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Abstract

We consider the membrane model on a box VN ⊂ Zn of size (2N + 1)n with zero
boundary condition in the subcritical dimensions n = 2 and n = 3. We show optimal
estimates for the probability that the field is positive in a subset DN of VN . In
particular we obtain for DN = VN that the probability to be positive on the entire
domain is exponentially small and the rate is of the order of the surface area Nn−1.
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1 Introduction

The membrane model is the centred Gaussian field indexed by (a subset of) Zn, n ≥ 1,
whose covariance matrix is given by the Green’s function of the discrete Bilaplacian.
It is closely related to the well-known discrete Gaussian free field, or gradient model,
whose covariance is the Green’s function of the discrete Laplacian. Both of these models
are considered to describe interfaces in the context of statistical physics. The particular
motivation for studying the membrane model stems from physical surfaces that tend to
have constant curvature, [19, 13, 22]. The two models have many features in common.

One example is that there is a critical dimension (n = 2 for the gradient model, n = 4

for the membrane model), such that the variances are unbounded in the subcritical
dimensions, logarithmically divergent in the critical dimension and bounded in the
supercritical dimensions. See e.g. [27] for a more general overview.
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Probability to be positive for the membrane model in dimensions 2 and 3

A particular feature of the gradient model is the existence of a random walk repre-
sentation, which allows relatively easy estimates on the covariances, and provides proofs
for correlation inequalities such as the FKG inequality. In the membrane model, such
a random walk representation is present only in certain special cases, see [15]. This
makes the derivation of bounds on the covariances much harder, and moreover, some
widely used correlation inequalities do not hold for the membrane model. In [20], Müller
and Schweiger obtained very precise estimates on the Green’s function of the discrete
Bilaplacian in the subcritical dimensions 2 and 3. These results in particular imply that
the membrane model is Hölder continuous, [20, 6]. Here we use the estimates to provide
bounds for the probability of the interface to be positive on certain subsets of its domain.

Such results are related to the phenomenon of entropic repulsion, which refers to
the observation that some interfaces are repelled by a hard wall to a height which is
determined by the fluctuations of the field. Mathematically speaking, this amounts to
considering the field conditional on the event of being positive on a specified part of
the domain. The field then needs to accommodate its fluctuations, so its local averages
will increase. We speak of entropic repulsion if the order by which the field increases
is strictly larger than the order of the square root of the variances of the original field,
[17, 12].

For the Gaussian gradient model entropic repulsion was proved in [3, 2, 9, 10]. For
the membrane model, entropic repulsion was shown for n ≥ 4 by Sakagawa and by
Kurt [23, 14, 15]. In dimension n = 1 the model corresponds to an integrated Gaussian
random walk, see [5]. There the probability to be positive is of order N−1/2 as was shown
by Denisov and Wachtel [8]. See also [7] for the one-sided case.

We consider here the membrane model defined on a box of side-length 2N + 1, N ∈ N,
and focus on dimensions n = 2, 3. In this case only a first result by Sakagawa [24] is
available.

1.1 Main results

Let V = [−1, 1]n and VN = NV ∩ Zn with n ∈ N+ and N ∈ N+. We consider the
Hamiltonian HN (ψ) = 1

2

∑
x∈Zn |∆ψx|2, where ∆ is the discrete Laplacian and ψ ∈ RVN

is a function on VN , extended by 0 to all of Zn. The associated Gibbs measure

PN (dψ) =
1

ZN
exp(−HN (ψ))

∏
x∈VN

dψx
∏

x∈Zn\VN

δ0( dψx) (1.1)

is then the distribution of a Gaussian random field on Zn with 0 boundary data, the
so-called membrane model. We care about the subcritical case n ∈ {2, 3}, and we are
interested in the event ΩDN ,+ = {ψ : ψx ≥ 0 ∀x ∈ DN}, where DN ⊂ VN , as well as the
behaviour of ψ conditioned on ΩDN ,+.

Our main result is the following.

Theorem 1.1. Let n = 2 or n = 3. There are constants C, c such that for all N ∈ N+,
0 ≤ L ≤ N ,

e
−C Nn−1

(L+1)n−1 ≤ PN
(
ΩVN−L,+

)
≤ e−c

Nn−1

(L+1)n−1 . (1.2)

A first result in this direction was already established by Sakagawa [24] who proved
that for every x ∈ V there is a small neighbourhood Bx such that PN (ΩNBx,+) > c for
some (universal) constant c.

