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Abstract

We give a new expression for the law of the eigenvalues of the discrete Anderson
model on the finite interval [1, N ], in terms of two random processes starting at both
ends of the interval. Using this formula, we deduce that the tail of the eigenvectors
behaves approximately like exp(σB|n−k| − γ |n−k|

4
) where γ, σ > 0, Bs is the Brownian

motion and k is uniformly chosen in [1, N ] independently of Bs. A similar result has
recently been shown by B. Rifkind and B. Virag in the critical case, that is, when the
random potential is multiplied by a factor 1√

N
.
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1 Introduction

We are interested in the one dimensional discrete Anderson model on a finite domain
[1, N ]. This model is very classical and has been studied extensively since the 70s. See
for example the monograph of Carmona Lacroix [3]. Compared to higher dimensions, it
can be considered as a solved problem. However new approaches can always shed new
light on this famous system.

The usual approach to tackle this system is the transfer matrix framework. The
eigenvectors of the random Schrodinger operator satisfy a recursive relation of order 2,
un+2 = (Vn+1 − λ)un+1 − un, which can be written in a matrix form. Using this relation,
one can construct an eigenvector on [1, N ] from the product of the transfer matrices
applied to the boundary values. The advantage of such a formulation is that one can
then use the very powerful results for random matrices product and from ergodic theory
such as the Oseledets theorem.

In the historical approach of Kunz and Souillard [8] or in the proof from the book
[4] (section 9.5, page 191) a change of variables is used to deal with the conditional
probability of the potential V with a fixed eigenvalue λ. In this short note, we propose
another calculation of this conditional probability. We define a random variable k whose
random law is close to the uniform law on [1, N ]. This variable splits the interval [1, N ]

into two parts [1, k] and [k,N ]. On the left part, the matrices product is made from left to
right. On the right part, the matrices product is made from right to left. And far from
the cut, the laws of the matrices are very close to be independent.
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Forward-backward for 1D Anderson operators

The main interest of our approach is that the connection with the theorems for
products of random matrices is more transparent in this setup. From this formula we
can recover several known results. Relying on the positivity of Lyapunov exponent, the
formula can be used as a new proof of exponential Anderson localization of eigenvectors
where the center of localization is uniformly distributed on [1, N ]. Moreover, because it
gives a explicit random law we can go beyond the exponential decay of the eigenvectors
far from the center of localization and give an explicit law for their tail.

In the first section, we detail the model and we state our result. Then we give some
applications of our theorem in the second section. In particular, we write an asymptotic
result similar to the result of Rifkind and Virag in [10]. In section 3, we finally give the
proof of the theorem.

2 Model and main result

We consider the one dimensional Anderson model [1] defined on L2([1, N ] ∩ Z,R)

through the operator.

H(N) = −∆(N) + V (N)
ω .

Here V (N)
ω is a random potential

V (N)
ω (x, y) =

{
vk if x = y = k

0 otherwise

for x, y ∈ [1, N ] ∩Z where (vk)k∈[1,N ]∩Z are iid random variables and

∆(N)(x, y) =

{
1 if |x− y| = 1

0 otherwise

for x, y ∈ [1, N ] ∩Z is the discrete Laplacian. Hence H(N) is just the N ×N symmetric
matrix

H(N) =



v1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

−1 vn


.

We make the following assumption:

(H1) The random law of the (vk) is absolutely continuous with respect to the Lebesgue
measure.

2.1 Transfer matrices

The transfer matrices have been one of the main tools to study the 1D Anderson
model. One is interested in the eigenvectors, identified by (H(N)u)n = λun, which satisfy
the recurrence relation

∀n ∈ [1, N ], −un+1 + (vn − λ)un − un−1 = 0 (2.1)

with convention that u0 = uN+1 = 0. This can be written with transfer matrices(
un+1

un

)
= T (vn − λ)

(
un
un−1

)
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Forward-backward for 1D Anderson operators

where

T (x) =

(
x −1

1 0

)
.

We can then write the matrix product (from right to left)

Mn(λ) =

n∏
k=1

T (vk − λ)

(by convention M0(λ) = I2 we will also use the shorter notation Tλ(vk) := T (vk − λ)) and
we have (

un+1

un

)
= Mn(λ)

(
1

0

)
.

