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Abstract

In this note we discuss “vacant set level set” percolation on a transient weighted graph.
It interpolates between the percolation of the vacant set of random interlacements
and the level set percolation of the Gaussian free field. We employ coupling and derive
a stochastic domination from which we deduce in a rather general set-up a certain
monotonicity property of the percolation function. In the case of regular trees this
stochastic domination leads to a strict inequality between some eigenvalues related
to Ornstein-Uhlenbeck semi-groups for which we have no direct analytical proof. It
underpins a certain strict monotonicity property that has significant consequences for
the percolation diagram. It is presently open whether a similar looking diagram holds
in the case of Zd, d ≥ 3.
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0 Introduction

Given a connected, locally finite, transient weighted graph with countable vertex
set E, one can consider the random interlacements Iu at level u ≥ 0 on E, with
corresponding vacant set Vu = E\Iu, and governing probability PI , see [14], as well as
the Gaussian free field ϕ on E, with corresponding super level sets {ϕ > a}, a ∈ R, and
governing probability PG. The percolative properties of Vu and of {ϕ > a} have been
the object of much interest, see for instance [3], [4], [5], and the references therein.
There are strong links between the two models that result from Dynkin-type isomorphism
theorems, see [12], [7], and in a broader context [9], [11], [8]. The consideration of
cable graphs and the resulting extended couplings constructed in [7], later refined in
[13], provide in good cases efficient tools to compare the two percolation models. To
date, they are the only tools to establish, for instance in the case of Zd, d ≥ 3, with unit
weights, see [7], or for a broad class of transient trees, see [1], the inequality h∗ ≤

√
2u∗,

where h∗ and u∗ respectively stand for the critical levels of level set percolation of the
Gaussian free field, and of the percolation of the vacant set of random interlacements.
The strict inequality h∗ <

√
2u∗ is more delicate and has so far only been established

(with the help of the coupling of [13]) for a broad class of transient trees, see Section 3
of [1].

In this note we consider the vacant set level set percolation that provides an interpo-
lation between the two percolation models, and will perhaps bring some progress on the
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On coupling and “vacant set level set” percolation

above mentioned issues. With x0 some base point in E, we consider the probability under
the product measure that the connected component of x0 in Vu ∩ {ϕ > a} is infinite,
namely:

τ(u, a) = PI ⊗ PG
[
x0
Vu∩{ϕ>a}←→ ∞

]
, for u ≥ 0, a ∈ R. (0.1)

Thus u = 0 corresponds to level set percolation of the Gaussian free field, and (in an
informal fashion) a → −∞ recovers vacant set percolation of random interlacements.
Further, as explained in Remark 1.3 2), the positivity or the vanishing of τ(u, a) does not
depend on the choice of the base point x0.

In Theorem 1.1 of Section 1 we obtain in a rather general set-up a key stochastic
comparison result that dominates for a ≥ 0, ρ > 0, the super level set {ϕ > a+ ρ} by the
deletion from {ϕ > a} of a certain random thickening of an independent interlacement

Iaρ+
ρ2

2 , see (1.11). The percolation function τ is non-increasing in (u, a). However, as a
simple minded by-product of Theorem 1.1, we show in Corollary 1.2 that in the quite
general set-up of Section 1

for any h ≥ 0, the map u ∈
[
0, h

2

2

]
→ τ(u,

√
h2 − 2u) ≥ 0 is non-decreasing. (0.2)

This monotonicity property incidentally provides new sufficient conditions for h∗ <
√

2u∗
as explained in Remark in 1.3 3).

We apply the techniques of Section 1 to the case of the (d+ 1)-regular tree T (with
d ≥ 2) endowed with unit weights. The vacant cluster of a base point x0 for random
interlacements on T can in essence be studied by means of a Galton-Watson process, see
Section 5 of [14], and this leads to a characterization of the critical value u∗ through the
equation

d e−u∗
(d−1)2

d = 1. (0.3)

The case of level set percolation of the Gaussian free field is definitely more intricate.
Namely, to characterize the critical level h∗, one considers

ν the centered Gaussian law on R with variance σ2 def
= d

d2−1 , (0.4)

and for h ∈ R one defines

λh = the operator norm in L2(ν) of the self-adjoint Hilbert-Schmidt operator

Lh = πh Lπh, where πh is the multiplication by 1[h,+∞), and L = d Qt= 1
d
,

(0.5)

with Qt, t ≥ 0, the Ornstein-Uhlenbeck semi-group with invariant measure ν given by
(Qt g)(a) = EY [g(ae−t +

√
1− e−2t Y )] for a ∈ R, g in L2(ν), and EY the expectation

relative to a ν-distributed random variable Y . As shown in Section 3 of [13]

h→ λh is a decreasing homeomorphism of R onto (0, d), and (0.6)

h∗ is characterized by the identity λh∗ = 1. (0.7)

One knows that 0 < h∗ <
√

2u∗, see Corollary 4.5 of [13], but no explicit formula for h∗
(i.e. comparable to (0.3)) is presently available.