Let us emphasize two important special cases of our theorem, which will help motivate
its statement. We first consider the case DN = VδN for δ ∈ (0, 1), where the hard wall
stays away from the boundary. In that case the fact that the membrane model is Hölder
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Probability to be positive for the membrane model in dimensions 2 and 3

continuous suggests that the field has a decent chance to be positive if it is uniformly
positive on a sufficiently dense set of lattice points of bounded cardinality. Thus the
probability that ψ is positive on DN = VδN should be comparable to the probability
of uniform positivity on that dense set, and hence bounded away from zero. Indeed,
Theorem 1.1 implies the following corollary.

Corollary 1.2. Let n = 2 or n = 3. For δ ∈ (0, 1) there is a constant cδ > 0 such that

cδ ≤ PN (ΩVδN ,+) ≤ 1

2
. (1.3)

When DN = VN , the situation is somewhat different. While the Hölder continuity
holds up to the boundary, the ψx for x near the boundary are only weakly correlated and
behave almost like independent random variables. This suggests that the probability to
be positive on all of VN can at best scale like e−cN

n−1

(note that the number of points
of distance 1 to the boundary is of the order Nn−1). On the other hand, if the field is
positive at all near-boundary points it gets pushed up in the interior quite a bit, and so
the probability to be positive everywhere should be of the same order.

Indeed, another particular case of Theorem 1.1 is an estimate for PN (ΩVN ,+).

Corollary 1.3. Let n = 2 or n = 3. There are constants C, c such that

e−CN
n−1

≤ PN (ΩVN ,+) ≤ e−cN
n−1

. (1.4)

We expect this result to be true for the membrane model and the gradient model
in any dimension n ≥ 2. For the gradient model a stronger result has been shown for
n ≥ 3 in [9, Theorem 4.1]. Note that the behaviour for general L ≥ 1 in Theorem 1.1 is
different for the gradient model in dimension n ≥ 3.

We give a proof of the lower and upper bound in Theorem 1.1 in Section 3 and 4,
respectively.

1.2 Implications for entropic repulsion

Corollary 1.2 has some easy implications on the behaviour of the field when condi-
tioned on ΩVδN ,+. To state them precisely we need some preparation.

We define the interpolation IN : RVN → C0,1([−1, 1]n) by INf(x) = N−
4−n
2 f(Nx) for

x ∈
(

1
NZ
)n ∩ [−1, 1]n, and interpolated piecewise affinely on simplices for other values of

x. As the proof of [6, Theorem 2.1] shows, the pushforward measures IN#PN converge
weakly in C0,α([−1, 1]n) for any α < 4−n

2 to a limit law P∞. The limit P∞ is the continuum
Bilaplace field, i.e., the centred Gaussian field whose covariance is the Green’s function
of the continuum Bilaplace operator on V . Now Corollary 1.2 implies that the laws
IN#PN still converge when one conditions on ΩVδN ,+. Indeed, if we introduce the event
Ω∗D,+ = {u ∈ C0,α([−1, 1]n) : u(x) ≥ 0 ∀x ∈ D} for D ⊂ [−1, 1]n, we have the following
result.

Corollary 1.4. Let n = 2 or n = 3, and δ ∈ (0, 1). Then IN#PN (· | ΩVδN ,+) converges

weakly in C0,α([−1, 1]n) for any α < 4−n
2 to P∞

(
·
∣∣∣Ω∗δV,+). In particular, we have

lim
N→∞

EN

(
N−

4−n
2 max

x∈VN
ψx

∣∣∣∣ΩVδN ,+) <∞. (1.5)

The corollary follows from the facts that P∞
(

Ω∗δV,+

)
is a continuous function of δ and

that Ω∞δV,+ is a continuity set for P∞ (these both follow from [1, Corollary 4.4.2]). Note
that the second point combined with the convergence of IN#PN → P∞ and Corollary

1.2 implies that P∞
(

Ω∗δV,+

)
> 0 so that the conditioned measure P∞

(
·
∣∣∣Ω∗δV,+) is

well-defined.
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Probability to be positive for the membrane model in dimensions 2 and 3

This corollary shows that there is no entropic repulsion when conditioning on ΩVδN ,+.
We conjecture that a similar result remains true if we condition on ΩVN ,+. However,

due to the fact that the probability of ΩVN ,+ is exponentially small this is a difficult
problem even in dimension one.

