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Abstract

We show that Internal Diffusion Limited Aggregation (IDLA) on Zd has near optimal
Cheeger constant when the growing cluster is large enough. This implies, through a
heat kernel lower bound derived previously in [11], that simple random walk evolving
independently on growing in time IDLA cluster is recurrent when d ≥ 3.
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1 Introduction

This work is concerned with proving recurrence of simple random walk on certain type
of growing clusters. Specifically, we consider the Internal Diffusion Limited Aggregation
(IDLA [14]) {Dn}n∈N on Zd, d ≥ 3 in discrete time, that is, starting from D0 = {0}
consisting of the origin, one iteratively grows the cluster by adding to Dn the first vertex
vn ∈ Zd\Dn that is hit by an independent particle injected from the origin performing
discrete-time simple random walk (SRW), and set Dn+1 = Dn ∪ {vn}, for every n ∈ N. As
such, Dn are random, finite connected vertex subsets of Zd, monotonically increasing
with |Dn| = n, where we denote by | · | the cardinality of a set. Being a canonical model of
Laplacian growth, IDLA has been much studied, cf. [9, 14, 10, 2, 3, 12, 13] and references
therein, with the well-known shape and fluctuation theorems stating, in particular, that
for each d ≥ 3, there exists finite constant a = a(d), such that almost surely for all
n = bωdrdc large enough, we have that Br−a

√
log r ⊂ Dn ⊂ Br+a√log r, where ωd denotes

the volume of a unit ball in Rd and BR = BR ∩Zd for the origin-centered Euclidean ball
BR of radius R. In this article, we view each Dn as a subgraph of Zd imposing an edge
between any two vertices of Zd-distance 1 within the cluster, and the inclusion above
holds in the sense of graphs.

Consider now an (autonomous) simple random walk {Xn}n∈N evolving independently
on {Dn}n∈N starting from X0 = 0. That is, fixing a realization ω of the IDLA cluster
{Dωn}n∈N, at each step n, Xn ∈ Dωn chooses uniformly among all vertices in Dωn having
Zd-distance 1 from it and passes to Xn+1, before domain changes from Dωn to Dωn+1.
There is at least one vertex available for Xn and at most 2d. Fixing ω, such random walk
{Xn}n∈N is a time-inhomogeneous Markov chain, albeit at perpetual non-equilibrium, but
we are interested in whether the walk is recurrent to the origin, and whether recurrence

*Courant Institute of Mathematical Sciences, USA. E-mail: rh138@nyu.edu

https://doi.org/10.1214/19-ECP233
http://www.imstat.org/ecp/
http://arXiv.org/abs/1809.11022v1
mailto:rh138@nyu.edu


Growing in time IDLA cluster is recurrent

holds for almost every realization ω of its environment. Indeed, we have studied this
problem within a more general set-up in [8], in particular showing that if one considers
a continuous-time version of IDLA {Dt}t≥0, where particles are injected from the origin
at an inhomogeneous Poisson rate, then on Zd, d ≥ 3, for a.e. ω, the (discrete-time)
SRW {Xbtc}t≥0 returns to its starting point finitely many times with probability one as
soon as

∫∞
1
|Dωt |−1dt is finite. However, it is only conjectured that for constant injection

rate of particles, namely when |Dt| grows approximately linearly, w.p.1 {Xbtc}t≥0 visits
its starting point infinitely often as

∫∞
1
|Dωt |−1dt then diverges. See Section 4 where

we revisit this problem, for details. Similarly, the latter outcome is expected for the
canonical discrete-time IDLA dynamics in which |Dn| = n. The reason for such recurrent
cases to be open is that one needs to rule out the possibility that the evolving IDLA

boundary be too rough and traps the random walk, thus delaying its return to the
bulk. This is not automatically ruled out by the limiting shape. Besides, in the time-
inhomogeneous setting one loses some robust tools such as commute time identity from
electrical networks.

