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A New Bayesian Approach to Robustness
Against Outliers in Linear Regression

Philippe Gagnon∗, Alain Desgagné†, and Mylène Bédard‡

Abstract. Linear regression is ubiquitous in statistical analysis. It is well under-
stood that conflicting sources of information may contaminate the inference when
the classical normality of errors is assumed. The contamination caused by the light
normal tails follows from an undesirable effect: the posterior concentrates in an
area in between the different sources with a large enough scaling to incorporate
them all. The theory of conflict resolution in Bayesian statistics (O’Hagan and
Pericchi (2012)) recommends to address this problem by limiting the impact of
outliers to obtain conclusions consistent with the bulk of the data. In this pa-
per, we propose a model with super heavy-tailed errors to achieve this. We prove
that it is wholly robust, meaning that the impact of outliers gradually vanishes
as they move further and further away from the general trend. The super heavy-
tailed density is similar to the normal outside of the tails, which gives rise to an
efficient estimation procedure. In addition, estimates are easily computed. This
is highlighted via a detailed user guide, where all steps are explained through a
simulated case study. The performance is shown using simulation. All required
code is given.

Keywords: ANOVA, ANCOVA, built-in robustness, maximum likelihood
estimation, super heavy-tailed distributions, variable selection, whole robustness.
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1 Introduction

The distribution most commonly assumed on the error term in the linear regression
model Y = xTβ+ε is without a doubt a normal, denoted ε/σ ∼ N (0, 1). Estimating the
regression coefficient vector β is in this case equivalent to using ordinary least squares
(OLS) method, whether Bayesian (setting the usual noninformative prior on β) or
maximum likelihood estimates (MLE) are computed. Given the remarkable properties of
OLS (under certain conditions) such as minimum variance among unbiased estimators,
the normal model is often considered as a benchmark in terms of efficiency in the
absence of outliers. However, it is well-known that resulting inferences are very sensitive
to conflicting sources of information. From a Bayesian perspective, these conflicting
sources may represent the prior or outliers; we focus on the latter in this paper.
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Box and Tiao (1968) were the first to propose a Bayesian solution. They suggested
to let the error term be distributed as a mixture of two normals: one component for the
nonoutliers and the other one, with a larger variance, for the outliers. This approach
has been generalised by West (1984) who modelled errors with heavy-tailed distribu-
tions constructed as scale mixtures of normals, which include the Student distribution.
A different robust Bayesian approach was introduced by Peña et al. (2009). From a
frequentist perspective, several methods have also been proposed, e.g., the M- (Huber
(1973)), MM- (Yohai (1987)), S- (Rousseeuw and Yohai (1984)), least trimmed squares
(LTS, Rousseeuw (1985)), and robust and efficient weighted least-square (REWLSE,
Gervini and Yohai (2002)) estimators.

The most popular Bayesian solution is modelling using the Student, a consequence
of the simplicity of the strategy, the rationale behind it (giving higher probabilities to
extreme values), and the required computations. The latter follows from the scale mix-
ture representation of the Student that leads to a normal conditional distribution for
Y given β, σ and a latent variable, which in turn allows a straightforward implemen-
tation of the Gibbs sampler (Geman and Geman (1984)). This method took over that
of Box and Tiao (1968) because the latter is such that the conditional distribution is
a mixture of normals and requires to “complete” the data with auxiliary variables to
implement the Gibbs sampler. This may make computations much more arduous. On
the frequentist side, the most popular method to gain in robustness is arguably the
MM-estimator.

Protection against outliers always comes at a price: a loss of efficiency when the
observations are normally distributed. The best robust alternatives manages to offer a
large protection at a low premium. This is especially true for the estimation of β. In
this regard, a new method can hardly do better; in fact matching their performance is
quite an achievement. However, the performance of the existing robust approaches with
respect to σ is far less optimal.

The main objective of this paper is to propose a solution that yields gold standard
performance, namely a large protection at a low premium, for the estimation of both β
and σ. The importance of good estimation for σ, in the absence or presence of outliers,
should not be overlooked. This parameter plays a crucial role every time an assessment
has to be made about uncertainty around the regression coefficients (credible intervals,
hypothesis testing, and so on). The performance of the proposed approach, combined
with its simplicity, will allow to offer an appealing Bayesian alternative to the Student
model.

The first step towards the objective is indeed to employ a strategy as simple as that
of West (1984), that is, to assume a distribution on the error term that accommodates
for the eventual presence of outliers without being a mixture. Our approach differs in
that the density has a slower tail decay. It is based on the work of Desgagné (2015) about
robust modelling of location and scale parameters. The author proposed to use a super
heavy-tailed distribution belonging to the family of log-regularly varying distributions
(LRVD) — with tails behaving like |z|−1(log |z|)−θ — to achieve whole robustness for
both parameters. The idea of using heavier tails than the Student came after the work
of Andrade and O’Hagan (2011) who, in the location-scale framework, achieved only
partial robustness for the scale by modelling with polynomial tails. As mentioned by
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West (1984), an outlying observation is accommodated if the posterior distribution
converges to that excluding the outlier as this one tends to infinity, which corresponds
to our definition of whole robustness. In contrast, partial robustness translates into a
significant (but limited as the outliers approach plus or minus infinity) impact on the
estimation of the parameter.

The second step towards the objective is therefore to generalise the results of Des-
gagné (2015) to linear regression. In fact, it is a generalisation of the results of Desgagné
and Gagnon (2019), which are essentially an application of those of Desgagné (2015) in
simple linear regression through the origin for robust estimation of ratios. This second
step represents our key theoretical contribution. We provide two sufficient conditions
that lead to whole robustness. The first one is to assume a super-heavy tailed distribu-
tion on the error. The other specifies the breakdown point, which tends to the optimal
value of 0.5 as the sample size goes to infinity. The validity of our robust method is
thus supported by theoretical results. While these are similar to those of Desgagné and
Gagnon (2019), a more sophisticated proof technique is required given that the loca-
tion parameter of the conditional distribution of Y is now an inner product of a known
vector and β containing p unknown parameters. Throughout the paper, we focus on
continuous explanatory variables to simplify explanation and notation. The results are
nonetheless valid in ANOVA and ANCOVA (analyses of variance and covariance), and
for variable selection where joint posteriors of models and parameters are considered.
The corresponding sufficient conditions are given as remarks after the theoretical results.
The price to pay to achieve whole robustness for all parameters is that the use of super
heavy-tailed distributions prevents us from obtaining normal conditional distributions.
There is therefore a computational cost, in the sense that we cannot implement a Gibbs
sampler; it will however be noticed that easy-to-use samplers can be used, which makes
the cost negligible.