Conjecture 1.5. For n = 2 and n = 3 the measures IN#PN (· | ΩVN ,+) converge weakly
in C0,α([−1, 1]n) for any α < 4−n

2 to some limiting measure. In particular,

lim
N→∞

EN

(
N−

4−n
2 max

x∈VN
ψx

∣∣∣∣ΩVN ,+) <∞. (1.6)

As an analogue to this conjecture one can consider the gradient model in one di-
mension (i.e. the random walk on {−N,−N + 1, . . . , N} with i.i.d. Gaussian increments
conditioned to be zero at its endpoints). It is well-known that this model, suitably
rescaled, converges weakly in C0,α([−1, 1]) for α < 1

2 to a Brownian bridge. Moreover,
if one conditions the walk to be non-negative it converges weakly in C0([−1, 1]) to a
Brownian excursion (see [4] and the references therein). Similar results (in particular a
local limit theorem for the conditioned field) have also been shown for the membrane
model in one dimension (at least if one only considers zero boundary data on one end of
the interval), see [8].

1.3 Notation

Let e1, . . . , en be the standard basis of Rn. We use the discrete forward derivative
∇iu(x) = u(x+ei)−u(x) and the discrete backward derivative∇−iu(x) = u(x)−u(x−ei).
Then ∆u(x) =

∑n
i=∇−i∇iu(x) denotes the discrete Laplacian, and ∇u(x) = (∇iu(x))ni=1

is the discrete (forward) gradient.
We denote the L2-norm of u by ‖u‖2L2 =

∑
x∈Zn u(x)2, and the L2-scalar product by

(u, v)L2 =
∑
x∈Zn u(x)v(x).

For x ∈ Zn let dN (x) = dist∞(x,Zn \ VN ) be the distance to the boundary of VN .
For a set A we denote by |A| its cardinality.
In the following c, C and C ′ denote constants that may change from line to line, but

are always independent of N and L.

2 Preliminaries

Let us recall the relevant results that will be used in the proof of the main theorems.
Let GN be the Green’s function of ∆2 on VN with 0 boundary data outside VN , i.e.
GN (·, y) = 0 if y /∈ VN and

∆2GN (·, y) = δy in VN

GN (·, y) = 0 outside VN
(2.1)

if y ∈ VN . The Green’s function GN agrees with the covariance matrix of ψ, i.e. we have
that CovN (ψx, ψy) = GN (x, y), see also [15]. Our proofs are based on the estimates for
the Green’s function GN recently found in [20].

Theorem 2.1. Let n = 2 or n = 3. Then we have for any x, y ∈ VN

cdN (x)4−n ≤ GN (x, x) ≤ CdN (x)4−n, (2.2)

|∇xGN (x, y)| ≤ CdN (x)3−n, (2.3)

|GN (x, x)−GN (x, y)| ≤ CdN (x)3−n|x− y|∞, (2.4)

|GN (x, y)| ≤ C dN (x)2dN (y)2

(|x− y|∞ + 1)n
, (2.5)

where ∇x denotes the discrete gradient with respect to x.
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Proof. The estimates (2.2), (2.3) and (2.5) are from [20, Theorem 1.1], while (2.4) follows
from (2.3) by discrete integration along a path from x to y.

The lower bound relies on Dudley’s inequality proved in [11]. To state the inequality
we introduce the following two notions. For a Gaussian process (Xt)t∈T we define the
pseudometric dX by

dX(s, t) =
√
E(|Xs −Xt|2). (2.6)

The entropy number N (T, dX , r) is the minimal number of open balls of radius r in the
dX metric that are needed to cover T .

Theorem 2.2. Let (Xt)t∈T be a centred Gaussian process. Then

E

(
sup
t∈T

Xt

)
≤ 24

∫ ∞
0

√
lnN (T, dX , r) dr. (2.7)

Remark 2.3. The theorem is true for arbitrary sets T if one defines the supremum
appropriately, see e.g. [26]. Since we only apply it to finite index sets we do not discuss
this issue here any further.

We also use the Gaussian correlation inequality due to Royen [21] (see also [16]).

Theorem 2.4. Let ν be a centred Gaussian measure on Rm and K,L ⊂ Rm be closed,
symmetric and convex. Then

ν(K ∩ L) ≥ ν(K)ν(L). (2.8)

Finally, we recall a correlation inequality due to Li and Shao [18, Lemma 5.1] that
will be used in the proof of the upper bound.

