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Abstract

In [1], a framework to prove almost sure central limit theorems for sequences (Gn)

belonging to the Wiener space was developed, with a particular emphasis of the case
where Gn takes the form of a multiple Wiener-Itô integral with respect to a given
isonormal Gaussian process. In the present paper, we complement the study initiated
in [1], by considering the more general situation where the sequence (Gn) may not
need to converge to a Gaussian distribution. As an application, we prove that partial
sums of Hermite polynomials of increments of fractional Brownian motion satisfy an
almost sure limit theorem in the long-range dependence case, a problem left open in
[1].
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1 Introduction and main results

Let us start with the following definition, which plays a pivotal role in the paper.

Definition 1.1. Let (Gn) be a sequence of real-valued random variables defined on a
common probability space (Ω,F ,P) and let µ be a probability measure on (R,B(R)).

1. We say that (Gn) satisfies an almost sure limit theorem (in short: ASLT) with limit
µ if

P

 1

log n

∑
k≤n

1

k
δGk
⇒ µ as n→∞

 = 1, (1.1)

where δx denotes the Dirac point measure of x and ‘⇒’ stands for the weak
convergence of measures.

2. If (1.1) holds true with µ = N(0, 1) (the standard Gaussian distribution), we say
that (Gn) satisfies an almost sure central limit theorem (in short: ASCLT).
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Almost sure limit theorems on Wiener chaos

When µ has a density, it follows from a classical approximation argument that (1.1) is
equivalent to saying that

P

 lim
n→∞

1

log n

∑
k≤n

1

k
1{Gk6x} = µ(−∞, x] for all x ∈ R

 = 1. (1.2)

Convergence (1.1) is a kind of weighted strong law of large numbers, but related to a
quantity Gn converging in law to µ; hence its name. Historically, the first appearance of
an ASLT was in the book [14] by Lévy. It was stated without proof in the simple situation
where µ = N(0, 1) and Gn has the form Gn = (X1 + . . .+Xn)/

√
n, for i.i.d. summands Xi

with mean 0 and variance 1. Lévy’s ASCLT went unnoticed for more than a half century,
until it was exploited by Brosamler [7] and Schatte [25] independently in 1998. Since
then, there has been a lot of activities around the ASLTs in various contexts, see e.g.
[2, 3, 10, 11, 12, 24] and references therein.

We stress on the fact that the validity (or not) of (1.1) is a property of the distribution
of the whole sequence (Gn). Let us elaborate on this point. If Gn ⇒ µ, it is well-
known by Skorokhod’s representation theorem that there exists a family (G?

n)n∈N∪{∞} of

random variables defined on a common probability space such that G?
n

law
= Gn for all n

and G?
n → G?

∞ ∼ µ almost surely. Moreover, Cesàro summation theorem implies that,
almost surely, (log n)−1

∑
k≤n ϕ(G?

k)/k −→ ϕ(G?
∞) for any continuous bounded function

ϕ : R→ R; that is, (G?
n) does not satisfy an ASLT except if µ is a Dirac mass, since apart

in this case ϕ(G?
∞) 6= E[ϕ(G?

∞)] for at least one function ϕ.
Now we have made these preliminary comments on general ASLTs, let us concentrate

on the specific kind of random variables (Gn) we are interested in in this paper: namely,
random variables taking the form of multiple Wiener-Itô integrals. Since the discovery
by Nualart and Peccati [21] of their fourth moment theorem (according to which a
normalized sequence of multiple Wiener-Itô integrals converges in law to N(0, 1) if and
only if its fourth moment converges to 3), those stochastic integrals have become a
probabilistic object of considerable interest. See for instance the constantly updated
webpage [15] for a demonstration of the intense activity surrounding them.

