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A Unified Framework for De-Duplication and
Population Size Estimation (with Discussion)

Andrea Tancredi*, Rebecca Steorts, and Brunero Liscot

Abstract. Data de-duplication is the process of detecting records in one or more
datasets which refer to the same entity. In this paper we tackle the de-duplication
process via a latent entity model, where the observed data are perturbed versions
of a set of key variables drawn from a finite population of N different entities.
The main novelty of our approach is to consider the population size N as an
unknown model parameter. As a result, a salient feature of the proposed method
is the capability of the model to account for the de-duplication uncertainty in
the population size estimation. As by-products of our approach we illustrate the
relationships between de-duplication problems and capture-recapture models and
we obtain a more adequate prior distribution on the linkage structure. Moreover we
propose a novel simulation algorithm for the posterior distribution of the matching
configuration based on the marginalization of the key variables at population level.
We apply our method to two synthetic data sets comprising German names. In
addition we illustrate a real data application, where we match records from two
lists which report information about people killed in the recent Syrian conflict.

Keywords: cluster analysis, entity resolution, partition models, record linkage.

1 Introduction

De-duplication (record linkage or entity resolution) is the process of merging together
potentially noisy lists, data sets, or databases, often in the absence of a unique identifier,
both to remove duplicated information and to increase the informative content of each
single file. In fact, from a statistical perspective, performing de-duplication is paramount
for obtaining a more reliable or a larger reference data set. Indeed, on one hand, the
identification of duplications of the same entity would allow to increase the quality of
the information associated to it. On the other hand, merging different files, once the
common entities have been correctly detected, leads to a new, larger and richer data set.
This new data may be suitable to perform accurate model-based statistical analyses via
the additional information which could not be extracted from a single data set, because
the original data may not comprise some of the model variables.

When unique identifiers are known exactly, the linkage process can be accomplished
without errors. In this case, there are no specific consequences on the statistical proce-
dures undertaken in the aforementioned situations. However, in practice, unique iden-
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tifiers are rarely available and the researcher must deal with the uncertainty related
to the linking step. The problem of how to account for the matching uncertainty has
then caused an active line of recent research among the statistical, the machine learn-
ing, and the computer science communities. In fact, in practical applications of record
linkage procedures, the concrete possibility to make wrong matching decisions should
be accounted for, especially when the result of the linking step, namely the fused data
set, will be used for further statistical analyses, such as regression, capture-recapture
methods or small area estimation: see for example Tancredi and Liseo (2011, 2015),
Briscolini et al. (2018), and Sadinle (2018).

The classical record linkage approach with two data sets was formalized by Jaro
(1989), following the seminal paper by Fellegi and Sunter (1969). This standard method
is based on the comparison vectors — data vectors obtained by comparing the common
fields, also known as key variables, for each pair of records. Since the distribution of
the comparison vectors depends on the unknown match or non-match status of the
record pairs, a mixture model fitted to the entire collection of comparison vectors can
be used to classify all the pairs in two or more sets concerning their matching status
(Belin and Rubin, 1995; Larsen and Rubin, 2001). Recently, Sadinle and Fienberg (2013)
extended the Fellegi-Sunter approach to allow situations with three or more files, while
also preserving transitive closures.

To our knowledge, Fortini et al. (2001) proposed the first Bayesian approach to
record linkage, where the likelihood function provided by the set of multiple comparison
vectors was used to estimate the matching configuration through the use of Markov
Chain Monte Carlo (MCMC) methods. This approach, together with Larsen (2005)
and Sadinle (2017), can be interpreted as a Bayesian version of the classical Fellegi-
Sunter record linkage approach. Note that these papers do not assume the presence of
“within file” duplications. That is, it is only possible to match a record in a file to a
single record of another file and vice versa. A clear advantage of the Bayesian approach
is that one can naturally account for this constraint by simply selecting appropriate
prior distributions on the matching status to incorporate this assumption.

Tancredi and Liseo (2011) recently proposed a Bayesian record linkage method that
is well suited for categorical data. The authors deviate from the Fellegi-Sunter approach
in two major ways — they do not work with comparison data and allow for record linkage
uncertainty to be accounted for in population size estimation. To handle the former,
they explicitly model the fully observed records through a particular measurement error
model, inspired by the so called “hit-and-miss” strategy proposed by Copas and Hilton
(1990). The latter is naturally handled through the joint estimation of the record linkage
model and the capture-recapture model used for population size estimation. In the same
spirit, Liseo and Tancredi (2011) have introduced a record linkage model for continuous
data based on a multivariate normal model with measurement error. The de-duplication
problem for a single list framework has been tackled from a Bayesian perspective in
Sadinle (2014) by using the information provided by the comparison data. Steorts et al.
(2014, 2016) were the first to perform simultaneous record linkage and de-duplication
on multiple files through the use of the fully observed records, creating a scalable record
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linkage algorithm. Steorts (2015) extended this work further to the case of string and
categorical data, where arbitrary distance metrics between strings have been considered.

In this paper we extend both the work of Tancredi and Liseo (2011) and Steorts
et al. (2016). We develop a unified framework for population size estimation by using
multiple files that require both linkage and de-duplication. In fact the former paper
considered only the case of two files without duplication inside each of the single lists
while the latter assumed a generating population with a fixed and known size.

The rest of the paper proceeds as follows. Section 2 introduces the basic framework
of our generalized Bayesian record linkage and de-duplication model and specifies the
measurement error model for the key variables, namely the hit and miss model. Section 3
illustrates how the task of estimating a population size can be rephrased in terms of
the partition associated with the observed records. Moreover, we provide new insights
about the prior modeling of the matching configuration in a de-duplication problem and
show some connections between our prior partition modeling and capture-recapture
models with non homogeneous capture probabilities and duplication rates. Section 4
shows how to simplify the model by integrating out the unknown population values.
Section 5 discusses the computational aspects of our proposed model. In particular,
in comparison with respect to Steorts et al. (2016), we propose a novel simulation
algorithm for the posterior distribution based exactly on the marginalization of the
records values at the population level. Section 6 illustrates the results of our unified
model for de-duplication and population size estimation applied to the synthetic data
sets RLdatab00 and RLdatal0000 from the RecordLinkage package in R, presenting an
intensive sensitivity analysis with respect to all model hyperparameters. In Section 7
we fit the model to a real data set reporting the names of victims of the recent Syrian
conflict. Finally, Section 8 provides a brief discussion of our work.

2 The key variables model

We first introduce the methodological framework of the record linkage process. Assume L
lists Fy, Fy ..., Fr, whose records respectively relate to statistical units (e.g. individuals,
firms, etc.) of partially overlapping samples. The records in the lists consist of several
categorical variables which may contain corruptions, noise, and errors. Moreover we do
not handle missing fields across lists, and assume that all lists have p fields in common,
representing the key variables. For example, in lists regarding individuals, the common
fields, might be surname, name, age, sex. Denoting the j-th record of file F; as (i, 7),
the main goal of a standard record linkage procedure is to identify all pairs of records,
say (i1,71) and (ig,j2), with i3 # iy, that actually refer to the same unit, by using
the key variables of the observed records of L lists. An additional difficulty in record
linkage arises when some records in the same file, say (¢,71),. .., (i, jn), refer to a single
entity—known as duplicate detection.

Assume that the L sets of records have been collected from a given population
with N entities, that is, Uy = {@1, g, ..., 4y} where N < co and that the lists are
independent, that is population entities occur independently across the lists in the same
framework as Steorts et al. (2016). Assign to each member of the population the label
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j' resulting from its position in the ordered list Uy. Hence j' = 1,..., N. We assume
that N is unknown; thus knowing the labels of the entities observed in the data sets
would produce strong information about IV if only because N should be greater of the
maximum label. However these labels cannot be observed and neither estimated via the
information provided by the L list of records. In fact, we anticipate that the data can
be informative only on how many distinct population entities have been observed at
the sample level and which sample records gather around each one of them. The former
information will be used to estimate IV, the latter to perform the matching process.

Let 95 = (¥;11,...,0;:p) be the vector of the p categorical key variables for the
population individual j'. Denote by © = (01, ..., 0y) the entire set of population records.
Assume the set of population records o is generated independently, for ] =1,...,N,
from a vector of independent categorical variables V= (Vl, Vi, Vp) buch that
V, eV, = {ve1,...,v00,} and that given the probability vector 9@ (7 HE'U/M[)
p(veslOe) =6pv,., s=1,..., My, where M, is the number of categorical values for the
fth field. Note that here and later, to simplify notations we let the arguments define the
density and mass functions. Hence, the model for the population records can be written

as N ) N )
@16, N) = [ [1p@;el6e) = T] T Oes,. (2.1)

j'=1=1 J=1¢=1
where 0 = (61,...,6¢,...,6p).

At the sample level we assume that one does not observe the population “true”
values, due to measurement and reporting errors. In fact, each set of observed records,

which is a list of size n;, ¢ = 1,..., L, comprises contaminated versions of subsets
of the vectors ¥j. Let v;; = (vij1,...,0ijp) denote the observed values for the j-th
record of the i-th file, with ¢ = 1,...,L and j = 1,...,n;. Moreover, denote with
v = (V11y. -y Vinys---, VL1, ULy, ) the entire set of observed records across the L lists.

Let Xjj € {1,2,...} 7=1,...,n;,4=1,...,L be the unknown population labels of
the sample units. This way A = (A11, ..., Mngy---s ALL,y -« - ALn, ) denotes the unknown
matching pattern between the observed records v and the population records v, where
Aij = j’ indicates that the observed record v;; is a version of the population record v;.
The relation A;;, = Ayj,, with ji # jo, implies that records j; and jo of the i-th list
are co-referent to the same population record. This is an instance of duplicate-detection
within the same list. Instead, when A; ;, = Xi,j,, with ¢; # iz, one has the usual record
linkage framework with the same individual appearing in two different lists.

Let us now formalize the generative distortion mechanism when the population
records are observed on the L lists. In particular, we assume the hit-and-miss model
proposed by Copas and Hilton (1990) and also adopted in Steorts et al. (2014, 2016) and
Steorts (2015). Let V;j; be the random variable generating v;je. Assume that Vi e € Vy,
that is V;;, has the same support of Vs. Moreover, set d(a, b)=1ifa=band d(a,b) =0
if a # b, let ajy = (yr1,...,q474,...,a5p) be the vector with the measurement er-
ror probabilities of the p key variables for the population individual j/ and denote by
a = (a1,...,q4,...,an) the entire set of distortion probabilities. We firstly assume
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that
p(ije | 0, X, «,0) = (1 — ax,;e)6(vije, Ux,e) + ax; 0o, Vijl (2.2)

This way, for the £ — th key variable, the true population value of the individual j’
generating the record ¢j is observed with probability 1 — a;,, while, with probability
ajrg, we observe a different value drawn from the random variable Vi generating the
population values.