In Section 2 we use in an essential way the stochastic domination established in
Theorem 1.1 to prove a key strict inequality stated in Theorem 2.1. It leads to Corollary
2.2, where it is shown that the quantity

λ(u, a) = λa e
−u (d−1)2

d , for u ≥ 0, a ∈ R, (0.8)

which is decreasing in (u, a), however satisfies the strict monotonicity property

for any h > 0, u ∈
[
0, h

2

2

]
−→ λ

(
u,
√
h2 − 2u

)
is strictly increasing. (0.9)
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In Theorem 3.1 of Section 3 we present the link relating the functions τ and λ of (0.1)
and (0.8). This endows the curve λ(u, a) = 1 with the interpretation of a “critical line” for
vacant set level set percolation on T , generalizing in spirit (0.7). The strict monotonicity
property (0.9) established in Corollary 2.2 then provides significant information on the
loci τ = 0 and τ > 0 stated in Corollary 3.2, see also Fig. 1. It is presently open, whether
a similar looking diagram holds in the case of Zd, d ≥ 3.

1 Coupling and stochastic domination

In this section we first introduce some objects related to the cable graph attached
to our basic transient graph and recall some of their properties. In the main Theorem
1.1 of this section, we provide in a quite general set-up a coupling that relates level
sets above some positive value of the Gaussian free field in the cable graph to the
random interlacements on the cable graph. This comes as an application of the coupling
constructed in Section 2 of [13] that refines Lupu’s coupling from [7]. The stochastic
domination is then a natural consequence. In Section 2 it will be a key tool when we
discuss the case of regular trees. As a simple minded application of the stochastic
domination in Theorem 1.1, we establish in Corollary 1.2 the monotonicity property of
the function τ stated in (0.2).

We thus consider a locally finite, connected, transient weighted graph with vertex set
E, and symmetric weights cx,y = cy,x ≥ 0, which are positive exactly when x ∼ y, that is,
when x and y are neighbors. The Green function can then be constructed by considering
the discrete time walk on E that jumps, when in x ∈ E, to a neighbor y of x with the
probability cx,y/λx where λx =

∑
x′∼x cx,x′ . If Px denotes the canonical law of the walk

starting at x, Ex the corresponding expectation, and (Xk)k≥0 the canonical process, the
Green function is symmetric and equals

g(x, y) =
1

λy
Ex
[ ∞∑
k=0

1{Xk = y}
]
, for x, y ∈ E. (1.1)

The cable graph is obtained by attaching to each edge e = {x, y} of the above graph a
compact interval of length (2cx,y)−1, with endpoints respectively identified to x and y,

and denoted by [̃x, y]. We denote by Ẽ ⊇ E the resulting set, which is endowed with a
natural metric and Lebesgue measure m, and by g̃(z, z′), z, z′ ∈ Ẽ the Green function on
the cable graph. It is jointly continuous, and its restriction to E × E coincides with g in
(1.1). We refer to Section 2 of [7], Section 2 of [6], and Section 3 of [15] for more details.

The Gaussian free field on the cable graph Ẽ can be realized as the law P̃G on the
canonical space Ω̃ of continuous real valued functions on Ẽ, endowed with its canonical
σ-algebra generated by the canonical coordinates (ϕ̃z)z∈Ẽ , such that

under P̃G, (ϕ̃z)z∈Ẽ is a centered Gaussian process with covariance

ẼG[ϕ̃zϕ̃z′ ] = g̃(z, z′), for z, z′ ∈ Ẽ (with ẼG the P̃G-expectation).
(1.2)

The law of (ϕ̃x)x∈E (i.e. the restriction of ϕ̃ to E) then coincides with the canonical law
PG (on RE) of the Gaussian free field on E (i.e. centered Gaussian with covariance g(·, ·)
from (1.1)). As a consequence of the Markov property satisfied by ϕ̃ under P̃G, see for
instance (1.8) of [13], one also knows that (see above Lemma 2.1 of [4]):

Under P̃G, conditionally on (ϕ̃x)x∈E , the law of the restrictions of ϕ̃ to the

various segments [x̃, y] of Ẽ between neighboring sites x ∼ y in E, is that
of independent bridges in length (2cx,y)−1 of variance 2 Brownian motion,
with boundary values ϕ̃x, ϕ̃y.

