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In the trace reconstruction problem, an unknown bit string x ∈ {0,1}n is
sent through a deletion channel where each bit is deleted independently with
some probability q ∈ (0,1), yielding a contracted string x̃. How many i.i.d.
samples of x̃ are needed to reconstruct x with high probability? We prove
that there exist x,y ∈ {0,1}n such that at least cn5/4/

√
logn traces are re-

quired to distinguish between x and y for some absolute constant c, improving
the previous lower bound of cn. Furthermore, our result improves the previ-
ously known lower bound for reconstruction of random strings from c log2 n

to c log9/4 n/
√

log logn.

1. Introduction. In trace reconstruction, the goal is to reconstruct an unknown bit string
x = (x1, . . . , xn) ∈ Sn := {0,1}n from noisy observations of x. Here, we study the case where
the noise is due to a deletion channel in which each bit is deleted independently with a fixed
probability q ∈ (0,1). More precisely, instead of observing x, we observe many independent
strings x̃ obtained by the following procedure for k = 1, . . . , n, starting from an empty string:

• (retention) With probability p := 1 − q , copy xk to the end of x̃ and increase k by one.
• (deletion) With probability q , only increase k by one.

See Figure 1 for an illustration. We are not given the locations of the retained bits in the
original string.

For T ∈ N, we consider a collection X = {̃x(1), . . . , x̃(T )} of T independent outputs (called
“traces”) from the deletion channel. Our main question is the following: How many traces
are needed to reconstruct x with high probability? A closely related question is, given strings
x and y, how many traces are needed to determine whether the input string was x or y. See
Section 1.2 for a more precise problem statement.

1.1. History and results. This problem was introduced by Batu, Kannan, Khanna and
McGregor [1] as an abstraction and simplification of a fundamental problem in bioinformat-
ics, where one desires to reconstruct a common ancestor of several organisms given genetic
sequences from those organisms. Other kinds of changes can be present besides deletions,
but deletions present a key difficulty. See [1] for more details.

De, O’Donnell and Servedio [5] and Nazarov and Peres [14] prove that any string x ∈
{0,1}n can be reconstructed with exp(O(n1/3)) traces, using the single-bit statistics of the
trace. This improves the earlier upper bound of exp(n1/2 polylog(n)) proved by Holenstein,
Mitzenmacher, Panigrahy and Wieder [8] (see [13] for an alternative proof).

Previous to our paper, the best available lower bound for the number of traces needed for
reconstruction was �(n). For example, the pair of strings x′

n = (0)n−11(0)n ∈ S2n and y′
n =

(0)n1(0)n−1 ∈ S2n (where (b)m means a string of m consecutive bs) requires �(n) traces to
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FIG. 1. We obtain the trace x̃ by deleting (red) or copying (blue) each bit of x.

be distinguished ([1], Section 4.2, [13], Corollary 1). Our main result is an improvement of
this lower bound. Define the strings xn,yn ∈ S4n to be

xn := (01)n−110(01)n, yn := (01)n10(01)n−1.

These strings are periodic with period 01 except for a single “defect” where the period is
replaced by 10. They can be obtained from x′

n and y′
n by replacing each 0 with 01 and 1 with

10.

THEOREM 1.1. For all q ∈ (0,1), there is a constant c > 0 such that for all ε ∈ (0,1/2)

and n ≥ 2, at least Tn := �c log(1/ε)n5/4/
√

logn � traces are required to distinguish between
xn and yn with probability at least 1 − ε. In particular, Tn traces are required to reconstruct
all n-bit strings with probability at least 1 − ε.

The following proposition is a partial converse to Theorem 1.1, and says that with
O(n3/2 logn) traces we can distinguish between the strings xn and yn.

PROPOSITION 1.2. For all q ∈ (0,1), there is a constant C > 0 such that for all ε ∈
(0,1/2) and n ≥ 2, �C log(1/ε)n3/2 logn� traces suffice to distinguish between xn and yn

with probability at least 1 − ε.

REMARK 1.3. Building on a prior version of this paper, Zachary Chase [3] recently
strengthened our result by proving that Theorem 1.1 still holds with Tn := �cn3/2/ log16 n�,
where c depends on q and ε. This means that our upper bound in Proposition 1.2 is optimal
up to a logarithmic factor. Using the stronger version of Theorem 1.1, Chase also improved
the lower bound for random strings in Proposition 1.5 below to �c log5/2 n/(log logn)16�.

In general, the number of samples required to distinguish two probability measures is
related to, but not determined by, the total variation distance between those measures; our
Appendix reviews the precise relationships. Given a string x and a deletion probability q ∈
(0,1), write �x for the law of the trace we obtain when applying the deletion channel with
deletion probability q to x. Note that the dependence on q is hidden in the notation �x.
The result of Proposition 1.2 follows from the lower bound on the total variation distance
dTV(�xn,�yn) in the following proposition.

PROPOSITION 1.4. For all q ∈ (0,1), there is a constant C > 0 such that for all n ≥ 1,
the total variation distance dTV(�xn,�yn) between �xn and �yn satisfies

C−1n−3/4(logn)−1/2 ≤ dTV(�xn,�yn) ≤ Cn−3/4.

Above we considered reconstruction of arbitrary strings in Sn. The number of traces re-
quired to reconstruct an arbitrary x ∈ Sn is known as the worst-case reconstruction problem.
We require that there exists a reconstruction algorithm such that no matter what the input
string is, this string is found with high probability by the algorithm. One can also consider
the average-case reconstruction problem. Letting μn denote the uniform probability measure
on Sn, we assume the input string x is sampled from μn. The question now is: What T en-
sures a large probability of reconstructing x? We require that there exists a reconstruction
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algorithm such that if x ∼ μn, then the algorithm identifies x with high probability when we
average over both the randomness of x and the randomness of the traces. In effect, this allows
us to consider only x ∈ An, where An ⊂ Sn is a set of large μn-measure and Sn \ An is a set
of strings that are particularly difficult to reconstruct.

Using the lower bound of �(n) for worst-case strings, McGregor, Price and Vorotnikova
[13] proved that �(log2 n) traces are needed to reconstruct random strings. Following [13],
we state and prove a general result for transferring lower bounds for worst-case strings to
lower bounds for random strings. We use this and Theorem 1.1 to prove Proposition 1.5,
which improves the earlier lower bound for random strings.

PROPOSITION 1.5. For all q ∈ (0,1), there is a constant c > 0 such that for all large n,
the probability of reconstructing random n-bit strings from �c log9/4 n/

√
log logn � traces is

at most exp(−n0.15).

Upper bounds for random strings are studied in [1, 7, 15]. In particular, it is proved in [7]
that eO(log1/3 n) = no(1) traces suffice for reconstruction of random strings with any deletion
probability q ∈ (0,1).

We use the following notation throughout the paper.

NOTATION 1.6. For two functions f,g : N→ [0,∞), we write f (n) = O(g(n)) if there
is a constant C > 0 such that for all sufficiently large n, f (n) ≤ Cg(n); f (n) = �(g(n)) if
there is a constant c > 0 such that for all sufficiently large n, f (n) ≥ cg(n); f (n) = �(g(n))

if both f (n) = O(g(n)) and f (n) = �(g(n)); and f (n) = o(g(n)) if limn→∞ f (n)/g(n) =
0. Unless otherwise specified, all constants c, c0, c1, . . . ,C,C0,C1, . . . and implicit constants
in �(·),�(·),O(·) may depend on the deletion probability q ∈ (0,1), but are independent of
all other parameters.

For x ∈ Sn, let Px and Ex denote probability and expectation, respectively, for the deletion
channel with input string x. The deletion probability is fixed and always denoted by q .

We remark that the trace reconstruction problem has a somewhat similar flavor to the
problem of reconstructing a random scenery from the observations along a random walk path
[2, 6, 10–12]. However, to our knowledge no nontrivial lower bounds have been proved for
the scenery reconstruction problem.

In the remainder of the Introduction, we give a precise description of the trace reconstruc-
tion problem. We prove Theorem 1.1 and the upper bound of Proposition 1.4 in Section 2,
Proposition 1.2 and the lower bound of Proposition 1.4 in Section 3 and Proposition 1.5 in
Section 4. The Appendix contains some useful information about distances between proba-
bility measures and how they relate to the statistical problem of distinguishing two measures.