The third and final step towards the objective is to carefully select the super heavy-
tailed distribution in the wholly robust model. To achieve this, we start with the premise
that applied statisticians are satisfied with the normal model in the absence of outliers
and we specifically design a robust solution from that. We set the distribution of the error
as a log-Pareto-tailed normal (LPTN), a super heavy-tailed distribution introduced by
Desgagné (2015). Its density exactly matches the standard normal on the central part
having a mass of ρ. The parameter ρ is thus the single one to be chosen by the user,
and is typically set to a value between 0.80 and 0.98. The resulting model produces
robust estimates exhibiting a similar behaviour to OLS in the absence of outliers, where
the trade-off between high degree of similarity with OLS and high degree of robustness
is controlled through ρ. The model has built-in robustness that resolves conflict in a
sensitive way (see Figure 1). It completely considers the nonoutliers (from 30 to 32.5
in Figure 1), essentially excludes the observations that are clearly outlying (beyond 38
in Figure 1), and between these two clear cases, contains and bounds their impact.
The first two cases correspond to the strategy commonly applied in practice, where an
observation is either kept or discarded. In the last case, the method reflects that in the
gray area there is a level of uncertainty about the fact that those observations really are
outliers or not. Our main practical contribution is therefore to provide an efficient and
robust model that automatically deals with this type of uncertainty, which is especially
valuable in high-dimensional problems and when several analyses have to be performed.
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Figure 1: Posterior mean of the slope in a simple linear regression as an observation
yi∗ → ∞.

This rest of the article is organised as follows. The linear regression model is de-
tailed in Section 2.1, the LRVD family is presented in Section 2.2 and the theoretical
results are provided in Section 2.3. More practically, efficient and robust regression
is investigated in Section 3. The LPTN distribution is first presented in Section 3.1.
A discussion about efficiency of the robust model with LPTN errors is provided in
Section 3.2. Practical details of our approach are addressed in Section 3.3 through a
simulated case study on the modelling of house market values. Numerical methods such
as Markov chain Monte Carlo (MCMC) are discussed for the computation of different
posterior quantities: means, medians, credible intervals, prediction of future observa-
tions and hypothesis testing via Bayes factors. A powerful tool for outlier identification
is also proposed. In Section 3.4, a simulation study is conducted to compare the perfor-
mance of our approach with different Bayesian alternatives. Note that even though our
approach is Bayesian, it is possible to use it in a frequentist setting through maximum
a posteriori probability (MAP) estimates, which correspond to MLE when the prior is
set to 1. We thus also include in our study the frequentist methods mentioned above.

2 Conflict Resolution in Linear Regression via LRVD

We henceforth assume that f is a strictly positive continuous probability density func-
tion (PDF) on R that is symmetric with respect to the origin, for which all parameters
are known and such that there exists a threshold above which g(z) = zf(z) is monotonic.
Examples of such PDF are the normal, logistic, Laplace, Student (with prespecified de-
grees of freedom) and the LPTN (see Section 3.1).

2.1 Linear Regression Model

(i) Let Y1, . . . , Yn ∈ R be n random variables representing data points from the depen-
dent variable and xT

1 := (1, x12, . . . , x1p), . . . ,x
T
n := (1, xn2, . . . , xnp) be n vectors

of observations from the explanatory variables, where p ∈ {2, 3, . . .}, n ≥ p+1 and
xij ∈ R are assumed to be known. As mentioned in the introduction, we focus on
the situation where all explanatory variables are continuous. The linear regression
model is given by

Yi = xT
i β + εi, i = 1, . . . , n, (2.1)
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where the n random variables ε1, . . . , εn ∈ R and the p-dimensional random vari-
able β := (β1, . . . , βp)

T ∈ R
p represent the errors and the vector containing the

regression coefficients, respectively. These n + 1 random variables are condition-
ally independent given σ > 0, a scale parameter, with a conditional density for εi
given by

εi | β, σ D
= εi | σ D∼ (1/σ)f (εi/σ) , i = 1, . . . , n.

(ii) We assume that the joint prior density of β and σ, denoted π(β, σ), is bounded by
max(C, σ−1C), where C > 0 can be any constant.

A large variety of priors fits within the structure assumed in (ii). This is the case for
noninformative priors such as π(β, σ) ∝ 1/σ and π(β, σ) ∝ 1, and practically all proper
densities. Informative priors shall however be used with caution, especially when they
translate into light tailed densities. They may indeed contaminate the inference if they
are in conflict with the information carried by the data. Establishing the conditions that
guarantee robustness to informative priors in linear regression is not trivial.

We study robustness of the estimation of β and σ in the presence of outliers. In
this paper, an observation (xi, yi) is considered as an outlier if its error εi = yi − xT

i β
is relatively far from 0, where β defines the probable hyperplanes for the bulk of the
data. Note that robustness against outlying errors is a different concept than robustness
against outlying xi or yi. They are generally equivalent though, except for the unusual
case where an observation is outlying in xi and yi but still manages to lie in the general
trend, and consequently, be a nonoutlier in error. From a theoretical perspective, we
study the asymptotic behaviour in the sense that we let outliers’ errors εi approach
+∞ or −∞. Our strategy to mathematically represent this situation is to let their yi
approach +∞ or −∞ while their vector xi remains fixed. We thus specify a particular
path along which the outliers move away from the general trend.

We assume that each outlier goes to −∞ or +∞ at its own specific rate, to the
extent that the ratio of two outliers is bounded. More precisely, we assume that

yi = ai + biω, (2.2)

for i = 1, . . . , n, where ai, bi ∈ R are constants such that bi = 0 if the point is a
nonoutlier and bi �= 0 if it is an outlier, and then, we let ω → ∞. We mathematically
distinguish the outliers from the nonoutliers through the following. Among the n ob-
servations (y1, . . . , yn) =: yn, we assume that k of them form a group of nonoutlying
observations, that we denote yk, while � = n− k of them are considered as outliers. For
i = 1, . . . , n, we define the binary functions ki and �i as follows: if yi is a nonoutlying
value ki = 1, and if it is an outlier �i = 1. These functions take the value of 0 otherwise.
Therefore, we have ki + �i = 1 for i = 1, . . . , n, with

∑n
i=1 ki = k, and

∑n
i=1 �i = �.

Let the joint posterior density of β and σ be denoted by π(β, σ | yn) and the
marginal density of (Y1, . . . , Yn) be denoted by m(yn), where

π(β, σ | yn) = [m(yn)]
−1π(β, σ)

n∏
i=1

(1/σ)f((yi − xT
i β)/σ), β ∈ R

p, σ > 0. (2.3)
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Let the joint posterior density of β and σ arising from the nonoutlying observations
only be denoted by π(β, σ | yk) and the corresponding marginal density be denoted by
m(yk), where

π(β, σ | yk) = [m(yk)]
−1π(β, σ)

n∏
i=1

[
(1/σ)f((yi − xT

i β)/σ)
]ki

, β ∈ R
p, σ > 0.

Proposition 2.1 (Tail behaviour of the posteriors).

(i) If n > p+ 1, the density π(β, σ | yn) is proper.

(ii) If k > p+ 1 (stronger than n > p+ 1), the density π(β, σ | yk) is also proper.

(iii) If n > p+ 1 +M , then E[βM
j | yn] for any j ∈ {1, . . . , p} and E[σM | yn] exist.

(iv) If k > p+ 1 +M , then E[βM
j | yk] for any j ∈ {1, . . . , p} and E[σM | yk] exist.

Proof. See Section 5.

Remark 2.1. When any type of explanatory variables is considered (continuous, dis-
crete as in ANOVA or a mix of both as in ANCOVA), the densities are proper if we
additionally assume that the design matrix (comprised of n or k observations) has full
rank. In variable selection, when the joint posterior of the models and parameters is con-
sidered, this joint posterior is proper if the assumptions are verified for the “complete”
model (the model with all variables). The assumptions are more technical for the mo-
ments and are not provided here. We essentially need enough of “different” xi vectors.
In the proof, it is made clear what is required.