(1.3)
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We will assume from now on that

P̃G-a.s., {z ∈ Ẽ; ϕ̃z > 0} only has bounded connected components. (1.4)

This assumption is for instance satisfied in the case of the cable graph attached to Zd,
d ≥ 3, endowed with unit weights, see Section 5 of [7], or in the case of the (d+1)-regular
tree with d ≥ 2, endowed with unit weights, see Section 4 of [13]. We also refer to
Proposition 2.2 of [1] for more general examples of transient trees where (1.4) holds.
We further assume that condition (1.43) of [13] holds, namely,

there is a g0 <∞ such that all connected components in E of
{x ∈ E; g(x, x) > g0} are finite.

(1.5)

With (1.4) and (1.5) we will be able to use Theorem 2.4 of [13] (recalled below at the
beginning of the proof of Theorem 1.1). It refines Lupu’s coupling between the Gaussian
free field and the random interlacements on the cable graph, see Proposition 6.3 of [7].

We now proceed with some notation concerning random interlacements on the
cable graph. Given a level u > 0, we consider on some probability space (W̃ ,B, P̃I) a
continuous random field (˜̀z,u)z∈Ẽ on Ẽ describing the local times with respect to the

Lebesgue measure m on Ẽ of random interlacements at level u on Ẽ, see Section 6 of
[7], or below (1.21) of [13], and assume that

Ĩu def
= {z ∈ Ẽ; ˜̀z,u > 0} is an open set, which only has unbounded components, (1.6)

∂Ĩu ∩ E = φ, (1.7)

where for A ⊆ Ẽ, ∂A stands for the boundary of A.
The trace of Ĩu on E then recovers random interlacements at level u on E, in the

sense that
Ĩu ∩ E under P̃I has same law as Iu under PI . (1.8)

Theorem 1.1 below involves random open subsets of Ẽ. We endow the collection of open
subsets of Ẽ with the σ-algebra generated by the events {Õ open in Ẽ; Õ ⊇ K̃}, where K̃
varies over the collection of compact subsets of Ẽ (or equivalently over the collection of
closed “sub-intervals” of segments [x̃, y], with x ∼ y in E). Incidentally, note that for any
given z in Ẽ the map that to Õ open subset of Ẽ associates the connected component of
z in Õ, is measurable. We also refer to Chapter 2 §1 of [10] for further properties (results
in [10] are stated in terms of random closed sets). Recall assumptions (1.4), (1.5).

Theorem 1.1 (coupling and stochastic domination). Consider a ≥ 0, ρ > 0, then

under P̃G the random open set {ϕ̃ > a+ ρ} has the same law as the union of (1.9)

connected components of {ϕ̃ > a} that do not intersect Ĩaρ+
ρ2

2 under P̃G ⊗ P̃I ,

under PG, {ϕ > a+ ρ} has the same law as {ϕ > a}\{the union of connected (1.10)

components of {ϕ̃ > a} that intersect Ĩaρ+
ρ2

2 } under P̃G ⊗ P̃I

(in the second occurrence in (1.10) ϕ is understood as the restriction of ϕ̃ to E). Moreover,
considering independent random interlacements and Gaussian free field on E,

{ϕ > a+ ρ} is stochastically dominated by {ϕ > a}\{the union of (1.11)

connected components intersecting Iaρ+
ρ2

2 of the conditional on ϕ

independent edge percolation on E with success probability

1− e−2cx,y(ϕx−a)+(ϕy−a)+ for x ∼ y in E}.
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Proof. We first prove (1.9). We employ the coupling from Theorem 2.4 of [13] that we
now recall. We consider u > 0 as well as independent ϕ̃ (Gaussian free field on Ẽ) and
(˜̀z,u)z∈Ẽ (field of local times of random interlacements at level u on Ẽ). We define (see
(1.6) for notation):

J = the union of the connected components of {2˜̀·,u + ϕ̃2
. > 0}

that intersect Ĩu.
(1.12)

Then, see (2.26) of [13], ∂J is a locally finite subset of Ẽ, and we defineC
′
∞ = J ∪ ∂J , and

η̃z =
(√

2u−
√

2˜̀z,u + ϕ̃2
z

)
1{z ∈ C′∞}+ (ϕ̃z +

√
2u) 1{z /∈ C′∞}, for z ∈ Ẽ.

(1.13)

Then, Theorem 2.4 of [13] states that η̃z is a continuous function of z ∈ Ẽ, taking the
value

√
2u on ∂J , and (η̃z)z∈Ẽ is distributed as the Gaussian free field on Ẽ. Thus,

considering the random open set where the Gaussian free field is above
√

2u, one has

{ϕ̃ >
√

2u} law
= {η̃ >

√
2u} (1.13)

= the union of connected components of

{ϕ̃ > 0} that do not intersect Ĩu.
(1.14)