More specifically, a sequence (Gn) of multiple Wiener-Itô integrals converging in law
to some µ being given, our goal in this paper is to provide a meaningful set of conditions
under which an ASLT holds true. The central case (that is, when µ = N(0, 1)) has already
been the object of [1]. Therein, a framework has been developed in order to show
an ASCLT, by taking advantage of the numerous estimates coming from the Malliavin-
Stein approach [18]. One of the main results of [1], that we state here for the sake of
comparison, is the following. The notation Iq(g) refers to the qth Wiener-Itô integral with
kernel g associated to a given isonormal Gaussian process X over a separable Hilbert
space H, whereas the notation ⊗r stands for the contraction operator, see Section 2.3
for more details.

Theorem 1.2. Fix q > 2, and let (Gn) be a sequence of the form Gn = Iq(gn), n > 1.
Suppose (for simplicity) that E[G2

n] = 1 for all n. Suppose in addition that the following
two conditions are met.

(A1) for every r ∈ {1, . . . , q − 1}:
∑

n>2
1

n log2 n

∑n
k=1

1
k‖gk ⊗r gk‖H⊗(2q−2r) <∞;

(A2)
∑

n>2
1

n log3 n

∑n
k,l=1

|E[GkGl]|
kl <∞.

Then (Gn) satisfies an ASCLT, that is, (1.1) holds true with µ = N(0, 1).

An application of high interest of Theorem 1.2 studied in [1] concerns the celebrated
Breuer-Major theorem. Let {Xk} be a stationary centered Gaussian family, characterized
by its correlation function ρ : Z → R given by ρ(k − l) := E[XkXl], and assume that

ECP 24 (2019), paper 9.
Page 2/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/19-ECP212
http://www.imstat.org/ecp/


Almost sure limit theorems on Wiener chaos

ρ(0) = 1. Fix q > 2 and let Hq denote the qth Hermite polynomial. Finally, consider the
sequence of the Hermite variations of X, defined as

Vn =

n∑
k=1

Hq(Xk), n > 1. (1.3)

It is well known since the seminal works by Breuer and Major [6], Giraitis and Surgailis
[9] and Taqqu [27], that the study of the fluctuations of Vn crucially depends on the
summability of |ρ|q. More precisely, if we set

Gn =
Vn√

Var(Vn)
, n > 1, (1.4)

then Gn ⇒ N(0, 1) as soon as
∑

k∈Z |ρ(k)|q <∞. When
∑

k∈Z |ρ(k)|q =∞, the sequence
(Gn) may converge to a Gaussian (in some critical situations) or non-Gaussian limit
(more likely), see below.

A classical example of a stationary Gaussian sequence {Xk}k∈Z falling within this
framework is given by the fractional Gaussian noise

Xk = Bk+1 −Bk, (1.5)

where B = (Bt)t∈R is a fractional Brownian motion of Hurst index H ∈ (0, 1), that is, B
is a centered Gaussian process with covariance function

E[BtBs] :=
1

2

{
|t|2H + |s|2H − |t− s|2H

}
, s, t ∈ R.

More precisely, it is nowadays well-known that

(i) if 0 < H 6 1− 1
2q then Gn ⇒ N(0, 1);

(ii) if 1− 1
2q < H < 1 then Gn ⇒ µH,q, the Hermite distribution with parameters H and

q.

The proof of (i) follows directly from the Breuer-Major theorem when H < 1 − 1
2q ,

whereas a little more effort are required in the critical case H = 1− 1
2q (see, e.g., [5]).

For a definition of the Hermite distribution µH,q as well as a short proof of the weak
convergence (ii) the reader can consult, e.g., [1, Proposition 6.1] and [18, Proposition
7.4.2].

In this paper, we aim to answer the following question: can we associate an almost
sure limit theorem to the previous two convergences in law (i) and (ii)? This problem is
actually not new, and has been first considered almost one decade ago. In [1], a positive
answer has been indeed given for (i), with the help of Theorem 1.2: namely, if H 6 1− 1

2q

and if Gn is defined by (1.4), then (1.1) holds true with µ = N(0, 1). What about the case
H ∈ (1 − 1

2q , 1)? A solution to this problem was left open in [1] probably because, so
far, the Malliavin-Stein approach used therein has been mainly developed in the case of
normal approximation.

