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Abstract

We study the obtainment of closed-form formulas for the distribution of the jumps of a
doubly-stochastic Poisson process. The problem is approached in two ways. On the
one hand, we translate the problem to the computation of multiple derivatives of the
Hazard process cumulant generating function; this leads to a closed-form formula
written in terms of Bell polynomials. On the other hand, for Hazard processes driven
by Lévy processes, we use Malliavin calculus in order to express the aforementioned
distributions in an appealing recursive manner. We outline the potential application of
these results in credit risk.
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1 Introduction

Consider an ordered series of random times τ1 ≤ ... ≤ τm accounting for the se-
quenced occurrence of certain events. In the context of credit risk, these random times
can be seen as credit events such as the firm’s value sudden deterioration, credit rate
downgrade, the firm’s default, etcetera. The valuation of defaultable claims (see [4, 18])
is closely related to the computation of the quantities

P(τn > T |Ft), t ≥ 0, n = 1, ...,m,

where the reference filtration F = (Ft)t≥0 accounts for the information generated by all
state variables.

An interesting possibility to model these random times consists in considering
τ1, ..., τm as the successive jumps of a doubly-stochastic Poisson process (DSP process).
That is, a time-changed Poisson process (PΛt

)t≥0, where the time change (Λt)t≥0 is a non-
decreasing càdlàg F-adapted process starting at zero; and the Poisson process (Pt)t≥0

has intensity rate equal to 1, and it is independent from the σ-algebra F∞ :=
∨
t≥0 Ft.

We refer to (Λt)t≥0 as the Hazard process.
The purpose of this note is to study the obtainment of closed-form formulas for the

distributions of the n-th jump of a doubly-stochastic Poisson process. We address the
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Closed-form formulas for the distribution of the jumps of a DSP processes

problem from two different approaches. First, we relate this problem to the computation
of the first n derivatives of the Hazard process cumulant generating function. As
shown below, the result is written in closed-form in terms of Bell polynomials on the
aforementioned derivatives —see [6, 13, 16] for details on these polynomials.

Theorem 1.1. For 0 ≤ t < T , denote the conditional cumulant generating function of
ΛT by

Ψ(u) := logE [ exp{iuΛT }| Ft] .

If ΛT has a finite conditional n-th moment ( i.e., E [ΛnT | Ft] < ∞), then the following
equation holds true

P(τn > T |Ft) = 1{τn>t}

n−1∑
k=0

eΨ(i)

k!ik
Bk

(
∂Ψ

∂u
(i), ...,

∂kΨ

∂uk
(i)

)
, (1.1)

where Bk is the k-th Bell polynomial, i.e., Bn(x1, ..., xn) :=
∑n
k=0 Bn,k(x1, ..., xn−k+1)

with

Bn,k(x1, ..., xn−k+1) :=
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j1
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

the sum running over all sequences of non-negative indices such that j1 + j2 + · · · +
jn−k+1 = k and j1 + 2j2 + · · ·+ (n− k + 1)n−k+1 = n, and B0,0 := 1.

In light of this result, two considerations are in order. On the one hand, it is desirable
to consider a model for (Λt)t≥0 having a cumulant generating function Ψ being analytic
(around i =

√
−1), so that an arbitrary number of jumps of the doubly-stochastic Poisson

process can be handled. On the other hand, it is straightforward to compute (1.1) in
closed-form given a tractable expression for the cumulant generating function Ψ. See
examples in Section 2.

As a second approach, we compute the aforementioned distributions directly, by
means of the Malliavin calculus. For this approach we consider a strictly positive pure-
jump Lévy process (Lt)t≥0 with Lévy measure ν, and having moments of all orders —see
[1, 17] and [7] for a general exposition about Lévy processes and Malliavin calculus. We
then assume that the Hazard process is of the form

Λt =

∫ t

0

µ(s)ds+

∫ t

0

∫
R0

σ(s, z)N(ds,dz), t ≥ 0, (1.2)

where R0 := R \ {0}, N is the Poisson random measure associated to (Lt)t≥0, µ is a
deterministic positive drift, and σ is a positive deterministic function integrable with
respect to N . Assume further that F is given by the natural filtration generated by the
driving Lévy process (Lt)t≥0. In this setting, we have the following result.