It turns out that the issue can be resolved by understanding the isoperimetry property
of a typical large cluster. In a previous work [11], we give sufficient conditions for
recurrence (and transience) of SRW evolving independently on sequences of growing
subgraphs of a pre-given infinite graph, in terms of the behaviors of the Cheeger (i.e.
isoperimetric) constant of each subgraph in that sequence. When certain sufficient
condition is satisfied, see (2.6), the heat kernel of Xn at its starting point can be bounded
below by c/|Dn| at time n, for some absolute constant c > 0. This yields corresponding
lower bounds on the expected occupation time (i.e. Green’s function), upon integrating
the heat kernel. The framework includes as special case the IDLA cluster on Zd, as soon
as the cluster is large enough. In this work, we show that the isoperimetry of large IDLA

cluster is near optimal, namely it differs from the isoperimetry of a lattice ball by at most
a logarithmic correction, see Theorem 2.3, which implies recurrence of the random walk,
see Corollary 2.7. To derive the former, we rely heavily on the known limit shape and
fluctuation bounds from circularity. The relation between isoperimetry and heat kernel
or mixing time estimates on fixed graphs is well understood, cf. [4, 18, 20]. Even in
random environments such as supercritical percolation clusters, a key step in deriving
the latter estimates is to understand the precise isoperimetric inequality satisfied by the
cluster at large scales, see [5, 17, 6, 19]. Here we see something similar, though in a
dynamic setting.

2 Framework and main results

We work first in discrete time, denoting by {Dn}n∈N the growing IDLA cluster on Zd.
We recall its growth mechanism: starting at D0 = {0}, the random cluster grows by
adding one vertex per integer time, chosen by an independent particle, denoted Yn,
doing simple random walk from the origin till visiting the first vertex vn outside of cluster,
then we set Dn+1 = Dn ∪{vn}. Hence, |Dn| = n. While respecting its growth mechanism,
we omit particle Yn’s travel time and consider it settled on Zd\Dn instantaneously upon
injected, for every n ∈ N. Each Dn is then viewed as a subgraph of the lattice graph Zd,
by imposing an edge between any x, y ∈ Dn of Zd-distance 1, which we denote x ∼ y.
Further, we denote by B(v,R) = B(v,R) ∩Zd, the graph obtained from the intersection
of Zd lattice graph and an open Euclidean ball of radius R > 0 centered at v ∈ Zd, with
BR := B(0, R) in case the center is the origin.

Now, we recall the shape and fluctuation theorems for {Dn}. The formulation below
is taken from [13, Theorem 0.1], [12, Theorem 1].

Theorem 2.1 ([14, 2, 3, 12, 13]). For d ≥ 3, there exist some finite constant a = a(d)
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and integer n0 such that for all n = bωdrdc ≥ n0, we have that

P(Sn) ≥ 1− n−2, where Sn := {Br−a√log r ⊂ Dn ⊂ Br+a√log r}. (2.1)

For d = 2, the same holds with log r replacing
√

log r in Sn.

We also require some notation for general graphs. To this end, given a graph G, we
write V(G) its vertex set, and E(G) its edge set. Throughout, we write |G| for |V(G)|, for
short. We now specify a notion of vertex boundary that we extensively use.

Definition 2.2. Given a graph G, the inner vertex boundary of A ⊂ V(G) relative to G is
defined to be

∂GA := {x ∈ A : ∃y ∈ V(G)\A such that (x, y) ∈ E(G)}. (2.2)

We omit the superscript G in ∂GA in case G = Zd.

Define the Cheeger constant (aka bottleneck ratio) of a finite graph G as

Φ(G) = inf
A⊂V(G), |A|≤|G|/2

{ |∂GA|
|A|

}
. (2.3)

This quantity is a well-known gauge for the connectivity of a finite set, in particular
governing the mixing rates for reversible Markov chains on the set, see [16]. Instead
of the vertex boundary in (2.3), more commonly one uses the edge boundary (that is,
the set of all edges with one end in A, the other in V(G)\A); in our setting, they differ
by at most a factor of (2d − 1), which is unimportant for us. In the sequel, we will be
considering (2.3) for G = Dn.

In the case of lattice balls BR ⊂ Zd, it is well known that there exists some positive
constant cd, such that Φ(BR) ≥ cd|BR|−1/d for all R > 1, and such isoperimetry is
optimal for finite subgraphs of Zd. Given Theorem 2.1, it is pertinent to wonder if the
isoperimetry of lattice balls is inherited by IDLA, and the main result of this article is the
following.