Finally, assuming the conditional independence among all the sample records and all
the key variables given their respective unobserved population counterparts, one obtains

L n; p

p 5, Xa,0) =TT [[p(vin | 9,2 0. 0). (2.3)

i=1j=1¢=1

The model summarized by equations (2.1), (2.2) and (2.3) can be viewed as a part of
a hierarchical model where /N unobserved population records ¥;, drawn from a super-
population model parametrized by the probability vectors 6y, generate the observed
records v;; with the vectors o acting as record distortion parameters. The key variables
probabilities 6, and the distortion probabilities ;s are unknown quantities. For the
probability vectors #; we assume independent Dirichlet priors for £ = 1,...,p. An
exchangeable prior will be assumed for the distortion probabilities ajrp for j* =1,..., N.
In particular the logit transformation of aj¢, that is 8, = log (a;1/(1 — a;r)) will
be Normal with mean fy; and variance s2, for 5/ = 1,..., N and Sy will be Normal
with mean mg and variance s3. Note also that distortion probabilities for different key
variables will be assumed independent.

3 The prior for the records partition and the population
size

The interpretation and the prior specification of the labeling variables A is more chal-
lenging with respect to all other model variables and parameters. One interpretation
of A is that its values are drawn from a known and specific sampling design, which
generates the labels allowing for duplications within each list. Consider the simplest
situation, where L independent simple random samples are drawn with replacement
from a population of size N < oco. It follows that

sy = [T T = () (3.1)

i=1j=1

where n = Zle n;. Therefore, with fixed N, one has a uniform prior over the set of all
possible configurations of the A values. This is exactly the prior used in Steorts et al.
(2016) and we will call this distribution the uniform prior on the label space. Note that
a similar scheme was considered also by Tancredi and Liseo (2011) in the context of two-
file record linkage without duplication. There, their matching matrix prior distribution
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was based on the assumption that the lists were two simple random samples without
replacement.

We now investigate an alternative aspect of the uniform prior distribution of A
given N. Let Z = Z(X) denote the partition of the n records determined by A. For
example assuming N = 3, L = 1, n; = n = 3 and A = (1,2,2) we have the par-
tition Z = 1|23 indicating that the second and third sample units share the same
population label which is different from the one of the first sample unit. Note that,
in this case, A may assume 27 different vectors, all with equal probability, producing
the five different partitions of the n = 3 records, namely {123, 1|23, 13|2, 12|3, 1|2|3}.
Moreover the partition 1|23 can be obtained when X is one of the following vectors
(1,2,2),(1,3,3),(2,1,1),(2,3,3),(3,1,1),(3,2,2). Thus the probability of the partition
1|23 given N = 3 is 6/27. When N = 4, A\ may assume 64 different vectors and it is
simple to verify the probability of the partition 1|23 is now 12/64. Thus the distribution
on the sample labels A\ given N induces a distribution on the partition space which
depends on N. This means that the simple knowledge of the partition of the sample
records is able to produce information on the population size N. Furthermore, matches
and duplicates are completely specified given the knowledge of Z. Thus estimating the
partition will permit at the same time to produce inference on N and to estimate the
linkage structure of the data at hand.

In the following we will indicate with P the set containing all the possible partitions
of the n observed records and with z € Z a single block of the partition Z. Moreover, let
u, () be the label identifying the block z on the vector A and U = U(A\) = {u,()\),z €
Z} be the set of the block labels ordered accordingly to the sequence z € Z. Hence
A=(3,5,1,5) and A = (5,3, 1, 3) produce the same partition Z = 1|24|3 but different
label vectors U = (3,5,1) and U = (5,3,1). Note that (Z,U) and A are in one to one
correspondence, thus p(Z, U|N) = p(A|N).

We now obtain the prior distribution on the partition space P, for a given IV, result-
ing from the uniform prior on the label space. Let k = k(Z) be the observed number
of blocks of the partition Z. The number of elements A producing the partition Z is
Ni = NV/(N — k)!. In fact we have (]Z) ways to select the unordered labels for the
blocks of Z and for each of them k! ordered labellings U. Thus

p(ZIN) = > pQAU:E:(%>n:(%>nNE VZ € P. (3.2)

XZ(\)=Z UlZ

Moreover
1

UlZ,N) = —.
WUIZN) =
Note also that N™ = >")'_ N S(n, k), where S(n, k) is the Stirling number of the second
kind, that is the number of possible partitions of the n records into k non empty sets,
so we have
N,

PN = S ST

VZ e P. (3.3)
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Following Pitman (2006), equation (3.3) defines a special case of Gibbs partitions. More-
over, the distribution of the random number of blocks K is given by

N S(n, k)

plHIN) = =22

k=1,...,n.

The mean and the variance of K are easily obtained as
E(KIN)=N(1-(1-1/N)") (3.4)

and
Var(K|N) = N[(N —1)(1 —2/N)" = N(1 - 1/N)>" + (1 — 1/N)"]

(see Appendix A in Supplementary Material, Tancredi, Steorts, and Liseo, 2019). For
fixed N, as the number of records n — oo, the distribution of K|N concentrates on
N, since E(K|N) tends to N and the variance vanishes. Also observe that, for a fixed
number of records n and large values of N, the distribution of the distinct entities
K|N concentrates on n. That is, the prior probability of observing links or duplicates
approaches 0 in the limit, as intuition suggests.

To complete the prior modeling of the linkage structure we need to specify the prior
for the population size N. Throughout this paper we assume
1

p(N) = ORT N=1,2,... (3.5)

where ((g) = > x_; 1/NY is the Riemann zeta function. Such a prior is proper Vg > 1.
Note that the use of heavy-tailed priors p(N) o< 1/N9 as non informative distributions
is quite diffuse in population size Bayesian estimation, see for example George and
Robert (1992) or Wang et al. (2007). Straightforward calculations (see Appendix A in
Supplementary Material, Tancredi, Steorts, and Liseo, 2019) show that, under this class
of priors, the marginal prior mean for K is

N ()i Sstg—1)
E(K)_Z(S>( 1) Ol (3.6)

Notice that, as ¢ — 1 E(K) converges to n which is the upper end point of the support
of K; hence when g approaches to 1 the whole distribution of K concentrates on n.

s=1

The left part of Table 1 reports, for different values of g, the mean and the standard
deviation for K when the total number of records is n = 500 as in the first application
that will be illustrated in this paper. Such summaries are obtained by simulating 107
draws from p(N, A) via the accept reject algorithm for p(IN') proposed in Devroye (1986)
§10.6 and by direct simulation of p(A|N). Note that even for values of g close to 1, the
standard deviation of K is quite high. Thus, such values of g have the important role
to induce a priori a high number of clusters with few observation per cluster, i.e. the
microclustering effect, see for example Zanella et al. (2016) and Johndrow et al. (2018),
without being too much informative. The right part of Table 1 reports the mean and
the standard deviation for K when we use the uniform prior for A by fixing the values of
N. Note that the assumption of a uniform distribution on the label space conditioned
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g E(K) SD(K) N E(K) SD(K)
2 4 20 250 216 15
1.5 30 87 500 316 7.0
1.1 271 224 | 1000 394 7.4
1.05 375 198 | 2500 453 6.0
1.02 452 137 | 5000 476 4.6
1.01 477 98 | 10000 488 3.4
1.001 498 31 | 100000 499 1.1

Table 1: Mean and standard deviation of the random variable K with different values
of g and of K|N with different values of N.

on the value of N might not be adequate in real applications of record linkage and
de-duplication even when we are only interested on the linkage structure and we do
not need to make inference on N. In fact the resulting distribution on the number of
distinct entities K will be generally too concentrated as illustrated by the extremely
low standard deviation.

3.1 Estimation for the population size N when the partition Z is
known

When the partition Z of the n records is known and the model generating the partition
is given by (3.2), inference on N can be conducted via the posterior distribution

P(N1Z) ox p(ZIN)D(N) o 1p(N) Ty (37)
where I x>} denotes the indicator function of the set NV > k. Notice that the distribu-
tion (3.7) is exactly the posterior for N obtained from a T-stage homogeneous capture
recapture model when T' = n, we observe k different individuals across the samples and
we condition on one capture in each occasion, see for example Marin and Robert (2014)
§5. Note also that assuming the prior (3.5), the posterior (3.7) is proper Vg > 0 when
k<n-—1.

It is also interesting to observe that the mode of the posterior for N when g = 0 is
approximated by the moment estimator of N obtained by the expression (3.4). In fact,
by approximating the logarithm of p(Z|N) using the Stirling formula, we have that

logp(Z|N) = Nlog N — (N — k)log (N — k) —nlog N + O(log N) — O(log (N — k))

and the mode of the posterior distribution p(N|Z) when g = 0, i.e. p(N) x ¢, is
approximately given by the solution of the equation k = N (1 — e’"/N) which can be
further approximated by solving

k=N(1—(1-1/N)") (3.8)

that is the equation providing the expected value of K as a function of V.
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Figure 1: Posterior distributions for N when n = 500, k£ is known and equal to

430,440,450,460 and p(N) x 1/N9 with g = 0 (dotted line), g = 1 dashed line and
g = 2 solid line.

Figure 1 shows the posterior distributions for N when k& = 430,440,450,460 and
p(N) « 1/N9 and g = 0,1,2. The posterior distributions have been obtained with
a Metropolis-Hastings algorithm with Poisson proposals. Note that different values of
k produce quite different posterior distributions, while sensitivity with respect to the
proposed values is g is limited. The vertical line is the solution of the equation (3.8),
which properly approximates the maximum a posteriori estimate when g = 0.

3.2 Connections with capture-recapture models with non
homogeneous capture probabilities and duplication rates

Now suppose that, in order to form the jth list, each one of the N population units
is subject to being captured a random number of times. That is for each label 7' and
for each list j there are T}, attempts to capture the population unit U; and for each
attempt, the capture probability is p;. Moreover assume that the random variables 7}/
are independent Poisson with mean J;. Hence d1,...,0r are list dependent parame-
ters providing the ”within- list” duplication rates while p1,...,pr are the different list
capture probabilities.

Now let X fort=1,...,Tj;,7 =1,...,Nand j =1,..., L be arandom number
of independent Bernoulli variables with probability p; indicating if, in list j, unit Uy

has been captured at the attempt ¢ and let X, = ZtT;]{ Xt be the number of times
that U; has been captured in list j. Note that the mean of X, is §;p; and it is Poisson
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distributed being the sum of a Poisson number of Bernoulli variables. Now let n; be the
list size, for j = 1,..., L, and observe that n; = Zj\,/ X;+ is Poisson distributed with
mean NJ;p;, the conditional distribution of X;/|n; is Binomial(n;,1/N) and

N

nj! z. . nj! 1 R
plajr, . ajnlng) = —~—— [T /Ny = —g——- j=1,.... L.
Hj/:1 .’E]j/' jr=1 Hj’:l l'jj/! N"J
Moreover, each label sequence of the j list, that is the vector A\; = (A1j,...,An;;) has
probability
1
p(Ajng) = p(Njlzjn, - zin,ng)p(zjn, .. 2iN|ng) = T

Assuming duplication and capture independence across the lists, we also have that
p(Ani,...np) = ﬁ Then, the conditioning on list sizes has eliminated the duplica-
tion rates and the capture probabilities, thus providing a conditional likelihood for N
which depends on the non identifiable population labels which, in turn, provides the like-
lihood function for N (3.2) given the observable partition Z. In summary, the proposed
prior (3.1) for X exactly embeds the sampling information, conditional on list sizes, pro-
vided by a capture-recapture model with non homogeneous capture probabilities and
duplication rates.