2.2 Log-Regularly Varying Distributions

We now provide an overview of the class of log-regularly varying functions (LRVF),
as introduced in Desgagné (2013) and Desgagné (2015), following the idea of regularly
varying functions developed by Karamata (1930). They form an interesting class of
functions with useful properties for robustness.

Definition 2.1 (LRVF). We say that a measurable function g is log-regularly varying
at ∞ with index θ ∈ R, written g ∈ Lθ(∞), if

lim
z→∞

g(zν)/g(z) = ν−θ,

uniformly in any set ν ∈ [1/η, η] (for any η ≥ 1). If θ = 0, g is said to be log-slowly
varying at ∞.

In Desgagné (2015), it is shown that Definition 2.1 is equivalent to the following:
there exists a constant A > 1 and a function s ∈ L0(∞) such that for z ≥ A, g can be
written as

g(z) = (log z)−θs(z).

Examples of LRVF are g(z) = (log z)−θ (with s(z) = 1) and g(z) = (log z)−θ log(log z).
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Definition 2.2 (LRVD). A random variable Z and its distribution are said to be log-
regularly varying with index θ ≥ 1 if their density f is such that zf(z) ∈ Lθ(∞).

Definition 2.2 implies that any density f with tails behaving like |z|−1(log |z|)−θ

with θ > 1 is a LRVD. Some examples like the LPTN distribution are given in Des-
gagné (2015). The most important property of this class of distributions follows from
Definition 2.1: the asymptotic location-scale invariance of their density, as stated in
Proposition 2.2.

Proposition 2.2 (Location-scale invariance). If zf(z) ∈ Lθ(∞), then we have

(1/σ)f((z − μ)/σ)/f(z) → 1 as z → ∞,

uniformly on (μ, σ) ∈ [−ϑ, ϑ]× [1/η, η], for any ϑ ≥ 0 and η ≥ 1.

Proof. See Desgagné (2015).

Proposition 2.2 essentially implies that the conditional density of an outlier (1/σ)
f((y − xTβ)/σ) asymptotically behaves like f(y) as y → ∞. The densities of the out-
liers at the numerator of posterior densities cancel each other out with those at the
denominator in the marginal, provided that the integral can be interchanged with the
limit. This is the idea of the proof of our robustness result presented in the next section.
The greatest challenge is however to prove that we can indeed interchange the limit and
the integral. This part leads to the condition about the maximum number of outliers
to guarantee robustness.

2.3 Resolution of Conflicts

We now present Theorem 2.1, the main theoretical contribution of this paper.

Theorem 2.1. If

(i) zf(z) ∈ Lθ(∞) with θ ≥ 1, i.e. f is a LRVD,

(ii) � ≤ n/2− (p− 1/2), i.e. #outliers ≤ half the sample − (p− 1/2),
⇔ k ≥ n/2 + (p− 1/2), i.e. #nonoutliers ≥ half the sample +(p− 1/2),
⇔ k − � ≥ 2(p− 1/2), i.e. #nonoutliers − #outliers ≥ 2(p− 1/2),

then, as ω → ∞ (where ω is defined in (2.2)), we obtain the following results:

(a)
m(yn)∏n

i=1[f(yi)]
�i

→ m(yk),

(b)
π(β, σ | yn) → π(β, σ | yk),

uniformly on (β, σ) ∈ [−ϑ, ϑ]p × [1/η, η], for any ϑ ≥ 0 and η ≥ 1,
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(c)

β, σ | yn
D→β, σ | yk,

and in particular

βj | yn
D→βj | yk, j = 1, . . . , p, and σ | yn

D→σ | yk,

(d) if additionally k ≥ n/2 + (p− 1/2) +M , then

E[βM
j | yn] → E[βM

j | yk], j = 1, . . . , p, and E[σM | yn] → E[σM | yk].

Proof. See Section 5.

The two sufficient conditions of Theorem 2.1 are remarkably simple. Condition (i)
indicates that modelling must be performed using a super heavy-tailed density f , more
precisely using a LRVD, e.g. a LPTN as proposed. Condition (ii) gives in fact the
breakdown point, generally defined as the proportion of outliers (�/n) that an estimator
can handle. We have �/n ≤ 1/2− (p− 1/2)/n, which translates into a breakdown point
of 50% as n → ∞ (for fixed p), usually considered as the maximum and best desired
value. Condition (ii) is thus generally satisfied in practice.

Results (a) to (d) are different representations of whole robustness. Essentially, the
posterior inference arising from the whole sample converges towards the posterior infer-
ence based on the nonoutliers only. The impact of outliers then gradually vanishes as
they approach plus or minus infinity.

In Result (a), the asymptotic behaviour of the marginal m(yn) is described. This
result is used in Section 3.3 to assess robustness of Bayes factors for testing H0 : βi = 0
versus H0 : βi �= 0 (when i ≥ 2). Result (a) is in fact the centrepiece of Theorem 1;
its demonstration requires considerable work, and leads relatively easily to the other
results of the theorem.

The convergence of the posterior density in Result (b) enables to assess that the
MAP estimates of β and σ are wholly robust. Given that these estimators correspond
to the MLE when the prior is proportional to 1, the frequentist estimates are, as a
result, also wholly robust. This allows establishing a connection between Bayesian and
frequentist robustness.

Result (c) indicates that any estimation of β and σ based on posterior quantiles
(e.g. using posterior medians and Bayesian credible intervals) is robust to outliers. Note
that in fact we obtain the stronger result of L1 convergence:∫ ∞

0

∫
Rp

∣∣π(β, σ | yn)− π(β, σ | yk)
∣∣ dβ dσ → 0,

which in turn implies that P(β, σ ∈ E | yn) → P(β, σ ∈ E | yk) as ω → ∞, uniformly
for all sets E ⊂ R

p ×R
+, a slightly stronger than convergence in distribution given in

Result (c) which requires only pointwise convergence.
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Posterior expectations are wholly robust as well, as indicated by Result (d). It is
interesting to notice that all these results guarantee the robustness of a variety of Bayes
estimators.

Remark 2.2. When any type of explanatory variables is considered, the same results
as in Theorem 2.1 hold under the following additional assumption: it is possible to
choose n/2 + (p − 1/2) (or n/2 + (p − 1/2) + M) nonoutliers — the required number
of nonoutliers depending on which results we target (Results (a) to (c) or Results (a)
to (d)) — that have p-wise linearly independent xi vectors. This means that any p
vectors xi1 , . . . ,xip among the chosen subgroup must be linearly independent. In variable
selection, the convergence of the joint posterior of the models and their parameters, and
of the expectations, hold if the assumptions are verified for the complete model.

Remark 2.3. We prove that modelling with f having tails behaving like |z|−1(log |z|)−θ

is sufficient to obtain the results in Theorem 2.1. It seems “almost” necessary because, on
one hand, a tail behaviour of z−2 (corresponding to a Student density) is not sufficient,
and on the other hand, |z|−1 is not integrable.

3 Efficient and Robust Regression Using LPTN

In Section 2.3, we stated theoretical results which essentially indicate that using a LRVD
for the errors ensures a high breakpoint of 1/2 − (p − 1/2)/n with a whole rejection
of the outliers as their error goes to +∞ or −∞. The conflict is thus resolved and the
linear regression is in agreement with the bulk of the data.