Theorem 2.3. Fix d ≥ 3. There exists some positive constant c = c(d), such that P-a.s.
for all n large enough, we have that

Φ(Dn) ≥ cn−1/d(log n)−3/2. (2.4)

Remark 2.4. The result does not follow automatically from Theorem 2.1, since with
high probability |Dn\Br−a√log r| = O(n(d−1)/d

√
log n), and a-priori a cut in Dn can be as

small as consisting of only one edge. The point here is to show that randomly produced
cluster, here IDLA, is much better structured than deterministic ones under the same
shape constraints.

Nevertheless, we believe that the logarithmic correction in (2.4) should not be there.
For that reason, we do not state the result for d = 2.

Turning to the application to recurrence on {Dn} we have in mind, denote by {Xn}n∈N
a lazy SRW on {Dn} with X0 = 0. Fixing a realization ω of {Dn}, its n-th step transition
probability is defined to be

Pω(Xn+1 = y|Xn = x) =

{
(1− γωn (x)) · |{z ∈ Dωn : x ∼ z}|−1, if x ∼ y ∈ Dωn , x 6= y

γωn (x), if x = y ∈ Dωn
(2.5)

for some {γωn (x)} denoting the probabilities of staying put. In words, each step the
random walk either stays put or chooses uniformly among neighbors in its current
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cluster. Here, Pω denotes the quenched probability governing the random walk X, and
P is reserved for the randomness of {Dn}. We will add the superscript ω only when it is
helpful to emphasize the randomness of the environment. We say that {Xn} is uniformly
lazy with probability γ ∈ (0, 1), if γωn (x) ≥ γ for all ω, n and x ∈ Dωn . A special case of [11,
Proposition 1.13] in our context is the following heat kernel lower bound for {Xn} on
{Dn}, where the uniform laziness is but a technical assumption.

Proposition 2.5 ([11]). Suppose {Xn} is uniformly lazy with probability γ ∈ (0, 1), and
the following conditions on {Dn} are P-a.s. satisfied:
(i). There exist some deterministic sequence {r(n)}, and a.s. finite random variable n(ω)

such that

Dn ⊃ Br(n), ∀n ≥ n(ω)

and lim
n→∞

{ |Dn −Br(n)|
|Dn|

}
= 0.

(ii).

lim inf
n→∞

{∑n−1
j=bn/2c Φ(Dj)

2

log n

}
=∞. (2.6)

Then, there exists some positive c0 = c0(d, γ) such that P-a.s. for all n ≥ (2d − 1)n(ω),

Pω(Xn = 0) ≥ c0
|Dωn |

.

The random variable n(ω) is determined, thus condition (i) satisfied with r(n) =

(n/ωd)
1/d, by Borel-Cantelli applied to the events {Scn} of (2.1). Further, since |Dn| = n,

it follows from Theorem 2.3 that P-a.s. for all n large enough, we have

n−1∑
j=bn/2c

Φ(Dj)
2 ≥ c′n1−2/d−ε,

for some c′ > 0 and any ε ∈ (0, 1− 2/d), thereby verifying (2.6) when d ≥ 3.

We use here the a-priori weaker definition of recurrence.

Definition 2.6. We say that X is recurrent if it has infinite expected occupation time
at the origin (hence at every other point), i.e. E

[∫∞
1

1{Xt = 0}dt
]

=∞. Otherwise, it is
called transient.

Corollary 2.7. For almost every realization ω of the discrete-time IDLA cluster {Dn}n∈N
on Zd, d ≥ 3, the uniformly lazy SRW {Xn}n∈N evolving independently on {Dωn} is recurrent.

Remark 2.8. Our result does not cover d = 2, for which we conjecture recurrence. In
fact, a more general conjecture currently open asserts that any sequence of growing
subgraphs {Gn}n∈N of Z2 is recurrent for the independently evolving SRW {Xn}n∈N (2.5)
on it, see [8, Conjectures 1.10, 1.8] or [1, Conjectures 1.1, 7.1].