Notice that the elimination of the capture probabilities and the duplication rate
parameters from the prior model for A\ automatically implies that two records of the
same list and two records of two different sets would have the same prior probability to
be duplicates. Such assumption, which follows directly from the prior (3.1), is admittedly
unlikely to be true in practice. We simply consider this assumption a convenient and
operative starting point for performing matching estimation.

4 The hit-miss marginal model for record clustering

A convenient property of the hit-miss model illustrated in Section 2 is that one can
integrate out the unknown population values © to directly obtain the distribution
p(v|Z,U, N, a,0), as it is illustrated below. The resulting marginal distribution is the
product of within-blocks distributions. In fact, records belonging to different blocks are
independent because they refer to different and independent population records, while
records within the same block are dependent, since they are observations on the same
population individual. Clustering approaches based on similar dependence structures
are discussed in Booth et al. (2008) and McCullagh and Yang (2008).

Let z € Z be a partition block, let v, = (v;; : ij € z) denote the corresponding
cluster of records and let v, = (vije : ij € z) denote the cluster of observed records
for the ¢-th key variable. Also let u, denote the label in U corresponding to the block
z and let Oy = (Vy.,2 € Z) and ay = (a,,% € Z) be the relative sets of population
records and distortion probabilities.
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Firstly, note that equation (2.3) can be re-expressed, taking into account the parti-
tion imposed by A, in the following way

N
p(lt, \,\N,0,0) = p(v|s,Z,UN,0,0) =[] [ pvilo,2,U N,a,6)

J'=1ijihij=j'

1 p(vl0., 2, U, N, o, 6).
z€EZ

Hence, observing that p(ty |Z, U, N, a,0) = [],c , p(9u.|Z,U, N, a,0), and marginalizing
out the true values vy, one obtains

p(|Z,U,N,a,0) = [] p(v:|Z,U, N, e, 0).
z2€EZ

Now, let us consider a block with only a single record, i.e., 2 = {(ij)}. Then the
marginal distribution of the observed value for the [-th field of this record is

Pl Z, U N, 0,0) = Y p(vas, ue|Z,U, N, a,0)
D, 0 E€Ve
= > p(vatlbu.e, Z,U,N,a,0)p(Bu.|Z,U, N, a, )
Vo, e €Ve
= > (1= w0)d(vae, Buse) + Qi V00, = Oron-
D, 1 EVe

Since we have assumed conditional independence among the key variables, one has
P P
p(v:|Z,U,N,,60) = [] p(v20|Z, U, N, ,0) = [ O,
=1 =1

After simple algebra, an analytical expression can also be found for a cluster z =
{(i171), (i2 j2) } with two records, that is,

p
p(UZ|Z? U? N? a? 0) = H [6(1)1'1]'1@7 /Uizjzz)eeviljlz(l - auzé)Q +
=1
(2auz€ - aizé)efviljlzeévighz} .

Furthermore, it is straightforward (see Appendix B in Supplementary Material, Tan-
credi, Steorts, and Liseo, 2019) to obtain a general and recursive formula for the marginal
distribution of a cluster with n records, z = {(¢1 j1), .- -, (tn Jn) }:

p(vzf‘Zv Ua N7a70) = auzfeé’uinjnzp(vz\(i”jn)Z‘Z7 U7 N7a79) +

n—1

(1= o), [ [(1 = Q. 0)0(Viy 0, Vi jue) + uibev,, 5 o |
h=1

where v\ (;, j,)¢ indicates the cluster values for the ¢-th key variable excluding those
observed on the record (i, jn).
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As a final note, observe that, for all z, p(v,|Z,U, N, «,6) depends on a and on
the partition block z along with the corresponding label u,. Then p(v|A, N, «,0) =
p(v|Z,U, e, 0), that is the distribution of the observed data depends on Z,U, «, 6 and
not on the population size N.

5 Posterior simulation

De-duplication and population size inference can be carried out by simulating from the
posterior p(Z, N|v), that is the marginal distribution of p(\, N, 3, By, 8|v) where S is the
vector with the logit transformations of the distortion probabilities of the N population
entities, Sy is the vector with their means for each key variable and

p()\?N7ﬁ7ﬂ079|’U) X p(Z? U7N7575059|’U> (51)
o p(|Z,U,B,0)p(U|Z, N)p(Z|N)p(B|Bo)p(N)p(Bo)p(0)

o« [Ip:12.U,B8u..0)p(U|Z, N)p(Z|N)p(B|5o)p(N)p(50)p(6).-
zeZ

Note that the marginal posterior p(Z, N, By, 0|v) is
p(Zv N, 607 0"0)

x> /RNX 1 p(v:12,U, Bu..0)p(BIB0)dB| p(U1Z, N)p(Z|N)p(N)p(Bo)p(0)
u L P zez

p(U|Z, N)p(Z|N)p(N)p(Bo)p(0)

X Z / H p(UZ|Z> Ua ﬂuz79)p(/BU|/BO)dﬁU
U L Rk’XP ZGZ

p(U|Z, N)p(Z|N)p(N)p(Bo)p(0).

O(Z H/Rpp(vz|ZaUvﬂuzaa)p(ﬂuJﬂo)dﬁuz

U LzeZ

Note that by integrating out the measurement error parameters (3, , the integrals inside
the square brackets in the last expression do not depend on the population labels {u., z €
Z}. Hence we have that

p(Z, N, Bo,6lv) o< [ a(v-80, 0)p(Z|N)p(N)p(Bo)p(6) (5.2)
z€Z

where ¢(v,|fo, 8) is the marginal distribution of the block z given £y and 6.

Now let 1 be an alternative set of labels for the sample records where n;; € {1,...,n}
Vij. Let Z be the partition generated by 1 and U’ the set of labels assigned by 7 to the
blocks z € Z. Note that n «» (Z,U’). Assume that p(Z|N) = Ny /N™, as for the random
partition generated by A, while p(U'|Z,N) =1/ ((Z)k') so that

Ne 1

p(n|N) = p(ZIN)p(U'|Z, N) = 1= —
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Moreover let ﬁ;-, for j/ =1,...,n be a vector with L measurement error parameters with
the same prior model of the original variable dimension vector 8. Then the posterior
(5.2) can also be seen as the marginal, with respect to U’ and 8’ of the distribution

p(n7N7ﬁ/7ﬁOu9|v) X p(27 UlaNaﬂ/7ﬁ0u9|v) (53)
o [ (12,0, 8,,,0)p(U'1Z, N)p(Z|N)p(B'| Bo)p(N)p(5o)p(8).-
z2EZ

Note that simulating the distribution (5.3) instead of (5.1) may imply a considerable
saving of computing time since the label indicators n;; vary in {1,...,n} and no longer
in {1,..., N} without any loss of information for the de-duplication and population size
inference. Drawings from the distribution (5.3) can be obtained updating the elements
1, B, Bo, N and 6 via the following Gibbs sampler algorithm.

In particular, the updating of the vector n which leads to the consequent updating
of both Z and U’ is the most critical step of the algorithm. Denote 7(_;; the vector n
without the element 7;;. Moreover let z \ (ij) be a partition block without the record
ij, and let z, be the partition block such that u’zq = q. Then, the full conditional
distribution of 7;; can be written as

p(% = Q|,’7(7’LJ)’ Na ﬁlvﬁ(h 9) U) X H p(UZ‘Z7 Ulvﬁ;’z79) p(nl] = Q|77(7’Lj)) (54)
z€Z

p(vz|Z7 UI7B1// 79)

> p(nij = aln—ij)
zel_[Zp(UZ\(ij)|Za U, B, 0" (~ij)

p(vz,[n, By, 0)
P(vz\ijy|m, By 0

)p(mj =qn-ip) q¢=1,...n

This occurs because, in equation (5.4), setting 7;; = ¢, one has z = 2\ (i), Vz # z, so

that
p(”z|777 /B:L’Z ) 0)
p(vz\(ij) ‘777 5;/2 y 9)

=1 Vz#z,.

Equation (5.4) suggests that the conditional posterior probability p(n;;]n—i;), N, 5', Bo,
0,v) depends on the ratio between the probability of the cluster of records referring to
the label ¢ considering n_(;;) and 7;; = q and the probability of the same cluster with
the exclusion of the record ij.

The above ratio, when the label ¢ identifies an already existing block given 7_;),
exploiting the recursive formula (4.1), can also be written as

p(vz, |, By, 0)
p(vzq\(ij) ‘777 B(lp 0)

H(ih,jh)ezq\(ij) ((1 - 5:14)6(Uihjhfvvij€) + Btl]egévihjhé)
PV \ig) €M, Byer 0)

p
= H 6:169@111'3‘2 + (1 - ﬁ:ﬂ)
=1



646 Deduplication and Population Size Estimation

however, it gets simplified into

p(vz,|n, 53,0) ﬁ .,
Pzl By 0) — LL70we
when the label ¢ identifies a new block.

Thus we can update n;; with the following distribution

p(an = Q|77(*1])7 N7 6/7 507 97 U)
p(vzq11.8,,9)

W}?(mj = q|n=ij) if ¢ labels an observed cluster
= Zq \(2] g
[10—1 O, 0(155 = newln_i;))/(n — k(_;;y) if q labels a new cluster
(5.5)
fori=1,...,L,j =1,...,n; where k_;;) is the number of clusters without the label

mj and
p(Mij = qln—@z) o<1 and  p(n;; = new|n_;)) o< (N — k_(5))-

Such a way to update the cluster composition is a standard approach for mixture
models when the marginal likelihood of the cluster observations is known or it can
be easily calculated, as in our case via the recursive formula (4.1); see for example
MacEachern (1994) and Neal (2000).

The full conditional distribution

p(ﬁ;’['ﬁl—(fé)a 607 7, Na 97 U) X p(vzj/dﬁé"éa m, e)p(ﬁé’élﬁO)

can be updated using a Metropolis step when j’ labels a record cluster or directly by
the prior distribution p(ﬁé, 1180) when j’ does not identify any cluster. A Metropolis step
can also be used to update the parameters 8y; whose conditional distribution is

p(ﬁOAﬁ—(Oi)v 5/7 , Na 07 ’U) X H P(ﬁ&ze‘ﬁob n)p(ﬁéf)
z€Z

Anyway, to improve the mixing of the chain we have adopted a non centered parameter-
ization (Papaspiliopoulos et al., 2003), for ,8;-, ¢, updating the differential effects ﬂ;-/ 1 — Boe
slightly modifying the Metropolis steps for 8;; and Bo;.

The full conditional distribution of N is given by
! Nk
p(N|n, 8, Bo, 0,v) o< p(Z|N)p(N) o Nty LNk}

and an exact Gibbs step truncating N to a very large integer or a Metropolis step
with integer proposals can be easily implemented. Lastly, note that the full conditional
distribution of the probability vector 6, is

p(0el0—0y,m, B, Bo, N,v) x H P(vzelBur 0,00, m)p(00)
zeZ
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which can be updated using a Metropolis-Hastings steps with a Dirichlet proposal dis-
tribution. Finally note that having all n records from a single set or from L > 1 sets
would not make a difference for the whole proposed algorithm. This is a direct conse-
quence of the use of the uniform prior distribution p(A|N) which, although based on
overly restrictive assumptions, has the advantages of simplifying the computation of the
posterior distribution. In fact, more elaborated prior distributions for A would require
more complex posterior sampling schemes.