In this section, we build on these results to propose a solution in the realistic situation
where a statistician satisfied with the normal model in the absence of outliers seeks
protection in the eventuality of contamination by outliers. Mathematically, we consider
the context where the errors come from a mixture distribution, with a normal component
for the bulk of the data and another component F0 for the outliers, that is

εi/σ ∼ αN (0, 1) + (1− α)F0, i = 1, . . . , n, (3.1)

where 0 < α ≤ 1 represents the proportion of normal observations in the sample. We
thus look for efficient estimators that perform well in the absence of outliers, that is
when α = 1 and the model is the pure normal. As mentioned in the introduction, OLS
(or equivalently the normal model) is considered as the benchmark in this situation.
Our efficient estimators must also be robust and perform in the presence of outliers,
and this, for as many scenarios of α < 1 and F0 as possible.

3.1 LPTN Distribution

The solution we propose consists in assuming that the errors have a LPTN distribution
with a prespecified parameter ρ ∈ (2Φ(1)− 1, 1) ≈ (0.6827, 1), denoted LPTN(ρ). More

precisely, we still have εi | σ D∼ (1/σ)f (εi/σ), but the density f is now assumed to be

f(z) =

{
ϕ(z) if |z| ≤ τ,

ϕ(τ) τ
|z|

(
log τ
log |z|

)λ+1

if |z| > τ,
(3.2)
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where z ∈ R, and τ > 1 and λ > 0 are functions of ρ with

τ = Φ−1((1 + ρ)/2) := {τ : P(−τ ≤ Z ≤ τ) = ρ for Z
D∼ N (0, 1)}, (3.3)

λ = 2(1− ρ)−1ϕ(τ) τ log(τ),

ϕ(·), Φ(·) and Φ−1(·) being the PDF, cumulative distribution function (CDF) and in-
verse CDF of a standard normal, respectively.

The LPTN distribution was introduced by Desgagné (2015), who in fact presents
a more general version than that shown here. The parameter λ that controls the tail
decay was originally free and a multiplicative normalising constant K(ρ, λ) was needed.
For example, the center of the density (the area |z| ≤ τ) was given by K(ρ, λ)ϕ(z). In
order to pursue our efficiency objective, we set the constant to 1, which in return forces
λ to be automatically set as a function of ρ. The parameter ρ, chosen by the user, thus
represents the mass of the central part that exactly matches the N (0, 1) density.

As ρ increases, f approaches the normal. An increase in ρ also implies an increase in
λ and τ , which translates into a density f with lighter tails. Efficiency is also expected
to increase, but robustness to decrease. A compromise has therefore to be made and it
is controlled by the statistician through the parameter ρ. In other words, this parameter
represents the tolerance to (bounded) impact from outliers at the benefit of efficiency
when the data set is not contaminated. The user can also select its value based on
prior opinion about the probable proportion of outliers, by setting it to 1 minus this
proportion.

The rationale behind proposing the LPTN is thus that, in addition to exactly match-
ing the normal density on the part with highest probability, this distribution has log-
Pareto tails ensuring that our theoretical robustness result hold, and this for any value
of ρ. This type of tails consequently accommodates for a large spectrum of α and F0

in the mixture (3.1) when α < 1 and generates efficient inference when α = 1 as well
(this latter characteristic is discussed in Section 3.2). A comparison between different
LPTN densities is shown in Figure 2. Note that, as required for our theoretical re-
sults of Section 2, the LPTN distribution has a strictly positive continuous PDF on
R that is symmetric with respect to the origin and such that zf(z) is monotonic for
z > τ .

Figure 2: Densities of the LPTN(0.80), LPTN(0.90) and LPTN(0.95).
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3.2 Efficiency of the LPTN Model

To theoretically study the efficiency of the LPTN Model, we consider the situation
where the data are generated from a normal and evaluate the performance of the robust
estimators in the asymptotic situation n → ∞. We start by providing evidences that
the estimators for β are consistent, while it depends on ρ for σ. We consider that the
generative normal model has β0 ∈ R

p and σ0 > 0 as true parameter values, and denote
the associated density of one data point g := N (xT

i β0, σ
2
0). Denote that associated with

the LPTN model p(β,σ)(yi) := (1/σ)f((yi − xT
i β)/σ), where f is a LPTN(ρ). In Bunke

et al. (1998), it is proved that if the divergence

KL(β, σ) :=

∫
log(g(yi)/p(β,σ)(yi)) g(yi) dyi (3.4)

is minimised at a unique (β∗, σ∗) and some regularity conditions are satisfied, then

lim
n→∞

E[(β, σ) | yn] = (β∗, σ∗) with probability 1,

where the expectation is with respect to the posterior arising from the LPTN model.
This is proved through the strong consistency of the MAP.

In the supplementary material (Gagnon et al., 2019), we prove that the first deriva-
tive of (3.4) with respect to β equals 0 at β0, and this for any value of σ. While setting
β = β0 in (3.4), we show that it is minimised at σ∗ which depends on ρ (see Figure 3).
We also show that most of the regularity conditions in Bunke et al. (1998) are satisfied.
This analysis suggests that the true values for the regression coefficients are recovered
even though the LPTN model is misspecified. For σ, the closer ρ is to 1, the more similar
are σ∗ and σ0. For instance, when ρ = 0.9, σ∗/σ0 = 1.03, and beyond ρ = 0.95, this
ratio is essentially 1.

When the data are generated from the normal model, estimators arising from it
are certainly more efficient. We however numerically verified that the learning rate for
the robust estimators is the same as the normal ones, suggesting that the efficiency
is bounded away from 0 for all n. Some additional details are needed to rigorously
prove the consistency of the Bayes estimates and to accurately conclude about effi-
ciency.

Figure 3: Minimiser of the divergence σ∗ when β = β0, as a function of ρ.
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3.3 Simulated Case Study

We carry out in this section a linear regression analysis on a given data set using our ro-
bust approach and also the classical method with the normal assumption for comparison.
In doing so, we address all practical considerations, resulting in a straightforward imple-
mentation by users. In this regard, all R code used to produce numerical results is pro-
vided at https://arxiv.org/abs/1612.06198, which also allows reproducing these results.

For a given city, we want to model the market value of a house in thousands of
dollars using the average home value in its residential sector in thousands of dollars, the
living area in square metre (sq.m.) and the land area in sq.m. We consider a simulated
sample of size n = 50 that contains 3 outliers (it is given in detail in the provided R
code). To give an overview of it, we present in Table 1 the data for Home 2 and for the
outliers: Homes 1, 3 and 49.

Characteristics Home 2 Home 1 Home 3 Home 49
Home value (in $1,000) 326 137 20 1,000
Value of the sector (in $1,000) 343 670 350 560
Living area (in sq.m) 205 149 222 269
Land area (in sq.m) 345 372 434 655

Table 1: Data from the studied sample.

Home 2 has a value of $326,000 (the sample mean is $504,900), is located in a
residential sector where houses are valued at $343,000 in average (the sample mean is
$508,880), has a living surface of 205 sq.m. (the sample mean is 200 sq.m) and a land
of 345 sq.m. (the sample mean is 500 sq.m). Homes 1 and 3 both have aberrantly low
values, while it is the opposite for Home 49. They are meant to represent a damaged
house, a data entry error and an eco-friendly house, respectively.

