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Abstract

We prove that reflected Brownian motion with normal reflections in a convex domain
satisfies a dimension free Talagrand type transportation cost-information inequality.
The result is generalized to other reflected diffusion processes with suitable drift and
diffusion coefficients. We apply this to get such an inequality for interacting Brownian
particles with rank-based drift and diffusion coefficients such as the infinite Atlas
model. This is an improvement over earlier dimension-dependent results.
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1 Introduction and main results

Consider a metric space (E, ρ). Fix p ∈ [1,∞). For any pair of Borel probability
measures P and Q on E, define the Wasserstein distance of order p as

Wp(P,Q) := inf
π∈Π

[∫∫
ρp(x, y)dπ(x, y)

]1/p

,

where the inf is taken over the set Π of all couplings of P and Q (i.e., measures on E ×E
with marginal distributions P and Q). Here and throughout, when we write µ(f), where
µ is a probability measure and f is a µ-integrable function, we mean the expectation of f
with respect to µ. The relative entropy H(Q | P) of Q with respect to P is defined as

H(Q | P) := Q

[
log

dQ

dP

]
= P

[
dQ

dP
log

(
dQ

dP

)]
, if Q� P,

and H(Q | P) = +∞ otherwise.

Definition 1.1. A Borel probability measure P satisfies the transportation-cost informa-
tion (TCI) inequality of order p with constant C > 0 (we write: P ∈ Tp(C)) if for every
Borel probability measure Q on E we have:

Wp(P,Q) ≤
√

2CH(Q | P). (1.1)
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Transportation cost inequalities

TCI is an example of the vast gallery of various inequalities linking transportation
cost, relative entropy, and Fisher information. It is impossible to do justice to the
enormous literature and its many uses. We refer the reader to an excellent survey by
Gozlan and Léonard [20] and the recent book [7] by Boucheron et al. Talagrand studied
concentration for product spaces in [45, 46]. His idea is that a function of many variables
which is Lipschitz in any variable but does not depend much on any single variable is
close to a constant. A particularly useful application of TCI inequalities, such as above
(for p ≥ 1), is to prove Talagrand type Gaussian concentration. See the original article
by Talagrand [46], as well as Marton’s derivation by using TCI inequality in [29]. See
also [4, 12, 33] on relation between TCI and log-Sobolev inequalities.

In [46], Talagrand proved that a standard Gaussian measure on Rd satisfies T2(C)

with C = 1. Afterwards, TCI inequalities were established for discrete-time Markov
chains, [30, 37, 40]; for discrete-time stationary processes, [31]; for stochastic ordinary
differential equations driven by Brownian motion [11, 16, 34, 49] and by more general
noise [8, 44, 39]; for stochastic partial differential equations, [9, 25, 50], and for neutral
stochastic equations (which depend on past history) [3, 28, 8]. Applications include
model selection in statistics [32], risk theory [27], order statistics [6], information theory
[5, 38], and randomized algorithms [17].

In this paper, P and Q will represent laws of reflecting diffusion processes seen as
probability measures on the set of continuous paths equipped with the uniform norm.
Specifically we prove TCI inequalities for a certain class of interacting Brownian particle
systems, called competing Brownian particles, with each particle moving as a Brownian
motion on the real line with drift and diffusion coefficients dependent on the current
rank of this particle relative to other particles. These systems were constructed in [1] as
a model for financial markets; see also [13, 18]. Our inequalities are dimension-free: that
is, the constant C is independent of the number of particles. This allows us to extend
the inequality to infinite competing particle systems such as the infinite Atlas model
[10, 14, 26, 35]. This is an improvement over the dimension-dependent inequalities in
papers [34, 36] where applications of such inequalities can be found. See also [23, 24]
on Poincaré inequalities for competing Brownian particles, and [15] on large deviations
for these particle systems.

The result for competing particles is a particular case of a general TCI inequality
for normally reflected diffusion processes in convex domains. Reflected diffusions are
defined as continuous-time stochastic processes in a certain domain D ⊆ Rd. As long
as such process is in the interior, it behaves as a solution of a stochastic differential
equation (SDE). As it hits the boundary, it is reflected back inside the domain. The
simplest case is a reflected Brownian motion, which behaves as a Brownian motion
inside the domain.