In the present paper, our main motivation is then to study the case H ∈ (1 − 1
2q , 1)

left open in [1]. In order to do so, we first develop a general abstract result (Theorem
1.3), of independent interest and valid in a framework similar to that of Theorem 1.2;
then, we apply it to our specific situation (Corollary 1.4).

Theorem 1.3. Fix q > 2, and let (Gn) be any sequence of the form Gn = Iq(gn), n > 1.
Suppose Gn ⇒ µ, and denote by φn (resp. φ∞) the characteristic function of Gn (resp.
µ). Suppose in addition that the following two conditions are met.
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(B1) for all r > 0: sup|t|6r

∑
n>2

1
n log3 n

∣∣∑n
k=1

1
k (φk(t)− φ∞(t))

∣∣2 <∞;

(B2)
∑

n>2
1

n log3 n
Var

(∑n
k=1

G2
k

k

)
<∞.

Then (Gn) satisfies an ASLT, that is, (1.1) holds true.

Let Gn be given by (1.4) with H belonging to (1− 1
2q , 1). In [1, Section 6], the authors

have constructed an explicit sequence (G̃n) such that G̃n
law
= Gn for any n and G̃n does

not satisfy an ASLT. But as we already explained in the second paragraph following
Definition 1.1, from this there is nothing to learn about the validity or not of an ASLT
associated to the original sequence (Gn). Here, using our abstract Theorem 1.3, we are
actually able to prove that (Gn) does satisfy an ASLT.

Corollary 1.4. Let Gn be given by (1.4), with Xk as in (1.5) and H ∈ (1− 1
2q , 1). Then

(Gn) satisfies an ASLT with µ = µH,q the Hermite distribution with parameters H and q.

To conclude this introduction, we would like to stress that our Theorem 1.3 is a true
extension of Theorem 1.2, in the sense that the latter can be obtained as a particular
case of the former: see Section 5 for the details.

Also, for the sake of illustration, we develop in Section 4 an easy example of applica-
tion of our Theorem 1.3 involving a sequence of independent standard Gaussian random
variables.

The rest of the paper is organized as follows. In Section 2 several preliminary results
that are needed for the proofs are collected. Section 3 is devoted to the proof of Theorem
1.3. In Section 4, an easy application of Theorem 1.3 to partial sums of independent
standard Gaussian random variables is presented. The proof of Corollary 1.4 can be
found in Section 5. Finally, Section 6 details how to deduce [1, Theorem 1.2] from our
Theorem 1.3.

2 Preliminaries

2.1 Ibragimov-Lifshits criterion for ASLT

As we will see, we are not going to prove directly that (Gn) in Theorem 1.3 satisfies
(1.2). Instead, we are going to check the validity of a powerful criterion due to Ibragimov
and Lifshits [12], that we recall here for the convenience of the reader.

Theorem 2.1. Let (Gn) be a sequence of real-valued random variables defined on a
common probability space and converging in distribution towards µ, and set

∆n(t) =
1

log n

n∑
k=1

1

k

(
eitGk −

∫
R

eitxµ(dx)

)
. (2.1)

If

sup
|t|≤r

∑
n

E|∆n(t)|2

n log n
<∞ for all r > 0, (2.2)

then (Gn) satisfies the ASLT (1.1).

2.2 An easy reduction lemma

In this section, we state and prove an easy reduction lemma, that we are going to use
in the proof of Corollary 1.4.