Lemma 2.5. Let m ∈ N, and X = (X1, . . . Xm), Y = (Y1, . . . Ym) be Gaussian random
vectors with mean 0 and positive definite covariance matrices ΣX , ΣY , and let P denote
their joint measure. If ΣY ≥ ΣX (in the sense of symmetric matrices, i.e., ΣY − ΣX is
positive semidefinite) then for every Borel set F ⊂ Rm

P(Y ∈ F ) ≥
(

det ΣX
det ΣY

) 1
2

P (X ∈ F ). (2.9)

For the convenience of the reader we repeat the short proof.

Proof. Let fX , fY be the densities of X and Y . The assumption ΣY ≥ ΣX implies that
Σ−1
X ≥ Σ−1

Y and hence (x,Σ−1
X x) ≥ (x,Σ−1

Y x) for all x ∈ Rm. Therefore:

fY (x) =
1

(2π)
m
2 (det ΣY )

1
2

exp

(
−1

2
(x,Σ−1

Y x)

)

≥
(

det ΣX
det ΣY

) 1
2 1

(2π)
m
2 (det ΣX)

1
2

exp
(
− 1

2 (x,Σ−1
X x)

)
=

(
det ΣX
det ΣY

) 1
2

fX(x).

(2.10)

Then

P(Y ∈ F ) =

∫
F

fY (x) dx ≥
(

det ΣX
det ΣY

) 1
2
∫
F

fX(x) dx =

(
det ΣX
det ΣY

) 1
2

P(X ∈ F ). (2.11)
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3 Lower bounds

Let

ΩVN−L,∞ :=
{
ψ : |ψx| ≤ dN (x)

4−n
2 ∀x ∈ VN−L

}
(3.1)

be the event that ψ is uniformly small on VN−L.
If ψ was C0, 4−n2 -Hölder continuous with Hölder constant ≤ 1 with probability bounded

below uniformly in N , this event would have a positive probability uniformly in N and L.
Now ψ is only C0, 4−n2 −ε-Hölder continuous (see [20], [6]), so we cannot expect a lower
bound independent of N . Instead, we prove in Subsection 3.2 that the probability of

ΩVN−L,∞ is bounded below by e
−c Nn−1

(L+1)n−1 . Then, using a change of measure argument,
we show in Subsection 3.3 that, given f : VN → R, we have

PN (f + ΩVN−L,∞) ≥ e− 1
2‖∆f‖

2
L2PN (ΩVN−L,∞). (3.2)

Suppose now that we can find a function f such that f(x) ≥ dN (x)
4−n
2 for x ∈ VN−L and

such that ‖∆f‖2L2 ≤ C Nn−1

(L+1)n−1 . Then ΩVN−L,+ ⊃ f + ΩVN−L,∞ and thus (3.2) will imply
that

PN (ΩVN−L,+) ≥ PN (f + ΩVN−L,∞)

≥ e− 1
2‖∆f‖

2
L2PN (ΩVN−L,∞)

≥ e−C
Nn−1

(L+1)n−1PN (ΩVN−L,∞).

(3.3)

Combined with a lower bound on PN (ΩVN−L,∞) this implies the lower bound in Theorem
1.1. In Lemma 3.4 we construct an f with the desired properties.

3.1 Local smallness of the field

We first prove that locally the field is small with a positive probability. For x0 ∈ VN
and γ > 0 we define the set

Ax0,γ := {x ∈ VN : |x− x0|∞ ≤ γdN (x0)} . (3.4)

Lemma 3.1. Let n = 2 or n = 3. There is a pair of constants γ, δ > 0 with the following
property: For all x0 ∈ VN the following estimate holds

PN

(
ψ : |ψx| ≤ dN (x)

4−n
2 ∀x ∈ Ax0,γ

)
≥ δ. (3.5)

Proof. We apply Theorem 2.2 to the Gaussian process ψ distributed according to PN .
We assume γ < 1

2 so that x ∈ Ax0,γ implies

dN (x0)

2
≤ dN (x) ≤ 3dN (x0)

2
. (3.6)

Therefore we will always estimate distances to the boundary for x ∈ Ax0,γ by dN (x0) in
the following. The bound (2.4) implies

EN (ψx − ψy)2 ≤ |GN (x, x)−GN (x, y)|+ |GN (y, y)−GN (y, x)| ≤ ΘdN (x0)3−n|x− y|∞
(3.7)

for x, y ∈ Ax0,γ and some Θ > 0. Therefore we estimate the Gaussian pseudometric
defined in (2.6) by

dψ(x, y) ≤
√

ΘdN (x0)3−n|x− y|∞. (3.8)
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This implies that for r > 0 and x, y ∈ Ax0,γ such that |x− y|∞ ≤ r2