Theorem 1.2. The conditional distribution of the n-th jump of doubly-stochastic Poisson
process with Hazard process satisfying (1.2) is given by

P(τn > T |Ft) = 1{τn>t}e
Λt+`(t)

n−1∑
k=0

k∑
j=0

(Λt + `(t))j

j!(k − j)!
mk−j(t)

 ,

where `(t) :=
∫ T
t
µ(s)ds +

∫ T
t

∫
R0
σ(s, z)ν(dz)ds, and the quantities m0,m1, ...,mn are

given recursively according to

m0(t) := exp

{∫ T

t

∫
R0

[
e−σ(s,z) − 1 + σ(s, z)

]
dsν(dz)

}
, (1.3)
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and for r ≥ 1

mr+1(t) = mr(t)

∫ T

t

∫
R0

(e−σ(s,z) − 1)σ(s, z)dsν(dz) (1.4)

+

r∑
k=1

(
r

k

)
mr−k(t)

∫ T

t

∫
R0

e−σ(s,z)σk+1(s, z)dsν(dz).

The rest of the paper is organized as follows. In Section 2 we present relevant
examples appearing the literature. Finally in Section 3 we provide the proofs of our
results.

Let us remark that even though our study is motivated by the valuation of defaultable
claims, our results can potentially be also used in other areas; see for instance [2, 14, 21]
and references therein.

2 Examples

In many traditional models (e.g., [8]) the Hazard processes (Λt)t≥0 is assumed to be
absolutely continuous with respect to the Lebesgue measure, that is,

Λt :=

∫ t

0

λsds, t ≥ 0, (2.1)

where the process (λt)t≥0 is usually refer to as the hazard rate, and it is seen as the
instantaneous rate of default in the credit risk context. The following two examples show
how to use Theorem 1.1 using two prominent particular cases for the hazard rate —and
consequently for the Hazard process.

Example 2.1. The integrated square-root process (ΛintSRt )t≥0 (see [9]) defined by means
of (2.1) where the hazard rate is given by the solution of

dλSRt = ϑ(κ− λSRt )dt+ σ
√
λSRt dWt,

where (Wt)t≥0 is a Brownian motion, and we assume σ > 0 and ϑκ ≥ σ2 in order to
ensure that (λSRt )t≥0 remains positive. Take now F as the natural filtration generated
by (Wt)t≥0. It is well-known that the correspondent Hazard process has an analytic
cumulant generating function given by

ΨintSR(u) := A(u, T − t) + λSRt B(u, T − t), T ≥ t ≥ 0,

where the functions A and B are given by

A(u, T−t) =
2ϑκ

σ2
log

(
2γe

1
2 (γ+ϑ)(T−t)

(γ + ϑ)e−γ(T−t) − 2γ

)
, and B(u, T−t) =

2γ(e−γ(T−t) − 1)

(γ + ϑ)e−γ(T−t) − 2γ

with γ := γ(u) :=
√
ϑ2 − 2iuσ2. The simplicity of ΨintSR allows to compute its par-

tial derivatives involved in (1.1). And finally we can use the n-th Bell polynomial Bn

characterization given by

Bn(x1, ..., xn) := det



(
n−1

0

)
x1

(
n−1

1

)
x2

(
n−1

2

)
x3 · · ·

(
n−1
n−2

)
xn−1

(
n−1
n−2

)
xn

−1
(
n−2

1

)
x1

(
n−2

1

)
x2 · · ·

(
n−2
n−3

)
xn−2

(
n−2
n−2

)
xn−1

0 −1
(
n−3

1

)
x1 · · ·

(
n−3
n−4

)
xn−3

(
n−3
n−3

)
xn−2

...
...

...
...

...
0 0 0 · · ·

(
1
0

)
x1

(
1
1

)
x2

0 0 0 · · · −1
(

0
0

)
x1


,
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where in each column the remaining entries below the −1 are equal to zero. For
instance, one can easily see that the first three Bell polynomials are B1(x1) = x1,
B2(x1, x2) = x2

1 + x2 and B3(x1, x2, x3) = x3
1 + 3x1x2 + x3.

Example 2.2. The integrated non-Gaussian Ornstein-Uhlenbeck (intOU) processes de-
fined by means of

ΛintOUt :=
1

ϑ
(1− e−ϑt)λ0 +

1

ϑ

∫ t

0

(1− e−ϑ(t−s))dLϑs, t ≥ 0, (2.2)

where ϑ, λ0 > 0 are free parameters, λ0 being random, and (Lt)t≥0 a non-decreasing
pure-jump positive Lévy process. Equivalently, we can consider again the model in (2.1)
where this time (λt)t≥0 is given by the solution of

dλt = −ϑλtdt+ dLϑt, λ0 > 0.