1.2. The trace reconstruction problem. Let S := ⋃
n≥0 Sn denote the set of bit strings

of finite length. Given n ≥ 0 and T ≥ 0, we say that (all) bit strings of length n can be
reconstructed with probability at least 1 − ε from T traces if there is a function1 G : ST →
{0,1}n such that for all x ∈ Sn,

(1.1) Px
[
G(X) = x

]≥ 1 − ε.

If (1.1) does not hold for any choice of G, then we say that more than T traces are required
to reconstruct length-n bit strings with probability 1 − ε.

1Alternatively, we can replace S by
⋃

k≤n Sk when specifying the domain of G.
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Given n ≥ 0, T ≥ 0 and x,y ∈ Sn, we say that we can distinguish between strings x and y
with probability at least 1 − ε from T traces if there is a function G : ST → {0,1}n such that

Px
[
G(X) = x

]≥ 1 − ε and Py
[
G(X) = y

]≥ 1 − ε.(1.2)

If (1.2) does not hold for any choice of G, then we say that more than T traces are required
to distinguish between x and y with probability 1 − ε.

Recall that μn denotes the uniform probability measure on Sn, that is, μn(x) = 2−n for all
x ∈ Sn. We say that random bit strings of length n can be reconstructed with probability at
least 1 − ε from T traces if there is a function G : ST → {0,1}n such that

(1.3)
∑

x∈Sn

Px
[
G(X) = x

] · μn(x) ≥ 1 − ε.

If (1.3) does not hold for any choice of G, then we say that more than T traces are required
to reconstruct random length n bit strings with probability 1 − ε.

Finally, we remark that one can also consider a variant of the problem where the function
G may be randomized, as explained in Section 4, but this has no significant effect on our
results.

2. Lower bound: Proof of Theorem 1.1. In this section, we will prove Theorem 1.1.
We begin with a rough (and not entirely accurate) sketch of the proof. We will construct a
coupling of the traces from xn and yn in two steps. The first step of the coupling is similar to
what one does for x′

n and y′
n, whose details can be found in [13], Corollary 1: Keep 01-blocks

and 10-blocks intact, and for each 01-block decide only whether the block should be fully
deleted (i.e., both bits are deleted) or not. Then the only thing we need to track is the numbers
of blocks on either side of the defect that are not fully deleted. These are binomial random
variables, and thus the total variation distance of the traces is at most that for binomial random
variables, which is �(n−1/2). In fact, we will need to reserve some randomness, so in the first
step, we delete each 01 independently with probability only q2/2 (instead of q2), which does
not change the order of magnitude of the total variation distance.

We call the result of the first step a 2-partial trace. This is a string consisting of a sequence
of 01-blocks, followed by a 10-block (i.e., the defect), followed by a sequence of 01-blocks.
Consider the event that the first coupling step did not succeed in making the 2-partial traces
the same for xn and yn. On this event, in the second step of the coupling, we increase the
success probability of coupling the final traces; this gives a better bound for the total variation
distance. We do this by grouping the retained 01-blocks into 0101-blocks. Each 0101-block
undergoes a deletion process that is modified because we are conditioning on the event that
each of its constituent 01-blocks was not wholly deleted in the first step. By the triangle
inequality, instead of coupling the 2-partial traces to each other, we may couple each to 2-
partial traces with no defect. The idea is to find randomly a special 0101-block in the string
without defect that becomes the same after deletion as the defect, and at the same time, has
the remarkable property that what becomes of the other 0101-blocks is unaffected, so that
we can couple the defect to that special 0101-block. If we can achieve that, then we use the
remaining randomness to couple the numbers of 0101-blocks that are not wholly deleted in
the end (these are again binomial random variables). Using a result of Liggett [9], we can find
that special 0101-block with high probability. Furthermore, how far the special 0101-block
is from the center is controlled, which controls how far apart the binomial distributions are
and leads to another factor of O(n−1/4) in probability of failure to couple exactly. This is the
most subtle part of our proof and requires careful attention to several dependencies.

Combining the two coupling stages gives that the total variation distance between the
traces is O(n−3/4). Knowing the total variation distance is not sufficient to determine the
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number of traces required for reconstruction (it gives a lower bound of only �(n3/4) traces;
see Appendix A.2). However, by throwing away a very small set of 2-partial traces, applying
Lemma A.1, and using properties of the 2-partial traces, we can upgrade our bound on the
total variation distance to show that the squared Hellinger distance between the traces is
O(n−5/4√logn ). This yields the desired lower bound of �(n5/4/

√
logn ) on the number of

required traces.
The following lemma encapsulates the overall structure in the proof of Theorem 1.1. The

proof of the lemma contains almost all of our work. When we write �xn = μ1 + μ2 + μ3
(and the corresponding sum for �yn ), we are adding measures as functions on points; no
convolution is involved. Recall the notation ‖ · ‖�∞(·) from (A.3).

LEMMA 2.1. For all n ≥ 2, we have �xn = μ1 + μ2 + μ3 and �yn = μ1 + μ′
2 + μ′

3,
where for some constant C depending only on q ,

μ3(S) = μ′
3(S) ≤ n−10,(2.1) ∥∥∥∥μ2 − μ′

2

μ1 + μ2

∥∥∥∥
�∞(μ1+μ2)

≤ Cn−1/2
√

logn,(2.2)

μ1(x) + μ2(x) = 0 ⇐⇒ μ1(x) + μ′
2(x) = 0 for each x ∈ S,(2.3)

and

(2.4) dTV
(
μ1 + μ2,μ1 + μ′

2
)≤ Cn−3/4.

Note that (2.4) and (2.1) imply the upper bound in Proposition 1.4. Before proving
Lemma 2.1, we will deduce Theorem 1.1 from the lemma, and we will state and prove Lem-
mas 2.2 and 2.4, which we use in the proof of Lemma 2.1.

PROOF OF THEOREM 1.1. By Lemma A.3, (A.7) and (2.1),

d2
H(�xn,�yn) ≤ d2

H
(
μ1 + μ2,μ1 + μ′

2
)+ d2

H
(
μ3,μ

′
3
)

≤ d2
H
(
μ1 + μ2,μ1 + μ′

2
)+ 2n−10.

Let ν := μ1 + μ2 and μ := μ1 + μ′
2. By Lemma A.1, (2.3), (2.2) and (2.4), we get

d2
H(μ, ν) ≤ μ

{
x;ν(x) = 0

}+ 2 ·
∥∥∥∥μ(x) − ν(x)

ν(x)

∥∥∥∥
�∞(ν)

· dTV(μ, ν)

≤ 0 + 2Cn−1/2
√

logn · Cn−3/4

= 2C2n−5/4
√

logn.

Applying Lemma A.5, we obtain the theorem. �

Write Bin(n, s) for the binomial distribution corresponding to n trials with success proba-
bility s in each trial. We record the following routine calculations for later use.

LEMMA 2.2. For n ≥ 1 and s ∈ (0,1), let X ∼ Bin(n, s) and Y ∼ Bin(n − 1, s). Then∣∣P[X = k] − P[Y = k]∣∣= |ns − k|
n(1 − s)

· P[X = k] for k = 0, . . . , n,(2.5)

P
[|X − ns| > c

√
n logn

]≤ 2n−2c2
for c > 0,(2.6)
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and

(2.7) dTV(X,Y ) ≤
√

s

4n(1 − s)
.

PROOF. Equation (2.5) follows by direct calculation:

P[X = k] − P[Y = k] = P[X = k] ·
(

1 − n − k

n(1 − s)

)
= P[X = k] · k − ns

n(1 − s)
.

(2.8)

The estimate (2.6) is immediate by the inequality of Hoeffding–Azuma. We obtain (2.7) from
(2.5):

dTV(X,Y ) = 1

2

n∑
k=0

∣∣P[X = k] − P[Y = k]∣∣= 1

2

n∑
k=0

|ns − k|
n(1 − s)

· P[X = k]

= 1

2n(1 − s)
E
[|ns − X|]≤ Var(X)1/2

2n(1 − s)
=
√

s

4n(1 − s)
. �

The upcoming Lemma 2.4 will allow us to estimate the total variation distance between
traces produced from a pair of strings with and without, respectively, a defect. A key role in
its proof is played by the following theorem of Liggett [9] that concerns Bernoulli processes.
Part (iii) of this theorem is not stated explicitly by Liggett, but follows from the proof of [9],
Proposition 2.2 and Theorem 4.25.