We will use (1.14) with the special choices u = 1
2 (a+ρ)2 and u = 1

2 a
2 (when a > 0). Thus,

if Ĩ1
a2

2 (understood as the empty set if a = 0) and Ĩ2aρ+
ρ2

2 are independent realizations of

the random interlacements on Ẽ at respective levels a2

2 and aρ+ ρ2

2 , then (see (1.6) and

below (1.21) of [13]) Ĩ1
a2

2 ∪Ĩ2aρ+
ρ2

2 is distributed as Ĩ 1
2 (a+ρ)2 . By (1.14) with u = 1

2 (a+ρ)2,
we find that:

{ϕ̃ > a+ ρ} law
= the union of connected components of {ϕ̃ > 0}

that do not intersect Ĩ
a2

2
1 or Ĩa2 ρ+ ρ2

2

= the union of connected components of {ϕ̃ > 0}
not intersecting Ĩ1

a2

2 that do not intersect Ĩaρ+
ρ2

2
2

law
=

(1.14)with u= a2

2

the union of connected components of {ϕ̃ > a}
that do not intersect Ĩaρ+

ρ2

2

(1.15)

(in the last step (1.14) is only needed when a > 0). This proves (1.9).
Taking the trace on E of the identity (1.9) immediately yields (1.10). We now turn to

the proof of (1.11). By (1.10) we know that {ϕ > a+ρ} has the same law as {ϕ > a}\{the

union of connected components of {ϕ̃ > a} that intersect Ĩaρ+
ρ2

2 } ⊆ {ϕ > a}\{the union

of connected components of {ϕ̃ > a} that intersect Iaρ+
ρ2

2 } (where Iaρ+
ρ2

2 stands for

the intersection of Ĩaρ+
ρ2

2 with E). Observe that the probability that a bridge in length
(2cx,y)−1, with boundary values ϕx and ϕy, of a variance 2 Brownian motion does not get
below level a equals 1− e−2cx,y(ϕx−a)+(ϕy−a)+ , see for instance Lemma 2.1 of [4]. Hence,
by (1.3) the above subset of E is distributed as

{ϕ > a}\{the union of connected components intersecting Iaρ+
ρ2

2 of the conditional

on ϕ independent edge percolation on E with success probability

1− e−2cx,y(ϕx−a)+(ϕy−a)+ for each edge x ∼ y in E}.

This concludes the proof of (1.11) and hence of Theorem 1.1.
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We will now give a simple minded consequence of Theorem 1.1 showing the mono-
tonicity property of the function τ introduced in (0.1) along a family of arcs of parabolas
in the upper quadrant, see (0.2). We recall the assumptions (1.4), (1.5).

Corollary 1.2 (monotonicity property of τ ). The function τ is non-increasing in (u, a).
However,

for all h ≥ 0, the map u ∈ [0, h
2

2 ]→ τ
(
u,
√
h2 − 2u

)
∈ R+ is non-decreasing. (1.16)

Proof. The first statement is plain from (0.1). As for the second claim, consider u ≥ 0,

a ≥ 0, ρ > 0 as well as independent realizations Vu,Vaρ+
ρ2

2
1 , and ϕ of the respective

vacant sets at levels u and aρ+ ρ2

2 of the random interlacements on E, and of the Gaussian
free field on E. By (1.11) we find that

Vu ∩ {ϕ > a+ ρ} is stochastically dominated by

Vu ∩ {ϕ > a} ∩ Vaρ+
ρ2

2
1

law
= Vu+aρ+

ρ2

2 ∩ {ϕ > a}.
(1.17)

Keeping in mind the definition of τ in (0.1), this yields the inequality

τ(u, a+ ρ) ≤ τ
(
u+ aρ+ ρ2

2 , a
)
, for u, a, ρ ≥ 0. (1.18)

Now, given h ≥ 0, 0 ≤ u′ ≤ u ≤ h2

2 , we set a =
√
h2 − 2u, a′ =

√
h2 − 2u′ = a+ ρ ≥ a, so

that h2

2 = u+ a2

2 = u′ + a′2

2 = u′ + a2

2 + aρ+ ρ2

2 . It now follows from (1.18) that

τ
(
u′,
√
h2 − 2u′

)
= τ(u′, a+ ρ)

(1.18)

≤ τ
(
u′ + aρ+ ρ2

2 , a
)

= τ
(
u,
√
h2 − 2u

)
.

This proves our claim (1.16).

Remark 1.3. 1) Letting Sn(x0) stand for the sphere in E with center x0 and radius n for
the graph distance on E, one can consider

τn(u, a) = PI ⊗ PG
[
x0
Vu∩{ϕ>a}←→ Sn(x0)

]
, for u ≥ 0, a ∈ R, n ≥ 1. (1.19)

Then limn τn(u, a) = τ(u, a) and the same proof as in Corollary 1.2 yields that

τn(u, a+ ρ) ≤ τn
(
u+ aρ+ ρ2

2 , a
)
, for u, a, ρ ≥ 0, n ≥ 1, (1.20)

which formally leads to the differential inequality in the spirit of [2],

1

a

∂τn
∂a
≤ ∂τn

∂u
(≤ 0), for u, a > 0. (1.21)

The monotonicity property

for all h ≥ 0, n ≥ 1 the map u ∈
[
0, h

2

2

]
→ τn

(
u,
√
h2 − 2u

)
≥ 0 is

non-decreasing,
(1.22)

holds as well and can be viewed as an integrated version of (1.21). It would be of interest
to know whether some differential inequality can also be established when a is negative.