6 Experiments with synthetic data

To investigate the performance of our proposed methodology we first consider the
RLdatab00 data set from the RecordLinkage package in R. This synthetic data set
consists of 500 records, each comprising first and last name and full date of birth. This
data set contains 50 records that are intentionally constructed as “duplicates” of other
records. Hence the true value of k is 450 and the true partition is represented by 400
clusters of size one and 50 clusters of size two. In order to apply a model with categorical
variables only, we partially modify the data set by transforming names and surnames
via the English soundex algorithm. This way we obtain records with 14 fields; 4 of them
are produced by the name, 4 comes from the surname and the last 6 are obtained from
the date of birth (4 given by the year, 1 by the month, and 1 by the day). Table 2 shows
the first 6 records of the transformed data set.

name fields surname fields day of birth fields

year month  day
11C 6 2 3|M 6 0 0 |1 9 4 9 7 22
2|!G 6 3 0B 6 0 O |1 9 6 8 7 27
3] R 1 6 3/H 6 3 5 |1 9 3 0 4 30
418 3 1 5|W 4 1 0 |1 9 5 7 9 2
5/R 4 1 0|K 6 2 6 |1 9 6 6 1 13
6|/J 6 2 5|F 6 5 2 |1 9 2 9 7 4

Table 2: First 6 records of the RLdata500 data set with names and surnames transformed
via the soundex algorithm.

We fit our de-duplication and size estimation model to the modified RLdata500
data set by taking p(N) o< 1/N9 with g=1.02. Note that with this choice, as reported
in Table 1, the prior mean for K is approximately 450, that is the true number of
clusters for this file, and the dispersion is quite large as we can see also from the upper
left panel of Figure 2 where the prior for K has been plotted. The probability vector
6, are uniform on the simplex. The prior variance of the logit transformations g/, of
the distortion probabilities is equal to s> = 0.5 while the mean and the variance of
their common mean By, are mg = logit(0.01) and s> = 0.1. Such a prior specification
leads to a prior mean and a 0.99 prior quantile for o;/; respectively equal to 0.013 and
0.058 indicating strong belief towards low block distortion probabilities. We observe
that this is a condition to facilitate the micro-clustering effect since larger distortion
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Figure 2: RLdatab500 data set. Prior and posterior distributions of K and posterior
distribution of N, FNR and FDR when s? = 0.5, mg = logit(0.01) and s* = 0.1 and
g=1.02.

probabilities would allow to gather more records into the same cluster even if they do
not refer to the same entity. Instead, with low values of «;;; we force all the clusters
to have a reduced within-cluster variability and a greater between-cluster separation.
At this regard, Johndrow et al. (2018) show from a more general and theoretical point
of view that, in order to be effective, entity resolution via micro-clusters identification
requires that the measurements errors go to zero as the number of entities increases.
Such a condition practically states the infeasibility of cluster based approaches for high
dimensional record linkage problems without introducing further information that may
facilitate the correct aggregation into microclusters as our informative prior on «;; tries
to do.

The Metropolis within Gibbs algorithm described in Section 5, was run for 50000
iterations. Figure 2 reports the posterior distributions for K and N and the performance
of the record linkage procedure measured in terms of the posterior distributions of the
false negative rates (FNR) and the false discovery rates (FDR) (third and fourth rows).
For a review of false negative and false discovery rates in the context of record linkage
we refer to Steorts (2015). In single list framework, these rates are obtained by setting

A= DL i =g
192 0 nijy # My,

and calculating

true true
Zj1<j2(]' - Ajljz)Ajljg FDR — Zj1<j2 Ajljz(]' - Ajljz)
Zjl <ja2 A;ﬁf Zjl <jo Ajlj’z

across the MCMC simulation.

FNR =
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Note that the posterior means for K and N are equal to 446.6 and 2209 while
the 95% posterior intervals are respectively [443,449] and [1710,2854]. Hence we have
a considerable uncertainty reduction with respect to the prior specification for these
quantities. The low posterior mean for the FNR, equal to 0.015, indicates that almost
all the true matches are correctly linked in the same cluster. In addition, the posterior
mean for the FDR, equal to 0.080, suggests that the model produces a limited number
of false links. Hence the performance of the de-duplication process is quite satisfactory
considering also the information lost in the data set transformation via the soundex
algorithm and the diffuse prior specification of N and K.

Table 3 shows the result of a sensitivity analysis with respect to the hyperparameters
controlling the prior for the B;s, i.e. s*,mg and s, and with respect to hyperparameter g
regulating the fatness of the prior for N. In particular we show the posterior means for K,
N, the FNR and the FDR obtained when logit~!(mg) = 0.01,0.1,0.2, s> = 0.1,0.5,1
s3 = 0.1,0.5,1 and g = 1.01,1.02,1.05,1.1, 1.5, 2. For each value of g, the results are
ordered with respect to increasing values of logit~!(my), then by the variance of 3;,
s? + s2 and finally by the covariance between S3;; and ;. As expected increasing a
priori the mean and the variance of the distortion probabilities leads to increase the
cluster sizes as we can see from the reduced values of E(K|y). In fact the posterior
mean of K switches dramatically from the corrected values by about 450 microclusters
to inconsistent values of less than 200 clusters, confirming the theoretical findings of
Johndrow et al. (2018) regarding the necessity to introduce external information to
obtain micro-clusters via a mixture model based approach. The small FNR and the
high FDR when the microcluster effect do not occur confirm that records of the same
entity are gathered into the same cluster although together with the other records
generated by entities without list duplications. Note also that with the same variance
values, micro-clustering is more likely to occur with lower covariance between 3;,; and
B Finally notice that the effect of g is practically negligible with higher values that
slightly reduce the posterior mean of N.

Table 4 shows the posteriors means for K, FN R and F'DR, obtained by conditioning
on grid of known values for N varying from 250 to 10000 and the hyperparameters values
52, s2 and logit—1(m0) equal to 0.5, 0.1 and 0.01. Note that also by fixing the values of
N we regulate the microclustering effect with larger values producing the desired effect.
Anyway we observe a greater sensitivity of the results when we vary N with respect to
g. In fact for N > 1000 we have the posterior means of K varying from 443 to 451,
while when we vary g the posterior means of K are always 446.5 despite a wider range
for the prior means in this setting.

To increase the difficulty of the deduplication problem in a situation where we know
the exact matching configuration, we have also considered the RLdata10000 data set.
Figure 3 shows the box-plots of the posterior distributions of K, N, FNR and FDR
for ten blocks of size 1000 with approximately 800 single clusters and 100 two-elements
clusters. The hyperparameters values are s? = 0.01, s2 = 0.001 logit~!(mg) = 0.01 and
g = 1.02. Note that the true value of K (represented by a triangle) is always covered
by the corresponding posterior drawings except for one block. Moreover, the posterior
distributions of N partially overlap even when the related posterior for K are well



Table 3: R1data500 data set. Posterior means for K, N, the FNR and the F'DR obtained when logit~—!(mg) = 0.01,0.1,0.2,
s2=10.1,0.5,1 53 =0.1,0.5,1 and g = 1.01,1.02,1.05,1.1,1.5, 2.
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N K FNR FDR

250 227 0.02 0.89
500 389 0.01 0.63
1000 443 0.01 0.14
2500 447 0.01  0.08
5000 448 0.02 0.06
10000 449 0.02  0.05
100000 451 0.05 0.02

Table 4: R1data500 data set. Posterior means for K, FNR and the FDR conditional
on fixed values of N.

K N
o: £ ry b oo
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Figure 3: R1data10000 data set. Boxplots of the posterior distributions of K, N, FNR
and F'DR for ten blocks of size 1000. The triangles represent the true values of K. The
hyperparameters values are s = 0.5, S% =0.1 Zogit_l(mo) = 0.001 and g = 1.02.

separated confirming the robustness of population size inference when we account for
matching uncertainty. Finally record linkage performances are quite satisfactory with
posterior medians for FNR and FDR respectively less than 0.07 and 0.15 except for one
block

7 Application with Syrian data

As a real application we now face the problem of matching records from two public
available data sets reporting different number of recorded victims killed in the recent
Syrian conflict, along with available identifying information including first and family
names, date of death, and death location. A more detailed application can be found in
Chen et al. (2018). Here we consider the data provided by the Violations Documentation
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Cluster size

Analysis Data set 1 2 3 4
Separated lists  VDC 1582.35  49.66  3.97 0.10
CSR 916.02 39.34  2.07 0.43
Joined lists VDC and CSR  1588.88 482.78 43.06 1.60
VDC 1519.14  77.01 591 0.63
CSR 899.89  46.00 2.60 0.48

Record linkage  VDC and CSR 1833.25 431.52  0.00 0.00

Table 5: Syrian data. Distribution of the cluster sizes averaged across MCMC simula-
tions.

Center in Syria (VDC) and the Syrian Center for Statistics and Research (CSR) and we
focus on the killings in the province of Raqqa from the beginning of the conflict until
March 2017, since the CSR data set does not report records after this date.

The VDC data set provides directly the English equivalents of the Arabic names
while, for the CSR list, the English equivalents have been obtained by software translit-
eration of the reported Arabic names causing additional noise. Several records of the
VDC data set represent unidentified victims and report only the date of death or do
not have the first name and report only the relationship with the head of the family.
All these records have been eliminated and the resulting VDC data sets comprises 1694
records. The CSR list presents only completely identified victims for a total size of 1003
records. As in the previous experiments first and family names have been transformed
by the English version of the soundex algorithm and the resulting fields have been con-
sidered as key variables together with year, month and day of death for a total of 11
variables.

We show the results obtained with the same hyperparameters set for the
R1datal10000 data set and considering three different analyses. In the first case, that we
call separated list analysis, we investigate only the within list deduplication problem.
Hence we fit our model to the single lists one by one. Note that identification of true
within list duplicates is a very challenging problem with these data since most attacks
killed whole families causing records differing only in the first name that may easily
confused as duplicates. Anyway the number of record pairs that exceed a 0.5 posterior
probability of being duplicates, p(n;;, = 7:,|v), is small. In fact we have 51 pairs in the
first data set and 43 in the second one hence visual inspection of these pairs may even-
tually confirm their matching status. Table 5 reports the distribution of the of cluster
sizes averaged across the MCMC simulations showing the microcluster effect for both
the lists.

In the second analysis we consider both within and between lists de-duplication,
that is the natural scenario for our model where the two lists are joined into a single
data set. The total number of pairs with p(n;,;, = 7i,j,|v) > 0.5 is 617 out of which
481 are between lists duplicates and 84 and 52 are respectively within the first and the
second list. Hence about 78% of duplicates link the same victim across the two lists.
Table 5 shows the distribution of the cluster sizes for the joined lists but also within
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the two lists separately. Note the cluster size distribution within the two lists are quite
similar to the previous case where the lists are separated before fitting the model.