The parameter λ is an eigenvalue if and only if there exists c ∈ R such that

MN (λ)

(
1

0

)
=

(
0

c

)
,

the condition uN+1 = 0 is then satisfied. It will be convenient to denote the vector(
un+1

un

)
as a complex number in the fashion

un+1 + iun = zn = rne
iφn

where rn ∈ R+ and φn ∈ R/2πZ. We also introduce the lifting of φk, which we denote by
θk. This is just a discrete version of the continuous lifting from R/2πZ to R. It is defined
recursively by

θk =

{
θ0 = 0

φk[2π] ∀k ∈ [1, N ]

and

θk −
π

2
≤ θk+1 < θk +

3π

2
.

It can be seen that φk+1 does not depend on rk but only on φk and Tλ(vk). Therefore,
for simplicity of notation, we use the same notation Tλ for the (non linear) function
Tλ(vk) : R/2πZ→ R/2πZ:

φk+1 = Tλ(vk)φk.

Note that it is possible to recover rk from φ0, φ1, ..., φN with the formula

rk+1

rk
=
rk+1

uk+1

uk+1

rk
=

cosφk
sinφk+1

.

For this reason, in the rest of the paper we focus mostly on (φk)k=0,...,N . We note F(λ) =

(φk)k=0,...,N which has been constructed from the recursive formula φk+1 = Tλ(vk)φk
and φ0 = 0. And for λ an eigenvalue, we note Ph(λ) = (φk)k=0,...,N the phase of the
corresponding eigenvector. Note that it is equal to F(λ) with the condition φN = π

2 [π]

2.2 Forward and backward process

In this subsection, we define two natural random laws on the chain X = (φk)k=0,..,N .
The first one is the Markov chain starting from φ0 with an initial law µf defined on S1

and transition law φk → φk+1 = Tλ(vk)φk with an random measure ν for vk. We call it the
forward process. The second one is the Markov chain starting from φN with an initial
law µb and transition law φk → φk−1 = T−1λ (vk−1)φk with a random measure ν for vk and
we call it the backward process. Then we introduce a cut in [1, N ], and we can define the
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Forward-backward for 1D Anderson operators

random law product between these two processes which we call the Forward-backward
process.

For a proper definition we use test functions on RN+1 which are bounded and
continuous.

Definition 1 (Forward and backward processes).

• The forward process. Let Pf be the probability on RN+1 defined by

P(λ)
f (F ) =

∫
· · ·
∫
dµf (φ0)dν(v1) · · · dν(vN )F (X)

for any test function F .

• The backward process. Let P(λ)
b be the probability on RN+1 defined by

P(λ)
b (F ) =

∫
· · ·
∫
dν(v1)...dν(vN )dµb(φN )F (X)

for any test function F .

Remark 2. If we introduce ξ0,n : φ0 → φfn =
∏n−1
k=0 Tλ(vk)φ0 and if for almost surely any

v1, v2, ..., vn, µb and the push measure ξ(µf ) are equivalent measures then remark that
for any F :

P(λ)
b (F ) =

∫
· · ·
∫
dν(v1)...dν(vn)dµf (X0)

dµb(Xn)

dξ(µf (X0))

∣∣
v1,...,vn

F (X)

= P(λ)
f

(
F

dµb(XN )

dξ(µf (X0))

∣∣
v1,...,vn

)
.

Definition 3 (Forward-backward process). For k ∈ [1, N ], we define P(λ)
f,0..k ⊗ P

(λ)
b,k,...,N a

forward process for Xf = φf0 , φ
f
1 ..., φ

f
k with φf0 = 0, (µf = δ0) and a backward process for

Xb = φbN , φ
b
N−1..., φ

b
k, with φbN = π

2 (µb = δπ
2
) which are independent from each other.

2.3 Results

We are now ready to state the main theorem of our paper.