2) The positivity or the vanishing of τ(u, a) in (0.1) does not depend on the choice
of the base point x0 in E. This fact can be seen with the successive application of
the Harris-FKG inequality satisfied by Vu, see Theorem 3.1 of [14], followed by the
Harris-FKG inequality for the Gaussian free field (and the use of Fubini’s theorem).

ECP 24 (2019), paper 20.
Page 6/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/19-ECP217
http://www.imstat.org/ecp/


On coupling and “vacant set level set” percolation

3) The above Corollary 1.2 contains interesting information on the loci where τ is
positive or vanishes. For instance, it implies that (see Fig. 1 for the case of the regular
tree):

τ > 0 on
{

(u, a) ∈ R+ ×R+;u+ a2

2 <
h2
∗
2

}
(1.23)

(since τ(u, a) ≥ τ(0,
√

2u+ a2 ) > 0 on that set), and that

τ = 0 on
{

(u, a) ∈ R+ ×R+;u+ a2

2 > u∗
}

(1.24)

(since τ(u, a) ≤ τ(u+ a2

2 , 0) = 0 on that set).
Incidentally, (1.23), (1.24) yield some sufficient conditions to prove that h∗ <

√
2u∗:

if τ(u, a) > 0 for some u, a ≥ 0 with u+ a2

2 >
h2
∗
2 , then h∗ <

√
2u∗ (1.25)

(otherwise (1.24) would be contradicted), and

if τ(u, a) = 0 for some u, a ≥ 0 with u+ a2

2 < u∗, then h∗ <
√

2u∗ (1.26)

(otherwise (1.23) would be contradicted). The above claim (1.26) for the choice a = 0,
was for instance used in the proof of Theorem 3.4 of [1], to show that h∗ <

√
2u∗ for a

broad enough class of transient trees. One may wonder whether (1.23) or (1.24) could
be helpful to establish h∗ <

√
2u∗ in the case of Zd, d ≥ 3. �

2 An application to the regular tree

We now consider the case when T is a (d+ 1)-regular tree endowed with unit weights
(we assume d ≥ 2, and T plays the role of E in the previous section). We will now
apply the stochastic domination (1.11) of Theorem 1.1 to prove the key Theorem 2.1 and
obtain as a consequence Corollary 2.2 that proves the strict monotonicity property (0.9)
of the function λ from (0.8). In the next section Corollary 2.2 will provide meaningful
information about the region where τ vanishes or is positive, see Corollary 3.2.

We keep the notation from (0.4) - (0.8). One knows from Proposition 3.1 of [13] that

for all h ∈ R, λh is a simple eigenvalue of Lh and there is a unique function
χh ≥ 0, with unit L2(ν)-norm, continuous and positive on [h,+∞), vanishing
on (−∞, h), which is a corresponding eigenfunction. Moreover, χh belongs
to all Lp(ν), p ≥ 1.

(2.1)

The main result of this section is the following

Theorem 2.1. For a ≥ 0 and ρ > 0 one has

λa+ρ < λa e
−(aρ+ ρ2

2 )
(d−1)2

d . (2.2)

The inequality (2.2) is a strong reinforcement of the inequality λρ ≤ λ0 e−
ρ2

2
(d−1)2

d , for
all ρ ≥ 0, established in Theorem 4.3 of [13] (with the help of the coupling constructed in
that article and recalled below (1.13)). Our proof of (2.2) will be based on the stochastic
domination (1.11) of Theorem 1.1 (which also relies on the above mentioned coupling). A
direct analytical proof of (2.2) is unknown to the author. Let us first state a consequence
of Theorem 2.1.

Corollary 2.2 (strict monotonicity property of λ). The function λ from (0.8) is strictly
decreasing in (u, a). However, for any h > 0,

the map u ∈ [0, h
2

2 ] −→ λ(u,
√
h2 − 2u) is strictly increasing and

induces an homeomorphism between [0, h
2

2 ] and [λh, λ0 e
−h22

(d−1)2

d ].
(2.3)
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Proof of Corollary 2.2. (assuming Theorem 2.1). The first statement is plain from (0.8),
(0.6). For the second statement (2.3), note that the map in (2.3) is continuous, and we
only need to show that it is strictly increasing. Consider u′ < u in [0, h

2

2 ] and as below

(1.8) set a =
√
h2 − 2u, a′ =

√
h2 − 2u′, and ρ′ = a′ − a > 0, so that u+ a2

2 = u′ + a′2

2 = h2

2 .
Then we have

λ(u′, a′) = λa+ρ e
−u′ (d−1)2

d

(2.2)
< λa e

−(aρ+ ρ2

2 +u′)
(d−1)2

d = λa e
−( a′22 +u′− a22 )

(d−1)2

d

= λa e
−(h22 −

a2

2 )
(d−1)2

d = λ(u, a).