Dimension-free TCI inequalities are remarkable. Most known examples are in the
case of product measures which utilize tensorization property of the entropy and the
cost. Our examples are far from product measures since they involve motion of particles
interacting with one another. Hence, dimension-free TCI inequalities in this context
seem interesting. The proof, however, does not require much beyond existing machinery.
Our novel contribution is essentially a single observation made in (2.12).

1.1 Notation

We denote by a · b = a1b1 + . . . + aNbN the dot product of vectors a, b ∈ RN . The
Euclidean norm of a vector a is denoted by ‖a‖ := [a · a]

1/2. The matrix norm of a
matrix A is defined as ‖A‖ := max‖x‖=1 ‖Ax‖. We let R+ := [0,∞). We denote the
space C

(
[0, T ],RN

)
of continuous functions [0, T ] → RN with the sup-norm ‖x‖ :=

sup0≤t≤T ‖x(t)‖. We prove TCI inequality where the Wasserstein-2 transportation cost is
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Transportation cost inequalities

measured in this norm.

1.2 TCI inequalities for competing Brownian particles

Fix an integer N ≥ 2. For any vector x = (x1, . . . , xN ) ∈ RN , there exists a unique
ranking permutation: a one-to-one mapping px : {1, . . . , N} → {1, . . . , N}, with the
following properties:

(a) xpx(i) ≤ xpx(j) for 1 ≤ i < j ≤ N ;

(b) if xpx(i) = xpx(j) for 1 ≤ i < j ≤ N , then px(i) < px(j).

That is, px arranges the coordinates of x in increasing order, with ties broken by the
increasing order of the index (or, name) of the coordinates that are tied.

Take a filtered probability space (Ω,F , (Ft)t≥0,P), with the filtration satisfying the
usual conditions and supporting an N -dimensional Brownian motion W = (W1, . . . ,WN ).
Fix constants g1, . . . , gN ∈ R and σ1, . . . , σN > 0.

Definition 1.2. Consider a continuous adapted process X(t) = (X1(t), . . . , XN (t)), t ≥ 0.
Let pt = pX(t). We say that p−1

t (i) is the rank of particle i at time t, and pt(k) is the
name of the kth ranked particle at time t. Then the following system of SDE:

dXi(t) =

N∑
k=1

1(pt(k) = i) (gkdt+ σkdWi(t)) , (1.2)

for i = 1, . . . , N , defines a finite system of N competing Brownian particles with drift
coefficients g1, . . . , gN and diffusion coefficients σ2

1 , . . . , σ
2
N . Let Yk(t) := X(k)(t) :=

Xpt(k)(t) be the position of the kth ranked particle, and let Zk(t) := Yk+1(t) − Yk(t)

be the gap between the kth and (k + 1)st ranked particles. The local time L(k,k+1) =

(L(k,k+1)(t), t ≥ 0) of collision between kth and k + 1st ranked particles is defined
as the local time of the continuous semimartingale Zk at zero. The process L(t) =(
L(1,2)(t), . . . , L(N−1,N)(t)

)
is called the vector of local times.

From [2], this system exists in the weak sense and is unique in law. Strong existence
and pathwise unqiueness are proved under the following assumptions, [22, Theorem 2],
[41, Theorem 1.4].

σ2
n ≥

1

2

(
σ2
n−1 + σ2

n+1

)
, if 1 < n < N. (1.3)

Similar infinite systems can be defined for N = ∞; then we assume that the vector
X(t) = (Xi(t))i≥1 is rankable; that is, for every t ≥ 0 there exists a unique permutation
pX(t) of N := {1, 2, . . .} which satisfies conditions (1.2) and (1.2). They were introduced
in [35]. See [42, Theorem 3.1] for weak existence and uniqueness in law under an
assumption on initial conditions,

lim
n→∞

Xn(0)→∞ a.s., and
∞∑
n=1

e−αX
2
n(0) <∞ for all α > 0, (1.4)

and the following assumptions on drift and diffusion coefficients:

gn = gn0
and σn = σn0

for all n ≥ n0. (1.5)

See [22, Theorems 1, 2] and [42, Theorem 5.1, Remark 8] for strong existence and
pathwise uniqueness: We need (1.3) in addition to (1.4) and (1.5). Two-sided infinite
systems, indexed by i ∈ Z, were introduced in [43]. The proofs and the results from this
paper carry over to that set-up as well.
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Transportation cost inequalities

Theorem 1.3. (a) For an N ∈ N ∪ {∞} assume that the drift and diffusion coefficients
satisfy the following conditions: g1 ≥ g2 ≥ . . ., and σ1 = σ2 = . . . = 1. For the case of
an infinite system, assume in addition (1.4) and (1.5). Then for every finite k ≤ N , the
distribution of X = (X1, . . . , Xk) on C([0, T ],Rk) satisfies T2(C) with C = T .