Theorem 4 (Law of the spectrum of the 1D Anderson model). For any test function
G(λ,X), we have

E
[ ∑
λ∈σ(H(N)),X=P(λ)h(λ)

G(λ,X)
]

=

∫
R

dλ

N∑
k=1

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[
G(λ,X)δφfk−φbk[π]

sin2(φfk)
]

(2.2)

that we can rewrite

E
[ 1

N

∑
λ∈σ(H(N)),X=Ph(λ)

G(λ,X)
]

=

∫
R

ρ(λ)1ρ(λ)>0

(
1

N

N∑
k=1

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[
G(λ,X)

δφfk−φbk[π]
sin2(φfk)

ρ(λ)

])
dλ (2.3)

with ρ(λ) the density of state.
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Forward-backward for 1D Anderson operators

Recall that Ph(λ) is the phase of the eigenvector corresponding of the eigenvalue λ.
This formula is to be understood as follow. One chooses k randomly in [1, N ] which

splits the segment into two parts [1, k] and [k,N ]. On the left, we obtain a forward
process, on the right, we obtain a backward process. The choice of k is not exactly
uniform on [1, N ] because of the condition δφfk−φbk

sin2(φfk). However, for large N , and for

any k ≤ N not too close to 1 or N , the laws of φfk and φbk are very close to their invariant
measure under action of Tλ and then do not depend of k. Therefore the law of k becomes
close to the uniform.

There is still a dependence between the two processes at the connection between
the forward and backward processes. However, because of the mixing properties of the
matrix product, the correlations decay exponentially fast outside of the cut k.

We recall that a stationary process Xk is called (αn)n∈N− mixing if

∀k,max
A,B
|P(Xk ∈ A,Xk+n ∈ B)− P(Xk ∈ A)P(Xk+n ∈ B)| ≤ αn

The following is a well known result

Proposition 5. There exists a constant C > 0 and 0 < κ < 1 such that the process φk is
(Cκn)n∈N-mixing.

For a proof, see [3] proposition IV.3.12.

3 Applications

We present here three applications of our result. The first one is a formula for
the integrated density of states. The second one is about the form of the tails of the
eigenvectors. We then finish with a temperature profile from [5].

3.1 A formula for the integrated density of states

The following equality can be found as well in [3] (Proposition VIII.3.10 and Problem
VIII.6.8).

Proposition 6. For λ ∈ R, let µλ(dφ) = ρλ(φ)dφ be the Tλ-invariant measure on R/Z.
The density of states

dN(λ) = lim
N→∞

1

N
#{σ(H(N)) ∩ [λ, λ+ dλ]}

is given by
dN(λ)

dλ
=

∫
R/2πZ

sin2(φ)ρλ(φ)ρλ

(π
2
− φ

)
dφ.

Proof. We apply Theorem 4, and we choose G(s,X) = G(s) (that does not depend on X)
as an approximation of 1s∈[λ,λ+dλ]. Then

1

N
E
[ ∑
λ∈σ(H(N))

G(λ)
]

=

∫
G(λ)dλ

1

N

∑
k

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[δφfk−φbk[π]
sin2(φfk)]

=

∫
G(λ)dλ

1

N

∑
k

∫
ρk,λ(φ)ρ̃N−k,λ(φ) sin2(φ)dφ

where ρk,λ is the probability density of the angles of Mk(λ)

(
1

0

)
and ρ̃N−k,λ is the

probability density of the angles of

M̃N−k

(
0

1

)
:=

N∏
i=k+1

T−1λ (vi)(λ)

(
0

1

)
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Forward-backward for 1D Anderson operators

(here the product is made from left to right). Because T−1λ (vi) =

(
0 1

−1 vi

)
we have that

(
0 1

1 0

)
M̃N−k

(
0

1

)
=

(
0 1

1 0

)
T−1λ (vk+1)

(
0 1

1 0

)2

T−1λ (vk+2) · · ·
(

0 1

1 0

)2(
0

1

)

has the same law as MN−k

(
1

0

)
and in particular ρ̃N−k,λ(φ) = ρN−k,λ(π2 − φ).

We can then conclude using that ρk,λ → ρλ and ρN−k,λ → ρλ when k → ∞ and
N − k →∞.

3.2 Brownian and drift for the eigenvectors

It is well known since the work of Carmona-Klein-Martinelli [2], Goldsheild-Molcha-
nov-Pastur [7] and Kunz-Souillard [8] that the eigenvectors are localized and decay
exponentially from the center of localization. An exact form of the eigenvectors has been
recently proven in the critical case where V is replaced by V√

N
in [10]. There Rifkind

and Virag proved that the eigenvectors in the bulk have the form eσ
B|t−u|

2 −γ|t−u|. We
claim using our formula of Theorem 4 that a similar result is universal for the tails of the
eigenvector in the non critical case.