(2.4)

This proves our claim (2.3).

Proof of Theorem 2.1. We consider an arbitrary base point x0 in T , n ≥ 1 and x in T at
graph-distance n from x0. We denote by [x0, x] the geodesic segment in T between x0
and x. We consider a ≥ 0, ρ > 0, and will bound first from below, and then from above,

the quantity PG[x0
ϕ>a+ρ←→ x]. Our claim (2.2) will follow after letting n tend to infinity.

We begin with the lower bound. An iterated application of the Markov property, see
(3.13) of [13], yields (with 〈·, ·〉ν the scalar product in L2(ν)):

PG
[
x0
ϕ>a+ρ←→ x

]
= PG

[
ϕ(y) > a+ ρ for all y ∈ [x0, x]

]
=
〈
1,
(
1
d La+ρ

)n
1
〉
ν

spectral expansion

≥
(
1
d λa+ρ

)n〈χa+ρ, 1〉2ν . (2.5)

We now turn to the upper bound. We denote by P̃ the probability jointly governing ϕ, the
Gaussian free field on T , and conditionally on ϕ an independent Bernoulli edge perco-
lation on T , where each edge x ∼ y in T is open with probability 1− e−2(ϕx−a)+(ϕy−a)+ .
The stochastic domination (1.11) crucially yields the upper bound:

PG
[
x0
ϕ>a+ρ←→ x

]
≤ P̃⊗ PI [x0

ϕ>a←→x, none of the connected components

intersecting Iaρ+
ρ2

2 of the conditional on ϕ edge percolation meets [x0, x]] ≤
P̃⊗ PI

[
x0

ϕ>a←→x, [x0, x] ⊆ Vaρ+
ρ2

2 and for all z ∈ Iaρ+
ρ2

2 neighboring [x0, x],

the edge between z and [x0, x] is closed
]
.

(2.6)

Recall σ2 from (0.4). It is convenient to introduce the notation

p0 = e−(aρ+
ρ2

2 )σ−2

, p = e−(aρ+
ρ2

2 )
(d−1)2

d . (2.7)

These two quantities respectively equal the probability that x0 belongs to Vaρ+
ρ2

2 , and

for x 6= x0 that there is no trajectory in the interlacement at level aρ + ρ2

2 having x as
its point of minimum distance to x0. All these events are known to be independent, see
Section 5 of [14], in particular (5.7), (5.9) of this reference (note that d+ 1 plays the role
of d in [14] and here the weights are unit). The right-hand side of (2.6) then equals

p0 p
nEG

[
ϕ(y) > a for all y ∈ [x0, x],

∏
y∈[x0,x]

∏
z ∼ y,
z/∈[x0,x]

(
p+ (1− p) e−2(ϕz−a)+(ϕy−a)+

)]
. (2.8)

With Qt, t ≥ 0, from below (0.5), we introduce the measurable function from R to (0, 1):

V (b) = p+ (1− p)Q 1
d
(e−2(· −a)+(b−a)+)(b). (2.9)

By the Markov property we then find that the expression in (2.8) is bounded above by:

p0 p
nEG

[
ϕ(y) > a for all y ∈ [x0, x],

∏
y∈[x0,x]

V (ϕy)
]
. (2.10)
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On coupling and “vacant set level set” percolation

We now introduce the self-adjoint Hilbert-Schmidt operator on L2(ν) (see (0.5)):

L̃h =
√
V Lh

√
V , for h ∈ R, (2.11)

and denote its operator norm by

λ̃h = ‖L̃h‖L2(ν)→L2(ν), for h ∈ R. (2.12)

Keeping in mind that (2.10) bounds PG[x0
ϕ>a+ρ←→ x] from above, we obtain after repeated

application of the Markov property as in (2.5), that

PG[x0
ϕ>a+ρ←→ x] ≤ p0 pn

〈√
V ,
(
1
d L̃a

)n√
V
〉
ν
≤ p0 pn

(
1
d λ̃a

)n‖√V ‖2L2(ν). (2.13)

Comparing the lower bound (2.5) and the upper bound (2.13) (note that 〈χa+ρ, 1〉ν > 0

by (2.1)), we find after taking n-th roots and letting n tend to infinity that

λa+ρ ≤ λ̃a p
(2.7)
= λ̃a e

−(aρ+ ρ2

2 )
(d−1)2

d . (2.14)