(b) Assume weak existence and uniqueness in law. For an N ∈ N ∪ {∞}, and a finite
k ≤ N , the vector of ranked particles Y = (Y1, . . . , Yk) satisfies T2(C) on C([0, T ],Rk)

with C = T sup
m≥1

σ2
m.

Theorem 1.3 (a) follows from results from [11]. The more non-trivial Theorem 1.3 (b)
is based on Theorem 1.7 below, which is the main result of this paper. This is a general
result that says that normally reflected Brownian motion in a convex domain satisfies a
dimension-free TCI inequality as described below. It turns out that the vector of ranked
particles Y is a particular case of such normally reflected Brownian motion in a wedge
{y = (y1, . . . , yN ) | y1 ≤ . . . ≤ yN}.

Fix d ≥ 2, the dimension. In this article a domain in Rd is the closure of an open
connected subset. We consider only convex domains. Following [48], we do not impose
any additional smoothness conditions on such domain. For every x ∈ ∂D, we say that a
unit vector y ∈ Rd is an inward unit normal vector at point x, if

z ∈ D implies (z − x) · y ≥ 0. (1.6)

The set of such inward unit normal vectors at x is denoted as N (x). The most elementary
example of this is a C1 domain D; that is, with boundary ∂D which can be locally (after
a rotation) parametrized as a graph of a C1 function. Then there exists a unique inward
unit normal vector n(x) at every point x ∈ ∂D, and N (x) = {n(x)}.

A more complicated example is a convex piecewise smooth domain. Fix m ≥ 1, the
number of faces. Take m domains D1, . . . , Dm in Rd which are C1 and convex. Let
D =

⋂m
i=1Di. Assume D 6= ∩j 6=iDj for every i = 1, . . . ,m; that is, each one of m smooth

domains is essential. Assume also that for each i = 1, . . . ,m, Fi := ∂D∩∂Di is a manifold
of codimension 1 and has nonempty relative interior. Then D is called a convex piecewise
smooth domain with m faces F1, . . . , Fm, and ∂D = ∪mi=1Fi. For every x ∈ Fi, define the
inward unit normal vector ni(x) to ∂Di at this point x, pointing inside Di. For a point
x ∈ ∂D on the boundary, if I(x) = {i = 1, . . . ,m | x ∈ Fi}, then

N (x) =
{∑
i∈I

αini(x) | αi ≥ 0, i ∈ I;
∑
i∈I

α2
i = 1

}
.

Definition 1.4. For a vector field g : R+ ×D → Rd and a z0 ∈ D, consider the following
equation:

Z(t) = z0 +W (t) +

∫ t

0

g(s, Z(s)) ds+

∫ t

0

n(s) d`(s), t ≥ 0. (1.7)

Here, Z : R+ → D is a continuous adapted process, W is a d-dimensional Brownian
motion with zero drift vector and constant, symmetric, positive definite d× d covariance
matrix A, starting from the origin. For every t ≥ 0, n(t) ∈ Rd is a unit vector, and n :

R+ → R is a measurable function. The function ` : R+ → R is continuous, nondecreasing,
and can increase only when Z(t) ∈ ∂D; for such t, n(t) ∈ N (Z(t)). The solution Z of
(1.7) is called a reflected diffusion in D, with drift g and (constant) diffusion matrix
A, starting from z0. If g is a constant (does not depend on x and t), then we call Z a
reflected Brownian motion (RBM) in D with drift g and diffusion matrix A.

Assumption 1.5. For an integrable function F : [0, T ]→ R, we have:

(g(t, x)− g(t, y)) · (x− y) ≤ ‖x− y‖2 F (t), t ∈ [0, T ], x, y ∈ D, (1.8)
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Remark 1.6. Under Assumption 1.5, the equation (1.7) has a pathwise unique strong
solution on time horizon [0, T ]. This is proved similarly to [48, Theorem 4.1].