An interesting property of this Hazard process, (ΛintOUt )t≥0, is that it has continuous
sample paths –for this and further properties on intOU processes refer to [10].

It can be shown that

ΨintOU (u) :=
iuλ0

ϑ
(1− e−ϑT ) + ϑ

∫ T

0

kL

(u
ϑ

(1− e−ϑ(T−s))
)

ds, T ≥ 0, (2.3)

where we take F0 = σ(λ0), that is, the σ-algebra generated by λ0. Particular cases of
interest are the following. On the one hand, we have the so-called Gamma(a, b)-OU
process which is obtained by taking (Lt)t≥0 as a Compound Poisson process

Lt =

Zt∑
n=1

xn, t ≥ 0,

where (Zt)t≥0 is a Poisson process with intensity aϑ, and (xn)n≥1 is a sequence of
independent identically distributed Exp(b) variables. In this case, the correspondent
Hazard process in (2.2) has a finite number of jumps in every compact time interval.
Moreover, the equation (2.3) becomes

ΨintOU
Gamma(u) :=

iuλ0

ϑ
(1− e−ϑT ) +

ϑa

iu− ϑb

((
b log

(
b

b− iu
ϑ (1− e−ϑT )

)
− iuT

))
.

On the other hand, we have the so-called Inverse-Gausssian(a, b)-OU process (see
[15, 20] which is obtained by taking (Lt)t≥0 as the sum of two independent processes,

(Lt = L
(1)
t +L

(2)
2 )t≥0, where (L

(1)
t )t≥0 is an Inverse-Gausssian( 1

2a, b) process, and (L
(2)
t )t≥0

is a Compound Poisson process

L
(2)
t = b−1

Zt∑
n=1

x2
n, t ≥ 0,

where (Zt)t≥0 is a Poisson process with intensity 1
2ab, and (xn)n≥1 is a sequence of inde-

pendent identically distributed Normal(0, 1) variables. In this case, the correspondent
Hazard process in (2.2) jumps infinitely often in every interval. Moreover, the equation
(2.3) becomes

ΨintOU
IG (u) :=

iuλ0

ϑ
(1− e−ϑT ) +

2aiu

bϑ
A(u, T ),

where, using c := −2b−2iuϑ−1, the function A is defined by

A(u, T ) :=
1−

√
1 + c(1− e−ϑT )

c

+
1√

1 + c

[
arctanh

(
1−

√
1 + c(1− e−ϑT )

c

)
− arctanh

(
1√

1 + c

)]
.
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In both of the cases above, we can see that the simplicity of Ψ allows to compute (1.1)
in a straightforward way.

This traditional approach reduces the analytical tractability of the model, and hinders
the calibration of the model parameters. This hindrance is partially due to the fact that
the Laplace transform of a Hazard process as in (2.1) is known in closed-form only for a
reduced number of Hazard rates models. That is one of the reasons why in more recent
contributions the modelling focus is set on the Hazard process itself, without requiring
to make a reference to the Hazard rate —see for instance [3, 15]. In this line, consider
a Hazard process (Λt)t≥0 as given in (1.2). The following example provides an explicit
computation of the quantities involved in Theorem 1.2.

Example 2.3. (CMY Hazard process) In the financial literature, the CMY process —or
one-sided CGMY process [5]— with parameters C,M > 0 and Y < 1 refers to the positive
pure-jump Lévy process (LCMY

t )t≥0 having Lévy measure νCMY given by

νCMY (z) :=
Ce−Mz

z1+Y
1{z>0}.

The Gamma process and the Inverse Gaussian process can be seen as particular cases
by taking Y = 0 and Y = 1

2 , respectively, see [18].
Consider now a Hazard process of the form

ΛCMY
t :=

∫ t

0

µ(s)ds+

∫ t

0

σ(s)
(
dLCMY

s + CMY−1Γ(1− Y )ds
)
, t ≥ 0.