ΘdN (x0)3−n we have

dψ(x, y) ≤ r. (3.9)

In particular B∞
(
x, r2

ΘdN (x0)3−n

)
⊂ Bdψ (x, r) and therefore

N (Ax0,γ , dψ, r) ≤

⌈
γdN (x0)

r2

ΘdN (x0)3−n

⌉n
≤ 1 ∨

(
2γΘdN (x0)4−n

r2

)n
. (3.10)

Then Theorem 2.2 implies

EN

(
sup

x∈Ax0,γ
ψx

)
≤ 24

∫ √2γΘdN (x0)4−n

0

√
ln

(
2γΘdN (x0)4−n

r2

)n
dr

≤ 24dN (x0)
4−n
2

√
2γΘn

∫ 1

0

√
−2 ln r dr ≤ Λ

√
γdN (x0)

4−n
2

(3.11)

where Λ only depends on n. If we take γ = (16Λ)−2 we obtain

EN

(
sup

x∈Ax0,γ
ψx

)
≤ 1

16
dN (x0)

4−n
2 . (3.12)

Define the oscillation of a function f on a set T as usual by

oscT f = sup
T
f − inf

T
f. (3.13)

Since ψx is a centred process (3.12) implies

EN
(
oscAx0,γ ψx

)
≤ 1

8
dN (x0)

4−n
2 . (3.14)

This implies that

PN

(
oscAx0,γ ψx ≤

1
4dN (x0)

4−n
2

)
≥ 1

2
. (3.15)

Note that we have the inclusions{
ψ : |ψx| ≤ dN (x)

4−n
2 ∀x ∈ Ax0,γ

}
⊃
{
ψ : |ψx| ≤ 1

2dN (x0)
4−n
2 ∀x ∈ Ax0,γ

}
⊃
{
ψ : oscAx0,γ ψx ≤

1
4dN (x0)

4−n
2

}
∩
{
ψ : |ψx0

| ≤ 1
4dN (x0)

4−n
2

}
.

(3.16)

Now the Gaussian correlation inequality (2.8) together with (2.2) imply that

PN

({
ψ : |ψx| ≤ dN (x)

4−n
2 ∀x ∈ Ax0,γ

})
≥ 1

2
PN

(
|ψx0
| ≤ 1

4dN (x0)
4−n
2

)
≥ δ (3.17)

for some fixed δ > 0.

Remark 3.2. The use of the Gaussian correlation inequality could be avoided here: from
(3.12) and (2.2) one easily obtains

EN

(
sup

x∈Ax0,γ
|ψx|

)
≤ EN

(
sup

x∈Ax0,γ
|ψx − ψx0

|
)

+ EN (|ψx0
|) ≤ ΞdN (x0)

4−n
2 (3.18)

for some Ξ > 0 and therefore

PN

(
ψ : |ψx| ≤ 4ΞdN (x)

4−n
2 ∀x ∈ Ax0,γ

)
≥ PN

(
ψ : |ψx| ≤ 2ΞdN (x0)

4−n
2 ∀x ∈ Ax0,γ

)
≥ 1

2
.

(3.19)

We could work with this estimate instead of (3.5) by using

Ω̃VN−L,∞ :=
{
ψ : |ψx| ≤ 4ΞdN (x)

4−n
2 ∀x ∈ VN−L

}
(3.20)

instead of ΩVN−L,∞ in the following.
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3.2 Global smallness of the field

From the previous we know that on small boxes the field is small with probability
bounded away from zero. We can cover VN−L with these small boxes, and then use the
Gaussian correlation inequality to obtain a bound on the probability that the field is
globally small.

Lemma 3.3. Let n = 2 or n = 3, let ΩVN−L,∞ be as before. Then we have

PN (ΩVN−L,∞) ≥ e−C
Nn−1

(L+1)n−1 . (3.21)

Proof. Recall the definition of Ax,γ in (3.4). Fix γ such that the conclusion of Lemma 3.1
holds and use the shorter notation Ax := Ax,γ .