We start by proving that, under Assumption 1.5, the reflected diffusion satisfies a
dimension-free T2(C). Our proof follows existing ideas in [34, 11] for non-reflected
diffusions with one notable observation to handle the reflection. Consider an SDE in Rd

without reflection dX(t) = dW (t) + g(t,X(t)) dt, for some drift vector field g defined on
[0, T ]×Rd, which satisfies contraction condition:

(g(t, x)− g(t, y)) · (x− y) ≤ 0, for all x, y ∈ Rd, t ∈ [0, T ]. (1.9)

It is shown in [11] that under condition (1.9), the distribution of X in the space
C([0, T ],Rd) satisfies T2(C) with C = T . Our main observation in this article is that
for a reflected diffusion in a convex domain D, the reflection term n(t) d`(t) plays the
role of such drift.

For the next result, take a convex domain D, fix time horizon T > 0, and let P denote
the law of the reflected diffusion in C([0, T ],Rd) with drift vector field g, starting from
x ∈ D.

Theorem 1.7. Under Assumption 1.5, P ∈ T2(C), with the constant C given by

C := ‖A‖ sup
0≤t≤T

∫ t

0

exp

(
2

∫ t

s

F (u) du

)
ds. (1.10)

If F (t) = γ is a constant, then we can calculate

C =

{
‖A‖ e

2γT−1
2γ , γ 6= 0;

‖A‖T, γ = 0.

This gives us the following corollary.

Corollary 1.8. The law of an RBM in a convex domain D with constant drift and constant
diffusion matrix A satisfies T2(C) on C([0, T ],Rd) with C = T ‖A‖.

2 Proofs

Proof of Theorem 1.7. The established method for proving TCI inequality for diffusions
is by using Girsanov theorem. We explain the main idea behind this line of argument.
More details can be found in [16, 34, 49]. We assume for simplicity that A = Id. At the
end of this subsection, we shall explain what to do for general A. Take a filtered proba-
bility space (Ω,F , (Ft)0≤t≤T ,R), with the filtration satisfying the usual conditions and
generated by a d-dimensional Brownian motion W = (W (t), 0 ≤ t ≤ T ). By Assumption 1,
on this space we can construct a solution X to the equation (1.7) driven by the Brownian
motion W . We view X as a random element of the space C([0, T ],Rd) with law P. On
C([0, T ],Rd), take any probability measure Q � P. Let R � R be another probability
measure on the space (Ω,F), defined through its Radon-Nikodym derivative:

dR

dR
:=

dQ

dP
(X). (2.1)

The next lemma is taken from [16, Proof of Theorem 5.6]. See also related papers
[19, 49].

Lemma 2.1. There exists an (Ft)-adapted process γ = (γt, 0 ≤ t ≤ T ) such that, R-

almost surely
∫ T

0
‖γt‖2 dt < ∞, and the following process is a standard d-dimensional
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(
(Ft),R

)
-Brownian motion:

B(t) = W (t)−
∫ t

0

γsds, 0 ≤ t ≤ T.

Moreover,

H(R | R) =
1

2
R

[∫ T

0

‖γt‖2 dt

]
. (2.2)

From (2.1), the relative entropy of Q with respect to P is given by the same for-
mula (2.2):

H(Q | P) = H(R | R) =
1

2
R

[∫ T

0

‖γt‖2 dt

]
. (2.3)

The law of X on the probability space(
Ω,F , (Ft)0≤t≤T ,R

)
(2.4)

is Q instead of P. Let X ′ be the solution of (1.7) on the space (2.4) with Brownian
motion B instead of W . This solution exists and is unique by Remark 1.6. Then X ′ has
law P. Hence, on that probability space (2.4) we now have two processes (X,X ′) such
that X ′ ∼ P and X ∼ Q, together with continuous adapted nondecreasing processes
` = (`(t), 0 ≤ t ≤ T ) and `′ = (`′(t), 0 ≤ t ≤ T ), starting from 0, such that ` can increase
only when X ∈ ∂D; similarly for `′, and

X(t) = x+

∫ t

0

g(s,X(s)) ds+B(t) +

∫ t

0

γs ds+

∫ t

0

n(s) d`(s), (2.5)

X ′(t) = x+

∫ t

0

g(s,X ′(s)) ds+B(t) +

∫ t

0

n′(s) d`′(s). (2.6)

From (2.5) and (2.6), we get:

X(t)−X ′(t) =

∫ t

0

[g(s,X(s))− g(s,X ′(s)) + γs] ds+

∫ t

0

[n(s) d`(s)− n′(s) d`′(s)] . (2.7)

We claim

R
[
‖X −X ′‖2

]
≤ C ·R

[∫ T

0

‖γt‖2 dt
]

= 2CH(Q | P). (2.8)

Since (X ′, X) is a coupling of the (P,Q), (2.8) gives an upper bound on theW2-distance,
and hence T2(C). For general (constant) diffusion A, let A1/2 refer to its positive definite
square root. Write A1/2γs instead of γs in (2.5), (2.7), and subsequent places; then

observe that
∥∥A1/2γs

∥∥2 ≤ ‖A‖ ‖γs‖2.