3 Proof

For large enough n = bωdrdc, the IDLA cluster Dn concentrates on Br with high
probability by Theorem 2.1. We thus denote

Fn := Dn\Br−a√log r

(the part of fluctuation, when such event occurs). Our main goal is to show the following.
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Proposition 3.1. Fix d ≥ 3. There exist some finite constant C? = C?(a, d) and integer
n1 such that for all n = bωdrdc ≥ n1,

P
(
∃A ⊂ V(Fn) : |A| ≥ C?|∂DnA|(log r)3/2

)
≤ 3n−2. (3.1)

That this will be sufficient for proving Theorem 2.3 is due to a deterministic fact.

Lemma 3.2. Suppose a connected subgraph G ⊂ Zd is such that G ⊃ BR for some
R > 1. Suppose there exists some positive constant c1 such that |∂GA| ≥ c1|A|(logR)−3/2

holds for any A ⊂ V(G\BR). Then, there exists another positive constant c2 = c2(c1, d)

such that |∂GA| ≥ c2|A|R−1(logR)−3/2, for any A ⊂ V(G).

Proof of Lemma 3.2. Fixing A ⊂ V(G) a vertex subset, we denote A1 = A ∩ V(BR)

and A2 = A ∩ V(BcR) such that A = A1 ] A2. We further denote Q2 := {x ∈ ∂GA2 :

∃y ∈ A1 such that x ∼ y} and Q1 := {x ∈ A1 : ∃y ∈ A2 such that x ∼ y}. Trivially
|Q2| ≤ (2d− 1)|Q1|.

Recall that by the optimal isoperimetry satisfied by lattice balls, Φ(BR) ≥ cdR−1 for
some cd > 0 and any R > 1, hence |∂BRA1| ≥ cdR

−1|A1|. Further, we can decompose
∂GA as follows (where ] denotes disjoint union)

∂GA ⊃ ∂BRA1 ] (∂GA2\Q2).

We separately discuss two cases. (a). If |A1| ≥ |A2|, then clearly we have that

|∂GA| ≥ |∂BRA1| ≥ cdR−1|A1| ≥
1

2
cdR

−1|A|.

(b). Now consider |A1| < |A2|. Since

|∂BRA1| ≥ cdR−1|A1| ≥ cdR−1|Q1| ≥ cd(2d− 1)−1R−1|Q2|,

we have that

|∂GA| ≥ |∂BRA1|+ |∂GA2\Q2| ≥ cd(2d− 1)−1R−1|Q2|+ |∂GA2\Q2|

≥ cd(2d− 1)−1R−1|∂GA2| ≥ cd(2d− 1)−1R−1c1|A2|(logR)−3/2

≥ 1

2
c1cd(2d− 1)−1|A|R−1(logR)−3/2.

Combining both cases proves the claim.

Our proof relies on partitioning a discrete sphere into subsets of comparable size and
diameter. There may be more than one way to achieve this. Here we utilize a notion of
almost regular partition of the Euclidean unit sphere Sd−1 := {x ∈ Rd : ‖x‖2 = 1}.
Lemma 3.3 ([7, Theorem 6.4.2]). For every integerM , there exists a partition {T1,T2, ...,

TM} consisting of closed subsets of Sd−1 that satisfies the following:
(i). Sd−1 = ∪Mj=1Tj and T◦i ∩ T◦j = ∅ whenever i 6= j, where T◦j denotes the interior of Tj .
(ii). σd(Tj) = M−1σd(S

d−1), for any j = 1, ...,M , where σd(·) denotes surface area
measure.
(iii). For some positive cp = cp(d), the partition norm

M
max
j=1

max
x,y∈Tj

‖x− y‖2 ≤ cpM−
1
d−1 .

Such area regular partition of Sd−1 naturally induces a partition of any discrete
sphere.
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Definition 3.4. For a discrete sphere ∂BR ⊂ Zd, R > 1, we call {T1, T2, ..., TM} its area
regular partition, if x ∈ Tj whenever x/‖x‖2 ∈ Tj , for every x ∈ ∂BR and j = 1, ...,M ,
where {T1, ...,TM} is an area regular partition of Sd−1 in the sense of Lemma 3.3.

We define the notion of a cone in Rd determined by the origin and a closed subset of
Sd−1.

Definition 3.5. We say that K = K(T) ⊂ Rd is an infinite cone determined by a closed
subset T ⊂ Sd−1 and the origin, if

K(T) := {x ∈ Rd : x/‖x‖2 ∈ T}.