THEOREM 2.3 ([9]). Let s ∈ (0,1), and let (aj )j∈Z be a bi-infinite sequence of i.i.d.
Bernoulli(s) random variables. Then there is a random variable X supported on N0 :=
{0,1, . . . } such that the following hold:

(i) The shifted string (bj )j∈Z for bj := aj−X consists of i.i.d. Bernoulli(s) random vari-
ables, except that b0 = 1 almost surely.

(ii) For a constant C depending only on s and for all m ∈ N, P[X > m] ≤ Cm−1/2.
(iii) Conditional on X and the bits (aj )j∈{−X,...,0}, all the bits aj for j /∈ {−X, . . . ,0} are

i.i.d. Bernoulli(s) random variables.

Note that one cannot choose X so that (aj )j �=−X is a Bernoulli(s) process conditioned on
X, because that would lead to the contradiction

E
[
E
[∑
j≤0

aj 2j
∣∣∣X]]

> E
[∑
j≤0

aj 2j

]
.

We will consider strings on the alphabet {α,β, γ }. The βs will represent 0101-blocks that
become the same as the defect becomes; the αs will represent 0101-blocks that are wholly
deleted, and the γ s will represent the rest. For a string w = (w1, . . . ,wn) ∈ {α,β, γ }n, let
R(w) denote the string obtained by deleting the αs and then contracting the string. In other
words, R(w) is obtained by repeating the following procedure for k = 1, . . . , n, starting with
an empty string:

• If wk ∈ {β,γ }, copy wk to the end of R(w) and increase k by one.
• If wk = α, only increase k by one.
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LEMMA 2.4. Let C0 > 1 and n ∈ N, and let j�, jr ∈ N satisfy C−1
0 n < j�, jr < C0n.

Let p := (pα,pβ,pγ ) ∈ (0,1)3 be a probability vector on the triple (α,β, γ ). Let w =
(w−j�

, . . . ,wjr ) ∈ {α,β, γ }j�+1+jr and w′′ = (w′′−j�
, . . . ,w′′

jr
) ∈ {α,β, γ }j�+1+jr be strings

of length j� + 1 + jr on the alphabet {α,β, γ } such that the letters wi and w′′
i are i.i.d. with

law p:

(2.9) w ∼ pj�+1+jr and w′′ ∼ pj�+1+jr .

Condition on the event that w0 = β .
Then there is a constant C1 depending only on C0 and p such that the total variation

distance between R(w) and R(w′′) is bounded above by C1n
−1/4.

PROOF. Throughout the proof, all constants may depend on (C0,pα,pβ,pγ ).
It will be more convenient in the proof to work with bi-infinite strings. Therefore, we

assume throughout the proof that w and w′′ are bi-infinite strings w = (. . . ,w−1,w0,w1, . . . )

and w′′ = (. . . ,w′′−1,w
′′
0 ,w′′

1 , . . . ) with law pZ conditioned on the event that w0 = β . We will
show that the total variation distance between R((w−j�

, . . . ,wjr )) and R((w′′−j�
, . . . ,w′′

jr
)) is

bounded above by C1n
−1/4.

By the result of Liggett stated in Theorem 2.3 above, we can find a random variable X

supported on N0 and independent of w and a constant C2 > 0 (depending on pβ ) such that
P[X ≥ m] ≤ C2(m + 1)−1/2 for all m ∈ N and such that

(2.10)
(
w′′

j−X

)
j∈Z

d= w.

Furthermore, by Theorem 2.3(iii) we may define X so that conditioned on X and the string
(w′′−X, . . . ,w′′

0), all letters except w′′−X, . . . ,w′′
0 are independent with law p.

Let B := [X < �√n�], so that P[Bc] ≤ C2n
−1/4. On the event B , write the strings w and

w′′ as concatenations of five strings each:

w = w0w1w2w3w4 and w′′ = w′′
0w′′

1w′′
2w′′

3w′′
4,

where

w0 = (. . . ,w−j�−1), w1 = (w−j�
, . . . ,w−1), w2 = (w0, . . . ,w�√n�−1),

w3 = (w�√n�, . . . ,wjr ), w4 = (wjr+1, . . . ),

w′′
0 = (

. . . ,w′′−j�−1
)
, w′′

1 = (
w′′−j�

, . . . ,w′′−X−1
)
,

w′′
2 = (

w′′−X, . . . ,w′′
−X+�√n�−1

)
,

w′′
3 = (

w′′
−X+�√n�, . . . ,w

′′
jr

)
, w′′

4 = (
w′′

jr+1, . . .
)
.

See Figure 2 for an illustration. On the event Bc, split the strings w and w′′ in the exact same
way, except that w′′

0 = (. . . ,w′′−X−1) and that w′′
1 is the empty string. By Theorem 2.3(iii),

conditional on X and w′′
2 and on the event B, the letters of the strings

w′′
0,w′′

1,w′′
3,w′′

4 are i.i.d. with law p.
(2.11)

Let Y� and Y ′′
� denote the number of letters of w1 and w′′

1, respectively, that are not deleted,
that is,

Y� := #
{
j ∈ {−j�, . . . ,−1};wj �= α

}
,

Y ′′
� := #

{
j ∈ {−j�, . . . ,−X − 1};w′′

j �= α
}
.
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FIG. 2. The figure illustrates X, w = w0w1w2w3w4 and w′′ = w′′
0w′′

1w′′
2w′′

3w′′
4 on the event B . The string

w0 (resp., w1,w2,w3,w4) is shown in blue (resp., gray, green & red, cyan and pink), and the color code for
w′′

0,w′′
1,w′′

2,w′′
3,w′′

4 is similar. The locations of letters known equal to β are shown in red.

Define Yr and Y ′′
r similarly for w3 and w′′

3, that is,

Yr := #
{
j ∈ {�√n�, . . . , jr

};wj �= α
}
,

Y ′′
r := #

{
j ∈ {−X + �√n�, . . . , jr

};w′′
j �= α

}
.

For any given coupling of the strings w and w′′, define the event B ′ := [(Y�, Yr) = (Y ′′
� , Y ′′

r )].
We now define a coupling of the two strings w and w′′ by sampling w and w′′ stepwise on

the same probability space as follows. Roughly, we first sample the “central” strings w2 and
w′′

2 so that they match, without specifying X. Then we sample X. Then, in case B occurs, we
sample the binomial random variables Y�, Y ′′

� , Yr and Y ′′
r so that B ′ has as high probability

as possible. Finally, we sample the rest of the information in the strings w and w′′. To be
precise:

(i) Sample w2 and w′′
2 such that w2 = w′′

2 and the marginal law of each string is p�√n�.
This is possible by (2.10).

(ii) Sample X conditioned on w2 and w′′
2. (We have not described explicitly this condi-

tional distribution; also, note that X is not bounded.)
(iii) Sample Y�, Y ′′

� , Yr and Y ′′
r conditioned on w2, w′′

2 and X with a special joint distri-
bution: First, Y� and Yr are independent, as are Y ′′

� and Y ′′
r . Second, by (2.11), conditioned

on w2, w′′
2 and X, and on the event B , the random variables Y ′′

� and Y ′′
r are binomial random

variables Y ′′
� ∼ Bin(j� −X,1−pα) and Y ′′

r ∼ Bin(jr +X−�√n�+1,1−pα). We couple Y�,
Y ′′

� , Yr and Y ′′
r such that except on an event of conditional probability dTV((Y�, Yr), (Y

′′
� , Y ′′

r ))

(where we consider the total variation distance conditional on w2, w′′
2, X and B), the event

B ′ occurs. Third, on the event Bc, we take the independent coupling of Y�, Y ′′
� , Yr and Y ′′

r

conditioned on w2, w′′
2 and X.

(iv) Sample the remaining randomness conditioned on w2, w′′
2, X, Y�, Y ′′

� , Yr and Y ′′
r : On

the event B ′ ∩ B , by (2.11) we may couple w and w′′ so that R(w1) = R(w′′
1) and R(w3) =

R(w′′
3).

By (i) and (iv) of this coupling, we see that on the event B ∩ B ′,

R
(
(w−j�

, . . . ,wjr )
)= R(w1w2w3) = R

(
w′′

1w′′
2w′′

3
)= R

((
w′′−j�

, . . . ,w′′
jr

))
.