This is equivalent to take, in (1.2), a function σ is of the form σ(s, z) = zσ(s). Then the
quantities in (1.3) and (1.4) are given by

mCMY
0 (t) =

exp
{
C
∫ T
t
MY−1Γ(1− Y )σ(s) + Γ(−Y )

[
(M + σ(s))Y −MY

]
ds
}
, Y 6= 0

exp
{
C
∫ T
t

σ(s)
M − log

(
1 + σ(s)

M

)
ds
}
, Y = 0

and

mCMY
n+1 (t) = mCMY

n (t)CΓ(1− Y )

[∫ T

t

σ(s)
(
(M + σ(s))Y−1 −MY−1

)
ds

]

+

n∑
k=1

(
n

k

)
mCMY
n−k (t)CΓ(k + 1− Y )

∫ T

t

σk+1(s)(M + σ(s))Y−(k+1)ds.

for n ≥ 1. Further we shall have `CMY (t) =
∫ T
t
µ(s)ds+ CMY−1Γ(1− Y )

∫ T
t
σ(s)ds.

Finally, let us remark that we when considering a model like (1.2), the quantities
appearing in Theorem 1.1 and Theorem 1.2 can be related according to the following.

Example 2.4. Let the Hazard process (Λt)t≥0 be given as in (1.2). It can be seen that in
this case (Lemma 3.7 below) the cumulant generating function is given by

Ψ(u) = iu(Λt + `(t)) +

∫ T

t

∫
R0

[
eiuσ(s,z) − 1− iuσ(s, z)

]
dsν(dz).

Consequently, if the function σ has finite moments∫ T

0

∫
R0

σk(s, z)dsν(dz) <∞, k = 1, ..., n, (2.4)
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then the n-th derivative of Ψ is given by

1

i

∂Ψ

∂u
= Λt + `(t) +

∫ T

t

∫
R0

[
eiuσ(s,z) − 1

]
σ(s, z)dsν(dz),

and
1

ik
∂kΨ

∂uk
=

∫ T

t

∫
R0

eiuσ(s,z)σk(s, z)dsν(dz), k = 2, ..., n.

Indeed, these equations can be obtained by successive differentiation under the integral
sign due to the assumption (2.4).

3 Proofs

Let us start by the construction of the doubly-stochastic Poisson process that we
shall consider in what follows. Let F = (Ft)t≥0 denote our reference filtration; we shall
assume that it satisfies the usual conditions of P-completeness and right-continuity. Let
the i.i.d. random variables η1, ..., ηm be exponentially distributed with parameter 1, all
being independent of F∞. Then the n-th jump of the doubly-stochastic Poisson process
with Hazard rate (Λt)t≥0 can be characterized as

τn = inf {t > 0 : Λt ≥ η1 + ...+ ηn} . (3.1)

This construction leads to the following expression for the conditional distribution of
the DSP process n-th jump

P(τn > T | FT ) = e−ΛT

n−1∑
j=0

1

j!
ΛjT , T ≥ 0. (3.2)

Indeed, by construction,

P(τn > t| F∞) = P

(
n∑
j=1

ηj > Λt

∣∣∣∣∣ F∞
)

= e−Λt

n−1∑
j=0

Λjt
j!
,

since conditioned to F∞ the random variable η1 + ...+ ηn has a Gamma distribution. The
result then follows by preconditioning to Ft —recall that (Λt)t≥0 is F-adapted.

Notice first that by conditioning (3.2) to Ft we get

P(τn > T | Ft) =

n−1∑
j=0

1

j!
E
[

ΛjT e−ΛT

∣∣∣Ft] , T ≥ t ≥ 0. (3.3)

Then the purpose of Theorem 1.1 and Theorem 1.2 is to provide a way to compute the
conditional expectations in the equation above.

3.1 Proof of Theorem 1.1

Let ηt stand for the conditional (to Ft) law of ΛT , so that the assumption on the n-th
conditional moment reads ∫

R

xnηt(dx) <∞.

As in the unconditional case (cf. [12, Theorem 13.2]), the condition above ensures that
the conditional characteristic function

ϕ(u; t, T ) := E [ exp{iuΛT }| Ft]
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has continuous partial derivatives up to order n, and furthermore the following equation
holds true

1

ik
∂kϕ(u; t, T )

∂uk
= E

[
ΛkT eiuΛT

∣∣Ft] , k = 0, 1, ..., n.

Now, using the Bell polynomials (as defined in Theorem 1.1) we have an expression for
the chain rule for higher derivatives:

dn

dxn
f ◦ g =

n∑
k=0

(f (k) ◦ g)Bn,k(g(1), ..., g(n+k−1)),

where the superscript denotes the correspondent derivative, i.e., f (k) := dk

dxk f and

g(k) := dk

dxk g, which are assumed to exist. This expression is known as the Riordan’s
formula —for these results on Bell polynomials we refer to [6, 13, 16].