We then define the notion of a cell which is the intersection of a cone and an annulus
in Rd.

Definition 3.6. We say that C = C(A,T) ⊂ Rd is a cell determined by an annulus
A = A(R,R′) := BR\BR′ , where R > R′, and a closed subset T ⊂ Sd−1, if C = A ∩ K
where K = K(T) is the infinite cone determined by T and the origin in the sense of
Definition 3.5.

We also need a lemma for a specific hitting probability of (ordinary) SRW on Zd. We
defer its proof to the end of the section.

Lemma 3.7. Fix d ≥ 3. Let C ⊂ Rd be a cell determined by the annulus A(R+δ
√

logR,R)

and a closed subset T ⊂ Sn−1 with maxx,y∈T ‖x− y‖2 ≤ cp/R, as in Definition 3.6, where
R, δ, cp > 1. We further denote C = C ∩ Zd the discrete cell, and Y a SRW on Zd. Then,
there exist finite constants R1 = R1(d) and C ′ = C ′(d, δ, cp) such that for any R > R1,

P0(Y hits C before BcR+δ
√
logR) ≤ C ′ logR

Rd−1
, (3.2)

where Pv indicates the law of Y when starting from v ∈ Zd.
We now prove the main proposition.

Proof of Proposition 3.1. For brevity, we write

n′ := bωd(r − 2a
√

log r)dc.

First note that, under the event Sn′ (see (2.1)) we have Fn∩Dn′ = ∅ andDn′ ⊃ Br−3a√log r.
Further, since Sn′ depends only on the first n′ injected particles, conditioning on Sn′
does not alter the independence of subsequent particles injections.

By Lemma 3.3 and Definition 3.4, there exists an area regular partition {T1, ...,TM}
of Sd−1 with M = M(n) := bc′rd−1c for any c′ > 0 chosen fixed, and its induced partition
{T1, ..., TM} of ∂Br−3a

√
log r such that ‖x−y‖2 ≤ cp for some finite constant cp = cp(d, c

′) >

1 and any x, y ∈ Tj , j = 1, ...,M . Each partition block Tj , j = 1, ...,M and the annulus
A(r + a

√
log r, r − 3a

√
log r) determines a cell Cj = Cj(A,Tj) in the sense of Definition

3.6. We then denote the discrete cells Cj := Cj ∩Zd, j = 1, ...,M .
Let us focus on each fixed cell Cj , j ∈ {1, ...,M}. We compute the probability that the

m-th particle Ym, m ∈ [n′, n], upon being injected from the origin, hits Cj before Dcm\Cj ,
conditional on Sn′ . To this end, we define the events

E(j)
m := {Ym hits Cj before Dcm\Cj}, n′ < m ≤ n, j ∈ {1, ..,M}. (3.3)

For each m ∈ [n′, n], on the same probability space (Ω,F ,P) we define Y EXT
m to be a SRW

evolving on Zd obtained by continuing to run the IDLA particle Ym even after it has exited
Dm (and hence settled). Since Dm ⊂ Dn and Dcm\Cj ⊃ Bcr+a√log r

, for n′ < m ≤ n, we
have the following inclusion of events

E(j)
m ∩ {Dn ⊂ Br+a√log r} ⊂ Ẽ(j)

m ∩ {Dm ⊂ Br+a√log r} ⊂ Ẽ(j)
m , (3.4)
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where

Ẽ(j)
m := {Y EXT

m hits Cj before Bcr+a
√
log r}, n′ < m ≤ n, j ∈ {1, ...,M}.