For the reader’s convenience we recall the heuristic of the following classical results.
One can write any product of random matrices MN =

∏N
i=1 Ti as

log(‖MN‖) = log
( N∏
i=1

‖Mi‖
‖Mi−1‖

)
=

N∑
i=1

log
(
‖Ti
( Mi−1

‖Mi−1‖
)
‖
)

In the case when Ti are iid and there are some strong mixing property on Mi−1

‖Mi−1‖ , the

terms Yi = log
(
‖Ti
( Mi−1

‖Mi−1‖
)
‖
)

should behave like iid random variables. One can then

prove the strong law of large number, the central limit theorem, and Donsker theorem.
See the paper of Le Page [9] for this matter. One therefore defines a “mean”, a “variance”
and a “random walk” as follows.

• The Lyapunov exponent is

γ(λ) := lim
N→∞

1

N
E
[

log ‖MN (λ)‖
]
.

• The limit variance is

σ2(λ) = lim
N→∞

1

N
E
[
(log ‖MN (λ)‖ − γ(λ)N)2

]
.

• The “Random Walk” is

Sn =
1

σ(λ)

(
log ‖Mn(λ)‖ − γ(λ)n

)
,

and

WN (t) =
1√
N
SbNtc.

Finally, we denote by W the Wiener measure.

Theorem 7 (Limit theorem for products of random matrices). We have the following:

• There exists γ(λ) > 0 such that limN→∞
1
N log ‖MN (λ)‖ = γ(λ), almost surely,
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Forward-backward for 1D Anderson operators

• σ2(λ) > 0,
• WN →W in law.

We refer to [9, Theorems 2 and 3] for the proof of Theorem 7.
We recover then the form of a Brownian with drift, both on the right hand side and

the left hand side of the cut. For λ an eigenvalue, and rke
iφk constructed from the

corresponding eigenvector, we note qλk = log(rk). For scaling, we set qλ(s) =
qλbNsc
N

Proposition 8 (Tail of eigenvectors).

1) Choosing λ(N) uniformly in σ(H(N)), we have the following convergence in law

(λ(N),
qλ

(N)

bNsc

N
)→ (λ̃,−|γ(λ̃)(s− x)|)

when N →∞, where λ̃ is a random variable with law the limiting density of state ρ
and x an independent variable on [0, 1] with uniform law.

2) There exists a sequence of random variables {x(N)} with uniform law on [0, 1] such
that

(λ(N),
qλ

(N)

bNsc +Nγ(λN )|s− x(N)|
√
N

→ (λ̃, σ(λ̃)Ws−x)

when N →∞, where W is the Wiener measure.

The first statement is the very classical result of Anderson localization for the one di-
mensional model. The eigenvectors decay exponentially from their center of localization
and this center is chosen uniformly on the domain. The second statement says that the
typical deviation from the decay is the exponential of a Brownian (see Figure 1 for an
ilustration).

Rifkind and Virag [10] studied the eigenvectors in the bulk of the one dimensional
Anderson model in the continuous case where the potential is a white noise. It is the
limit of the discrete model in the called critical regime where the potential is scaled
like V (N)

ω = 1√
N
Vω. In this regime, we are not able to speak of localization because the

length of the decay is as large as the size of the domain. However they prove the exact
law of the form of the eigenvectors

qλ(s) = −|γ(λ)(s− x)|+ σ(λ)Ws−x

To make the connection with our previous proposition, one can actually show that for
Vω = εvω, with E(v2ω) = σ2, in the limit ε→ 0 and |λ| < 2, we have

γ(λ) =
σ2

4− λ2
ε2 + o(ε2)

and
σ(λ)2

2
=

σ2

4− λ2
ε2 + o(ε2).

Proof of Proposition 8. If in our formula (2.3) the term δφfk−φbk
were not there, then the

forward and the backward process would have been completely independent. Our
proposition would have then followed from Theorem 7, under the conditions that rk
obtained by the forward process and the rk obtained by the backward process are the
same. And that the normalization

∑N
n=1 |un|2 = 1 which is replaced at the limit by

sup qλ(s) = 0.
Therefore we only have to check that the little perturbation around the cut k has

no influence. We fix φ. Conditionally on φbk = φ and φfk = φ the F-B processes are
independent. The results of Theorem 7 are true asymptotically with probability 1.
Therefore for any φ in a set of full Lebesgue measure on S1 the results of Theorem 7 are
true conditionally of φbk = φ and φfk = φ.
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Forward-backward for 1D Anderson operators

Figure 1: A realization of log ‖Mn(λ)‖ for N = 1000, vω uniform on [0, 1] with Dirichlet
boundary conditions. We add a fit of the form |γ(λ)(s− x)|.