It remains to apply Riordan’s formula to f = exp and g = Ψ in order to get

dn

dxn
ϕ =

n∑
k=0

ϕBn,k(Ψ(1), ...,Ψ(n+k−1)) = ϕBn(Ψ(1), ...,Ψ(n)).

3.2 Proof of Theorem 1.2

From this moment on, we shall work with a strictly positive pure-jump Lévy process
(Lt)t≥0 having a Lévy measure ν satisfying∫

(−ε,ε)
epzν(dz) <∞

for every ε > 0 and certain p > 0. This condition implies in particular that (Lt)t≥0 have
moments of all orders, and the polynomials are dense in L2(dt × ν). Notice that this
condition is always satisfied if the Lévy measure has compact support.

In other to prove the theorem we need the following.

3.2.1 Preliminaries on Malliavin calculus via chaos expansions

Let us now introduce basic notions of Malliavin calculus for Lévy processes which we
shall use as a framework. Here we mainly follow [7].

For every T > 0, let L2
T ((dt× ν)n) := L2(([0, T ]×R0)n) be the space of deterministic

functions such that

‖f‖L2
T ((dt×ν)n) :=

(∫
([0,T ]×R0)n

f2(t1, z1, ..., tn, zn)dt1ν(dz1) · · · dtnν(dzn)

) 1
2

<∞,

and such that they are zero over k-diagonal sets, see [19, Remark 2.1]. The symmetriza-
tion f̃ of f is defined by

f̃(t1, z1, ..., tn, zn) :=
1

n!

∑
σ

f(tσ(1), zσ(1), ..., tσ(n), zσ(n)),

where the sum runs over all the permutations σ of {1, ..., n}. For every f in the subspace
of symmetric functions, L̃2

T ((dt × ν)n) := {f ∈ L2((dt × ν)n) : f = f̃}, we define the
n-fold iterated integral of f by

In(f) := n!

∫ T

0

∫
R0

· · ·
∫ t2−

0

∫
R0

f(t1, z1, ..., tn, zn)Ñ(dt1,dz1) · · · Ñ(dtn,dzn).
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For constant values f0 ∈ R we set I0(f0) := f0. In these terms, the Wiener-Itô chaos
expansion for Poisson random measures, due to [11], states that every FT -measurable
random variable F ∈ L2(P) admits a representation

F =

∞∑
n=0

In(fn)

via a unique sequence of elements fn ∈ L̃2
T ((dt × ν)n). In virtue of this result, each

random field (Xt,z)(t,z)∈[0,T ]×R0
has an expassion

Xt,z =

∞∑
n=0

In(fn(·, t, z)), fn(·, t, z) ∈ L̃2
T ((dt× ν)n),

provided, of course, that Xt,z is FT -measurble with E[X2
t,z] <∞ for all (t, z) in [0, T ]×R0.

Now we are in position to define the Skorohod integral and the Malliavin derivative.

Definition 3.1. The random field (Xt,z)(t,z)∈[0,T ]×R0
belongs to Dom(δ) if

∞∑
n=0

(n+ 1)!
∥∥∥f̃n∥∥∥2

L2
T ((dt×ν)n)

<∞

and has Skorohod integral with respect to Ñ

δ(X) =

∫ T

0

∫
R0

Xt,zÑ(δt,dz) :=

∞∑
n=0

In+1(f̃n).

Definition 3.2. Let D1,2 be the stochastic Sobolev space consisting of all FT -measureble
random variables F ∈ L2(P) with chaos expansion F =

∑∞
n=0 In(fn) satisfying

‖F‖D1,2
:=

∞∑
n=1

n n!
∥∥∥f̃n∥∥∥2

L2
T ((dt×ν)n)

<∞.

For every F ∈ D1,2 its Malliavin derivative is defined as

Dt,zF :=

∞∑
n=0

nIn−1(fn(·, t, z)).

Let us mention here that Dom(δ) ⊆ L2(P× dt× ν), δ(X) ∈ L2(P), D1,2 ⊂ L2(P) and
DF ∈ L2(P× dt× ν).

The following theorems are central for the results below. We refer to [7] for more
details and the proof of these theorems.