By Lemma 3.7, there exists some finite constant C ′ = C ′(d, a, cp) such that for any
n′ < m ≤ n and j ∈ {1, ...,M},

P(Ẽ(j)
m ∩ {Dn ⊂ Br+a√log r} | Sn′) ≤ P(Ẽ(j)

m | Sn′) ≤ C ′
log r

rd−1
. (3.5)

Since the particles trajectories {Ym : n′ < m ≤ n} are independent prior to settling,

in view of (3.4), for each fixed j ∈ {1, ...,M}, the events {E(j)
m ∩ {Dn ⊂ Br+a

√
log r} :

n′ < m ≤ n} (when conditioned on Sn′) are stochastically dominated from above by a
sequence of independent Bernoulli’s with success probability at most the RHS of (3.5).
Since also n−n′ = c∗(d, a)rd−1

√
log r for some explicit constant c∗(d, a) ∈ (0,∞), we have

by Chernoff bound

P
[{ n∑

m=n′+1

1{E(j)
m } ≥ 2C ′c?(log r)3/2

}
∩ {Dn ⊂ Br+a√log r} | Sn′

]
≤ e−C

′c?(log r)
3/2

. (3.6)

Since A ⊂ V(Fn) and Fn ∩ Dn′ = ∅, the particle Yk that eventually settles on some
x ∈ A must have index n′ < k = k(x) ≤ n. Further, since ∂DnA is a vertex-cutset that
separates A from the origin, such Yk must pass through ∂DnA at least once before
settling on x ∈ A. Let us denote by v = v(x) the first vertex in ∂DnA that Yk hits, before
settling at x. Since v ∈ V(Fn), it belongs to some cell Cj(v), where j(v) ∈ {1, ...,M}.
Consequently, such Yk in order to settle on x ∈ A must hit Cj(v) before Dck\Cj(v) (since
otherwise Yk already settles on the first vertex it encounters in Dck\Cj(v) and will not hit
v hence will not settle on x).

With A ⊂ V(Fn), ∂DnA cannot intersect more than 2|∂DnA|∧M number of cells, as the
cells are vertex-disjoint except possibly at their boundaries. Further, every x ∈ A is set-
tled by some particle Yk(x). Thus, the event {∃A ⊂ V(Fn) : |A| ≥ 4C ′c?|∂DnA|(log r)3/2}
implies, by pigeonhole principle, that there exists at least one cell, say Cj∗, for which

the event {
∑n
m=n′+1 1{E

(j∗)
m } ≥ 2C ′c?(log r)3/2} occurs. Due to in total M = bc′rd−1c

number of cells, we obtain by (3.6) and union bound that

P
(
{∃A ⊂ V(Fn) : |A| ≥ 4C ′c?|∂DnA|(log r)3/2} ∩ {Dn ⊂ Br+a√log r} | Sn′

)
= P

({
∃j∗ ∈ {1, ..,M} :

n∑
m=n′+1

1{E(j∗)
m } ≥ 2C ′c?(log r)3/2

}
∩ {Dn ⊂ Br+a√log r} | Sn′

)

≤
M∑
j=1

P
[{ n∑

m=n′+1

1{E(j)
m } ≥ 2C ′c?(log r)3/2

}
∩ {Dn ⊂ Br+a√log r} | Sn′

]
≤ c′rd−1e−C

′c∗(log r)
3/2

.

Noticing that {Dn ⊂ Br+a√log r}c ⊂ Scn, we can further bound

P(∃A ⊂ V(Fn) : |A| ≥ 4C ′c?|∂DnA|(log r)3/2)

≤ P(Scn′ ∪ Scn) + P
(
{∃A ⊂ Fn : |A| ≥ 4C ′c?|∂DnA|(log r)3/2} ∩ {Dn ⊂ Br+a√log r} | Sn′

)
.

Upon taking n large enough such that n′ ≥ n0, by Theorem 2.1 we have that

P(∃A ⊂ V(Fn) : |A| ≥ 4C ′c?|∂DnA|(log r)3/2) ≤ 2n−2 + c′rd−1e−C
′c∗(log r)

3/2

.

which can be made smaller than 3n−2 upon taking n ≥ n1 for some large enough n1.
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Proof of Theorem 2.3. By Proposition 3.1 and Theorem 2.1, there exist positive constant
c1 = c1(a, d) = 1/C? and finite integer n1, such that for all n = bωdrdc ≥ n1,

P
({
∀A ⊂ V(Fn) : |∂DnA| ≥ c1|A|(log r)−3/2

}
∩ Sn

)
≥ 1− 4n−2.

Combining with Lemma 3.2, there exists another positive constant c2 = c2(c1, d) such
that

P
(
∀A ⊂ V(Dn) : |∂DnA| ≥ c2|A|r−1(log r)−3/2

)
≥ 1− 4n−2.