To conclude the proof, it is therefore sufficient to show that P[B ∩ B ′] ≥ 1 − C1n
−1/4 for

some constant C1.
By (2.7), (A.8) (with n = 2 there), (iii) of the coupling, and the fact that Y� ∼ Bin(j�,1 −

pα) and Yr ∼ Bin(jr − �√n� + 1,1 − pα), the total variation distance between (Y�, Yr) and
(Y ′′

� , Y ′′
r ) conditional on X and on the event B is at most C3X/

√
n for some constant C3 that

depends on C0 and pα . Summing over the possible values of X, we get the following for
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some constant C4 > 0:

P
[
B ∩ (

B ′)c]≤ C3E[1BX/
√

n] = C3n
−1/2

�n1/2�−1∑
k=0

P[X > k]

≤ C4n
−1/2 · (n1/2)1/2 = C4n

−1/4.

Combining this with P[Bc] ≤ C2n
−1/4, we obtain P[B∩B ′] ≥ 1−C1n

−1/4 for some constant
C1, which concludes the proof. �

PROOF OF LEMMA 2.1. We will always couple the deletions made to the defects so that
they are the same. If both defects are wholly deleted, then the remaining strings obviously
can be coupled to have the exact same traces; this occurs with probability q4 and forms part
of the measure μ1 that we need to define. It will be most convenient from now on to condition
on the event that neither defect is wholly deleted.

A trace may be constructed in three steps (see Figure 3 for an illustration):

(I) First, we construct the 2-partial trace. A 01-block (resp., 10-block) is the string of length
two given by (0,1) (resp., (1,0)). The input string xn may be viewed as the concate-
nation of n − 1 01-blocks, followed by a single 10-block and then n 01-blocks. We
sample the 2-partial trace of xn by setting s := 1 − q2/2, letting Y� ∼ Bin(n − 1, s)

and Yr ∼ Bin(n, s) be independent binomial random variables, and defining the par-
tial trace to be the concatenation of Y� 01-blocks, followed by a single 10-block and
then Yr 01-blocks. The partial trace of yn is defined in the exact same way, except that
Y� ∼ Bin(n, s) and Yr ∼ Bin(n − 1, s).

(II) Given a 2-partial trace, we define the 4-partial trace by the following deterministic
procedure. Defining a 0101-block to be the length-4 string (0,1,0,1), the 4-partial trace
associated with the 2-partial trace in (I) is the concatenation of the following blocks in
the listed order:

• if Y� is odd, a 01-block,
• �Y�/2� 0101-blocks,
• one 10-block (the defect),
• �Yr/2� 0101-blocks,
• if Yr is odd, a 01-block.

(III) From the 4-partial trace, we construct the final traces x̃n and ỹn as follows, where we
treat each block independently and obtain a string in S by concatenating the bits of the
various blocks in the same order as they appear in the 4-partial trace.

• A 01-block is replaced by 01, 1, 0, ∅ with probability p2/s, pq/s, pq/s, q2/(2s),
respectively, where ∅ denotes the trivial (length zero) string.

FIG. 3. The figure illustrates the steps (I)–(III) for constructing a trace as described in the proof of Lemma 2.1.
The steps from the second line to the third line and from the fourth line to the fifth line are random, while the
other steps are deterministic. In the displayed example, we have Y� = 4 and Yr = 3. The defect is colored in red
to simplify the reading of the figure but, of course, is not part of the information in the actual trace.
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• A 0101-block is first replaced by two 01-blocks, and then each 01-block is treated
independently as in the preceding bullet point. The result is a block in the set

B0101 := {0101,101,011,001,010,01,10,11,00,0,1,∅}.
• The 10-block representing the defect is replaced by 10,1,0 with probability p2/(1 −

q2), pq/(1 − q2), pq/(1 − q2), respectively.

Let Sp denote the set of strings w = (u1, . . . ,u�) for � ∈ N0, where each uj is a 01-block, a
0101-block, or a 10-block; the case � = 0 corresponds to the empty string, ∅. In particular,
both the 2-partial trace and the 4-partial trace considered above are contained in Sp. Notice
that (III) provides a general procedure for obtaining a random string in S from a string w ∈
Sp; let �p(w) denote the resulting law on strings in S .

Let ν and ν′ denote the laws of the 4-partial traces associated with xn and yn, respectively.
Then ν and ν′ are probability measures on Sp. Notice that sampling the 4-partial traces above
is equivalent to sampling the random variables Y� and Yr describing the numbers of 01-blocks
on either side of the defect in the associated 2-partial trace. We decompose

(2.12) ν = ν1 + ν2 + ν3 and ν′ = ν1 + ν′
2 + ν′

3,

where the measures ν1, ν2, ν′
2, ν3, ν′

3 are defined as follows. The measures ν3 and ν′
3 corre-

spond to the events that unusually many or few 01-blocks were deleted on at least one side of
the defect. More precisely, for an appropriate constant C0 to be defined later, let the event A

be given by

A := {|Y� − an| ≤ C0

√
n logn, |Yr − an| ≤ C0

√
n logn

}
where an := n

(
1 − q2/2

)
.

(2.13)

For an arbitrary measure ν̂ on a measurable space Ŝ and with Â ⊂ Ŝ , let 1Âν̂ denote the
measure that assigns mass ν̂(U ∩ Â) to any measurable set U ⊂ Ŝ . Define

ν3 := 1Acν and ν′
3 := 1Acν′.

Now choose the measures ν1, ν2 and ν′
2 so that (2.12) is satisfied and ν1(Sp) is maximized.

In particular, the measures ν2 and ν′
2 have disjoint support and ν2(Sp) = ν′

2(Sp) = dTV(ν −
ν3, ν

′ − ν′
3). Note that the distribution of the total number of 01-blocks is the same under ν2

as it is under ν′
2.

By choosing C0 sufficiently large and applying equation (2.6), we obtain

(2.14) ν3
(
Sp)= ν′

3
(
Sp)≤ n−10.

By equation (2.5), for an appropriate constant C1, for all n ≥ 2, and for all x ∈ Sp such that
(ν1 + ν2)(x) �= 0,

|ν2(x) − ν′
2(x)|

(ν1 + ν2)(x)

≤ max
k1,k2∈{0,...,�C0

√
n logn�}

∣∣∣∣1 − Pyn[|Y� − an| = k1, |Yr − an| = k2]
Pxn[|Y� − an| = k1, |Yr − an| = k2]

∣∣∣∣
≤ C1n

−1/2
√

logn.

(2.15)

Furthermore,

(2.16) ν1(x) + ν2(x) = 0 ⇐⇒ ν1(x) + ν′
2(x) = 0 ∀x ∈ Sp
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since each of these conditions holds if and only if the binomial random variables Y� and
Yr associated with x satisfy the condition of (2.13). Finally, (2.7) and (2.14) give that upon
increasing C1 if necessary

(2.17) ν2
(
Sp)= ν′

2
(
Sp)= dTV

(
ν − ν3, ν

′ − ν′
3
)≤ C1n

−1/2.

The bounds in the preceding paragraph are expressed in term of measures on 4-partial
traces. We now transfer these bounds to the final traces. Let μ̃1 := ν1(Sp) · �p(w) for w ∼
ν1(Sp)−1ν1. Define μ̃2, μ̃3, μ̃′

2 and μ̃′
3 similarly from the measures ν2, ν3, ν′

2 and ν′
3. Then

(2.18) �xn = μ̃1 + μ̃2 + μ̃3 and �yn = μ̃1 + μ̃′
2 + μ̃′

3.

By (2.14) and (2.17), we have

(2.19) μ̃3(S) = μ̃′
3(S) ≤ n−10 and μ̃2(S) = μ̃′

2(S) ≤ C1n
−1/2.

Furthermore, by (2.16),

(2.20) μ̃1(x) + μ̃2(x) = 0 ⇐⇒ μ̃1(x) + μ̃′
2(x) = 0 ∀x ∈ S.

Finally, by Lemma A.2 and (2.15), with νA := 1Aν = ν1 + ν2 and ν′
A := 1Aν′ = ν′

1 + ν′
2,

(2.21)
∥∥∥∥ μ̃2 − μ̃′

2

μ̃1 + μ̃2

∥∥∥∥
�∞(μ̃1+μ̃2)

≤
∥∥∥∥νA − ν′

A

νA

∥∥∥∥
�∞(νA)

≤ C1n
−1/2

√
logn.