To prove (2.8), define

Y (t) := ‖X(t)−X ′(t)‖ ; then Y 2(t) = (X(t)−X ′(t)) · (X(t)−X ′(t)). (2.9)

Since X −X ′ is continuous and of finite variation, the same can be said of Y . Thus we
can apply the classic chain rule (not Itô’s formula) to the process Y 2(·):

dY 2(t) = 2(X(t)−X ′(t)) · d(X(t)−X ′(t)) = 2Y (t) dY (t). (2.10)

Combining (2.7) and (2.10), we get:

dY 2(t) = 2(X(t)−X ′(t)) · [g(t,X(t))− g(t,X ′(t))] dt+ 2(X(t)−X ′(t)) · γt dt

+ 2n(t) · (X(t)−X ′(t)) d`(t)− 2n′(t) · (X(t)−X ′(t)) d`′(t).
(2.11)

The next remark is on differentials of continuous functions with bounded variation.
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Remark 2.2. For two continuous functions f1, f2 : [0, T ]→ R of bounded variation, we
write df1(t) ≤ df2(t) for all t in a subinterval I ⊆ [0, T ], if f1(t)− f1(s) ≤ f2(t)− f2(s) for
all s, t ∈ I, s < t. This is equivalent to the following condition: for the signed measures
µ1 and µ2 on [0, T ] defined by µi[0, t] = fi(t) − fi(0), t ∈ [0, T ], i = 1, 2, the measure
µ2 − µ1 is nonnegative on [0, T ]; that is, µ1(B) ≤ µ2(B) for any Borel set B ⊆ [0, T ].
For continuous functions f1, f2 : [0, T ]→ R of bounded variation, and for a continuous
function g : [0, T ] → [0,∞), if df1(t) ≤ df2(t), then dF1(t) ≤ dF2(t), where F1, F2 are
defined as follows:

Fi(t) =

∫ t

0

g(s) dfi(s), i = 1, 2.

We can write this as g(t) df1(t) ≤ g(t) df2(t).

Now comes the crucial observation:

n(t) · (X(t)−X ′(t)) d`(t) ≤ 0, for all t ≥ 0. (2.12)

Indeed, `(t) can grow only when X(t) ∈ ∂D, and in this case X ′(t) ∈ D, and therefore
n(t) · (X(t)−X ′(t)) ≤ 0 from (1.6). Combine this with d`(t) ≥ 0 and get (2.12). Similarly,
n′(t) · (X(t)−X ′(t)) d`′(t) ≥ 0. Also from (1.8), we get that

(g(t,X(t))− g(t,X ′(t)) · (X(t)−X ′(t)) ≤ F (t) ‖X(t)−X ′(t)‖2 = F (t)Y 2(t). (2.13)

Thus, from (2.11), we get:

dY 2(t) ≤
(
2F (t)Y 2(t) + 2(X(t)−X ′(t)) · γt

)
dt ≤

(
2F (t)Y 2(t) + 2Y (t) ‖γt‖

)
dt. (2.14)

Using (2.10), we rewrite (2.14) as

2Y (t) dY (t) ≤ 2Y (t) (F (t)Y (t) + ‖γt‖) dt. (2.15)

Now, we claim that for t ∈ [0, T ],

Y (t) ≤
∫ t

0

‖γs‖ exp

(∫ t

s

F (u)du

)
ds. (2.16)

For every t ∈ [0, T ], either Y (t) = 0, and then (2.16) is immediate, or Y (t) > 0. In this
second case, we prove (2.16) as follows. Since the function Y is continuous, the set
I := {t ∈ (0, T ) | Y (t) > 0} is open, therefore is a countable union of disjoint open
intervals. On each such interval (α1, α2), Y (t) > 0. According to Remark 2.2, we can
multiply (2.15) by Y −1(t) > 0:

dY (t) ≤ F (t)Y (t) dt+ ‖γt‖ dt. (2.17)

We can rewrite (2.17) as dY (t) − F (t)Y (t) dt ≤ ‖γt‖ dt. Multiplying by an integrating
factor, we get:

d

(
Y (t) exp

(
−
∫ t

α1

F (s)ds

))
≤ ‖γt‖ exp

(
−
∫ t

α1

F (s)ds

)
dt.