Lemma 2.2. Suppose that (Gn) is such that Gn ⇒ µ, and assume that µ has a density.
Let (an) be a real-valued sequence converging to a∞ 6= 0. Then (Gn) satisfies an ASLT if
and only if (anGn) does.
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Almost sure limit theorems on Wiener chaos

Proof. Without loss of generality, we may and will assume that an > 0 for all n and
that a∞ = 1. By symmetry, only the implication “if (Gn) satisfies an ASLT then (anGn)

does” has to be proved.
So, let us assume that (Gn) satisfies an ASLT. Since µ has a density, we are going to

use criterion (1.2). Fix ε > 0, and let k0 be such that 1− ε 6 ak 6 1 + ε for all k > k0. For
any x ∈ R, we can write, for all k > k0,

1{Gk6 x
1+ε}1{x>0} + 1{Gk6 x

1−ε}1{x<0} 6 1{akGk6x}

6 1{Gk6 x
1−ε}1{x>0} + 1{Gk6 x

1+ε}1{x<0}.

As a consequence,

1

log n

n∑
k=k0

1

k

(
1{Gk6 x

1+ε}1{x>0} + 1{Gk6 x
1−ε}1{x<0}

)
6

1

log n

n∑
k=1

1

k
1{akGk6x}

and

1

log n

n∑
k=1

1

k
1{akGk6x} 6

k0
log n

+
1

log n

n∑
k=k0

1

k

(
1{Gk6 x

1−ε}1{x>0} + 1{Gk6 x
1+ε}1{x<0}

)
.

Letting n→∞, we deduce from (1.2) that, almost surely, for all x ∈ R,

µ(−∞, (1 + ε)−1x]1{x>0} + µ(−∞, (1− ε)−1x]1{x<0} 6 lim inf
n→∞

1

log n

n∑
k=1

1

k
1{akGk6x}

6 lim sup
n→∞

1

log n

n∑
k=1

1

k
1{akGk6x} 6 µ(−∞, (1− ε)−1x]1{x>0}+µ(−∞, (1 + ε)−1x]1{x<0}.

Letting now ε→ 0 yields 1
logn

∑n
k=1

1
k1{akGk6x} → µ(−∞, x], which is desired conclusion.

2.3 Elements of Malliavin calculus

Our proofs of Theorem 1.3 and Corollary 1.4 are based on the use of the Malliavin
calculus. This is why in this section we recall the few elements of Gaussian analysis and
Malliavin calculus that will be needed. For more details or missing proofs, we invite the
reader to consult one of the three books [18, 22, 23].

Let H be a real separable Hilbert space. For any q > 1, we write H⊗q and H�q to
indicate, respectively, the qth tensor power and the qth symmetric tensor power of H.

We denote by X = {X(h) : h ∈ H} an isonormal Gaussian process over H, that is, X
is a centered Gaussian family defined a common probability space (Ω,F ,P) satisfying
E [X(g)X(h)] = 〈g, h〉H. We also assume that F is generated by X, and use the shorthand
notation L2(Ω) = L2(Ω,F ,P).

For every q > 1, the qth Wiener chaos of X is defined as the closed linear subspace
of L2(Ω) generated by the family {Hq(X(h)) : h ∈ H, ‖h‖H = 1}, where Hq is the qth
Hermite polynomial :

Hq(x) = (−1)qe
x2

2
dq

dxq
(
e−

x2

2

)
. (2.3)

For any q > 1, the mapping Iq(h⊗q) = Hq(W (h)) (for h ∈ H, ‖h‖H = 1) can be extended
to a linear isometry between the symmetric tensor product H�q (equipped with the
modified norm

√
q! ‖·‖H⊗q ) and the qth Wiener chaos.