The preceding paragraph provides a coupling of �xn and �yn such that the traces are identical
with probability μ̃1(S) > 1 − C1n

−1/2√logn − n−10. To obtain (2.4), we construct a better
coupling by making a second attempt to couple the traces on the event that the first coupling
fails.

Let

σ := μ̃2(S)−1μ̃2 and σ ′ := μ̃′
2(S)−1μ̃′

2

denote the laws of the traces on the event that the first coupling attempt failed and that the
event A occurs. We will argue that for an appropriate constant C2,

(2.22) dTV
(
σ,σ ′)≤ 2C2n

−1/4.

Before proving (2.22), we explain how (2.22) implies the lemma.
Assuming (2.22) holds, by (2.19) we can write μ̃2 = μ2 + μ2 and μ̃′

2 = μ2 + μ′
2, where

(2.23) μ2(S) = μ′
2(S) ≤ 2C2n

−1/4 · C1n
−1/2 = 2C1C2n

−3/4.

With μ1 := μ̃1 +μ2, μ3 := μ̃3 and μ′
3 := μ̃′

3, all the requirements of Lemma 2.1 are satisfied
because of (2.18), (2.19), (2.20), (2.21) and (2.23). Note in particular that (2.2) is satisfied
because for any x ∈ S for which μ1(x) + μ2(x) �= 0,

|μ2(x) − μ′
2(x)|

μ1(x) + μ2(x)
= |(μ̃2(x) − μ2(x)) − (μ̃′

2(x) − μ2(x))|
(μ̃1(x) + μ2(x)) + (μ̃2(x) − μ2(x))

= |μ̃2(x) − μ̃′
2(x)|

μ̃1(x) + μ̃2(x)
≤ C1n

−1/2
√

logn.

We will now prove (2.22). Let w denote the 4-partial trace associated with xn. Let w′′ ∈ Sp

be identical in law to w except that the 10-block (i.e., the defect) is replaced by a 0101-block,
and denote by σ ′′ the law of �p(w′′). Because the lengths of the 4-partial traces associated
to xn or to yn have the same law, we have symmetry in xn and yn and may apply the triangle
inequality for dTV. That is, it suffices to show the following in order to prove (2.22):

(2.24) dTV
(
σ,σ ′′)≤ C2n

−1/4.



514 N. HOLDEN AND R. LYONS

When proving (2.24), we condition on Y� and Yr , so these random variables are viewed as
constants. In particular, we will take the lengths of w and w′′ to be the same, that is, the
number of blocks in the two 4-partial traces is the same. We will construct a coupling of
�p(w) and �p(w′′) by sampling these random variables stepwise.

Assume first that Y� and Yr are both even, namely, 2j� and 2jr , respectively, for j�, jr ∈
N0. For each block u ∈ B0101, let pu denote the probability that a 0101-block reduces to u in
the definition of �p. The trace �p(w′′) may be sampled in the following four steps:

• Sample the block ud ∈ {10,1,0} that replaces the defect in w, using probabilities as in the
third bullet point of (III) above.

• Let (aj )j∈{−j�,...,jr } be an i.i.d. sequence such that aj ∈ {α,β, γ } for each j and such that

(2.25) P[aj = α] = p∅, P[aj = β] = pud, P[aj = γ ] = 1 − p∅ − pud .

• Let the j th block in w′′ reduce to ∅ (resp., ud) if aj = α (resp., aj = β).
• If aj = γ , then the j th block in w′′ reduces to any given block u ∈ B0101 \ {∅,ud} with

probability pu/P[aj = γ ], independently of what the other blocks reduce to.

The trace �p(w) may be sampled in the exact same way, except that we condition on the
event that a0 = β . Recall the function R defined preceding the statement of Lemma 2.4. Let
ρ′′ denote the law of R((aj )j∈{−j�,...,jr }), where the aj s are i.i.d. given by (2.25), and let ρ

denote ρ ′′ conditioned on a0 = β . By equation (A.6),

dTV
(
σ,σ ′′)≤ dTV

(
ρ,ρ′′).

By Lemma 2.4, we have dTV(ρ,ρ′′) ≤ C2n
−1/4 for some constant C2, which gives (2.22).

To conclude the proof, we briefly explain which modifications are needed to the above
proof in the case where Y� or Yr is odd. In this case, the 4-partial traces w and w′′ will
contain one or two 01-blocks. The total variation distance between �p(w) and �p(w′′) will
be the same in this case as before since we simply couple the 01-blocks of w and w′′ together
so that they always reduce to the same block in {01,0,1,∅}. �

3. Upper bound: Proof of Proposition 1.2. In this section, we prove the lower bound
of Proposition 1.4, which immediately implies Proposition 1.2.

The idea in the proof of Proposition 1.4 is to define an integer-valued random variable
Z(̃x) that is a function of the trace x̃ and such that dTV(Z(̃x),Z(̃y)) can be bounded from
below. For n ∈N, x ∈ S4n and x̃ = (x̃1, . . . , x̃�) the trace of x, define Z(̃x) as

(3.1) Z(̃x) := #
{
k;2np + 1 ≤ k ≤ (2np + √

npq) ∧ (� − 1), x̃k = x̃k+1 = 1
}
.

We will use several lemmas in the proof of Proposition 1.4.

LEMMA 3.1. We have Eyn[Z(̃yn)] − Exn[Z(̃xn)] = �(n−1/2) and Eyn[Z(̃yn)] >

Exn[Z(̃xn)] for all sufficiently large n.

PROOF. Let E(j, k) be the event that bit j in the input string is copied to position k in
the trace. If one or both of the positions are not well defined (i.e., if j /∈ {1, . . . ,4n} or if k is
smaller than 1 or larger than the length of the trace), then let E(j, k) be the empty event. If
j, k ∈ {1, . . . ,4n}, then

(3.2) Pxn

[
E(j, k)

]= Pyn

[
E(j, k)

]=
(
j − 1
k − 1

)
pk−1qj−k · p.

Let x̃k (resp., ỹk) denote bit number k of x̃n (resp., ỹn). Assume we send the strings xn and
yn through the deletion channel, and that the indices of the deleted bits are exactly the same
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for the two strings. Then the events [x̃k = x̃k+1 = 1] and [ỹk = ỹk+1 = 1] may differ only
due to occurrence of the events E(2n + 1, k) or E(2n − 1, k) (which give ỹk = 1 and x̃k = 1,
resp.), or due to occurrence of the events E(2n + 1, k + 1) or E(2n − 1, k + 1) (which give
ỹk+1 = 1 and x̃k+1 = 1, resp.). Therefore,

Eyn

[
Z(̃yn)

]− Exn

[
Z(̃xn)

]
= ∑

2np+1≤k≤2np+√
npq

(
Pyn

[
E(2n + 1, k) ∩ {ỹk+1 = 1}]

− Pxn

[
E(2n − 1, k) ∩ {x̃k+1 = 1}]

+ Pyn

[{ỹk = 1} ∩ E(2n + 1, k + 1)
]

− Pxn

[{x̃k = 1} ∩ E(2n − 1, k + 1)
])

.

(3.3)

First, we estimate the sum in (3.3) restricted to only the first two terms in each summand.
Notice that xn restricted to bits {2n − 1,2n, . . . ,4n − 2} is identical to yn restricted to bits
{2n + 1,2n + 2, . . . ,4n}. On the event E(2n + 1, k), the value of ỹk+1 can be obtained
by sending bits {2n + 2,2n + 3, . . . ,4n} of yn through the deletion channel and recording
the first bit, and the analogous statement holds for E(2n − 1, k), x̃k+1, xn and {2n,2n +
1, . . . ,4n}. Therefore, if x†

n is the string identical to xn but with the last two bits removed, we
have Pyn[ỹk+1 = 1|E(2n+ 1, k)] = Px†

n
[x̃†

k+1 = 1|E(2n− 1, k)]. The probability that the bits

{4n − 1,4n} of xn affect the value of ỹk+1 conditioned on the event E(2n − 1, k) is O(q2n).
Using these observations and that the considered probabilities are of order 1, we get

Pyn[ỹk+1 = 1|E(2n + 1, k)]
Pxn[x̃k+1 = 1|E(2n − 1, k)] = 1 + O

(
q2n).