To improve the interpretation of the linear regression, the explanatory variables are
centred around their respective sample mean. Therefore, for each house, we define xi2

as the average value in its residential sector (in $1,000) minus 508.88, xi3 as the living
area minus 200 and xi4 as the land area minus 500. Note that centring affects only
the constant of the model, β1, which can now be interpreted as the predicted value
of the typical house with average features xi2 = xi3 = xi4 = 0. The model used to
generate the data (except the outliers) is Yi = xT

i β + εi with β := (508.88, 1, 1, 0.5)T

and εi | σ D∼(1/σ)f(εi/σ), where f = N (0, 1) and σ = 40.

In Figure 4, we plot the dependent variable against each explanatory variable to
depict their respective linear relation. The pairwise correlations between the explanatory
variables are all below 0.10, suggesting that these graphs provide a fair representation
of the multivariate relation. The parameters of the generative model have been set to
create the expected situation in which an increase in any feature is associated with an
increase in home value.

For the analysis, the density f is assumed to be a LPTN(ρ = 0.95) for the robust
model and a N (0, 1) under the classical model. We also set π(β, σ) ∝ 1/σ, the usual
noninformative prior. The estimation of the parameters is done through the posterior

https://arxiv.org/abs/1612.06198
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Figure 4: The dependent variable versus each of the covariates.

density as expressed in (2.3). The posterior means, medians and credible intervals are
computed through a random walk Metropolis (RWM) algorithm, one of the easiest to
implement Metropolis–Hastings (Metropolis et al. (1953) and Hastings (1970)) algo-
rithms. More sophisticated methods like the Hamiltonian Monte Carlo (HMC, see, e.g.,
Neal (2011)) could be used given that the likelihood function is differentiable almost
everywhere. The MAP and MLE are computed through optimisation procedures; we
use the general-purpose optim function in R based on Nelder–Mead algorithm. It is
of common knowledge that maximisers (MAP and MLE) may not provide a posterior
summary as good as posterior means, for instance. The advantage is that they can be
computed quickly. We find them particularly useful for directly giving starting points
for the RWM algorithm and for conducting simulation studies as in Section 3.4.

These estimates are presented in Table 2, in which the numbers in square brackets
are those based on the 47 nonoutliers only (the sample without Homes 1, 3 and 49). The
lower and upper bounds of the credible intervals (CI – LB and CI – UB) are computed
from the regions with highest posterior density using the coda package. Some interest-
ing observations are now made. First, in the absence of outliers (results in brackets),
the results of the robust LPTN model are very similar to those of the nonrobust normal
model. As mentioned in Section 3.1, the LPTN(0.95) is very similar to the N (0, 1), in
fact identical except for the 5% tails. The normal model is the benchmark in terms of ef-
ficiency. All presented point estimators of β under the normal model indeed correspond
to OLS, which are known to produce the best estimates (in a frequentist sense) when
the errors are uncorrelated with zero mean and homoscedastic with finite variance. This
is the case for the nonoutliers. Our example thus suggests that the choice between the
posterior means, medians, MAP or MLE is not crucial for the robust model as well.
Second, we observe that in the presence of the 3 outliers (i.e. using the whole sample
of size n = 50), the results of the LPTN model are barely affected, showing similar
results to those excluding the outliers, while the normal model is clearly contaminated
by the outliers. This is consistent with our theoretical asymptotic results which indicate
agreement with the bulk of the data under the robust model. In particular, the estimate
for σ under the LPTN model is about half that arising from the normal model, resulting
in much shorter credibility intervals for the robust model. Those patterns in the esti-
mates are typical of the normal and LPTN models. That is reflected in the thorough
performance evaluation presented in the next section.

With the posterior in hand, one can take the inference one step further with outlier
identification and prediction. The former is first discussed. For each observation i =
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Posterior estimates for
β1 β2 β3 β4 σ

Means LPTN 514.0 [514.5] 1.03 [1.03] 1.12 [1.09] 0.39 [0.36] 47.9 [43.8]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 96.5 [43.1]

Medians LPTN 514.0 [514.6] 1.03 [1.03] 1.12 [1.09] 0.39 [0.36] 47.4 [43.5]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 95.6 [42.7]

MAP LPTN 513.0 [513.7] 1.00 [1.01] 1.11 [1.10] 0.40 [0.37] 44.3 [40.8]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 90.1 [40.1]

MLE LPTN 513.1 [513.8] 1.00 [1.01] 1.11 [1.10] 0.40 [0.37] 44.7 [41.1]
N 504.9 [514.3] 0.97 [1.02] 1.40 [1.09] 0.70 [0.36] 91.0 [40.5]

CI – LB LPTN 500.3 [501.9] 0.86 [0.87] 0.81 [0.81] 0.22 [0.21] 36.9 [34.5]
N 478.1 [501.8] 0.66 [0.87] 0.81 [0.82] 0.38 [0.21] 77.3 [34.4]

CI – UB LPTN 527.7 [527.0] 1.20 [1.19] 1.42 [1.37] 0.56 [0.52] 59.8 [53.7]
N 532.2 [526.8] 1.29 [1.18] 2.00 [1.37] 1.02 [0.51] 117.1 [52.7]

Table 2: Posterior means and medians, MAP, MLE and credible intervals (CI – LB and
CI – UB), under the LPTN(ρ = 0.95) and N (0, 1) assumptions for f ; the numbers in
square brackets are the estimates based on the 47 nonoutliers only.

1, . . . , n, one can estimate the value fitted by the hyperplane xT
i β, the realisation of the

error yi − xT
i β and its standardised version zi := (yi − xT

i β)/σ. This can be achieved
through their MAP estimates (or MLE) by simply plugging in the MAP estimates
(or MLE) of β and σ (as given in Table 2) in their expression. Or possibly better, they
can be estimated by their posterior mean or median. For this purpose, samples can be
directly generated from their posterior distribution through the values of β and σ already
generated from the RWM algorithm (or obviously, it can be done at the same time the
algorithm runs). Consider for instance Home 49, which is valued at y49 = 1,000, the
posterior means give fitted values of 704.0 (LPTN) and 759.7 (normal), errors of 296.0
(LPTN) and 240.3 (normal) and standardised errors of 6.28 (LPTN) and 2.52 (normal).
We note that the hyperplane is attracted towards the outlier under the normal model,
which leads to an estimated error less extreme than that under the LPTN model.

Naturally, large estimates for standardised errors |zi| indicate strong evidence of
outlyingness. A threshold of 2.5 is sometimes recommended to differentiate outliers
from nonoutliers, see, e.g., Gervini and Yohai (2002). On this basis, Home 49 appears
clearly as an outlier under the LPTN model, while the conclusion is unclear for the
normal model.

To provide a measure of outlyingness, we evaluate the probability for a (unrealised)
standardised error εi0/σ — which density is f — to be more extreme than |zi|:

�(zi) := P(|εi0/σ| > |zi|) = P
(
|εi0/σ| > |yi − xT

i β|/σ
)
.

Under the normal model, we have

�N (zi) := 2(1− Φ(|zi|)),
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whereas under the LPTN(ρ) it is

�LPTN(zi) :=

{
2(Φ(τ)− Φ(|zi|)) + 2ϕ(τ)τ(log τ)λ−1 if |zi| ≤ τ,

2ϕ(τ)τ(log τ)λ−1
(

log τ
log |zi|

)λ

if |zi| > τ,

where τ = 1.96 and λ = 3.08 when ρ = 0.95, as computed with (3.3).