In the third analysis we exclude the within list duplications and we consider only the
record linkage problem across the two lists. One way to adapt our proposed model to
that particular case is to modify the prior distribution on the X’s such that 75, # 7,
Vj1 # jo and for ¢ = 1,2. Note that, in this case, clusters consist of at most two
elements so that the distribution of the observed records v, conditional on 7 and «,
can be calculated analytically without exploiting the recursive formula. Moreover, the
above conditioning is equivalent to assuming that the two lists are two simple random
samples without replacement from a population of N units.

This is the same situation described in Tancredi and Liseo (2011). From a com-
putational perspective, this scenario does not imply substantial changes. In fact, we
can arbitrarily fix the labels of the first file, for example by assuming that 7,; = j for
7 =1,...,n1 and update only the labels of the second file. In particular, indicating with
my the size of the cluster identified by the label ¢ without the record (i, j) we can use
the Gibbs step provided by equation (5.5) by setting

1 ifg<niandmg=1
p(n2; = qIn—(25)) < q 0 if ¢ <ny and my =2
0 ifg>n;andmy=1

and
p(772j = n€w|777(2j)) oc (N — k’*(Zj))

The number of pairs with p(m1;, = 725,|v) > 0.5 in the record linkage framework is 423
and the posterior mean of the match number, that is the frequency of the two elements
clusters, is 431.52. The reduced number of matches between the lists with respect to
the previous case is due to a larger estimate of the measurement error when within list
duplications are taken into account with the consequent increase also of between lists
estimated duplications.

Finally, Figure 4 shows the posterior distribution for N provided by the three dif-
ferent data analyses described above. Notice that, since we eliminated records with
missing information from the first list, here N represents the size of a smaller popula-
tion than all the victims killed in the province of Raqga until March 2017. We may say
that NV represents the size of victims with recordable information about first and last
name. The posterior mean for N, when accounting for duplications both within and
between the lists is equal to 5350 while when accounting only for between lists dupli-
cations is equal to 7507. When considering the two lists separately the posterior mean
of N increases considerably to 24832 with the VDC list and to 11116 with the CSR
list. Anyway the former two estimates are more reliable for the additional informative
content obtained by joining the two lists. Note also that our estimates depend on the in-
formation retrieved on the original records via the soundex algorithm and that adding
other key variables or using the full Arabic names with suitable string distance may
lead to different estimates. Moreover population size estimates are strongly dependent
on the capture-recapture model specifications, hence introducing heterogeneous and/or
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Figure 4: Syrian data. Posterior distribution for N obtained joining the CSR and VDC
lists into a single data set (solid line), via a record linkage analysis without within list
duplications (dashed line) and the CSR (dot-dashed line) and VDC (dotted line) single
list analyses.

dependent captures may also produce different estimates. However our estimates can
be seen as a starting point for future comparisons.

8 Discussion

In this paper we have shown how population size estimation can be performed when
records related to population units have been sampled and duplicated across multiple
files and the matching reconstruction within the same file and across different files is
uncertain. In particular, through the prior specification of the matching process, we
assumed that the observed lists are obtained as independent simple random sampling
with replacement from a closed population of unknown size IN. The hit-and-miss model
(Copas and Hilton, 1990) has been used as a measurement error model in order to
interpret differences among the sample records and the population records.

As a by-product of this approach, we obtained a more adequate prior distribution
for the matching pattern, which can also be used when the population size estimation is
not the primary task of the de-duplication process. However, more sophisticated prior
distributions could be used to incorporate more realistic sampling design. For example,
it would be important to extend our approach by introducing both heterogeneity and
dependence in the sampling probability of the population units as in usual capture-
recapture models. In particular the independence among the L lists is a very strong as-
sumption which rarely occurs in real applications. Note also that, in the de-duplication
framework, the problem is even more involved, because we may have different degrees of
dependence among captures and duplications across the lists. Moreover, from a theoret-
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ical perspective, it would be also worthwhile to investigate the role that different prior
distributions on the partition space, like that one induced by the Pitman-Yor process,
may play in the facilitation of the microclustering effect.

Other specific assumptions that we made throughout the paper concern the inde-
pendence of the key variables at the population level and the conditional independence
of the measurement error mechanism. Also in this case, more sophisticated versions of
the hit-and-miss model together with an appropriate model for the key variables should
be used to take into account more realistic scenarios. Anyway, we are confident that our
framework may provide a basis for all these kinds of extensions.

Supplementary Material

Supplementary Material for “A Unified Framework for De-Duplication and Population
Size Estimation”
(DOI: 10.1214/19-BA1146SUPP; .pdf).
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Invited Discussion

Mauricio Sadinle*

Population size estimation techniques, such as multiple-systems or capture-recapture
estimation, typically require multiple samples from the study population, in addition to
the information on which individuals are included in which samples. In many contexts,
these samples come from existing data sources that contain certain information on the
individuals but no unique identifiers. The goal of record linkage and duplicate detection
techniques is to identify unique individuals across and within samples based on the
information collected on them, which might correspond to basic partial identifiers, such
as given and family name, and other demographic information. Therefore, record linkage
and duplicate detection are often needed to generate the input for a given population size
estimation technique that a researcher might want to use. Linkage decisions, however,
are subject to uncertainty when partial identifiers are limited or contain errors and
missingness, and therefore, intuitively, uncertainty in the linkage and deduplication
process should somehow be taken into account in the stage of population size estimation.

The contributions of the discussed article build on a framework initially proposed by
Hall et al. (2012) for linking multiple datafiles, later extended by Steorts et al. (2014,
2016) to also handle duplication within datafiles. The framework of Hall et al. (2012)
and Steorts et al. (2014, 2016) also partially coincides with the work of Tancredi and
Liseo (2011) in the case of two duplicate-free datafiles. As presented in the discussed
article, this framework can be summarized in terms of a generative process where a finite
population is generated from a super-population, and in turn the records are generated
from the finite population, as follows:!

e The super-population:

— The random vector V = (f/l, ..., V,) represents p categorical variables which
follow a product multinomial distribution [j_; MN(1, 8;), meaning that the

entries of V are mutually independent, with V; € {1,..., M,} being multi-
nomial MN(1, 8,), with 8y = (01, ..., 0c,).

e The finite population:

— A finite population of N individuals is generated as a random sample from
the super-population, that is, Vq,...,Vy i P MN(1,6,). The real-
ization v+ of V; represents the true underlying values of an individual

j'=1,...,N.

e The records:

*Department of Biostatistics, University of Washington, Seattle, msadinle@Quw.edu
1Here T have slightly modified the original notation of the authors.
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— Record j in datafile i, henceforth indexed as ij, is a realization of a random

vector Vi; = (Vij1,..., Vijp), where entry ¢, V;;, is a potentially erroneous
measurement of characteristic ¢ of an individual in the finite population.
There are i = 1,..., L datafiles, and j = 1,...,n; records in datafile i.

— Denoting X;; € {1,..., N} as an index that indicates the individual in the
population to which record ij refers, we can denote v, = (f»\”l, el 17,\”.1))
as the true underlying vector of characteristics of the individual to which
record ij refers.

— The different records {V;;};; are assumed to arise independently of each
other across and within datafiles and across individuals, conditioning on the
realized values v1,...,vy of V1,...,Vy in the finite population.

— The entries of each record V;; are generated independently of each other,
conditioning on the true underlying values of individual A;; as follows: with
probability ay, ¢ take Vjj, to be the true value vy,,¢, otherwise, draw a ran-
dom value Vi, € {1,..., M,} with the same probabilities (0¢1,...,0¢,) as
in the super-population. This is known as the hit-miss model of Copas and
Hilton (1990). Originally in the work of Hall et al. (2012) and Steorts et al.
(2014, 2016), the probability of correct measurement ay,;, was taken to be
a single value ay for all individuals.

The model structure above requires imposing prior distributions on 8, for ¢ =
1,...,p; on ajg for j/ = 1,...,N and ¢ = 1,...,p; and more crucially on A =
M1y s Mgy s ALy -« -y ALn, ). We shall focus our discussion on A, as treatment
of the other parameters is somewhat standard.

The parameter A gives us the information that we need to link records: if A;j; = Ay
then records ij and i'j’ refer to the same underlying individual; furthermore, if 7 = ¢’
then these records are duplicates of each other within datafile 4, and if ¢ # ¢/ then they
represent the same individual in datafiles 7 and ¢/. Crucially, notice that the labels that
we use to represent A are not themselves relevant for linking records, as all we end up
using is whether A\;; = Ayrj» or Ajj # Aivjr. In other words, the information that we need
to extract from A is the partition of the records that it induces; records that receive the
same label represent records that refer to the same underlying individual. This means
that A is actually a labeling of the partition of the records that we are interested in
recovering in record linkage and duplicate detection problems.

The prior on A used by Hall et al. (2012) and Steorts et al. (2014, 2016) is uniform
across all the possible values of A, which depends on the number of labels used to
represent this vector. In Hall et al. (2012) and Steorts et al. (2014), this number of
labels was taken to be n = Zle n;, the number of records in all datafiles, which
is the number of labels needed to represent the partition if all the records across all
datafiles correspond to different individuals. In Section 6.2 of Steorts et al. (2016) this
number of labels was allowed to be M > n, and it was used as a hyper-parameter to be
selected based on the prior that it induces for the number of clusters of the partition of
the records. In the data-generative process above, the population size N provides the
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number of labels available for labeling the partition, and so the role of N is identical to
the role of M in Steorts et al. (2016).

The main contribution of the discussed article is that now we see the number of labels
N (or M in Steorts et al. 2016) as a population size that also needs to be estimated,
and therefore the authors use a prior distribution for it, p(N) o« N79, g > 1. The
authors provided two ways of motivating this approach to population size estimation.
First, if the partition of the datafiles is known, then this approach corresponds to a
capture-recapture model where there is one capture occasion for each record in the
datasets. Second, the uniform prior on the possible values of A can be derived from a
data-generating process where each individual in the finite population is subject to a
Poisson-distributed datafile-specific random number of capture attempts, each of them
being successful with a certain datafile-specific probability.

While it is interesting to see that the authors’ approach can be justified from such
an idealized data collection process, it is important to keep in mind that developments
in this area of research should accommodate commonly used capture-recapture models.
Unfortunately, the capture-recapture component of the approach proposed by the au-
thors does not correspond to any commonly used model in this area, and its assumptions
are too stringent to be practically useful, as acknowledged by the authors. The authors
also argue that this can be seen as a starting point for more complicated approaches,
but as we all know, the devil is in the details, and so it is not clear whether the contribu-
tion of the discussed article will straightforwardly enable the creation of joint modeling
approaches that combine the record linkage approach of Hall et al. (2012) and Steorts
et al. (2014, 2016) with more commonly used population size estimation models.

In the future it would be interesting to see joint modeling approaches that com-
bine existing record linkage frameworks with commonly used capture-recapture models.
To judge the relevance of such future contributions, an important requirement should
be that the new joint models simplify to more flexible or commonly used models for
population size estimation when the partition of the datafiles is known. For example,
the approaches of Tancredi and Liseo (2011) and Liseo and Tancredi (2011) do satisfy
this criterion, as they incorporate the commonly used hypergeometric capture-recapture
model for two samples. Along these lines, it would have been good, for example, that the
capture-recapture component of the proposed approach in the discussed article at least
simplified to the hypergeometric capture-recapture model in the approach of Tancredi
and Liseo (2011) in the case of two duplicate-free datafiles.

