]
≥ c > 0.

Using (2.16) (in particular, the fact that v ≤ 0 on ∂CKr,r(y) ∩ DKr,r(y)) we deduce then
that

v(xj) ≤ θmax
Uj

v,

where 0 < θ < 1. Hence

max
{
v(x), x ∈ C(2j−1)r,r(y)

}
≤ θmax

{
v(x), x ∈ C(2j+1)r,r(y)

}
.

Iterating this estimate we obtain

max
{
v(x), x ∈ Cr,r(y)

}
≤ θb

K−1
2 cmax

{
v(x), x ∈ CKr,r(y)

}
≤ e−NK ,

which proves (2.20). It follows from (2.20) that

v ≤ αK−β in Cr,r(y) (2.21)

provided that K is large enough.
From the previous considerations it follows that

u1 =
Kβ

2α
u ≥ 0 in Cr,r/K(y)

with
u1 ≥ 1 in ∂Cr,r/K(y) ∩ Dr,r/K(y)

thanks to (2.19) and, thanks to (2.21),

v1 =
Kβ

2α
(2v − u) ≤ Kβ

α
v ≤ 1 in Cr,r/K(y),

with
v1 ≤ 0 on ∂Cr,r/K(y) ∩ Dr,r/K(y).

In particular, we have

u1 − v1 =
Kβ

α
(u− v) ≥ 0 on Cr,r(y) \ Cr,r/K(y).
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It follows that u1, v1 satisfy the same assumptions as u, v with r replaced by r/K. We
can then iterate the construction at different scales and define ui, vi such that

ui − vi =

(
Kβ

α

)i
(u− v) ≥ 0 on Cr/Ki,r/Ki(y) \ Cr/Ki,r/Ki+1(y)

i = 1, 2 . . .. We deduce then that

u− v ≥ 0 on S(y) =
⋃
i≥0

Cr/Ki,r/Ki(y) \ Cr/Ki,r/Ki+1(y).

Let x ∈ Br(y) and x̃ ∈ ∂C satisfying δ(x) = |x− x̃|. Then

CKr,r(x̃) ⊂ C(K+2)r,r(y).

Replacing K by K + 2 in the previous considerations and repeating the argument we
deduce that u ≥ v on S(x̃) that contains x. This shows that u(x) ≥ v(x) and completes
the proof of (2.17).

Proof of Theorem 1.1. Set

vl(y) =
Gye1(l + 1)−Gye1(l)

Ge1e1(l + 1)−Ge1e1(l)
, y ∈ B2l(0) ∩ C, l = 1, 2, . . . ,

where Gyx(l) is the Green function of (Sn)n∈N in B2l(0) ∩ C, l = 1, 2, . . .. It is easy to see
that the estimate

u(ξ) ≤ CeC|ξ−ζ|u(ζ), ξ, ζ ∈ C,

implies that vl satisfies

vl(y) ≤ C, y ∈ B2k(0) ∩ C, l ≥ k + 1,

with a constant C depending only on k. The diagonal process then allows us to deduce
the existence of a positive harmonic function defined globally on C and vanishing on ∂C.

As in [8] the uniqueness can be deduced by essentially the same method as in [1,
Proof of Theorem 3] and [2, Lemma 6.2].
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