The measure �(zi) is a random variable as it is a function of the unknown parameters
β and σ, and can be estimated a posteriori using the same technique as above. In the
same spirit as Gervini and Yohai (2002), one can flag observations with estimates for
�(zi) lesser than a chosen threshold. A reasonable threshold, in our opinion, should lie
between 0.01 and 0.02. This corresponds to a range of 2.47 to 3.11 of MAP estimates for
|zi| under the LPTN model if � is estimated through its MAP (because this is achieved
by plugging in the MAP of |zi|).

If we look again at results of Home 49, the posterior means for �(zi) give 0.0024 and
0.0208 for the LPTN and normal models, respectively. Home 49 appears again clearly
as an outlier under the LPTN model, whereas it is much less convincing for the normal
model. At a threshold of 0.02 or less, this observation would not be considered as an
outlier. Outlier detection using the wholly robust LPTN model is effective; outliers do
not mask each other, a well-known phenomenon arising with nonrobust models typically
due to overestimation of the scale σ, and sometimes because of attraction of hyperplanes.
The posterior means for the standardised errors zi are plotted in Figure 5, along with
the posterior means for �(zi) for the three outliers.

Figure 5: Posterior mean for the standardised errors zi and outlier identification mea-
sures �(zi), under the LPTN and normal models.

For predicting a future observation, say Yn+1 = xT
n+1β + εn+1, we estimate its

posterior predictive density by sampling from it through the RWM algorithm as before.
For each realisation of (β, σ) in the Markov chains, we generate εn+1 from an LPTN
(or a normal for the nonrobust model) centred at 0 with a scale parameter σ, to which
we add xT

n+1β. We can thus easily compute posterior predictive quantities such as the
median, credible intervals, probabilities and so on. Note that the expectation does not
exist under the LPTN (because it does not exist for εn+1). MAP can be approximated
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from the sample, but because it requires extra work, we suggest using the median for
prediction.

If for example we consider the future observation of the typical house with xn+1,2 =
xn+1,3 = xn+1,4 = 0, the posterior predictive medians for Yn+1 are 514.0 and 504.9 under
the LPTN and normal models, respectively; they are as expected around the posterior
medians of the intercept β1. The credible intervals are (417.4, 611.6) and (313.7, 698.6)
for the LPTN and normal models, respectively. We note the shorter length for the robust
model, which is attributable to the robust estimation of the scale σ.

Finally, we easily perform statistical hypothesis testing through Bayes factors. For
this, we implement a reversible jump algorithm (Green (1995)) with two models and
uniform prior on these. If, for instance, we want to test for hypotheses H0 : β4 = 0
versus H1 : β4 �= 0, the implementation essentially requires the tuning of an additional
RWM algorithm; that for sampling the parameters of the model without x4. In our
example, the Bayes factors are 1.68 × 103 and 1.74 × 103 for the LPTN and normal
models, respectively. If we exclude the outliers, they become 2.80× 103 and 2.12× 103

for the LPTN and normal models, respectively.

The Bayes factor is a robust measure under the model with a LPTN distribution
on the error term. Indeed, Result (a) of Theorem 2.1 states that the marginal m(yn)
behaves like m(yk)

∏n
i=1[f(yi)]

�i . Furthermore, the marginal m(yn | H0) behaves like
m(yk | H0)

∏n
i=1[f(yi) ]

�i , because when the assumptions of Theorem 2.1 are satisfied
for the larger model, they are automatically satisfied for the smaller. As a result, the
Bayes factor m(yn)/m(yn | H0) behaves like m(yk)/m(yk | H0).

3.4 Performance Evaluation

In this section, we evaluate the performance of the robust LPTN model through a simu-
lation study. We consider the same data set and model as in Section 3.3, but get rid of yn

which are generated. Several values for ρ are considered: ρ = 0.80, 0.84, 0.90, 0.93, 0.95,
and 0.98. As in the last Section, it is compared with the nonrobust normal model. We
add the Bayesian approach of Box and Tiao (1968) with normal mixtures and the model
with the Student distribution. For the latter, we consider different degrees of freedom
(df): 1, 2, 4, 6, and 10. We set π(β, σ) ∝ 1 and estimate the parameters using the MAP,
which therefore corresponds to the MLE. The Bayesian methods thus become direct
competitors to the frequentist robust estimators like the popular M- and S-estimators.
These as well as MM-, REWLSE (the two best frequentist methods according to the
recent review by Yu and Yao (2017)) and LTS estimators are included in the simulation
study.

The data yn are generated through the errors εi | σ D∼ (1/σ)f(εi/σ) under the fol-
lowing scenarios:

• Scenario 0: f = N (0, 1),

• Scenario 1: f = 95%N (0, 1) + 5%N (7, 1),

• Scenario 2: f = 90%N (0, 1) + 10%N (7, 1),
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• Scenario 3: f = 95%N (0, 1)+ 5%N (3, 1), where the xi of the outliers are modified
to make them high-leverage points (the procedure is explained in detail below),

• Scenario 4: f = 90%N (0, 1)+10%N (3, 1), where the xi of the outliers are modified
to make them high-leverage points.

Nonoutliers are generated from the first mixture component, whereas outliers are
generated from the second one. The choice of locations for the outliers aims at producing
challenging and interesting situations, where a vast spectrum of behaviours is observed
for especially the LPTN and Student models with their different sets of parameters ρ
and df. Scenarios 2 and 4 are studied to show how performance varies when the number
of outliers is doubled, from 5% to 10% of the sample size. For each scenario, we consider
two sample sizes: n = 50 and n = 100. The case n = 50 corresponding to the original
x1, . . . ,x50, 50 additional observations from the explanatory variables are generated in
the same fashion as the original ones for the case n = 100.

For Scenarios 3 and 4, when an error is generated from the second mixture com-
ponent (that generating extreme values), say εi0 , we modify one of the coordinates of
the associated xi0 to make the observation an high-leverage point. More precisely, we
randomly choose a covariable number, say j0 ∈ {2, 3, 4}, and set xi0j0 = 1.5 maxi xij0 .

The performance of each model/estimator is evaluated through the premium versus
protection approach of Anscombe and Guttman (1960). This approach consists in com-
puting the premium to pay for using a robust alternative R to the normal N when there
are no outliers (Scenario 0), and the protection provided by this alternative when the
data sets are contaminated (which is likely in the other scenarios). The premium and
protections associated with a robust alternative R are evaluated through the following:

Premium(R, β̂) :=
MR(β̂)−MN (β̂)

MN (β̂)
,

Protection(R, β̂ | S) := MN (β̂ | S)−MR(β̂ | S)
MN (β̂ | S)

,

where S represents the scenario under which the protection is evaluated (1, 2, 3 or 4),

and MN (β̂ | S), for instance, denotes an error measure M for estimating β by β̂ using
the normal model N , in Scenario S. The scenario is not specified for the premium
because it does not vary; it is Scenario 0. The premiums and protections with respect
to σ̂ — Premium(R, σ̂) and Protection(R, σ̂ | S) — have the analogous definitions.