Theorem 3.3. (Duality formula) Let X be Skorohod integrable and let F ∈ D1,2. Then

E

[
F

∫ T

0

∫
R0

Xt,zÑ(δt,dz)

]
= E

[∫ T

0

∫
R0

Xt,zDt,zFdtν(dz)

]
.

Theorem 3.4. (Product rule) Let F,G ∈ D1,2 with G bounded. Then FG ∈ D1,2 and

Ds,z(FG) = FDs,zG+GDs,zF +Ds,zFDs,zG, dt× ν − a.e.

Theorem 3.5. (Chain rule) Let F ∈ D1,2, and let g be a continuous function such that
g(F ) ∈ L2(P) and g(F +Ds,zF ) ∈ L2(P× dt× ν). Then g(F ) ∈ D1,2 and

Ds,zg(F ) = g (F +Ds,zF )− g(F ).
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3.2.2 A recursive formula

Lemma 3.6. For every deterministic Skorohod integrable function f and non-negative
integer n, define

F :=

∫ T

0

∫
R0

f(s, z)Ñ(ds,dz), and Xn := Fne−F ,

where Fn is the n-th power of F . If Y ∈ D1,2 is bounded, then the Malliavin derivative of
Y Xn is given (dt× ν−a.e.) by

Ds,z(Y Xn) = e−f(s,z) (Y +Ds,zY )

(
n∑
k=0

(
n

k

)
Xn−kf

k(s, z)

)
− Y Xn.

Proof. By the product rule we have

Ds,z(Y Xn) = Ds,z

(
(Y e−F )(Fn)

)
=
(
Ds,z(Y e−F )

)
(Fn +Ds,zF

n) + Y e−FDs,zF
n, dt× ν − a.e,

and

Ds,z(Y e−F ) = Y Ds,ze
−F + (Ds,zY )

(
e−F +Ds,ze

−F ) , dt× ν − a.e.

Moreover, since Ds,zF = f(s, z), then an application of the chain rule tells us that
Ds,ze

−F = e−F (e−f(s,z) − 1) and

Ds,zF
n = (F +Ds,zF )n − Fn = (F + f(s, z))n − Fn =

n−1∑
k=0

(
n

k

)
F kfn−k(s, z).

Combining these expressions we get

Ds,zY Xn=
(
Y e−F (e−f(s,z)−1)+(Ds,zY )

(
e−F +e−F (e−f(s,z)−1)

)) n∑
k=0

(
n

k

)
F kfn−k(s, z)

+Y e−F
n−1∑
k=0

(
n

k

)
F kfn−k(s, z)

=Y e−F

(
(e−f(s,z) − 1)

n∑
k=0

(
n

k

)
F kfn−k(s, z)+

n−1∑
k=0

(
n

k

)
F kfn−k(s, z)

)

+(Ds,zY )e−(F+f(s,z))
n∑
k=0

(
n

k

)
F kfn−k(s, z)

=Y e−F

(
e−f(s,z)

n∑
k=0

(
n

k

)
F kfn−k(s, z)n−k−Fn

)

+(Ds,zY )e−(F+f(s,z))
n∑
k=0

(
n

k

)
F kfn−k(s, z).

Thus, rewriting the last equivalence in terms of X1, ..., Xn, we get the result.

In what follows let us write, for every t ≥ 0, Λt = µ(t) +Mt +A(t) with

Mt =

∫ t

0

∫
R0

σ(s, z)Ñ(ds,dz) and A(t) =

∫ t

0

∫
R0

σ(s, z)ν(dz)ds.
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Lemma 3.7. The conditional characteristic function of such Hazard processes in (1.2),

ϕ(u; t, T ) := E
[
eiuΛT

∣∣Ft] ,
is given by

ϕ(u; t, T ) = exp

{
iu(Λt + `(t)) +

∫ T

t

∫
R0

[
eiuσ(s,z) − 1− iuσ(s, z)

]
dsν(dz)

}
. (3.4)

Proof. Since the integrands µ and σ are deterministic, then the increment MT −Mt is
independent of Ft and

E
[
eiuΛT

∣∣Ft] = exp{iuΛt}E
[

eiu(ΛT−Λt)
∣∣∣Ft]

= exp{iuΛt}E
[

eiu([
∫ T
0
µ(s)ds+MT +A(T )]−[

∫ t
0
µ(s)ds+Mt+A(t)])

∣∣∣Ft]
= exp {iu(Λt + `(t))}E

[
eiu(MT−Mt)

]
.