This and (3.2) give, with ξ := k − 2np ∈ [1,
√

npq ],
Pyn[E(2n + 1, k) ∩ {ỹk+1 = 1}]
Pxn[E(2n − 1, k) ∩ {x̃k+1 = 1}]

= Pyn[E(2n + 1, k)]
Pxn[E(2n − 1, k)] · Pyn[ỹk+1 = 1|E(2n + 1, k)]

Pxn[x̃k+1 = 1|E(2n − 1, k)]

= 2n(2n − 1)q2

(2n − k)(2n − k + 1)

(
1 + O

(
q2n))

= (1 − 1/(2n))

(1 − ξ/(2nq))(1 − (ξ − 1)/(2nq))

(
1 + O

(
q2n))

= 1 + �(ξ/n),

and that the ratio on the left-hand side is greater than 1 for sufficiently large n. Using this and
that

Pxn

[
E(2n − 1, k) ∩ {x̃k+1 = 1}]

= Pxn

[
E(2n − 1, k)

] · Pxn

[
x̃k+1 = 1|E(2n − 1, k)

]
= �

(
1√
n

)
when 2np + 1 ≤ k ≤ 2np + √

npq,
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we get ∑
2np+1≤k≤2np+√

npq

(
Pyn

[
E(2n + 1, k) ∩ {ỹk+1 = 1}]

− Pxn

[
E(2n − 1, k) ∩ {x̃k+1 = 1}])

= �

( ∑
2np+1≤k≤2np+√

npq

Pxn

[
E(2n − 1, k) ∩ {x̃k+1 = 1}] · ξ

n

)

= �

(
1√
n

)
,

(3.4)

and that the left-hand side of (3.4) is positive for all large n.
Now we bound the sum in (3.3) restricted to only the third and the fourth term in each

summand, that is, we bound the sum∑
2np+1≤k≤2np+√

npq

(
Pyn

[{ỹk = 1} ∩ E(2n + 1, k + 1)
]

− Pxn

[{x̃k = 1} ∩ E(2n − 1, k + 1)
])

(3.5)
= ∑

2np+1≤k≤2np+√
npq

∑
j≤2n−1,

j odd

(
Pyn

[
E(j + 1, k) ∩ E(2n + 1, k + 1)

]

− Pxn

[
E(j − 1, k) ∩ E(2n − 1, k + 1)

])
.

First, we notice that the contribution in (3.5) from the terms for which |j − 2n| >
√

npq is

qO(
√

n), since all the bits whose position is in {j + 2, . . . ,2n − 2} are deleted on this event,
whence

Pxn

[
E(j − 1, k) ∩ E(2n − 1, k + 1)

]≤ q2n−j−3,

and a similar bound holds for yn. Therefore, in the remainder of the proof, we will consider
only the terms of (3.5) for which |j − 2n| ≤ √

npq . Notice that this condition implies |jp −
k| ≤ |jp − 2np| + |2np − k| ≤ 2

√
npq . By the definition of the events E(·, ·), we have for

j < 2n,

Pyn

[
E(2n + 1, k + 1)|E(j + 1, k)

]= q2n−j−1p

= Pxn

[
E(2n − 1, k + 1)|E(j − 1, k)

]
.

Using this and that |jp − k| ≤ 2
√

npq , writing X ∼ Bin(j − 2,p) and Y ∼ Bin(j,p), we
have

Pyn[E(j + 1, k) ∩ E(2n + 1, k + 1)]
Pxn[E(j − 1, k) ∩ E(2n − 1, k + 1)]

= Pyn[E(j + 1, k)]
Pxn[E(j − 1, k)] = P[Y = k − 1]

P[X = k − 1]
= 1 + O

( |jp − k| + 1

n

)
≤ 1 + O

(
1√
n

)
,

(3.6)

where we apply (2.5) in the second-to-last step. Furthermore, by (2.8) and the fact that
E[X] < E[Y ] = jp ≤ (2n − 1)p < 2np ≤ k − 1, we get P[Y = k − 1] > P[X = k − 1],
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so the left-hand side of (3.6) is greater than 1. Now we get that the right-hand side of (3.5) is
positive for large n and bounded above by∑

2np+1≤k≤2np+√
npq

∑
j≤2n−1,

j odd

Pxn

[
E(j − 1, k) ∩ E(2n − 1, k + 1)

] · O(
1√
n

)

= O

(
1√
n

)
.

Combining this with (3.4) gives the lemma. �

LEMMA 3.2. There is a constant c > 0 depending only on q such that for all r > 0 and
n ∈N,

P
[∣∣Z(̃yn) − E

[
Z(̃yn)

]∣∣> rn1/4]≤ 2e−cr2
and

P
[∣∣Z(̃xn) − E

[
Z(̃xn)

]∣∣> rn1/4]≤ 2e−cr2
.

PROOF. We will prove the result only for xn since the proof for yn is identical, and we
write Z instead of Z(xn) to simplify notation. Recall from Notation 1.6 that all constants
c1, c2, . . . may depend on q but on no other parameters.

First, we prove a concentration result for a random variable V that is closely related
to Z. Let w := (w1,w2, . . . ) = (01)N be a half-infinite bit string with period 01, and let
w̃ := (w̃1, w̃2, . . . ) denote the trace obtained by sending w through the deletion channel with
deletion probability q . Then set

V := #
{
k ∈ [1,

√
npq]; w̃k = w̃k+1 = 1

}
.

For j ∈ N, let uj ∼ Bernoulli(p) be the indicator that bit j of w is not deleted. Let E be the
event that at least

√
npq bits are not deleted among the first m := �2

√
npq/p� bits of the

trace, that is,

E :=
[

m∑
j=1

uj ≥ √
npq

]
.

Then P[Ec] ≤ exp(−c1
√

n) for some constant c1 > 0 by a large-deviations bound.
Notice that V 1E can be written as a function of u1, . . . , um. Furthermore, changing one

uj changes V 1E by at most 2 if both u1, . . . , um and the modified sequence lie in the event
E. By [4], which is a variant of McDiarmid’s inequality when differences are bounded with
high probability, there is a constant c′

1 > 0 such that

P
[∣∣V 1E − E[V | E]∣∣> rn1/4]≤ 2 exp

(−c′
1r

2) ∀r > 0.

Because E[V 1E] ≤ E[V | E] ≤ E[V 1E] + √
npq exp(−c1

√
n)/(1 − e−c1), it follows that

there is a constant c2 > 0 such that

(3.7) P
[∣∣V 1E − E[V 1E]∣∣> rn1/4]≤ 2 exp

(−c2r
2) ∀r > 0.

Now we return to the string xn. Let u′
j be the indicator that the bit in position j of xn is

not deleted. Let J be the random variable describing the position of the bit copied to position
�2np� of x̃n, that is,

J := inf

{
j ∈N;

j∑
i=1

u′
i = �2np�

}
.
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Extend u′
j to be a Bernoulli(p) process also for j > 4n, so that J is a.s. well defined as a

natural number. Let E′ be the event that at least
√

npq bits are not deleted among the bits in
position {J + 1, J + 2, . . . , J + m}, that is,

E′ :=
[

J+m∑
j=J+1

u′
j ≥ √

npq

]
.

Then P[E′] = P[E]. If the event E′′ := [J + m < 4n] occurs, then V 1E and Z1E′ can be
coupled so they differ by at most 2, for example, by taking uj = u′

J+j for all j . For some
constant c3, P[(E′′)c] ≤ exp(−c3n). Combining these observations with the fact that V and
Z are bounded by

√
npq , we obtain that for all sufficiently large n,∣∣E[V 1E] − E[Z]∣∣≤ ∣∣E[V 1E] − E[Z1E′∩E′′ ]∣∣+ √

npq
(
P
[(

E′)c]+ P
[(

E′′)c])≤ 3.

Assembling the above bounds, we obtain that for all sufficiently large n,

P
[∣∣Z − E[Z]∣∣> rn1/4 + 5

]
≤ P

[
E′ ∩ E′′ ∩ [∣∣Z − E[Z]∣∣> rn1/4 + 5

]]+ P
[(

E′)c]+ P
[(

E′′)c]
≤ P

[∣∣V 1E − E[V 1E]∣∣> rn1/4]+ exp
(−c1n

1/2)+ exp(−c3n)

≤ 2 exp
(−c2r

2)+ exp
(−c1n

1/2)+ exp(−c3n).