3.3 A temperature profile

We will use our result to explain some numerical observations which have been
made in [5]. In this article, the authors are interested in the temperature profile of a
disordered chain connected to two thermal baths of temperatures TL at the left hand
side (connected to the site 1) and TR at the right hand side (connected to the site N ).
According to [5], the temperature T (x) at site x is expected to be given (under certain
limiting assumptions for the thermalisation process) by

T (x) =
∑

λ∈σ(H(N))

|ψλ(x)|2
(
TL

|ψλ(1)|2

|ψλ(1)|2 + |ψλ(N)|2
+ TR

|ψλ(N)|2

|ψλ(1)|2 + |ψλ(N)|2
)

(3.1)

where H(N)
N is our one dimensional random Schrödinger operator and ψλ are its eigen-

vectors.
We prove that T converge to a step function where the transition from TL and TR

happens in a neibourghood of x = N
2 at a scale

√
N . We denote x = bN2 +

√
Nyc and we

expect variation of T with y of order 1. This has been observed numerically in [5].

Proposition 9. We have the following convergence

E
[
T (b
√
Ny +

N

2
c)
]

= TL + (TR − TL)

∫
R

P
(
N (0, 1) ≤ 2γ(λ)

σ(λ)
y
)
dN(λ) + oN→∞(1)

where dN(λ) is the integrated density of states as defined in Proposition 6, γ(λ) the
Lyapunov exponent and σ(λ) the limit variance.

The Lyapunov exponent is positive, continuous and so is bounded from below on the
support of σ(H(N)). The variance σ(λ) is bounded, therefore uniformly on λ,

P(N (0, 1) ≤ σ(λ)

2γ(λ)
y)→ 0

for y → −∞ and

P(N (0, 1) ≤ σ(λ)

2γ(λ)
y)→ 1

for y →∞. We have then T (x) ≈ TL for N
2 − x�

√
N and T (x) ≈ TR for x− N

2 �
√
N ,

the step function numerically observed.
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Proof. We use our formula and write:

E(T (x)) =
∑

k∈[1,N ]

∫
R

dλEP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[
|ψλ(x)|2

(
TL

|ψλ(1)|2

|ψλ(1)|2 + |ψλ(N)|2
+ TR

|ψλ(N)|2

|ψλ(1)|2 + |ψλ(N)|2
)
×

× δφfk−φbk sin2(φfk)
]
.

With the notation of Proposition 8, we write

TL
|ψλ(1)|2

|ψλ(1)|2 + |ψλ(N)|2
+ TR

|ψλ(N)|2

|ψλ(1)|2 + |ψλ(N)|2

= TL
eNq

λ
1

eNq
λ
1 + eNq

λ
N

+ TR
eNq

λ
N

eNq
λ
1 + eNq

λ
N

Therefore for N large, this converges to TL for qλ1 > qλN and T1 for qλ1 < qλN . We have
then at the limit a Bernoulli Tint with parameter given by Proposition 8:

Tint =

TR with probability P(N (0, 1) ≤ (2k−N)γ(λ)√
Nσ(λ)

)

TL with probability P(N (0, 1) ≥ (2k−N)γ(λ)√
Nσ(λ)

)
.

In order to conclude, we recall that most of the mass of |ψλ|2 is around a few number of
sites around k so

E(T (x)) =

∫
R

dλ
∑

k∈[x−α(N),x+α(N)]

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[
|ψλ(x)|2

(TL
|ψλ(1)|2

|ψλ(1)|2 + |ψλ(N)|2
+ TR

|ψλ(N)|2

|ψλ(1)|2 + |ψλ(N)|2
)
δφfk−φbk[π]

sin2(φk)
]

+O(e−γ(λ)α(N))

where we chose α(N) such that
√
N � α(N)�1. Moreover for large N ,

P(N (0, 1) ≥ (2x−N)γ(λ)√
Nσ(λ)

) = P(N (0, 1) ≥ (2k −N)γ(λ)√
Nσ(λ)

) + o(1),

we have then

E(T (x)) =

∫
R

dλ
∑

k∈[x−α(N),x+α(N)]

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[|ψλ(x)|2

(TL + (TR − TL)P
(
N (0, 1) ≥ (2x−N)γ(λ)√

Nσ(λ)
)
)
δφfk−φbk

sin2(φfk)
)

+ o(1).