By Borel-Cantelli, the LHS event occurs a.s. for all large enough n, namely (2.4) holds.

We are left to prove Lemma 3.7. First, we clarify some additional notations. Since we
work here with SRW Y on Zd, without incurring ambiguity we identity any subgraph with
its vertex set. Further, we denote by τ(A) and HA(·, ·), respectively, the first exit time
(discounting time 0) and exit distribution of A ⊂ Zd by a SRW:

τ(A) := inf{k ≥ 1 : Yk ∈ Ac}, HA(x, y) := P(Yτ(A) = y|Y0 = x).

Recall that Green’s function on Zd, d ≥ 3, is harmonic except at the origin, and satisfies
the asymptotics as ‖x‖2 →∞

G(x) = Ex

[ ∞∑
k=0

1{Yk = 0}
]

= Cd‖x‖2−d2 +O(‖x‖1−d2 ), where Cd :=
2

(d− 2)ωd
. (3.7)

One also defines Green’s function restricted to A ⊂ Zd as the symmetric function

GA(x, y) = Ex

[ τ(A)−1∑
k=0

1{Yk = y}
]
.

Proof of Lemma 3.7. The proof is similar to [15, Lemma 6.3.7]. By scaling relations, the
property of T ⊂ Sd−1 transfers to the fact that any two vertices on the lower base of the
discrete cell C (on ∂BR) satisfies ‖x− y‖2 ≤ cp. In particular, the lower base of the cell is
contained in a spherical cap of radius cp on ∂BR. Denoting K := BR+δ

√
logR\C, we have

that BR ⊂ K ⊂ BR+δ
√
logR.

It is a consequence of last exit decomposition, see [15, Lemma 6.3.6], that for any
x ∈ ∂(Kc), i.e. the outer vertex boundary of K,

HK(0, x) =
∑

z∈BR/2

GK(z,0)Px(Yτ(K\BR/2) = z) =
∑

z∈∂BR/2

GK(z,0)Px(Yτ(K\BR/2) = z).

(3.8)

Uniformly for all z ∈ ∂BR/2, by [15, Proposition 6.3.5] we have that

GK(z,0) ≤ GBR+δ
√

logR
(z,0) ≤ Cd

[
(R/2)2−d − (R+ δ

√
logR)2−d

]
+O(R1−d)

≤ Cd2
d−1R2−d.

The first inequality is due to both vertices 0, z ∈ K ⊂ BR+δ
√
logR, and the last inequality

holds provided we take R > R1 for some large enough R1 = R1(d). Further, for any
x ∈ ∂(Kc), ∑

z∈∂BR/2

Px(YτK\BR/2 = z) = Px(Y hits BR/2 before Kc)

≤ max
y∈∂BR

{
Py(Y hits BR/2 before Kc)

}
,
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since starting from Kc, in order to hit BR/2, Y must first pass through ∂BR. Since
{G(Yk)}k∈N is a martingale provided Y is bounded away from 0, by optional stopping
theorem and (3.7), the latter probability is bounded by

max
y∈∂BR

{
Py(Y hits BR/2 before BcR+δ

√
logR)

}
≤ 2

R2−d − (R+ δ
√

logR)2−d

(R/2)2−d − (R+ δ logR)2−d

≤ 2d−1(d− 2)δ
√

logR/R,

when R > R1, upon increasing R1 if necessary. Plugging these estimates into (3.8),
uniformly for all x ∈ ∂(Kc), we have that HK(0, x) ≤ Cd4

d−1(d− 2)δR1−d√logR.

Now, since ∂C ⊂ ∂(Kc), the LHS of (3.2) is the same as
∑
x∈∂CHK(0, x). The cardinality

of ∂C is at most c(d)cd−1p δ
√

logR for some dimensional constant c(d). We thus get the
desired bound of the form C ′R1−d logR for some C ′ = C ′(d, δ, cp) finite.

4 Extensions to continous-time IDLA

We consider simple random walk {Xbtc}t≥0 (2.5) evolving independently on a contin-
uous-time analogue of IDLA {Dt}t≥0 on Zd, d ≥ 3, formed by particles injected from
the origin at an inhomogeneous Poisson rate λ(t) > 0. As a result, one can achieve
quite general growth rate for the cluster by tuning the particles injection rate. Such
continuous-time extension of the classical model appears e.g. in [14, 10].