(3.8)

The first term on the right-hand side dominates for r = o(n1/4). Since Z is bounded by
√

npq ,
the left-hand side of (3.8) is zero for r >

√
pqn1/4. Combining these two observations yields

the lemma. �

LEMMA 3.3. Let X and Y be discrete, real-valued random variables such that

∀r > 0 P
[|X| > r

]∨ P
[|Y | > r

]≤ 2 exp
(−r2).

Then ∣∣E[X] − E[Y ]∣∣≤ 4dTV(X,Y )

√
log

2

dTV(X,Y )
.

PROOF. We let δ := dTV(X,Y ) to simplify notation. Letting μX and μY denote the law
of X and Y , respectively, write

μX = μ + μ−
X + μ+

X and μY = μ + μ−
Y + μ+

Y ,

where μ(R) = 1 − δ, μ−
X and μ−

Y are supported on (−∞,0), and μ+
X and μ+

Y are supported
on [0,∞). Then∣∣E[X] − E[Y ]∣∣≤ ∣∣∣∑xμ−

X(x)
∣∣∣+ ∣∣∣∑xμ+

X(x)
∣∣∣+ ∣∣∣∑xμ−

Y (x)
∣∣∣

+
∣∣∣∑xμ+

Y (x)
∣∣∣.(3.9)

We have ∣∣∣∑xμ−
X(x)

∣∣∣+ ∣∣∣∑xμ+
X(x)

∣∣∣
=
∫
R+

μ−
X

(
(−∞,−r])+ μ+

X

([r,∞)
)
dr

≤
∫
R+

min
{
2e−r2

, δ
}
dr ≤ δ

√
log

2

δ
+ δ

2
√

log 2
δ

≤ 2δ

√
log

2

δ
.
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Inserting this estimate and analogous estimates for μ−
Y and μ+

Y into (3.9), we obtain the
lemma,

∣∣E[X] − E[Y ]∣∣≤ 4δ

√
log

2

δ
. �

PROOF OF PROPOSITION 1.4, LOWER BOUND. By (A.6),

(3.10) dTV
(
Z(̃xn),Z(̃yn)

)≤ dTV(�xn,�yn).

Letting c denote the constant in Lemma 3.2 and

a := 1

2

(
E
[
Z(̃xn)

]+ E
[
Z(̃yn)

])= �
(
n1/2),

define

X := (Z(̃xn) − a)c

2n1/4 and Y := (Z(̃yn) − a)c

2n1/4 .

Notice that

(3.11) dTV(X,Y ) = dTV
(
Z(̃xn),Z(̃yn)

)
.

By Lemma 3.1, ∣∣E[Z(̃xn)
]− a

∣∣∨ ∣∣E[Z(̃yn)
]− a

∣∣= �
(
n−1/2).

Combining this with Lemma 3.2, we see that X and Y satisfy the condition of Lemma 3.3
for all sufficiently large n. The proposition now follows from Lemma 3.3, (3.10), (3.11) and
Lemma 3.1. �

4. Lower bound for random strings: Proof of Proposition 1.5. Recall the reconstruc-
tion problem for random strings described in Section 1.2. Proposition 4.1 below transfers
lower bounds for deterministic strings to lower bounds for random strings, yielding almost
exponentially small success probability. Proposition 4.1 is proved by adapting the method of
[13], Theorem 1.

Proposition 1.5 follows from Theorem 1.1 and Proposition 4.1 applied with the function
f (n) = �cn5/4/

√
logn�. The lower bound of �(log2 n) from [13], Theorem 1, may be ob-

tained from the proposition with f (n) = �cn�.
In order to state the proposition, we need to describe the trace reconstruction problem with

random G. We say that all n-bit strings can be reconstructed with probability at least 1 − ε

from T traces with additional randomness if there is a Borel function G′ : ST × [0,1] →
{0,1}n such that for all x ∈ Sn,

(4.1)
∫ 1

0
Px
[
G′(X, t) = x

]
dt ≥ 1 − ε.

For the purpose of distinguishing between two input strings, reconstruction with extra ran-
domness is equivalent to reconstruction without extra randomness, at least if we are willing
to change ε by a factor of 2: Let x �= y. As noted in Appendix A.2,

min
G

(
Px
[
G(X) = y

]+ Py
[
G(X) = x

])= 1 − dTV(�x,�y).

Therefore, for any G′ : ST × [0,1] → {x,y},∫ 1

0

(
Px
[
G′(X, t) = y

]+ Py
[
G′(X, t) = x

])
dt ≥ 1 − dTV(�x,�y).
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Since the maximum error probability is at most this sum of error probabilities and
also is at least half the same sum, our claim follows. In particular, the lower bound
�(log(1/ε)n5/4/

√
logn) in Theorem 1.1 also holds if we consider reconstruction with extra

randomness. A similar definition holds for reconstructing random strings with extra random-
ness when the random string is chosen according to a probability measure, ρ: one simply
takes the expectation of the left-hand side of (4.1) with x ∼ ρ.

PROPOSITION 4.1. Suppose that for all n ∈ N, the probability that all n-bit strings can
be reconstructed with f (n) · n traces is at most 1 − e−n, even with extra randomness. Then
for all large n ∈ N, the probability of reconstructing random n-bit strings with �1

2f (1
2 logn) ·

logn� traces is at most exp(−n0.15), even with extra randomness.

PROOF. Let r := �1
2 logn� and T := f (r)r . It was observed by Yao [18] that von Neu-

mann’s minimax theorem yields

min
G′ max

x∈Sr

∫ 1

0
Px
[
G′(X, t) �= x

]
dt = max

ρ
min
G

∑
x∈Sr

Px
[
G(X) �= x

] · ρ(x),

where we take the minima over functions G′ : ST × [0,1] → {0,1}r and G : ST → {0,1}r ,
and the second maximum is over probability measures ρ on Sr . By assumption, the left-hand
side is at least equal to e−r . Therefore, there is some probability measure ρ on r-bit strings
such that

∑
x∈Sr

Px[G(X) �= x] ·ρ(x) ≥ e−r for all G, that is, the probability of reconstructing
an r-bit string chosen according to ρ with T traces is at most 1−e−r . Furthermore, this result
for r-bit strings sampled from ρ holds also for reconstruction with additional randomness,
since for any Ĝ : ST × [0,1] → {0,1}r and t ∈ [0,1],

min
G

∑
x∈Sr

Px
[
G(X) �= x

] · ρ(x) ≤ ∑
x∈Sr

Px
[
Ĝ(X, t) �= x

] · ρ(x),

which implies

min
G

∑
x∈Sr

Px
[
G(X) �= x

] · ρ(x) ≤ min
Ĝ

∑
x∈Sr

∫ 1

0
Px
[
Ĝ(X, t) �= x

]
dt · ρ(x).

Sample the random uniform string x ∈ Sn in the following manner. Denote

zj := (x(j−1)r+1, x(j−1)r+2, . . . , xjr) for 1 ≤ j ≤ n/r

and w := (x�n/r�r+1, x�n/r�r+2, . . . , xn). Write λ for the uniform distribution on strings of
length r and define σ := (λ− 2−rρ)/(1 − 2−r ), which is a probability measure. Let (Qj )j≥1
be a Bernoulli(2−r ) process. For each j , choose zj from σ if Qj = 0 and from ρ if Qj = 1,
independently for different j . Let w be uniform (independent of the preceding). Let X be the
T traces obtained from x; it is the trace-wise concatenation of the traces Zj ∈ ST obtained
from zj and W ∈ ST obtained from w. The probability of reconstructing x from X is at
most the probability of reconstructing x from2 Z1, . . . ,Z�n/r�r ,W (because we could simply
ignore the additional information in the separate traces Zi and W that is not inherent in X).
Conditional on Qj = 1, the probability of reconstructing zj with T traces is at most 1 − e−r

by assumption. Therefore, the unconditional probability of reconstructing zj from Zj is at
most 1 − 2−re−r . Since these events are independent in j , we obtain that the probability of
reconstructing x from X is at most (1−2−re−r )�n/r� ≤ exp(−0.9 ·2−re−rn/r) for n/r ≥ 10.
Inserting the definition of r gives the result. �

2We did not define this reconstruction problem, but its meaning should be obvious.
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APPENDIX: INEQUALITIES FOR DISTANCES BETWEEN MEASURES

Throughout this appendix, μ and ν are positive measures on a countable set, X. Most of
the material in this Appendix is standard and elementary, although we have not found a good
reference presenting all the material needed for the body of our paper. One possible novelty,
however, is Lemma A.1, which we have not seen elsewhere. This lemma, though completely
elementary, is a key input to the proof of Theorem 1.1, and we believe it is also useful to
bound the squared Hellinger distance between two measures in many other contexts.