Finally we use the following formula, for x such that min(x,N − x)� 1

∑
k∈[1,N ]

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[|ψλ(x)|2δφfk−φbk sin2(φk)] =
dN(λ)

dλ
+ o(1).
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Indeed, for any A Borel set of R:

1

N
E(#{σ(H(N)) ∩A})

=
1

N
E(Tr(1A(H(N))))

=
1

N

∑
x∈[1,N ]

E
[ ∑
λ∈A∩σ(H(N))

|ψλ(x)|2
]

=

∫
1A(λ)dλ

1

N

∑
x∈[1,N ]

∑
k∈[1,N ]

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[
|ψλ(x)|2δφfk−φbk sin2(φfk)

]
We then note that the sums are asymptotically independent of x for x not close to the
edges. Indeed,

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[
|ψλ(x)|2δφfk−φbk sin2(φfk)

]
=

∫∫
ρx−2α(N)(φx−2α(N))ρ̄x−2α(N)(φx+2α(N))dφx−2α(N)dφx+2α(N)

EP(λ)

f,x−2α(N)..k
⊗P(λ)

b,k,...,x−2α(N)

[
|ψλ(x)|2δφfk−φbk sin2(φfk)

]
+ o(1)

where we have the forward-backward process starting from φx−2α(N) at the left and
from dφx+2α(N),λ at the right. But ρx−2α(N),λ and ρ̄x+2α(N),λ converge to the invariant
measure ρλ and ρ̄λ of the forward and the backward process. Finally we have∫

R

1A(λ)
dN(λ)

dλ
dλ

=

∫
1A(λ)dλ

∑
k∈[1,N ]

EP(λ)
f,1..k⊗P

(λ)
b,k,...,N

[|ψλ(x)|2δφfk−φbk sin2(φk)] + o(1)

The proposition then follows, namely we have:

E(T (x)) = TL +

∫
R

(TR − TL)P
(
N (0, 1) ≥ (2x−N)γ(λ)√

Nσ(λ)

)dN(λ)

dλ
dλ+ o(1)

as we wanted.

3.4 Periodic boundary conditions

We tried to obtain a similar result for periodic boundary conditions. With the multi-
scale analysis tools [6], one has the exponential decay from the center of localization.
But because the periodic boundary conditions is among the most popular model it would
be also interesting to have an interpretation with forward backward process in this case.

In the critical regime, one would expect the form of the eigenvectors to be like
eF (s), on R/2πZ with F (s) = −γd(s, u) + σB̃s−u with u uniformly chosen on [0, 2π],
d(s, u) = min(|s− u|, |2π + s− u|, |s− 2π − u|) the distance on R/2πZ and B̃ a Brownian
bridge (see Figure 2). So far we have not been able to prove this statement. However
we think the following is interesting for further development:

Proposition 10. The condition u−1 = uN+1 = 0 in the Dirichlet case has to be replaced
by Tr(MN (λ)) = 2.

Proof. Let (un)n∈[1,N ] be an eigenvector of eigenvalue λ and z =

(
u1
u0

)
where periodic

boundary conditions means that by convention uN = u0 and uN+1 = u1). Therefore
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λ is a eigenvalue if and only if MN (λ)z = z ie 1 is an eigenvalue of MN (λ). Because
det(MN ) = 1 we have that 1 is a solution of x2−Tr(MN (λ))x+1 = 0 and so Tr(MN (λ)) =

2. Converselly if 1 is a eigenvalue of MN (λ) then one can chose (u0, u1) such that(
u1
u0

)
is the corresponding eigenvector of MN (λ) and construct iterativelly (un) with(

un+1

un

)
= Mn(λ)

(
u1
u0

)
to obtain a eigenvector of H(N) of eigvalue λ.