We want to construct a subset BN of VN such that |BN | ≤ C Nn−1

(L+1)n−1 and such that

VN−L ⊂
⋃

x∈BN

Ax. (3.22)

If we have found such a set, then the Gaussian correlation inequality (Theorem 2.4) and
Lemma 3.1 imply that

PN (ΩVN−L,∞) ≥ PN
( ⋂
x∈BN

{ψ : |ψy| < dN (y)
4−n
2 ∀y ∈ Ax}

)
≥
∏
x∈BN

PN

(
ψ : |ψy| < dN (y)

4−n
2 ∀y ∈ Ax

)
≥
∏
x∈BN

δ = δ|BN | ≥ e−C
Nn−1

(L+1)n−1 .

(3.23)

It remains to prove the existence of BN . The size of the boxes Ax depends on the
distance to the boundary, so in order to construct BN it is convenient to split VN into
the dyadic annuli WN,k = {x ∈ VN : 2k ≤ dN (x) < 2k+1} for k = 0, 1, . . . , blog2Nc. For
x ∈WN,k the cube Ax has diameter 2γdN (x) ≥ γ2k+1. Because WN,k has outer sidelength
2(N − 2k) ≤ 2N and thickness 2k, we can cover it by at most

2n

(
2

2N

γ2k+1

)n−1

2
2k

γ2k+1
≤ C Nn−1

2k(n−1)
(3.24)

cubes Ax, i.e. we find a set BN,k of at most C Nn−1

2k(n−1) points in VN such that

WN,k ⊂
⋃

x∈BN,k

Ax. (3.25)

Let k0 = blog2(L+ 1)c which implies that VN−L ⊂
⋃
k≥k0 WN,k.

Consider BN =
⋃log2N
k=k0

BN,k. Then VN−L ⊂
⋃
x∈BN Ax, and we have

|BN | ≤
blog2Nc∑
k=k0

|BN,k| ≤ C
∞∑

k=k0

Nn−1

2k(n−1)
≤ C Nn−1

2k0(n−1)
≤ C Nn−1

(L+ 1)n−1
. (3.26)

3.3 Change of measure

We can now prove the lower bound in Theorem 1.1. The idea is simple: We use
an explicit calculation with densities to prove that the probability of the event PN (f +

ΩVN−L,∞) is bounded below by e−‖∆f‖
2
L2PN (ΩVN−L,∞). Then it remains to make a good

choice of f .
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Proof of Theorem 1.1, lower bound. Let f : VN → R be a function to be specified later,
and extend it by 0 to all of Zn. We want to estimate the probability of the event
f + ΩVN−L,∞ = {f + ψ : ψ ∈ ΩVN−L,∞}. To do so, we calculate

PN (f + ΩVN−L,∞) =

∫
f+ΩVN−L,∞

1

ZN
exp

(
−1

2
‖∆ψ‖2L2

)
dψ

=

∫
ΩVN−L,∞

1

ZN
exp

(
−1

2
‖∆(f + ψ)‖2L2

)
dψ

=

∫
ΩVN−L,∞

1

ZN
exp

(
−1

2
‖∆f‖2L2 −

1

2
‖∆ψ‖2L2 − (∆f,∆ψ)L2

)
dψ.

(3.27)

Because ΩVN−L,∞ is symmetric around the origin, we can replace ψ by −ψ and obtain
that

PN (f + ΩVN−L,∞) =

∫
ΩVN−L,∞

1

ZN
exp

(
−1

2
‖∆f‖2L2 −

1

2
‖∆ψ‖2L2 + (∆f,∆ψ)L2

)
dψ.

(3.28)

If we add (3.27) and (3.28) and use the estimate et + e−t ≥ 2, we conclude

PN (f + ΩVN−L,∞) =
1

2

∫
ΩVN−L,∞

e−
1
2‖∆f‖

2
L2− 1

2‖∆ψ‖
2
L2
(
e(∆f,∆ψ)L2 + e−(∆f,∆ψ)L2

)
ZN

dψ

≥ e− 1
2‖∆f‖

2
L2

∫
ΩVN−L,∞

e−
1
2‖∆ψ‖

2
L2

ZN
dψ

= e−
1
2‖∆f‖

2
L2PN (ΩVN−L,∞).

(3.29)

Note that the conclusion in (3.29) could also be derived from (3.27) using Jensen’s
inequality.