Let {ek, k > 1} be a complete orthonormal system in H. Given f ∈ H�p and g ∈ H�q,
for every r = 0, . . . , p∧q, the contraction of f and g of order r is the element of H⊗(p+q−2r)
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defined by

f ⊗r g =

∞∑
i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir 〉H⊗r . (2.4)

Notice that the definition of f⊗r g does not depend on the particular choice of {ek, k > 1},
and that f ⊗r g is not necessarily symmetric; we denote its symmetrization by f⊗̃rg ∈
H�(p+q−2r). Moreover, f⊗0 g = f⊗g equals the tensor product of f and g while, for p = q,
f ⊗q g = 〈f, g〉H⊗q . Contractions appear naturally in the product formula for multiple
integrals: if f ∈ H�p and g ∈ H�q, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.5)

3 Proof of Theorem 1.3

As we said in Section 2.1, we are going to check the condition (2.2) in our specific
framework. For t ∈ R, recall the quantity ∆n(t) from (2.1) and that φk (resp. φ∞) stands
for the characteristic function of Gk (resp. µ). We also denote by ϕk,l the characteristic
function of Gk −Gl. With these notation in mind, we can now write

E|∆n(t)|2

=
1

log2 n

n∑
k,l=1

1

kl
E

((
eitGk − φ∞(t)

)
×
(
e−itGl − φ∞(−t)

))

=
1

log2 n

n∑
k,l=1

1

kl

{(
φk(t)− φ∞(t)

)(
φl(−t)− φ∞(−t)

)
+
(
ϕk,l(t)− φk(t)φl(−t)

)}
=: A1(n, t) +A2(n, t).

Now, note that

A1(n, t) =
1

log2 n

∣∣∣ n∑
k=1

1

k
(φk(t)− φ∞(t))

∣∣∣2,
so that sup|t|6r

∑
n>2

A1(n,t)
n logn <∞ for all r > 0, by condition (B1) in Theorem 1.3.

On the other hand, [16, Proposition 3.1] provides the existence of a universal constant
c such that ∣∣∣ϕk,l(t)− φk(t)φl(−t)

∣∣∣ 6 c|t|Cov(G2
k, G

2
l ).

We deduce that

A2(n, t) ≤ c|t|
log2 n

n∑
k,l=1

1

kl
Cov(G2

k, G
2
l ) =

c|t|
log2 n

Var

(
n∑

k=1

G2
k

k

)
, (3.1)

implying in turn by condition (B2) that sup|t|6r

∑
n>2

A2(n,t)
n logn < ∞ for all r > 0, and

concluding the proof.

4 An easy illustrating example

Before proceeding with the proof of Corollary 1.4, let us illustrate the use of our
Theorem 1.3 on a simple example.

Let X0, X1, X2 . . . ∼ N(0, 1) be a sequence of independent copies defined on the same
probability space, and consider

Gn =
Xn√
2n

n−1∑
j=0

(X2
j − 1).
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A first observation is that Gn can be realized as a Wiener-Itô integral of order 3 with
respect to an isonormal Gaussian process X over the Hilbert space H = L2(R+). Indeed,
if we identify Xj with X(1[j,j+1]), we get

Gn = I3(gn), where gn = 1√
2n

∑n−1
j=0 1̃[n,n+1]×[j,j+1]2 ,

where the tilde means that the function has been symmetrized.

Thus, we are in a position to make use of Theorem 1.3, with µ the distribution of the
product of two independent standard Gaussian random variables.

First, the fact that Gn ⇒ µ is obvious by the classical central limit theorem, since

Gn
law
=

X0√
2n

n∑
j=1

(X2
j − 1).

It is moreover clear that, for any (fixed) r > 0

sup
|t|6r

∣∣∣∣E[eitGk ]−
∫
R

eitxdµ

∣∣∣∣ = sup
|t|6r

∣∣∣∣E [e− t2

2

{
1√
2k

∑n
j=1(X

2
j−1)

}2
]
− E

[
e−

t2

2 X2
0

]∣∣∣∣ .
The right-hand side of the previous equality being a O( 1

k ) by the classical Berry-Esseen
theorem (e.g. with the Wasserstein distance), the condition (B1) of Theorem 1.3 is
immediately satisfied.