Notice that for every deterministic function f the process (Et(f))t≥0 defined by

Et(f) := exp

{∫ t

0

∫
R0

f(s, z)Ñ(ds,dz)−
∫ t

0

∫
R0

[
ef(s,z) − 1− f(s, z)

]
dsν(dz)

}
is a Doléans-Dade exponential martingale. Thus E[ET (f)] = 1, and so

E
[
ET (f)e

∫ T
0

∫
R0

[ef(s,z)−1−f(s,z)]dsν(dz)
]

= e
∫ T
0

∫
R0

[ef(s,z)−1−f(s,z)]dsν(dz)
.

In our case this reads as

E
[
eiu(MT−Mt)

]
= E

[
exp

{∫ T

0

∫
R0

iu1[t,T ](s)σ(s, z)Ñ(ds,dz)

}]

= exp

{∫ T

0

∫
R0

[
eiu1[t,T ](s)σ(s,z) − 1− iu1[t,T ](s)σ(s, z)

]
dsν(dz)

}
.

It remains to notice that eiu1[t,T ]σ − 1− iu1[t,T ]σ =
[
eiuσ − 1− iuσ

]
1[t,T ].

Lemma 3.8. Under the notation of Lemma 3.6 we have

E [X0] = exp

{∫ T

0

∫
R0

[
e−f(s,z) − 1 + f(s, z)

]
dsν(dz)

}
,

and for n ≥ 1 the following recursive formula holds true

E [Xn+1] = E[Xn]

∫ T

0

∫
R0

(e−f(s,z) − 1)f(s, z)dsν(dz)

+

n∑
k=1

(
n

k

)
E[Xn−k]

∫ T

0

∫
R0

e−f(s,z)fk+1(s, z)dsν(dz).

Proof. The Lemma 2.4 provides the base case (n = 0). For n ≥ 1, notice that

E[Xn+1] = E[FXn]

= E

[∫ T

0

∫
R0

f(s, z)Ds,zXndsν(dz)

]

= E

[∫ T

0

∫
R0

f(s, z)

(
e−f(s,z)

n∑
k=0

(
n

k

)
Xn−kf

k(s, z)−Xn

)
dsν(dz)

]
,

where the second line follows from the duality formula, and the last one from Lemma 3.6
by setting Y = 1. The result then follows by the linearity of the expectation.
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3.2.3 Proof of Theorem 1.2

Notice that (3.3) can be rewritten as

P(τn > T |Ft) =

n−1∑
k=0

1

k!
E
[
ΛkT e−ΛT

∣∣Ft]
= 1{τn>t}e

Λt+`(t)

n−1∑
k=0

k∑
j=0

(Λt + `(t))
j

j!(k − j)!
E
[

(MT −Mt)
k−je−(MT−Mt)

∣∣∣Ft]
 .

Indeed, it suffices to expand the factor

ΛkT = ([ΛT − Λt] + Λt)
k

=

([∫ T

0

µ(s)ds+MT +A(T )−
∫ t

0

µ(s)ds−Mt −A(t)

]
+ Λt

)k

=

k∑
j=0

(
k

j

)
(MT −Mt)

k−j (Λt + `(t))
j
,

and use that Λt+ `(t) is Ft-measurable. Now, since the integrand in (1.2) is deterministic,
we have that the increment MT −Mt is independent of Ft and thus

E
[

(MT −Mt)
k−j

e−(MT−Mt)
∣∣∣Ft] = E

[
(MT −Mt)

k−j
e−(MT−Mt)

]
= mk−j .

Applying Lemma 3.8 with f(s, z) := 1[t,T ](s)σ(s, z) we show that the quantities m0,m1, ...,

mn satisfy the recursion claimed. In order to remove factor 1[t,T ](s) from the expression,
it remains to take into account the basic identities∫ T

0

∫
R0

(e−1[t,T ](s)σ(s,z) − 1)1[t,T ](s)σ(s, z)dsν(dz) =

∫ T

t

∫
R0

(e−σ(s,z) − 1)σ(s, z)dsν(dz),

and∫ T

0

∫
R0

e−1[t,T ](s)σ(s,z)1[t,T ](s)σ
n−k+1(s, z)dsν(dz) =

∫ T

t

∫
R0

e−σ(s,z)σn−k+1(s, z)dsν(dz).
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