We now choose f as in Lemma 3.4 below. Then

‖∆f‖2L2 ≤ C
Nn−1

(L+ 1)n−1
. (3.30)

Moreover this choice of f ensures that ΩVN−L,+ ⊃ f + ΩVN−L,∞, and so (3.29), (3.30) and
Lemma 3.3 imply that

PN (ΩVN−L,+) ≥ PN (f + ΩVN−L,∞) ≥ e− 1
2‖∆f‖

2
L2PN (ΩVN−L,∞)

≥ e−C
Nn−1

(L+1)n−1 e
−C Nn−1

(L+1)n−1 = e
−C′ Nn−1

(L+1)n−1 .
(3.31)

Lemma 3.4. There is a constant C > 0 such that for every N and 0 ≤ L ≤ N there is a
function f : Zn → R such that supp f ⊂ VN , f(x) ≥ dN (x)

4−n
2 for all x ∈ VN−L and

∑
x∈Zn

|∆f(x)|2 ≤ C Nn−1

(L+ 1)n−1
. (3.32)

Proof. We again use a dyadic construction. Recall WN,k = {x ∈ VN : 2k ≤ dN (x) < 2k+1}
for k = 0, 1, . . . , blog2Nc. Let in addition WN,−1 = Zn \ VN .
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2
j(4−n)

2 +1

2j 2j

N

fj+1

fj

fj−1

Figure 1: The functions fj .

Fix a smooth function η : R→ R such that η ≥ 0, η = 1 on [1,∞) and η = 0 on (−∞, 0].
For i ∈ {1, 2, . . . , n} and x ∈ Zn we introduce the distance di(x) = dist(x,Zn \ (Zi−1 ×
{−N, . . . , N} ×Zn−i)) of x to the boundary in direction xi.

For j = 0, 1, . . . blog2Nc − 1 consider the function

fj(x) = 2
j(4−n)

2 +1
n∏
i=1

η

(
di(x)

2j

)
(3.33)

(cf. Figure 1). Note that

fj(x) = 2
j(4−n)

2 +1 (3.34)

for all x ∈ VN such that dN (x) ≥ 2j . Moreover

|∆fj(x)| ≤ C2
j(4−n)

2 +1‖η′′‖L∞
1

22j
≤ C‖η′′‖L∞

2
jn
2

. (3.35)

In fact ∆fj(x) = 0 if dN (x) > 2j because fk is constant on VN−2j . We define the function

f =

blog2Nc∑
j=blog2(L+1)c

fj . (3.36)

For x ∈ VN−L let now k be such that x ∈ WN,k, and observe that blog2(L + 1)c ≤ k ≤
blog2Nc. The estimate (3.34) implies

f(x) ≥ fk(x) ≥ 2
k(4−n)

2 +1 ≥
(
2 · 2k

) 4−n
2 ≥ dN (x)

4−n
2 . (3.37)

For an arbitrary x ∈ Zn let again k ∈ {−1, 0, 1, . . .} be such that x ∈ WN,k. Then (3.35)
implies that

|∆f(x)| ≤
blog2Nc∑

j=k∨blog2(L+1)c

|∆fj | ≤
∞∑

j=k∨blog2(L+1)c

C‖η′′‖L∞
2
jn
2

≤ C ′

2
(k∨blog2(L+1)c)n

2

. (3.38)

Using that |WN,k| ≤ C2kNn−1 for k ≥ 0 and that ∆f(x) is zero on WN,−1 except
possibly on the set VN+1 \ VN of cardinality CNn−1 ≤ C ′2−1Nn−1, the previous estimate
implies that
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∑
x∈Zn

|∆f(x)|2 ≤
blog2Nc∑
k=−1

∑
x∈WN,k

|∆f(x)|2 ≤
∞∑

k=−1

C2kNn−1

2(k∨blog2(L+1)c)n

≤
blog2(L+1)c∑

k=−1

C2kNn−1

2blog2(L+1)cn +

∞∑
k=blog2(L+1)c+1

C2kNn−1

2kn

≤ C Nn−1

(L+ 1)n−1
+ C

Nn−1

(L+ 1)n−1
= C ′

Nn−1

(L+ 1)n−1
.

(3.39)

4 Upper bounds

In order to prove the upper bound in Theorem 1.1, we will find a suitably sparse
set EN,L of points at the boundary such that the random variables {ψx : x ∈ EN,L} are
almost independent in the sense that their covariance matrix is diagonally dominant. We
can then use Lemma 2.5 to compare them to actually independent random variables.
The following argument is taken from [25, Section 6.2.1].

Proof of Theorem 1.1, upper bound. Note that for N ≥ L > N
2 the upper bound is trivial.