We now turn to (B2). Using the product formula (2.5) for multiple integrals, we can
write

n∑
k=1

G2
k − E[G2

k]

k
= I6

(
n∑

k=1

1

k
gk⊗̃gk

)
+ 9 I4

(
n∑

k=1

1

k
gk⊗̃1gk

)
+ 18 I2

(
n∑

k=1

1

k
gk⊗̃2gk

)
.

We are thus left to check that, for r = {0, 1, 2}:

∑
n>2

1

n log3 n

∥∥∥∥∥
n∑

k=1

1

k
gk ⊗r gk

∥∥∥∥∥
2

H⊗(2q−2r)

<∞.

This is actually immediate, by using the following straightforward computations (left to
the reader):

〈gk ⊗ gk, gl ⊗ gl〉H⊗6 =
(k ∧ l)2

36 kl
, 〈gk ⊗1 gk, gl ⊗1 gl〉H⊗4 =

4 k ∧ l + (k ∧ l)2

324 kl

〈gk ⊗2 gk, gl ⊗2 gl〉H⊗2 =
5 k ∧ l
324 kl

. (4.1)

Summarizing, we have shown the following result.

Proposition 4.1. Let X0, X1, X2 . . . ∼ N(0, 1) be a sequence of independent copies
defined on the same probability space, and consider Gn = Xn√

2n

∑n−1
j=0 (X2

j − 1). Then (Gn)

satisfies an ASLT with µ the distribution of X0X1.

Remark 4.2. It is interesting to observe that the expressions (4.1) are no longer valid if
we replace Gn by G̃n = X0√

2n

∑n
j=1(X2

j − 1). Actually, the assumption (B2) of Theorem 1.3

turns out to be not satisfied for (G̃n). We believe that it is because G̃n does not satisfy
an ASLT, see also the discussion in the second paragraph following Definition 1.1.
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5 Proof of Corollary 1.4

Let (Gn) be given by (1.4) with H ∈ (1 − 1
2q , 1) and recall Vn from (1.3). It is

a straightforward exercise to prove that Var(Vn) is equivalent to a constant times
n2−2q(1−H) as n→∞ (see, e.g. [1] and references therein). Thanks to Lemma 2.2 and
because the Hermite distribution µH,q admits a density (this latter fact is an immediate
consequence of the main result of [19] for instance), it is then equivalent to prove an
ASLT for (Gn) or for (Ĝn) defined as

Ĝn = nq(1−H)−1
n∑

j=1

Hq(Bj+1 −Bj).

In the sequel, we are thus rather going to prove that (Ĝn) satisfies an ASLT.

Our first observation is that Ĝn takes the form of a multiple Wiener-Itô integral with
respect to B, after identifying this latter with an isonormal Gaussian process X over the
Hilbert space H defined as the closure of the set of step functions with respect to the
scalar product 〈1[0,t],1[0,s]〉H = E[BtBs], s, t > 0, see [18, Proposition 7.2.3] for further
details. More precisely, we have

Ĝn = Iq(gn), where gn = nq(1−H)−1∑n
j=1 1

⊗q
[j,j+1],

This observation being made, we can now use Theorem 1.3, and check that conditions
(B1) and (B2) therein are in order. In what follows, φk and φ∞ denote the characteristic
functions of Ĝk and µH,q respectively.

For (B1), it is a direct consequence of some estimates given in [5]. More precisely,
using [5, Proposition 3.1] one infers that, for any (fixed) r > 0,

sup
|t|6r

|φk(t)− φ∞(t)| 6 rdW (Ĝk, µH,q) = O(kq(1−H)− 1
2 ), (5.1)

where dW stands for the Wasserstein distance. The first inequality in (5.1) is a direct
consequence of the basic fact that x 7→ eitx is a Lipschitz-continuous function with
Lipschitz constant |t|. Also, recall for a real-valued random variables F1 ∼ µ1 and
F2 ∼ µ2 that

dW (F1, F2) = dW (µ1, µ2) = sup

{∣∣∣∣∫
R

hdµ1 −
∫
R

hdµ2

∣∣∣∣ : h : R→ R s.t. ‖h‖Lip ≤ 1

}
.