Integrating with respect to t over [α1, t] and using the fact that Y (α1) = 0, we get:

Y (t) exp

(
−
∫ t

α1

F (s)ds

)
≤
∫ t

α1

‖γs‖ exp

(
−
∫ s

α1

F (u)du

)
ds.

Thus, for t ∈ (α1, α2),

Y (t) exp

(
−
∫ t

0

F (s)ds

)
= exp

(
−
∫ α1

0

F (s)ds

)
Y (t) exp

(
−
∫ t

α1

F (s)ds

)
≤
∫ t

α1

‖γs‖ exp

(
−
∫ s

0

F (u)du

)
ds ≤

∫ t

0

‖γs‖ exp

(
−
∫ s

0

F (u)du

)
ds.

(2.18)
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By rearranging the integrating factor, this proves inequality (2.16). Hence, by the
Cauchy-Schwartz inequality:

Y 2(t) ≤
∫ t

0

‖γs‖2 ds

∫ t

0

exp

(
2

∫ t

s

F (u)du

)
ds.

Finally, (2.8) follows by taking sup over t ∈ [0, T ], and applying expectation R and
(2.3).

Proof of Corollary 1.8. Follows from Remark 1.6 and by taking F ≡ 0.

Proof of Theorem 1.3. Proof of (a) for finite systems. We apply [11, Proposition 2.11].
It suffices to show that the drift in the equation (1.2):

g(x) = (g1(x), . . . , gN (x)) with gi(t) =

N∑
k=1

1(px(k) = i)gk ≡ gp−1
x (i)

satisfies the contraction condition in (1.9). Rewrite the dot product in (1.9) as

(g(x)− g(y)) · (x− y) =

N∑
i=1

gp−1
x (i)xi −

N∑
i=1

gp−1
y (i)xi −

N∑
i=1

gp−1
x (i)yi +

N∑
i=1

gp−1
y (i)yi. (2.19)

The fact that

N∑
i=1

gp−1
x (i)xi ≤

N∑
i=1

gp−1
y (i)xi, or, equivalently,

N∑
k=1

gkxpx(k) ≤
N∑
k=1

gkxpy(k), (2.20)

follows from [24, Lemma 1.4] applied to a(i) = −gi, b(i) = xi, i = 1, . . . , N ; τ = pyp
−1
x .

Similarly,
N∑
i=1

gp−1
y (i)yi ≤

N∑
i=1

gp−1
x (i)yi.

This proves the contraction condition (1.9), and thus completes the proof.

Proof of (b) for finite systems. The vector Y = (Y (t), t ≥ 0) of ranked particles is
a (normally) reflected Brownian motion in the (convex) wedge D := {y ∈ RN | y1 ≤ . . . ≤
yN}, with constant drift g := (g1, . . . , gN ) and constant diffusion A = diag(σ2

1 , . . . , σ
2
N ).

It suffices to apply Corollary 1.8 of Theorem 1.7. This completes the proof for finite
systems.

The case of infinite systems. Approximate the infinite system by corresponding
finite systems. For every N ≥ 1, consider a system of N competing Brownian particles
X = (X

(N)
1 , . . . , X

(N)
N ) with drift and diffusion coefficients g1, . . . , gN and σ2

1 , . . . , σ
2
N , start-

ing from (x1, . . . , xN ). Denote the corresponding ranked particles by Y (N)
k , k = 1, . . . , N.

By [42, Theorem 3.3], as N →∞, via some subsequence we have weak convergence in
C([0, T ],Rk): (

X
(N)
1 , . . . , X

(N)
k

)
⇒
(
X1, . . . , Xk

)
in case of (a);(

Y
(N)
1 , . . . , Y

(N)
k

)
⇒
(
Y1, . . . , Yk

)
in case of (b).

Since T2(C) inequalities are preserved under weak limits ([16, Lemma 2.2]), we are
done.
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