Extensions of the proposed modeling approach that accommodate more realistic
capture-recapture models will lead to new posteriors p(IN,Z | ¥) on the population
size N and partition of the datafiles Z for each different capture-recapture model being
considered, which will require approximation via new sampling algorithms (e.g., Markov
chain Monte Carlo). While we could imagine having a plethora of articles where each
possible model for record linkage is combined with each possible model for population
size estimation, more meaningful contributions to this literature should develop very
general approaches that allow users to obtain specific commonly-used capture-recapture
models as particular cases.
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Finally, we note that instead of developing joint models, an alternative endeavor is to
develop approaches that allow users to re-use record linkage results for different capture-
recapture models. An example of such an approach is linkage-averaging, proposed by
Sadinle (2018). Linkage-averaging requires a Bayesian record linkage methodology that
provides a posterior distribution on partitions of the datafiles, such as the approach
of Hall et al. (2012) and Steorts et al. (2014, 2016) or the approach of Sadinle (2014,
2017), and a capture-recapture model with sufficient statistics that depend only on the
overlap of the datafiles in terms of their individuals, such as the approaches of Fienberg
(1972); Bishop et al. (1975); Castledine (1981); George and Robert (1992); Madigan
and York (1997); Fienberg et al. (1999); Manrique-Vallier (2016). Linkage-averaging
is a simple two-stage approach in which a capture-recapture model is used to obtain
a posterior distribution of the population size for each partition of the datafile ob-
tained from a posterior sample of partitions from a Bayesian record linkage model; the
partition-specific population size posteriors are then averaged. Under some conditions
the results of that approach can be shown to correspond to those of a proper Bayesian
joint model for both record linkage and population size estimation. One of the advan-
tages of a two-stage approach is that the results from the linkage stage can be re-used
for different capture-recapture models, and therefore it facilitates model exploration
and avoids having to derive new posterior sampling algorithms for each combination of
record linkage and capture-recapture model. Nevertheless, linkage-averaging has certain
limitations, as, for example, its performance depends on the quality of both the linkage
and the capture-recapture models being used, and it does not support capture-recapture
models with covariates.

Regardless of whether new developments come in the form of joint models or two-
stage approaches, I believe that the applicability of the new approaches to realistic
scenarios should be an important consideration in their overall evaluation.
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I would like to congratulate the authors on a stimulating contribution to the literature
on record linkage/de-duplication and population size estimation. Tancredi and Liseo
(2011) was one of the papers that first piqued my interest in record linkage, so I am
pleased to see more work along these lines (with an author population size of N+1!)
My discussion below focuses on two main themes: Providing a more nuanced picture
of the costs and benefits of joint models for record linkage and the “downstream task”
(i.e. whatever we might want to do with the linked and de-duplicated files), and how
we should measure performance.

1 The promise and peril of joint modeling: A partial
defense of disunity

The promise of a joint model for record linkage, de-duplication, and population size
estimation is likely obvious to the readership of Bayesian Analysis: We immediately
obtain valid posterior inference over the population size that accounts for uncertainty
about duplicates and links across files — provided that we specify an adequate joint
model. Which leads us predictably to the peril of joint modeling, the fact that specifying
a model for any of these three tasks alone is nontrivial. Addressing them simultaneously
in a single model requires specifying a joint model sufficiently rich to do well on all three
tasks (linkage, de-duplication, and population size estimation) while being tractable
enough to understand its properties and perform posterior inference.

The model presented here necessarily makes some compromises in service of joint
modeling, and I wonder about their impact. For example, assumptions about the sam-
pling process generating the lists are essential to modeling the unknown population size
and therefore must appear in any unified model. This will consequently restrict the prior
distribution over the overlap between files in the record linkage/de-duplication portion
of the model, despite the fact that the assumption of simple random sampling from the
population — or any sort of random sampling at all — is otherwise irrelevant to record
linkage and de-duplication. The assumptions made by the authors imply a very partic-
ular, informative prior distribution on Z, the partition of records into co-referent sets,
and therefore on K, the number of distinct units captured across all lists (as reported
in Table 1).

This choice is consequential. Indeed, immediately prior to Section 3.1 the authors
note that the induced prior distribution on K is probably not well-suited to record
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linkage tasks in general, which makes me wonder why we should expect it to work
well when doing record linkage and population size estimation simultaneously. I have to
assume that either 1) we actually don’t expect it to work particularly well but the joint
model at hand demands it or 2) the assumptions about the sampling process are actually
warranted here, at least approximately, while they may not be in general applications of
record linkage. If the former, this seems to beg the question and ignore options beyond
joint modeling. If the latter, things are more interesting.

If the assumptions are in fact correct, we would expect to obtain more accurate and
efficient inferences by inducing the “true” prior over Z and K using the joint model. But
what happens when the sampling assumptions are violated? It is difficult to say, and
it must depend on a host of factors (such as the degree and frequency of errors among
co-referent records). However, it is not hard to imagine a case where relatively minor
deviations from the sampling assumptions are more or less innocuous in the context
of a population size model with known partition Z but become influential when Z is
unknown and jointly modeled, due to the influence of the “misspecified” informative
prior over Z. It would be interesting to try and draw this out via a simulation exercise
(particularly in light of how influential Steorts et al. (2016) found a similar prior to be
in a solely record linkage/de-duplication context).

If posterior inference is not robust to deviations from the sampling assumptions,
what could we do instead? The desire to mitigate this undesirable “feedback” from
a misspecified sub-model appears in many different settings, from Bayesian causal in-
ference with propensity score models (McCandless et al., 2010; Zigler et al., 2013) to
astrophysics (Yu et al., 2018) and beyond (see Jacob et al. (2017) for additional exam-
ples). This is a difficult problem and an active area of research. The proposed solutions
often take the form of (possibly incoherent) multistage inference, in this case inferring
the linkage structure in stage 1 and the population size in stage 2, propagating uncer-
tainty from stage 1 to stage 2 without allowing any information from stage 2 to flow
to stage 1. Jacob et al. (2017) give examples of settings where these “posteriors” are
better than the posterior under a misspecified joint model in a decision-theoretic sense.

In the context of de-duplication and population size modeling, Sadinle (2018) pro-
poses a related two-stage alternative to joint modeling termed “linkage averaging”. If
(in the notation of the current paper) h(X) is the estimate of population size we would
compute given complete data (i.e., a de-duplicated and linked set of files) then under
certain conditions the posterior for h(A) under a record linkage/de-duplication model
alone will give the same inferences as a proper Bayesian joint model for linkage, de-
duplication, and population size estimation. With a single set of posterior samples one
can perform inference over multiple models for the population size, again provided that
they all satisfy some relatively mild conditions.

These conditions do necessarily demand a degree of compatibility between the prior
on A and the population size model. They bear a striking similarity to the conditions un-
der which multiple imputation delivers (asymptotically) valid Bayesian inference (“con-
geniality”, (Meng, 1994; Xie and Meng, 2017; Murray, 2018)). This raises the interesting
question of whether the compatibility conditions might be relaxed while still yielding
conservative inferences, similar to the way one can obtain conservative inferences using
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imputations under an uncongenial imputation model, provided it is uncongenial in the
“right” way (roughly, by making fewer assumptions during imputation than analysis).

2 Measuring and improving performance

Various sub-specialties of statistics have spawned their own de-facto benchmark datasets
— think of the iris data for clustering or the galaxy dataset for density estimation.
Likewise, RLdata500 and RLdatal0000 have arguably become something of a bench-
mark in record linkage problems due in large part to their accessibility via the popular
RecordLinkage R package. I have used them in publications myself (Murray, 2015).
Benchmark datasets form a sort of lingua franca that is useful for teaching, exposition,
and as a sort of sanity check (when our brilliant new method finds six distinct clusters
in the iris data, it’s back to the drawing board).

However, we have to be careful extrapolating from these datasets to more com-
plex settings. In the provocatively titled “Leave the Pima Indians Alone”, Chopin and
Ridgway (2017) make the case that an excessive focus on relatively simple binary re-
gression problems like the Pima Indians diabetes dataset has had a distortive impact
on the Bayesian computation literature. I worry a little that repeatedly going back
to the RLdata datasets might lead the record linkage literature up the same path. In
particular, the errors in these synthetic datasets are rather minimal, and the duplicate
record pairs are quite well-separated from the non-duplicates. In my experience this
not representative of the datasets we see in the wild, at least not those that demand
sophisticated statistical modeling. Like Britney and the Pima Indians, I think it may
be time to leave RLdata alone.

However, the primary evidence that the authors provide in favor of their model is
its performance on RLdata datasets. Even setting aside whether this is a representative
testbed, I wonder if this is much evidence at all since no alternative approaches are
presented. Several are available, at least for the record linkage and de-duplication tasks,
including some developed by the authors themselves (e.g. Steorts et al. (2015) reports
false negative and false discovery rates of 0.02 and 0.04 on RLdata500, versus 0.015
and 0.08 using the model in the current paper). How well do existing Bayesian models
perform on the linkage/de-duplication task? What about even simpler methods, like the
point estimates generated by Fellegi-Sunter methods (Fellegi and Sunter, 1969) or their
generalizations (Sadinle and Fienberg, 2013; Murray, 2015)7 This is important context;
while the model proposed here offers richer inference, should we trust those inferences
if the model does not perform relatively well on the linkage/de-duplication task?

The authors actually seem to go a step further and use results on RLdata to inform
parameter selection when modeling the Syrian casualty data. This frankly seems like
a bad idea; in my own experience with similar files (Dalmasso et al., 2019), including
expert hand-linked datasets, we observed very different patterns of distortion among co-
referent records than the simple patterns one would find in RLdata. Given how variable
performance is across parameter settings in Section 4, I would suggest that at least
some sensitivity analysis might be in order for the Syria application.
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Rather than rely on unrepresentative benchmark datasets to measure performance
and select parameters, what could we do instead? The longer I work on record linkage
problems the more I am convinced of the need to include a hand-labeling exercise
alongside every serious application. The synthetic datasets at our disposal are limited
in the range of errors they include and are often poor representations of the problem
at hand. Model-based estimates of error rates are only as good as the model, and
if we're not sure about the model... However, provided that the true error rates are
low, precise estimates of false match rates (false discovery rates) can be obtained via
random sampling from matched record pairs. False match rates aren’t everything, but
they aren’t nothing either. Sadly the authors missed an opportunity to do even a little
inspection here; after finding a small number of duplicates in the Syria application, they
note only that “visual inspection of these pairs may eventually confirm their matching
status”.

Ideally a labeling exercise to evaluate a record linkage/de-duplication method should
include matches generated by other methods (to remove potential bias toward declaring
estimated matches correct), blinding (to the method(s) that declared the link), multi-
ple review, an “indeterminate” or “unsure” option for the labelers, and should present
labelers with neighboring “near-match” record pairs. Stellar examples of hand-labeling
study designs include Bailey et al. (2017); Frisoli and Nugent (2018). In McVeigh et al.
(2019) we hand-labeled a relatively small number of links to compare two competing
methods, including one Bayesian model. For the Bayesian model we also used these
labels to obtain the posterior distribution of false match rate adjusted estimators by
computing them on each posterior sample of the linkage structure (similar to Sadinle
(2018)’s linkage averaging). For our estimands, we only found it necessary to adjust
for the false match rate and we did not grapple with simultaneous de-duplication or
multiple files. But we did find that variation due to assumptions about bias from
linkage error tended to swamp variation due to uncertainty about the linkage struc-
ture.