We consider two distinct error measures (MR(β̂ | S) and MR(σ̂ | S)) to highlight
the difference between them, and also because there is no natural way of combining
them. We propose to define MR(β̂ | S) as the square root of the expectation with
respect to Yn (and therefore the estimates associated with each realisation) of the
average squared vertical distances between the estimated and true hyperplanes measured
at each observation xi:

MR(β̂ | S) :=
(
E

[
1

n

n∑
i=1

(xT
i β̂ − xT

i β)
2

])1/2

=

(
1

n
E

[
(β̂ − β)TXTX(β̂ − β)

])1/2

,
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where X is the design matrix with rows xT
1 , . . . ,x

T
n . The expression after the second

equality provides us with another interpretation. The measure represents an alternative
to (E[(β̂ − β)T (β̂ − β)])1/2, the square root of the trace of the mean square error

(MSE) matrix for β̂. Given that under the normal model σ2(XTX)−1 is the covariance

matrix of β̂, standardisation is applied to β̂ in our measure. For σ̂, we simply use the
square root of its MSE: MR(σ̂ | S) := (E[(σ̂ − σ)2])1/2. Note that the expectations are
approximated through the simulation of 250,000 vectors yn.

The premium and protection for a given robust alternative R in a given scenario S
are therefore the relative increase and decrease in MR(· | S) due to the use of the robust
alternative instead of the normal (the benchmark model), respectively. For each robust

alternative, there are four premiums to compute: one for the measure for β̂ and one for
the measure for σ̂, in the cases n = 50 and n = 100. There are sixteen protections to
compute given that we also do this for Scenarios 1, 2, 3, and 4. The idea is to graphically
present the results by plotting the couples (Premium(R, β̂),Protection(R, β̂ | S)) for
all robust alternatives. The results for Scenarios 1 and 2 are shown in Figure 6, and
those for Scenarios 3 and 4 in Figure 7.

From this premium versus protection perspective, a robust alternative dominates
another if its premium is smaller and protection larger. This means that in Figures 6
and 7, we are looking for points in the upper left parts. It is noticed that the robust
alternatives are all excellent candidates, except maybe for S -estimator that we choose
not to show because of its large premium for β̂ and its same behaviour as MM -estimator
for σ̂. In particular, the presented robust alternatives all handle high-leverage points.

By looking at Figures 6 and 7, we notice that the LPTN curve (in green) dominates

the Student curve (in orange), more remarkably for σ̂, but also for β̂. We also notice
that the optimal values for ρ for the LPTN are around the nonoutlier percentages, i.e.
around 0.95 (the second point starting from the lower left corner) in Scenarios 1 and 3,
and around 0.90 (the fourth point starting from the lower left corner) in Scenarios 2 and
4. This justifies our suggestion in Section 3.1 for selecting ρ based on prior knowledge
about probable proportions of outliers, if users do not have other preferences. The best
LPTN models in all scenarios essentially dominate all the other alternatives with respect
to σ̂. As for β̂, the performance of these LPTN models is among the best. The mixture
model appears better in this case, but often by little. The difference varies depending
on the number of outliers and the sample size. For instance, look at the LPTN(0.95) in
Scenarios 1 and 3 (and also at the scale of the x axis), and notice how the LPTN(0.98)
gets closer to the mixture model in these scenarios when doubling the sample size, which
makes this model almost the best. This allows to make an interesting remark: for a given
percentage of outliers (and therefore of nonoutliers), a larger sample size translates into
enhanced protection, because there are more nonoutliers. This is especially true for
LPTN models with ρ close to 1.

4 Conclusion

The goal of this paper, which was to provide a solution that reaches gold standards in
terms of premium versus protection for all parameters, is now achieved. The foundations
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Figure 6: Premiums vs protections in Scenarios 1 and 2, and lines premium = protection
to identify the robust alternatives that offer better protections than their premium.

for great protection were established through our main theoretical contribution: the
proof of whole robustness results for linear regression. The key result is the convergence
of the posterior distribution towards that based on the nonoutliers only when the outliers
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Figure 7: Premiums vs protections in Scenarios 3 and 4, and lines premium = protection
to identify the robust alternatives that offer better protections than their premium.

approach plus or minus infinity (Result (c), Theorem 2.1). The robustness results hold
under two simple and intuitive conditions. Firstly, the error term must follow a super
heavy-tailed distribution, namely a LRVD, to accommodate for the presence of outliers.



P. Gagnon, A. Desgagné, and M. Bédard 409

Secondly, the number of outliers must not exceed half the sample n/2 minus p − 1/2
(the number of regression coefficients minus 1/2). This last condition translates into a
limiting breakdown point of 0.5 as n → ∞.

Although the whole robustness results are theoretical and asymptotic, their prac-
tical relevance has been shown through a comprehensive study of the LPTN model.
This specific choice of super heavy-tailed distribution represented our main practical
contribution as the resulting model is remarkably efficient and deals with outlying ob-
servations in an automatic and sensitive manner, succeeding in achieving low premium
in addition to large protection. The procedure for analysing data sets to which it gives
rise is also easy to use. These characteristics of the LPTN model make it a particularly
appealing Bayesian alternative to the partially robust Student model.

5 Proofs

We in fact provide in this section sketches of the proofs of Proposition 2.1 and Theo-
rem 2.1 for space considerations. The detailed proofs can be found in the supplementary
material.

5.1 Proof of Proposition 2.1

Let us pretend for now that the scale parameter is known and that its value is σ0. To
simplify, we denote the posterior density as π(β | yn) := π(β, σ = σ0 | yn). To prove
that it is proper, we show that the marginal m(yn) is finite. We have that

∫
Rp

π(β, σ0)

n∏
i=1

1

σ0
f

(
yi − xT

i β

σ0

)
dβ

≤ Bn−p+1 max

(
1,

1

σ0

)
1

σn−p
0

∫
Rp

p∏
i=1

1

σ0
f

(
yi − xT

i β

σ0

)
dβ

≤ Bn−p+1 max

(
1,

1

σ0

)
1

σn−p
0

∣∣∣∣∣∣∣det
⎛
⎜⎝

xT
1
...
xT
p

⎞
⎟⎠
∣∣∣∣∣∣∣
−1

p∏
i=1

∫
R

f(ui) dui,

using π(β, σ0) ≤ Bmax(1, 1/σ0) (by assumption) and f ≤ B (because of the assump-
tions on this PDF), and the changes of variables ui = (yi − xT

i β)/σ0, i = 1, . . . , p, B
being a positive constant. The last quantity above is finite given that the determinant is
different from 0 because all explanatory variables are continuous. Note that this justifies
also the assumption mentioned in Remark 2.1 about the full rank of the design matrix
when any type of explanatory variables is considered.

An additional integral with respect to σ is added in front when π(β, σ | yn) is con-
sidered. For σ not too small (bounded from below), it is easy to see that the additional
integral is finite because max(1, 1/σ) is bounded and σ−(n−p) is integrable if n− p ≥ 2.
This is the case because n > p+1 by assumption. For small σ, the proof is more technical
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and requires to bound more carefully the densities f than above. See the supplementary
material for details.

Proving that π(β, σ | yk) is proper is similar. For the moments, we use that

E[σM | yn] =

∫
σMπ(β, σ | yn) dβ dσ

≤ [m(yn)]
−1BM

∫
π(β, σ)

n∏
i=M+1

1

σ
f

(
yi − xT

i β

σ

)
dβ dσ,

using f ≤ B. This is finite given that m(yn) < ∞ and the integral is finite because it
corresponds to the marginal of n−M observations, and n−M > p+1 by assumption.