Therefore, for some constant C, we obtain

sup
|t|6r

∑
n>2

1

n log3 n

∣∣∣∣∣
n∑

k=1

1

k
(φk(t)− φ∞(t))

∣∣∣∣∣
2

6 C
∑
n>2

1

n log3 n

(
n∑

k=1

kq(1−H)− 3
2

)2

<∞.

Let us now turn to (B2). Using the product formula (2.5) for multiple integrals, we
can write

n∑
k=1

G2
k

k
=

q∑
r=0

r!

(
q

r

)2

I2q−2r

(
n∑

k=1

1

k
gk⊗̃rgk

)
.

Thus we are left to check that, for all r ∈ {0, . . . , q − 1}:

∑
n>2

1

n log3 n

∥∥∥∥∥
n∑

k=1

1

k
gk ⊗r gk

∥∥∥∥∥
2

H⊗(2q−2r)

<∞. (5.2)
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Let us first focus on the case where 1 6 r 6 q− 1. We can write, with ρ(a) = 1
2

(
|a+ 1|2H +

|a− 1|2H − 2|a|2H
)

and ρk(a) = |ρ(a)|1|a|6k:∥∥∥∥∥
n∑

k=1

1

k
gk ⊗r gk

∥∥∥∥∥
2

H⊗(2q−2r)

=

n∑
k,l=1

1

kl
〈gk ⊗r gk, gl ⊗r gl〉H⊗(2q−2r)

6 2
∑

16l6k6n

(kl)2q(1−H)−3
k∑

i,j=1

l∑
i′,j′=1

ρ(i− j)rρ(i− i′)q−rρ(i′ − j′)rρ(j − j′)q−r

6 2
∑

16l6k6n

(kl)2q(1−H)−3
k∑

i=1

l∑
j′=1

(
ρrk ∗ ρ

q−r
k )(i− j′)2

6 2
∑

16l6k6n

(kl)2q(1−H)−3l‖ρrk ∗ ρ
q−r
k ‖2`2(Z).

Using the Young inequality with p = 2q
3r and p′ = 2q

3(q−r) (so that 1
p + 1

p′ = 3
2 ), we obtain

‖ρrk ∗ ρ
q−r
k ‖2`2(Z) 6 ‖ρ

r
k‖2`p(Z)‖ρ

q−r
k ‖2

`p′ (Z)
=

∑
|j|6k

|ρ(j)|
2q
3

3

.

But ρ(j) ∼ H(2H − 1)|j|2H−2 and, because H > 1− 1
2q > 1− 3

4q , we deduce that

∑
|j|6k

|ρ(j)|
2q
3

3

= O(k3−4q(1−H)) as k →∞.

Thus, for r ∈ {1, . . . , q − 1},∥∥∥∥∥
n∑

k=1

1

k
gk ⊗r gk

∥∥∥∥∥
2

H⊗(2q−2r)

= O

 ∑
16l6k6n

l2q(1−H)−2k−2q(1−H)

 = O

(
n∑

k=1

1

k

)
= O(log n). (5.3)

Actually, the previous estimate (5.3) is also valid for r = 0. Indeed, we have in this case

∥∥∥∥∥
n∑

k=1

1

k
gk ⊗0 gk

∥∥∥∥∥
2

H⊗(2q)

=

n∑
k,l=1

(kl)2q(1−H)−3

 k∑
i=1

l∑
j=1

ρ(i− j)q
2

6 2
∑

16l6k6n

(kl)2q(1−H)−3

 k∑
i=1

l∑
j=1

|ρ(i− j)|q
2

6 2
∑

16l6k6n

(kl)2q(1−H)−3l2

∑
|r|<k

|ρ(r)|q
2

6 cst
∑

16l6k6n

(kl)2q(1−H)−3l2k2−4(1−H)q = O(

n∑
k=1

1

k
) = O(log n), (5.4)

where the last inequality used the fact that ρ(r) ∼ H(2H − 1)r2H−2 as |r| → ∞. Finally,
(5.3) and (5.4) together imply that (5.2) takes place for any r ∈ {0, . . . , q − 1}, which
concludes the proof of Theorem 1.4.
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6 Theorem 1.3 implies Theorem 1.2