Figure 2: A realization of log ‖Mn(λ)‖ with periodic boundary conditions for N = 3000,
vω uniform on [0, 0.3]. We add a fit of the form −γmin(|s− u|, |s− u+ π|).

4 Proof of Theorem 4

Proof. We recall that φN is the angle for the complex uN+1 + iuN , θN = φN [2π] and the
Dirichlet boundary condition states that uN+1 = 0 for an eigenvalue. We have that λ is
an eigenvalue if and only if φN = π

2 [π], therefore

E
[ ∑
λ∈σ(H(N)),X=Ph(λ)

G(λ,X)
]

= E
[ ∑
λ:θN (λ)∈π2 +πZ, X=F(λ)

G(λ,X)
]
.

Remark 11. θN : λ→ θN (λ) is continuous and strictly increasing (see calculation below).

For finite N , the inverse function θ−1N is continuous, so are G (continuous function of
λ and θi), X. We can therefore write

E
[ ∑
λ:θN (λ)∈πZ+π

2 ,X=F(λ)

G(λ,X)
]

= lim
ε→0

E
[ 1

2ε

∑
n∈Z

∫ πn+π/2+ε

πn+π/2−ε

∑
λ:θN (λ)=s, X=F(λ)

G(λ,X)ds
]
.

The rest follows from a change of variables. Let us denote

Iε =
π

2
+ ∪n∈Z[πn− ε, πn+ ε]

and

Pε(G) = E
[ 1

2ε

∑
n∈Z

∫ 2πn+ε

2πn−ε

∑
λ:θN (λ)=s

G(λ,F(λ))ds
]

= E
[ ∫
R

G(λ,F(λ))|dθN (λ)

dλ
| 1

2ε
1θN (λ)∈Iεdλ

]
.
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Then

dθN (λ)

dλ
=
dφN (λ)

dλ

=
d

dλ

[ N∏
k=1

T (vω(k)− λ)φ0

]
=

N∑
k=1

dφN
dφk
|vω(N),...,vω(k+1) ·

d

dλ
[T (vω(k)− λ)](φk−1).

In this formula appears the term dφN
dφk
|vω(N),...,vω(k+1). It is this term that changes the

law from a forward process to a backward process. We then calculate d
dλ [T (vω(k) −

λ)](φk−1)
]

with (
uk+1

uk

)
=

(
(v − λ)uk + uk−1

uk

)
,

d

dλ

(
uk+1

uk

)
=

(
−uk

0

)
,

and thus

d

dλ
[T (Vω(k)− λ)](φk−1)

]
=

(
uk+1

uk

)
∧
(
−uk

0

)
‖
(
uk+1

uk

)
‖2

=
u2k

u2k + u2k+1

= sin2 φk.

We carry on the calculation,

Pε(G) = E
[ ∫

R

G(λ,F(λ))|dθN (λ)

dλ
| 1

2ε
1θN (λ)∈Iεdλ

]
=

N∑
k=1

∫
R

dλ
[ ∫

...

∫
dν(v1)...dν(vn)G(λ,F(λ))

dφN
dφk

· sin2(φk)
] 1

2ε
1θN (λ)∈Iε .

We artificially add a variable φ:

Pε(G) =

N∑
k=1

∫
R

dλ
[ ∫

...

∫
dν(v1)...dν(vk)

∫
S1
dφδφk(φ)∫

...

∫
dν(vk+1)...dν(vN )G(λ,F(λ))

dφN
dφ
· sin2(φfk)

] 1

2ε
1θN (λ)∈Iε .

Then we use the remark 2 and by taking the limit

1

2ε
1φN∈Iε/πZdφN → δφN=0[π]

we get

Pε(G) =

N∑
k=0

∫
R

dλ
[ ∫

...

∫
dν(v1)...dν(vk)

∫
S1∫

...

∫
dφNdν(vk+1)...dν(vN )δφk(φ)G(λ,F(λ)) sin2(φfk)

] 1

2ε
1θN (λ)∈Iε ,

with P(λ)
f,1..k ⊗ P

(λ)
b,k,...,N

=

N∑
k=0

∫
R

dλ
[
EP(λ)

f,1..k⊗P
(λ)
b,k,...,N

[G(λ,X)δφfk−φbk[π]
sin2(φfk)

1

2ε
1φN∈Iε/πZ]

is the forward-backward process with µb the uniform law on S1 and we can then con-
clude.
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