For the moments of βj , it is more technical. Consider the first moment. We would
like to compute instead the first moment of |yi − xT

i β| because (|yi − xT
i β|/σ)f(|yi −

xT
i β|/σ) ≤ B (because of the assumptions on f), and as for the moments of σ, it would

be easy to show that the integral is finite. The strategy is to write βj as eTj β, where ej
is a vector of size p having 1 at the j-th position and 0’s elsewhere, and to write eTj as a
linear combination of p vectors xi1 , . . . ,xip to essentially retrieve what we were looking
for. See the supplementary material for details.

5.2 Proof of Theorem 2.1

Proof of Result (a). To prove this result, we use that

m(yn)

m(yk)
∏n

i=1[f(yi)]
�i

=
m(yn)

m(yk)
∏n

i=1[f(yi)]
�i

∫
Rp

∫ ∞

0

π(β, σ | yn) dσ dβ

=

∫
Rp

∫ ∞

0

π(β, σ)
∏n

i=1

[
(1/σ)f((yi − xT

i β)/σ)
]ki+�i

m(yk)
∏n

i=1[f(yi)]
�i

dσ dβ

=

∫
Rp

∫ ∞

0

π(β, σ | yk)

n∏
i=1

[
(1/σ)f((yi − xT

i β)/σ)

f(yi)

]�i
dσ dβ,

and show that this integral converges towards 1 as ω → ∞. Assuming that we can
interchange the limit and the integral, we have that

lim
ω→∞

∫
Rp

∫ ∞

0

π(β, σ | yk)
n∏

i=1

[
(1/σ)f((yi − xT

i β)/σ)

f(yi)

]�i
dσ dβ

=

∫
Rp

∫ ∞

0

lim
ω→∞

π(β, σ | yk)
n∏

i=1

[
(1/σ)f((yi − xT

i β)/σ)

f(yi)

]�i
dσ dβ

=

∫
Rp

∫ ∞

0

π(β, σ | yk) dσ dβ = 1,

using Proposition 2.2 in the second equality, and next Proposition 2.1. Note that the
conditions of Proposition 2.1 are satisfied given that k ≥ � + 2p − 1 ⇒ k ≥ p + 2,
assuming that � ≥ 1 (otherwise the proof is trivial) and because p ≥ 2.
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To interchange the limit and the integral, we need to prove that the integrand
is bounded by an integrable function of β and σ that does not depend on ω. As in
Section 5.1, let us set for now the scale parameter to a positive value σ0. We know that

π(β, σ0 | yk)

n∏
i=1

[
(1/σ0)f((yi − xT

i β)/σ0)

f(yi)

]�i

= [m(yk)]
−1π(β, σ0)

n∏
i=1

[(1/σ0)f((yi − xT
i β)/σ0)]

ki

[
(1/σ0)f((yi − xT

i β)/σ0)

f(yi)

]�i
.

(5.1)

Consider that β ∈ F , a set such that the hyperplanes pass (relatively) close to the
nonoutliers (fixed observations), and therefore, (relatively) far to the outliers. In this
case, for large enough ω, we have that

n∏
i=1

[
(1/σ0)f((yi − xT

i β)/σ0)

f(yi)

]�i

is bounded above using Proposition 2.2 because xT
i β is bounded (recall that yi = ai +

biω), and the remaining terms on the right-hand side (RHS) in (5.1) give π(β, σ0 | yk)
which is integrable.

Consider now that β ∈ O, a set such that the hyperplanes pass (relatively) close to
the outliers. The difference is that we are not sure that these hyperplanes do not pass
close to the nonoutliers (see Figure 8). In this example, n = 5, k = 4 and � = 1, which
satisfy the assumptions in Theorem 2.1: k − � = 3 ≥ 2(p− 1/2) = 3. We also have that

(1/σ0)f((y4 − xT
4 β)/σ0)

f(y5)

is bounded above using again Proposition 2.2 but now because |y4 − xT
4 β| is close to ω

(this is explained in greater detail in the supplementary material). Note that it would
not be true if x1 = x4, which is why we require to have enough of different vectors xi

in Remark 2.2. The remaining terms on the RHS in (5.1) are

[m(yk)]
−1π(β, σ0)

n∏
i=1(i �=4)

[(1/σ0)f((yi − xT
i β)/σ0)],

Figure 8: Example of a case where the line passes close to a nonoutlier and an outlier.
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which after multiplying and dividing by the right marginal is proportional to the pos-
terior density based on y1, y2, y3, y5, which is integrable given that 4 = n− � ≥ p+ 2 =
2p+�−1 = 4. This justifies the assumption on the number of nonoutliers in Theorem 2.1
given by k = n− � ≥ 2p+ �− 1.

The strategy to do the proof in general is to rewrite the domain of β (which is Rp)
as a finite number of mutually exclusive sets, in which it is always possible to proceed as
above. The function to bound thus becomes a finite sum, where each term is bounded
above by integrable function. When σ is free, an additional level of technicalities is
added because |yi − xT

i β| can be large, but not |yi − xT
i β|/σ. See the supplementary

material for all the details.

Proof of Result (b). We have that

|π(β, σ | yn)− π(β, σ | yk)| = π(β, σ | yk)

∣∣∣∣∣m(yk)

m(yn)

n∏
i=1

[(1/σ)f((yi − xT
i β)/σ)]

�i − 1

∣∣∣∣∣ .
The absolute value on the RHS converges to 0 as ω → ∞ uniformly on (β, σ) ∈ [−ϑ, ϑ]p×
[1/η, η] using Proposition 2.2 and Result (a), for any ϑ ≥ 0 and η ≥ 1. On this set,
π(β, σ | yk) is bounded using the assumptions on the prior and f and the fact that
m(yk) is finite. This concludes the proof.

Proof of Result (c). Result (c) is a direct consequence of Result (b) using Scheffé’s the-
orem (see Scheffé (1947)). See the supplementary material for details.

Proof of Result (d). Result (d) is proved through a mix of the strategies used to show
Result (a) and that the moments exist in Proposition 2.1. Assuming that we can inter-
change the limit and the integral, we have

lim
ω→∞

E[σM | yn] = lim
ω→∞

∫ ∞

0

∫
Rp

σMπ(β, σ | yn) dβ dσ

=

∫ ∞

0

∫
Rp

lim
ω→∞

σMπ(β, σ | yn) dβ dσ

=

∫ ∞

0

∫
Rp

σMπ(β, σ | yk) dβ dσ = E[σM | yk],

using Result (b). Again, we have to prove the integrand is bounded by an integrable
function of β and σ that does not depend on ω. To achieve this, we bound above
σMπ(β, σ | yn) by a constant times a function similar to the one that is shown to
be bounded by an integrable function of β and σ in the proof of Result (a). See the
supplementary material for details. We proceed with the same strategy for E[βM

j |
yn].

Supplementary Material

A New Bayesian Approach to Robustness Against Outliers in Linear Regression – Sup-
plementary Material (DOI: 10.1214/19-BA1157SUPP; .pdf).

https://doi.org/10.1214/19-BA1157SUPP
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