To conclude this paper, let us explain how to deduce Theorem 1.2 (taken from [1])
from our Theorem 1.3, even if at first glance conditions (A1)-(A2) and (B1)-(B2) do not
seem to be related to each others.

Fix q > 2, and let (Gn) be a sequence of the form Gn = Iq(gn), n > 1. Suppose
moreover that E[G2

n] = q!‖gn‖2H⊗q = 1 for all n. In what follows, cq > 0 denotes a constant
only depending on q, whose value can change from line to line.

Firstly, we deduce from [18, Theorem 5.2.6] (to get the second inequality) and [18,
(5.2.6)] (to get the third inequality) that, for all t ∈ R,∣∣∣E[eitGk ]− e−t

2/2
∣∣∣ 6 |t| dW (Gk, N(0, 1)) 6 cq |t| (E[G4

k]− 3)

6 cq |t| max
16r6q−1

‖gk⊗̃rgk‖H⊗(2q−2r)

6 cq |t| max
16r6q−1

‖gk ⊗r gk‖H⊗(2q−2r) .

As a consequence,

sup
|t|6r

∑
n>2

1

n log3 n

∣∣∣∣∣
n∑

k=1

1

k
(E[eitGk ]− e−t

2/2)

∣∣∣∣∣
2

6 2 sup
|t|6r

∑
n>2

1

n log2 n

∣∣∣∣∣
n∑

k=1

1

k
(E[eitGk ]− e−t

2/2)

∣∣∣∣∣
6 2 r cq max

16r6q−1

∑
n>2

1

n log2 n

n∑
k=1

1

k
‖gk ⊗r gk‖H⊗(2q−2r) ,

from which it comes that (A1) implies (B1).
Secondly, one can write

‖gk ⊗r gl‖2H⊗(2q−2r) = 〈gk ⊗r gk, gl ⊗r gl〉H⊗(2q−2r)

6 ‖gk ⊗r gk‖H⊗(2r)‖gl ⊗r gl‖H⊗(2q−2r)

6 ‖gl‖2H⊗q‖gk ⊗r gk‖H⊗(2q−2r) = q!‖gk ⊗r gk‖H⊗(2q−2r) .

Moreover, it has been shown in [20, Proof of Theorem 4.3] that

Cov(G2
k, G

2
l )− 2 (E[GkGl])

2

= q!2
q−1∑
r=1

(
q

r

)2

‖gk ⊗r gl‖2H⊗(2q−2r) +

q−1∑
r=1

r!2
(
q

r

)4

(2q − 2r)!‖gk⊗̃rgl‖2H⊗(2q−2r) .

We deduce that

0 6 Cov(G2
k, G

2
l ) 6 2 (E[GkGl])

2
+ cq max

16r6q−1
‖gk ⊗r gk‖H⊗(2q−2r)

6 2 |E[GkGl]|+ cq max
16r6q−1

‖gk ⊗r gk‖H⊗(2q−2r) ,

implying in turn that∑
n>2

1

n log3 n
Var

(
n∑

k=1

G2
k

k

)
=
∑
n>2

1

n log3 n

n∑
k,l=1

1

kl
Cov

(
G2

k, G
2
l

)
6 2

∑
n>2

1

n log3 n

n∑
k,l=1

|E[GkGl]|
kl

+ cq max
16r6q−1

∑
n>2

1

n log2 n

n∑
k=1

1

k
‖gk ⊗r gk‖H⊗(2q−2r) ,

from which it follows that (A1) and (A2) imply (B2).
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