Reducing or otherwise accounting for linkage error seems important in the context
of the current paper as well. Observe that in Figure 3, the estimates of K are worse
in the blocks with higher error rates (blocks 7, 1, 10, 3) and in each case the estimate
for K is biased down with a rather concentrated posterior distribution. If the model
cannot be improved further, perhaps we would be better off looking at the posterior
distribution of linkage error adjusted estimates of the population size. Linkage error
adjusted estimators for the population size do exist, at least for relatively simple settings
(e.g. Ding and Fienberg (1994); Di Consiglio and Tuoto (2018); Heijden (2019)) and
perhaps could be cast in Sadinle (2018)’s framework of linkage averaging (although T
have not checked the compatibility conditions myself). These estimators depend on false
non-match rates, which are more difficult to obtain through hand labeling but often can
be reasoned about based on plausible levels of duplication and overlap. This reasoning
could form the basis of a computationally efficient sensitivity analysis. This seems like
a promising avenue for future research, alongside further improvements in model and
prior specification to minimize error rates.
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Niangiao Ju*$, Niloy Biswas*, Pierre E. Jacob *, Gonzalo Mena *,
John O’Leary*, and Emilia Pompet

We congratulate the authors on their important contribution to the record linkage lit-
erature, performing data de-duplication in the presence of population size uncertainty.
The authors’ method involves a mix of discrete parameters, such as a latent population
size N and an unobserved partition over {1,...,n}, and continuous ones like the vec-
tors By, B’ and 6. Estimating this model entails significant computational challenges,
resembling those associated with mixture models and Bayesian non-parametric meth-
ods. These arise as much in the design of a sampling algorithm as in the assessment of
its convergence.

We would like to highlight a few tools that can be used to build confidence in
MCMC results under such conditions. Many of these involve Markov chain couplings,
as in Johnson (1996, 1998), and more recently in Glynn and Rhee (2014); Nikooienejad
et al. (2016); Jacob et al. (2020); Biswas et al. (2019). These methods allow for the
assessment and removal of the impact of the starting distribution. They apply when
it is possible to run multiple chains that evolve marginally according to the proposed
algorithm and jointly so that they meet after a random number of iterations.

In the following, we describe how to generate chains Xt(l) = (nW, ﬁél)ﬁ’(l), o), N()
and Xt(Q) = (n®, 5(()2),ﬂ’(2), 6 N?)) which follow the Gibbs sampler of Section 5 of
this article and which meet exactly at a random time. A basic strategy for coupling Gibbs
methods involves coupling each conditional update. The full conditional distribution
of label indicators 7 is a Multinomial distribution on {1,...,n} with the vector of
probabilities computed as in (5.5) of the article. To couple these updates, we compute
such probabilities for both chains and implement a maximal coupling to obtain two
labels which will be identical with the maximal probability. For the continuous variables
Bo, 8 and 6, which are updated with Metropolis—Hasting steps, we can employ maximal
couplings of the Normal or Dirichlet proposal distributions, and use common Uniform
draws to accept or reject them. Finally we can update N with an exact Gibbs step,
truncating IV to a very large integer, and implement a maximal coupling of this step.

However, an interesting difficulty arises, reminiscent of the infamous label switch-
ing issue (Stephens, 2000). Suppose that a first chain has ") = (1,4,3,4,2) and the
second 7?) = (4,3,2,3,1), in a simple example with n = 5. These labels correspond to
the same partition, and yet the n-components of the chains are different and thus the
chains cannot coincide. Judging from our toy experiments, the associated meeting time
would be long. This can be alleviated by an additional relabeling step, to be performed
after the update of the components of 7. A simple strategy, for example, is to relabel
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n according to the order of the occurrences of new blocks, from component 1 to n.
That is, both the labels n(*) = (1,4, 3,4,2) and n® = (4,3,2,3,1) would be relabelled
(1,2,3,2,4). This relabeling needs to be accompanied by an adequate reshuffling of the
associated parameters, namely the 8’-components in the notation of Section 5. Other,
more sophisticated relabeling strategies could be devised, perhaps inspired by the liter-
ature on label-switching issues in mixture models (Stephens, 2000; Marin et al., 2005;
Frithwirth-Schnatter, 2011).

We will make some R scripts implementing a coupling of the proposed Gibbs sampler
available at https://github.com/EmiliaPompe/discussion_unified_framework,
along with some simple numerical experiments on the synthetic dataset RLdata500
from the R package RecordLinkage analysed in Section 6 of the paper.
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Christian P. Robert*

Congratulations to the authors, for this paper that expand the modelling of populations
investigated by faulty surveys, a poor quality feature that applies to extreme cases like
Syria casualties. And possibly COVID-19 victims.

The model considered in this paper, as given by (2.1), is a latent variable model
which appears as hyper-parameterised in the sense it involves a large number of pa-
rameters and latent variables. First, this means it is essentially intractable outside a
Bayesian resolution. Second, within the Bayesian perspective, it calls for identifiability
and consistency questions, namely which fraction of the unknown entities is identifiable
and which fraction can be consistently estimated, eventually severing the dependence
on the prior modelling. Personal experiences with capture-recapture models on social
data like drug addict populations showed me that prior choices often significantly drive
posterior inference on the population size. Here, it seems that the generative distortion
mechanism between registry of individuals and actual records is paramount.

We now investigate an alternative aspect of the uniform prior distribution of A given N.

Since the practical application stressed in the title, namely some of civil casualties
in Syria, interrogations take a more topical flavour as one wonders at the connection
between the model and the actual data, between the prior modelling and the available
prior information. It is however not the strategy adopted in the paper, which instead
proposes a generic prior modelling that could be deemed to be non-informative. I find
the property that conditioning on the list sizes eliminates the capture probabilities and
the duplication rates quite amazing, reminding me indeed of similar properties for con-
jugate mixtures, although we found the property hard to exploit from a computational
viewpoint. And that the hit-miss model provides computationally tractable marginal
distributions for the cluster observations.

Several records of the VDC data set represent unidentified victims and report only the
date of death or do not have the first name and report only the relationship with the head
of the family.

This non-informative choice is however quite informative in the misreporting mecha-
nism and does not address the issue that it presumably is misspecified. It indeed makes
the assumption that individual label and type of record are jointly enough to explain the
probability of misreporting the exact record. In practical cases, it seems more realistic
that the probability to appear in a list depends on the characteristics of an individual,
hence far from being uniform as well as independent from one list to the next. The same
applies to the probability of being misreported. The alternative to the uniform alloca-
tion of individuals to lists found in (3.3) remains neutral to the reasons why (some)
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individuals are missing from (some) lists. No informative input is indeed made here on
how duplicates could appear or on how errors are made in registering individuals. Fur-
thermore, given the high variability observed in inferring the number of actual deaths
covered by the collection of the two lists, it would have been of interest to include a
model comparison assessment, especially when contemplating the clash between the
four posteriors in Figure 4.

The implementation of a manageable Gibbs sampler in such a convoluted model
is quite impressive and one would welcome further comments from the authors on its
convergence properties, since it is facing a large dimensional space. Are there theoretical
or numerical irreducibility issues for instance, created by the discrete nature of some
latent variables as in mixture models?
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Introduction

We thank the editorial team for organizing this discussion; and we thank all the dis-
cussants for providing stimulating and thought-provoking comments, which we have
summarized into the following four categories:

e prior modeling and identifiability
e joint modeling and inference with linked data;
e computational issues; and

e model and performance evaluation.’

Before turning to these four points, we first review our proposed model and some
simplifying assumptions, without loss of generality. We assume one single list and assume
that the error probabilities depend only on the key variables (and not on the population
entities), i.e. aj¢v = . In addition, we assume the probabilities 6; are known. Then
conditionally on the true values o;,, for j/ = 1,... N, the statistical model on the
observed values is

i
p(vi) = Z ﬁk(vi;f’j/) (1)
§’=1

independently for ¢ = 1,...,n, where
p p
k(v 050) = H ke(vie; Djre) = H (1 — a)d(vig; Die) + e,y 6]
=1 =1

which emphasizes the analogies with a mixture model as noted by the discussants.

Prior Modeling and Identifiability

In this section, we comment on the choice of the prior on the linkage structure as well
as model identifiability. Professor Murray states
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IThere may be connections within each of the four sections given the subject matter, which become
apparent in our rejoinder.
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“...This choice is consequential. Indeed, immediately prior to Section 3.1 the authors note that
the induced prior distribution on K is probably not well-suited to record linkage tasks in general,
which makes me wonder why we should expect it to work well when doing record linkage and
population size estimation simultaneously.”

We thank Professor Murray for this observation as we believe that the uniform
prior on the linkage structure (or label space) may not be adequate in some record
linkage problems where N is fixed and given, since prior uncertainty may be too low.
Nevertheless, it has been shown to work quite well in a number of situations, where N
is not known, namely, in the work of Marchant et al. (2019) on an application to the
United States Census Bureau.

On the other hand, we are confident that introducing an extra prior on N makes
the model more flexible and allows one to state uncertainty in a more intuitive way.
For instance, Table 1 illustrates that a uniform prior on the linkage structure (record
labels) A induces a prior that is too concentrated on K | N. However, by allowing N to
vary, as in our paper, the resulting prior on the partition Z is dramatically more diffuse
and it can be considered as a weakly informative prior, which is more sensible than
alternative proposals. As pointed out by Professor Sadinle, N was used as a hyper-
parameter in Steorts et al. (2016), where the authors explored the prior sensitivity issue
with respect to N and showed that the choice of N was particularly influential. In fact,
one motivation of our paper was to account for the uncertainty of this quantity in the
de-duplication process. Moreover, according to our model 1/N is the prior probability
that two records are co-referent hence by fixing N to a given value we strongly control
the de-duplication process. We stress that our goal is to propose a simple, yet more
flexible prior on the linkage structure than has been proposed in the literature.

Under our proposed model there is a partition Z, which is induced by the mixture
model (1) with an unknown N. We stress that we have not stated that the distribution
of Z nor the expression after elimination of NV represents the “correct” model in a real
de-duplication application. The perils assumed by Professor Murray are shared by
other proposed de-duplication models in the literature, which even separate the linkage
step from the population size parameter N. For example, Sadinle (2014) has proposed
to use a uniform prior on the partition space, after observing n records, p(Z) = B, *
where B,, is the Bell number. Under this assumption, the corresponding distribution
of distinct entities K is given by p(K) = S(n,k)/B, where S(n,k) is the Stirling
number of second kind. Using Pitman (2006), one obtains E(K) = B,,+1/B, — 1 and
Var(K) = Bpi2/Bn—(Bnt1/Bn)? — 1. Moreover, the prior probability that two records
are co-referent can be shown to be B,,_1/B,,. In fact, if we turn to the recent literature on
Bayesian record linkage that take a clustering approach, most assume a uniform prior on
the linkage structure or co-reference matrix (Sadinle, 2014; Steorts, 2015; Steorts et al.,
2016; Sadinle, 2017, 2018; Marchant et al., 2019; McVeigh et al., 2020). Therefore, we
ask why these particular assumptions should be considered less dangerous than ours?
The only two papers that take a completely non-parametric approach regarding the
prior on the linkage structure are that of Zanella et al. (2016) and Betancourt et al.
(2020), however, putting such priors into a joint modeling framework that scales would
be extremely challenging.
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Our approach, with an additional latent quantity, can be criticized in terms of iden-
tifiability as noticed by Professor Robert. In fact, the value of N has a direct impact
on the variability of the data. For example, when N = 1, we observe n duplications
of the same entity. For larger values of IV, the observed variability of the data will
increase. In a de-duplication model, observe that N plays a role similar to that of a.
While N controls the variability of the duplication between entities, the vector a con-
trols the variability for the duplication within entities. Can we safely estimate both the
parameters without specific assumptions? We suspect that one cannot, and we agree
with Professor Robert that this problem is most likely intractable outside of Bayesian
entity resolution.