The proof of (2.2), i.e. of Theorem 2.1, will thus be completed once we show that

λ̃a < λa. (2.15)

We now prove (2.15). We denote by γa < λa the operator norm of La restricted to
the orthogonal subspace of χa in L2(ν), see (2.1). Thus, for f ∈ L2(ν) with unit norm,
h =
√
V f − 〈χa,

√
V f〉ν χa is orthogonal to χa in L2(ν), and we have

〈f, L̃a f〉ν = 〈
√
V f, La

√
V f〉ν

(2.1),(0.5)
= λa 〈χa,

√
V f 〉2ν + 〈h, Lah〉ν

≤ λa〈χa,
√
V f〉2ν + γa‖h‖2L2(ν) = (λa − γa)〈χa,

√
V f〉2ν + γa‖

√
V f‖2L2(ν)

Cauchy-Schwarz
≤

0<V<1
(λa − γa) 〈χ2

a, V 〉ν + γa
0<V<1
< λa.

(2.16)

Taking a supremum over f of unit norm in L2(ν) shows that λ̃a is at most equal to
(λa − γa)〈χ2

a, V 〉ν + γa, and (2.15) follows. This concludes the proof of Theorem 2.1.

3 Application to vacant set level set percolation on a regular tree

In this section we keep the set-up of the previous section. Theorem 3.1 below provides
the link between the function λ(u, a) from (0.8) and the positivity or vanishing of the
percolation function τ(u, a) from (0.1). In particular it highlights the role of the curve
λ(u, a) = 1 as a “critical line” for the vacant set level set percolation. It plays a similar
role to Proposition 3.3 of [13] in the case of the Gaussian free field (informally, when
u = 0). Its proof, however, follows a somewhat different route, and, in essence, relies
on first and second moment controls. The strict monotonicity property established in
Corollary 2.2 is then used in Corollary 3.2 to infer some significant properties of the
regions where τ is positive or vanishes.

Incidentally, in the present case of the (d + 1)-regular tree with unit weights (and
d ≥ 2), the function τ itself (and not merely its positivity or vanishing) is independent of
the choice of the base point x0 (see also Remark 1.3 2)).

Theorem 3.1 (link between λ and τ ). For u ≥ 0, a ∈ R,

if λ(u, a) < 1, then τ(u, a) = 0, (3.1)

if λ(u, a) > 1, then τ(u, a) > 0. (3.2)
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Proof. We first prove (3.1). For n ≥ 1, and x in T at graph distance n from the base point
x0 in T , we obtain by a similar calculation as in (2.5) (see (2.7) for notation):

PI ⊗ PG
[
x0
Vu∩{ϕ>a}←→ x

]
= p0 p

nPG
[
x0

ϕ>a←→x
] as in (2.5)

≤ p0 p
n
(
1
d λa

)n
. (3.3)

Thus with τn as in (1.19) we have

τn(u, a) ≤ (d+ 1) dn−1p0 p
n
(
1
d λa

)n (2.7)
=

(0.8)

d+1
d p0 λ(u, a)n. (3.4)

Letting n tend to infinity, we see that λ(u, a) < 1 implies τ(u, a) = 0, and (3.1) follows.
We now turn to the proof of (3.2). For n ≥ 1, u ≥ 0, a ∈ R, we introduce (see (1.19)

and (2.1) for notation)

Mn = λ(u, a)−n
∑

x∈Sn(x0)

1
{
x0
Vu∩{ϕ>a}←→ x

}
χa(ϕx) (≥ 0). (3.5)

We will show that under PI ⊗ PG the first moment of Mn is uniformly positive (and in
fact constant), and that the second moment is uniformly bounded. We begin with the
calculation of the first moment and recall the notation (2.7). We have

EI ⊗ EG[Mn] = λ(u, a)−np0 p
n ∑
x∈Sn(x0)

EG
[
x0

ϕ>a←→x, χa(ϕx)
]
. (3.6)

The last expectation is the same for all x ∈ Sn(x0). Using the Markov property repeatedly
as in (2.5), we find that

EI ⊗ EG[Mn] = (d+ 1) dn−1λ(u, a)−np0 p
n
〈
1,
(
1
d La

)n
χa
〉
ν

(2.1)
= (d+1)

d λ(u, a)−np0 p
n λna 〈1, χa〉ν = (d+1)

d p0 〈1, χa〉ν
def
= A

(2.1)
> 0.