More specifically, let {N(t)}t≥0 be an inhomogeneous Poisson process with mean

m(t) :=
∫ t
0
λ(s)ds, satisfying suitable conditions as specified in (4.1). Similarly to the

discrete-time case, starting at D0 = {0}, at each Poisson arrival time, a particle is
injected from the origin, performing SRW until settling on the first unoccupied vertex, and
then that vertex is added to the cluster. Clearly, by time t, a total of N(t) particles have
been injected. We still omit the travel time of the particles and consider them settled
instantaneously, therefore |Dt| = N(t). Given {Dt}t≥0 we perform (lazy) SRW {Xbtc}t≥0
independently on the cluster, jumping at integer times, as specified in (2.5) with n = btc.

(This omission of particles travel time is inconsequential when d ≥ 3, as explained
already in [14, Section 6] and [10]. That is, our conclusions are unaltered if we allow
particles to move simultaneously with each other and with the autonomous random walk
X. When d = 2, there is indeed a difference between the two formalisms.)

Since both Theorem 2.1 and Theorem 2.3 are properties of fixed large cluster, ir-
respective of whether the IDLA emission is time-continuous or discrete, we have the
following result.

Corollary 4.1. Fix d ≥ 3. Assume that there exist some constants 0 ≤ α < d/2 and β > 0,
such that the following hold for all t large enough

β log t ≤ m(t) ≤ tα. (4.1)

Then, for almost every realization ω of the continuous-time IDLA cluster {Dt}t≥0 on
Zd, the uniformly lazy SRW {Xbtc}t≥0 evolving independently on {Dωt }t≥0 is recurrent as
soon as

∫∞
1
|Dωt |−1dt = ∞. Further, X is recurrent for a.e. realization ω as soon as∫∞

1
m(t)−1dt =∞.

Remark 4.2. Transience under
∫∞
1
m(t)−1dt <∞ is proved in [8, Corollary 1.6, Remark

1.7] for the a-priori weaker definition of transience as “almost surely finitely many
returns” (instead of finite expected occupation time). The method used is different from
this article.

Proof of Corollary 4.1. Since N(t) is Poisson distributed with mean m(t) =
∫ t
0
λ(s)ds, for
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any η > 0 and all t > 1 we have that

P (N(t) > (1 + η)m(t)) ≤ exp
{
− η2m(t)

2(1 + η)

}
≤ exp

{
− βη2 log t

2(1 + η)

}
. (4.2)

Given β > 0, there exists η = ηβ < ∞ so that βη2/(2(1 + η)) > 1, which ensures that
RHS of (4.2) is summable and P-a.s. the LHS events of (4.2) at integer times btc occurs
only finitely often, by Borel-Cantelli. Since m(t) → ∞ as t → ∞, the condition (i)
of Proposition 2.5 is satisfied when t is large enough, hence to apply that result it
remains to verify again condition (ii) therein. Since a.e. ω, for all btc large enough
|Dωbtc| = Nω(btc) ≤ (1 + ηβ)m(btc), by Theorem 2.3 and (4.1) we have that

btc−1∑
k=bt/2c

Φω(Dk)2 ≥
btc−1∑
k=bt/2c

Nω(k)−2/d(logNω(k))−3/2

≥ c(d, β)

btc−1∑
k=bt/2c

m(k)−2/d(logm(k))−3/2 ≥ c(d, β, α)

btc−1∑
k=bt/2c

k−2α/d(log k)−3/2,

where the constant changes from line to line. With 0 ≤ α < d/2, there exists ε = ε(d, α) >

0 such that 1− 2α/d− ε > 0 and thus

btc−1∑
k=bt/2c

Φω(Dk)2 ≥ c(d, β, α)t1−2α/d−ε � log t.

Therefore, Proposition 2.5 applies to give for some c0 = c0(d, γ) > 0, a.e. ω, and all t
sufficiently large

Pω(Xt = 0) ≥ c0
|Dωbtc|

≥ c0
(1 + ηβ)m(btc)

≥ c0
(1 + ηβ)m(t)

.

This immediately implies the results.
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