However, it is true that the analysis of the effects of what we assume on Z on the joint
modeling is of paramount importance. In particular, we agree that there could be an
undesirable feed-back effect on the downstream task if we take a badly calibrated prior
on Z. On the other hand, there is no guarantee to avoid this problem if we separate the
record linkage step from the downstream one. The prior structure on Z would remain
the same even when we do not need to estimate N. Furthermore, it remains the same
in more complex situations based on de-duplicated data. This point is related to the
second classes of issues.

Joint Modeling and Inference with Linked Data

In this section, at the request of Professor Murray, we discuss joint modeling of the
record linkage problem and the post-linkage inference with respect to possible conse-
quence due to the lack of robustness with respect to the sampling assumptions.

In a recent companion paper (Steorts et al., 2018), we have investigated how to make
inference on the regression coefficients of a linear relation estimated with a response Y’
and covariates (X1, ..., X,) coming from different files and calibrated on linked records.
We have shown how the linkage uncertainty can be introduced in the inferential process.
On the other hand, we have investigated how the information coming from the regression
analysis can modify our posterior on the cluster structure. This feed-back effect may
or may not be welcome, according to the application. Moreover, when the regression
model is not a good choice, the feed-back effect may increase the noise and worsen the
linkage process.

The goal of our paper, here, is, admittedly different. We argue that, in the presence
of a record linkage problem, our proposed model is able to provide valid statistical in-
formation on N. That is, we are able to provide an integrated likelihood function for
N, which combined with a suitable prior, 7(NN) will produce a posterior which summa-
rizes what the data can tell about the population size, without explicitly designing a
statistical model for N. Taking this argument further, one could use our posterior on
N as the prior for a better designed capture-recapture experiment!

This leads into a point raised Professor Sadinle, who noted:

... Unfortunately, the capture-recapture component of the approach proposed by the authors does
not correspond to any commonly used model in this area, and its assumptions are too stringent to
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be practically useful, as acknowledged by the authors.

In this respect, we observe that when conditioning on the list sizes, we reduce to
a conditional likelihood framework, which is similar to the traditional model of Dar-
roch (1958). Note that fixing the sample size eliminates the capture probabilities, which
leaves as the unique parameter, the population size N. In addition, by conditioning
on the absence of within-list duplications, the lists become independent simple random
sample without replacement. Therefore, as hoped by Professor Sadinle, the number
of matches between two lists follows a hypergeometric distribution as in Tancredi and
Liseo (2011). Finally, the request of a standard capture-recapture model in a duplica-
tion framework with two lists could be accomplished by assuming a hypergeometric
distribution for the number of clusters belonging to both the lists, conditioned on the
number of clusters for each list and then modeling the number of clusters within each
list with a distribution that does not depend on N. We did not explore this possibility,
however, this could be of exploration in future work.

Computational Considerations

In this section, we speak to comments regarding computational considerations.

We agree with Professor Robert that the proposed model is hyper-parameterized.
We also agree with comments and suggestion made by Ju and Collegagues. Both
situations require care, and are typical of high-dimensional (in the parameter space)
mixture models. After receiving the written discussions, we have tried to transform this
potential criticism into an effort towards a simpler strategy. If we assume the simplified
model (1), where the error probability oy = o Vj’ and V¢ and the probabilities vector
0, are assumed known, we obtain a simple two-parameter problem (e and N, or a more
suitable their re-parametrization, such as ¢(«, N) = E(K|N)). This can be written as

pv1,.. vl N) = D p(vr ..., va|Z)p(Z|N). (2)
zZezZ

However the evaluation of the likelihood in equation (2) is still prohibitive, even for
small values of the total number of records n. In fact, it would require one to sum B,
terms! On the other hand, if we consider the pairwise likelihood (Varin et al., 2011),
associated to equation (2), the computational burden is dramatically reduced to

n—1 n
pr(aaN) = Z Z p(vr,vs|a,N),

r=1s=r+1

where

1
N

1
+ (1 - N) E[ewevse.

p(vr, vs|la, N) = H (6(vre, vse)0o,, (1 — a@)? + (20— 042)9%[9@“)
¢
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Making this over-simplification, we find that each pair (v,,vs) can be ascribed to the
same cluster with probability 1/N and, conditional on being on the same cluster, their
joint probability is (as reported in the paper) 6(v,¢, vse)0s,,(1 — @)+ (2a — a?)b, ,0,.,,
while conditionally on being on different clusters, v, and v, are simply independent. In
future work, we plan to explore this alternative version in order to quantify the loss in
information compared to the use of (2).

We appreciate that Ju and Colleagues have highlighted up the infamous label-
switching issue, which is prevalent in Bayesian latent variable model representations of
record linkage as pointed out by (Steorts et al., 2016). They and others have dealt with
this particular issue by using point estimates of the linkage structure or coreference
matrix. This approach has been utilized by Steorts (2015) and Marchant et al. (2019)
and similar approaches were adopted and extended by Sadinle (2014).

Convergence issues proved to be problematic in our experimental studies with the
RLdatab500 data set, which we believe is due to the fact that it has a small number of
duplicate records. Thus, it seems to be a nice candidate data set regarding understanding
the mixing (or failure to mix) of samplers. For our proposed method, we found that some
combinations of the hyper-parameters used in simulations (see Table 3 of our paper)
only reached convergence after more than 10,000 iterations of the sampler. This is
consistent with the literature on this particular data set, where in the previous literature,
one cannot achieve convergence of the RLdata500 data set after 11 hours due the use
of using a standard Gibbs sampler (Marchant et al., 2019). Thus, it seems that one
opportunity to overcome the convergence issues would be the proposed approach of Ju
and Colleagues, which could prove to be a valuable tool in record linkage moving
forward.

Along with the interesting and promising results of Ju and Colleagues, recent
computational advancements have been obtained by Marchant et al. (2019) using a
partially collapsed Gibbs sampler within the framework of Steorts (2015); Steorts et al.
(2016). Both directions would be interesting explorations for future endeavors.

Model and Performance Evaluation

In this section, we discuss model performance and evaluation.

We understand the concern regarding Professor Murray to leave the RLdata
data behind, however, there is merit in considering such datasets, especially because of
the difficulty finding valuable and other alternatives. We believe that the importance
to share real data sets is crucial for the record linkage community. In fact, we were
delighted to see that the quite small but real data exemplification of matching a census
Italian block with the subsequent post enumeration survey proposed in Tancredi and
Liseo (2011) has been used as a benchmark in both McVeigh et al. (2020) and Marchant
et al. (2019). The Syrian casualties dataset offered the rare opportunity to use a partially
public source and we embarked in this analysis not withstanding all the difficulties of
what would require an extensive case study. In the future, we hope that other researchers
contribute to the diffusion of their real data sets or at least part of them as has been
done in the open source work of Marchant et al. (2019) regarding synthetic and real
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data sets, which can be found at https://github.com/cleanzr/dblink-experiments
and https://github.com/cleanzr/RLdata.

Our aim in our proposed work was to demonstrate the applicability of the proposed
methodology even in an observational data framework, it was not our goal to propose
an applied paper. This cannot impede us to completely agree with all the suggestions
made by Professor Robert about the need of heterogeneous or “covariate depending”
capture probabilities, duplication, and misreporting rates. This would be a different
paper altogether.

We agree with Professor Murray that a hand-labeling exercise might increase the
quality of the matching process. We observe that in the original proposal of the hit-miss
model, Copas and Hilton (1990) required that the error probabilities o were estimated
on a set of true matches and that those estimates were subsequently used to infer the
matching status of a new pair of records. With the complexity of data we use today, a
hand-labeling exercise would surely contribute to improve the prior modeling of the «a
parameters so producing a more reliable inference. However, considering the specific case
of the Syrian data we note that for the full data set, containing all the data sources from
the Syrian conflict, there has already been a very intense, rich hand-matched analysis
as described in Price et al. (2013). Unfortunately, these labels do not easily map to the
publicly available data set, and the private data set is not easily shareable with others
given the sensitivity of the conflict. In our opinion, does not make sense to muddy the
waters regarding the outstanding work that the Human Rights Data Analysis Group
(HRDAG) has done on the front regarding hand-matching for many applications in
human rights, where they have had many experts to analyze the Syrian data set and
resolve it. In our opinion, this is a project in its own right given the amount of biases that
may result from performing hand-matching. In our experience, when this has been done
in previous studies by experts or used in case studies in the literature as in applications
to the human rights conflicts (Sadinle, 2014; Price et al., 2013; Chen and Shrivastava,
2018), both the proposed models and handmatching is extremely difficult.

We stress that producing hand-matches labels is difficult by experts. This is even
harder by those that are not well versed or trained in producing hand-matched data
sets. This begs the question regarding what can go wrong with producing a hand-
matched data set, and why do we recommend caution? For example, a hand-matched
data set can be constructed such that it favors the proposed model, and disfavors other
models. Thus, any hand-matched data set can be constructed to bias any model and
teasing out such biases is difficult, especially a reviewer. In addition, there are many
real applications where hand-matching is difficult to resolve in the sense that there are
many ambiguous matches. We often see this in the case of human rights applications.
In this sense, would it not be better to let the models be fully unsupervised to inform
inference in the spirit of being fully Bayesian?

Finally, turning to comparison with other methods, as suggested by Professor
Murray. We would like to stress that the suggested methods in his discussion dif-
fer completely in scope and are not comparable as they require different assumptions.
For example, the work of Steorts (2015) assumes both textual data and categorical data,
whereas we only consider categorical data. Furthermore, other models suggested by the


https://github.com/cleanzr/dblink-experiments
https://github.com/cleanzr/RLdata

A. Tancredi, R. C. Steorts, and B. Liseo 681

discussant, such as that of Sadinle (2014) would not be directly fair as textual data
is assumed and variations of the Fellegi—-Sunter approach in a Bayesian de-duplication
framework require careful tuning. It is paramount to remember that a comparison with
other methods that focus on variations or completely different methods altogether may
lead to unfair comparisons. Rather than focusing on this, we emphasize the importance
of the sensitivity analysis with respect to the choice of the hyper-parameters as reported
in Table 3 of our paper. In fact, this kind of comparisons could help in having a more
general insight on the kind of information one needs to extract from the proposed model
in order to improve the matching process.
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