Indeed, VN−L is nonempty and so the symmetry of the field implies PN (ΩVN−L,+) ≤ 1
2 ,

while the right hand side of (1.2) exceeds 1
2 if L > N

2 and c < 2−n. We assume L ≤ N
2

in the following. Let EN,L = VN−L ∩ ((dα(L + 1)eZ)n−1 × {N − L}) where α ≥ 1 is a
constant to be chosen later. This is a set of points on one face of [−N + L,N − L]n such
that any two points have distance at least αL. Its cardinality satisfies

|EN,L| =
(

2

⌊
N − L
dα(L+ 1)e

⌋
+ 1

)n−1

≥

(⌊
N − N

2

α(L+ 1) + 1

⌋
+ 1

)n−1

≥

(
N
2

α(L+ 1) + 1

)n−1

≥ c Nn−1

αn−1(L+ 1)n−1
.

(4.1)

Clearly dN (x) = L+ 1 for any x ∈ EN,L. Therefore according to (2.5) for x 6= y

|GN (x, y)| ≤ C (L+ 1)4

(|x− y|∞ + 1)n
≤ C (L+ 1)4

|x− y|n∞
. (4.2)

If we combine this with (2.2) we obtain for any x ∈ EN,L∑
y∈EN,L
y 6=x

|GN (x, y)|√
GN (x, x)GN (y, y)

≤ C
∑

y∈EN,L
y 6=x

(L+ 1)4

(L+ 1)4−n|x− y|n∞

= C

∞∑
j=1

|{y ∈ EN,L : |y − x|∞ = jdα(L+ 1)e}| (L+ 1)n

(jdα(L+ 1)e)n

≤ C

αn

∞∑
j=1

aj
jn

(4.3)

where aj = 2 for n = 2 and aj = 8j for n = 3. Thus
∑∞
j=1

aj
jn <∞ and hence∑

y∈EN,L
y 6=x

|GN (x, y)|√
GN (x, x)GN (y, y)

≤ C

αn
. (4.4)
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We now choose α large enough that the right hand side of (4.4) becomes less than 1
4 .

We define the Gaussian random vector (Xx)x∈EN,L by Xx = ψx√
GN (x,x)

. Let ΣX be its

covariance matrix. Then (ΣX)x,x = 1 for all x and (4.4) implies that∑
y∈EN,L
y 6=x

|(ΣX)x,y| ≤
1

4
. (4.5)

Let {Yx}x∈EN,L be i.i.d. normal variables distributed according to N
(
0, 3

2

)
and let ΣY =

3
21EN,L be their joint covariance matrix, where 1EN,L is a unit matrix indexed by EN,L.

Because of (4.5) the matrix ΣY − ΣX then satisfies

(ΣY − ΣX)x,x =
3

2
− 1 =

1

2
>

∑
y∈EN,L
y 6=x

(ΣX)x,y. (4.6)

This means that ΣY − ΣX is strictly diagonally dominant and hence positive definite.
Hence we can apply Lemma 2.5 and obtain(

1

2

)|EN,L|
= P(Y ∈ (0,∞)EN,L)

≥
(

det ΣX
det ΣY

) 1
2

P(X ∈ (0,∞)EN,L)

=

(
det ΣX
det ΣY

) 1
2

PN (ψx ≥ 0 ∀x ∈ EN,L)

≥
(

det ΣX
det ΣY

) 1
2

PN (ΩVN−L,+).

(4.7)

It remains to estimate det ΣX
det ΣY

. Since ΣY is diagonal, det ΣY =
(

3
2

)|EN,L|. On the other

hand, by (4.5) the matrix ΣX − 3
41EN,L is still diagonally dominant and hence positive

semidefinite. Hence all eigenvalues of ΣX must be at least 3
4 . Therefore det ΣX ≥(

3
4

)|EN,L|.
We conclude

PN (ΩVN−L,+) ≤
(

1

2

)|EN,L|(det ΣY
det ΣX

) 1
2

≤
(

1

2

)|EN,L|(3/2

3/4

) |EN,L|
2

=

(
1√
2

)|EN,L|
.

(4.8)

Recall that by (4.1) we have |EN,L| ≥ c Nn−1

αn−1(L+1)n−1 . Thus we finally obtain

PN (ΩVN−L,+) ≤ exp

(
−c Nn−1

(L+ 1)n−1

)
(4.9)

for c = 1
2αn−1 log 2.
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