(3.7)

We now turn to the control of the second moment of Mn. We have

EI ⊗ EG[M2
n] =

λ(u, a)−2n
∑

x,y∈Sn(x0)

EI ⊗ EG
[
x0
Vu∩{ϕ>a}←→ x, x0

Vu∩{ϕ>a}←→ y, χa(ϕx)χa(ϕy)
]
. (3.8)

Given x, y ∈ Sn(x0), we write x ∧ y for the point z ∈ T such that [x0, z] = [x0, x] ∩ [x0, y].
We note that when x ∧ y is at distance k(∈ {0, . . . , n}) from x0, the expectation under the
sum in (3.8) equals:

p0 p
k p2(n−k)EG

[
x0

ϕ>a←→x, x0
ϕ>a←→y, χa(ϕx)χa(ϕy)

] Markov property
=

(2.1)

p0 p
2n−k( 1

d λa
)2(n−k)

EG
[
x0

ϕ>a←→x ∧ y, χa(ϕx∧y)2
]
.

(3.9)

Applying the Markov property repeatedly once again, the above quantity equals

p0 p
2n−k( 1

d λa
)2(n−k)〈( 1

d La
)k

1, χ2
a

〉
ν
≤

p0 p
2n−k( 1

d λa
)2n−k ‖χ2

a‖L2(ν)
(0.8),(0.7)

= p0
(
1
d λ(u, a)

)2n−k‖χ2
a‖L2(ν).

(3.10)

Coming back to (3.8) we thus find that

EI ⊗ EG[M2
n] ≤ p0 ‖χ2

a‖L2(ν)

n∑
k=0

∑
z∈Sk(x0)

∑
x,y∈Sn(x0):x∧y=z

(
1
d λ(u, a)

)−k
d−2n

≤ p0 ‖χ2
a‖L2(ν)

n∑
k=0

(d+ 1) dk−1 d2(n−k) dk−2n λ(u, a)−k

≤ (d+1)
d p0‖χ2

a‖L2(ν)

∞∑
k=0

λ(u, a)−k
def
= B <∞

(3.11)
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since λ(u, a) > 1 and χa belongs to all Lp(ν), p ≥ 1, by (2.1). Note that Mn =

Mn 1{0
Vu∩{ϕ>a}←→ Sn(x0)}. So, by the Cauchy-Schwarz Inequality we obtain (see (1.19) for

notation):

A2 (3.7)
= EI × EG[Mn]2 ≤ τn(u, a)EI ⊗ EG[M2

n]
(3.11)

≤ τn(u, a)B. (3.12)

Letting n tend to infinity now yields

τ(u, a) ≥ A2

B > 0. (3.13)

This shows (3.2) and concludes the proof of Theorem 3.1.

Thus, in view of Theorem 3.1, the curve λ(u, a) = 1 stands as a separation line
between the region λ(u, a) > 1, where the vacant set level set percolation occurs and the
region λ(u, a) < 1, where the vacant set level set percolation does not occur. Corollary
2.2 below improves on (1.23), (1.24) in the case of the regular tree, and provides further
insight on the regions where τ is positive or vanishes, see also Fig. 1 below.

Corollary 3.2 (see (0.3), (0.7) for notation).

τ(u, a) > 0 in a neighborhood in R+ ×R of
{

(u, a);u > 0, a ≥ 0, u+ a2

2 =
h2
∗
2

}
, (3.14)

τ(u, a) = 0 in a neighborhood in R+ ×R of
{

(u, a);u ≥ 0, a ≥ 0, u+ a2

2 = u∗
}
. (3.15)

Proof. The function λ(u, a) from (0.8) is continuous on R+ ×R. By Corollary 2.2, when
(u, a) belongs to the set that appears in (3.14), λ(u, a) > λ(0, h∗) = λh∗ = 1. Hence, the
strict inequality λ(u, a) > 1 holds in a neighborhood of this set, and (3.14) now follows
from (3.2) of Theorem 3.1.

As for (3.15), note that the maximal value reached by λ(u, a) on the set that appears

in (3.15) is by Corollary 2.2 equal to λ(u∗, 0) = λ0 e
−u∗ (d−1)2

d
(0.3)
= λ0

d

(0.6)
< 1.

Figure 1: The percolation diagram in the case of a regular tree. The dotted line
corresponds to the “critical line” λ(u, a) = 1. The two thick lines correspond to the arcs

(u,
√
h2 − 2u), 0 ≤ u ≤ h2

2 , with the respective choices h = h∗ and h =
√

2u∗. Along all
such arcs τ is non-decreasing by Corollary 1.2. The regions τ = 0 and τ > 1 are depicted
in accordance with Corollary 3.2 and the non-increasing property of τ , see Corollary 1.2.
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On coupling and “vacant set level set” percolation

One can naturally wonder whether a similar looking percolation diagram holds as
well in the case of the vacant set level set percolation on Zd, d ≥ 3. It is presently
not known whether the two thick arcs in Figure 1 are distinct in this case (one knows
that 0 < h∗ ≤

√
2u∗ < ∞, and the positivity of h∗ for all d ≥ 3 has only recently been

established in [4]).
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