A.1. Inequalities for Hellinger distance and total variation distance. The total vari-
ation distance between μ and ν is defined by

dTV(μ, ν) := 1

2

∑
x∈X

∣∣μ(x) − ν(x)
∣∣.

Thus, in order to maximize σ(X) over all decompositions μ = σ + μ′, ν = σ + ν′, where
σ , μ′ and ν′ are positive measures on X, one takes σ := μ ∧ ν, yielding μ′(X) + ν′(X) =
2dTV(μ, ν). If μ and ν are probability measures, then

(A.1) dTV(μ, ν) = max
A⊆X

[
μ(A) − ν(A)

]
.

The Hellinger distance between μ and ν is defined by3

dH(μ, ν) :=
(∑

x∈X

[√
μ(x) −√

ν(x)
]2)1/2

.

It is well known (e.g., [17], Lemma 2.3) that for probability measures μ and ν, we have

(A.2) dTV(μ, ν) ≤ dH(μ, ν) ≤√
2dTV(μ, ν).

The next lemma shows that the right-hand inequality can be strengthened if for all x ∈ X,
the ratio μ(x)/ν(x) is close to 1. Before stating it, we introduce the notation ‖f ‖�∞(ν) for a
function f : X →R,

(A.3) ‖f ‖�∞(ν) := sup
{∣∣f (x)

∣∣;x ∈ X,ν(x) �= 0
}
.

LEMMA A.1. For all positive measures μ and ν, we have

(A.4) d2
H(μ, ν) ≤ μ

{
x;ν(x) = 0

}+ 2 ·
∥∥∥∥μ − ν

ν

∥∥∥∥
�∞(ν)

· dTV(μ, ν).

PROOF. Since |a − 1| ≤ |a2 − 1| for all a ≥ 0, we have

d2
H(μ, ν) − μ

{
x;ν(x) = 0

}
= ∑

x∈X;ν(x) �=0

(√
μ(x)

ν(x)
− 1

)2
ν(x) ≤ ∑

x∈X;ν(x) �=0

(
μ(x)

ν(x)
− 1

)2
ν(x)

≤
∥∥∥∥μ

ν
− 1

∥∥∥∥
�∞(ν)

·
∥∥∥∥μ

ν
− 1

∥∥∥∥
�1(ν)

,

which is equation (A.4). �

One way to bound this �∞-norm is to use the following observation.

3Some authors use another normalization, for example, with a factor of 1/
√

2 on the right-hand side.
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LEMMA A.2. Let ρ and σ be positive measures on a countable space Y , let λ be a
probability measure on a measurable space Z, and let φ : Y ×Z → X be a function. Defining
μ := φ∗(ρ × λ) and ν := φ∗(σ × λ) to be the push-forward measures, we have

(A.5)
∥∥∥∥μ

ν
− 1

∥∥∥∥
�∞(ν)

≤
∥∥∥∥ρ

σ
− 1

∥∥∥∥
�∞(σ )

.

PROOF. If ν(x) > 0, then there must exist y ∈ Y and z ∈ Z such that x = φ(y, z) and
σ(y) > 0. Therefore, the following holds for any x ∈ X for which ν(x) > 0, with δ denoting
the right-hand side of (A.5) and U ∼ λ:∣∣μ(x) − ν(x)

∣∣= ∣∣∣∣ ∑
y∈Y ;σ(y)>0

(
ρ(y) − σ(y)

)
P
[
φ(y,U) = x

]∣∣∣∣
≤ δ

∑
y∈Y ;σ(y)>0

σ(y)P
[
φ(y,U) = x

]= δ · ν(x).
�

By equation (A.1), pushing forward two probability4 measures by the same map cannot
increase the total variation distance:

(A.6) dTV(φ∗ρ,φ∗σ) ≤ dTV(ρ, σ ).

The following is immediate from the definition:

(A.7) d2
H(μ, ν) ≤ μ(X) + ν(X).

LEMMA A.3. For any positive measures μ1, μ2, ν1 and ν2 on X, we have

d2
H(μ1 + μ2, ν1 + ν2) ≤ d2

H(μ1, ν1) + d2
H(μ2, ν2).

PROOF. This is immediate from the inequality

(
√

a + b − √
c + d)2 ≤ (

√
a − √

c)2 + (
√

b − √
d)2, a, b, c, d ≥ 0. �

The following is well known (see, e.g., [16], p. 100).

LEMMA A.4. For any probability measures μ1,μ2, ν1, ν2 on X, we have

d2
H(μ1 × μ2, ν1 × ν2) ≤ d2

H(μ1, ν1) + d2
H(μ2, ν2).

A.2. Distinguishing between measures by independent sampling. In this section, we
consider two distinct probability measures μ and ν, and for m ∈ N, we consider m indepen-
dent samples from one of the measures. We are interested in how large we need to choose
m in order to determine whether our samples are from μ or ν. Our bounds are expressed in
terms of the Hellinger distance and the total variation distance between the measures.

Consider first the case where m = 1. Let G : X → {μ,ν} be a function that (roughly speak-
ing) says whether some element x ∈ X is more likely to be sampled from μ or ν. We are in-
terested in the sum of the error probabilities μ[G(x) = ν]+ ν[G(x) = μ]. By equation (A.1),
the error probability sum is minimized by taking

G(x) :=
{
μ if μ(x) ≥ ν(x),

ν otherwise,

in which case we get that the error probability sum equals 1 − dTV(μ, ν).

4We remark that equation (A.6) also holds when ρ and σ are not probability measures.
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Replacing μ,ν by μm,νm in this discussion, we get that for general m, the number of
samples required to distinguish between μ and ν is determined precisely by dTV(μm, νm).

Now we derive a lower bound for the number of required samples, expressed in terms of
dTV(μ, ν). It is well known that total variation distance can be expressed via coupling:

dTV(μ, ν) = min
{
P[U �= V ];U ∼ μ,V ∼ ν

}
,

where the minimum is taken over all couplings of U and V . By using couplings of
the pairs (μi, νi) that are independent in i, it follows that for probability measures
μ1, . . . ,μn, ν1, . . . , νn,

(A.8) 1 − dTV(μ1 × · · · × μn, ν1 × · · · × νn) ≥
n∏

i=1

[
1 − dTV(μi, νi)

]
.

In particular,

(A.9) 1 − dTV
(
μm,νm)≥ e−α(μ,ν)·m·dTV(μ,ν),

where

α(μ, ν) := − log[1 − dTV(μ, ν)]
dTV(μ, ν)

.

Note that α(μ, ν) approaches 1 as dTV(μ, ν) → 0, and that, for example, α(μ, ν) is at most
3/2 when dTV(μ, ν) ≤ 1/2. We can interpret equation (A.9) as saying that in order to distin-
guish μ from ν when given m i.i.d. samples from an unknown choice from {μ,ν}, we need
at least

(A.10) m = �
(
1/dTV(μ, ν)

)
samples. Alternatively, we can say that if r samples yield an error probability at least 1/e,
then r�log(1/ε)� samples yield an error probability at least ε.

Next, we derive an upper bound for the number of required samples, also expressed in
terms of dTV(μ, ν). Namely, we will prove the well-known result that we need at most
m = O(1/d2

TV(μ, ν)) samples. By equation (A.1), we can find an event A ⊂ X such that
μ(A) − ν(A) = dTV(μ, ν). Given m independent samples Xm = (x1, . . . , xm) from one of
the measures, let u := m−1∑m

j=1 1[xj∈A] be the fraction of times that A occurs. Define

G(Xm) :=
⎧⎨⎩μ if u > ν(A) + 1

2
dTV(μ, ν) = 1

2

(
μ(A) + ν(A)

)
,

ν otherwise.

An application of the inequality of Hoeffding–Azuma gives the following bound for the sum
of the error probabilities:

μ
[
G(Xm) = ν

]+ ν
[
G(Xm) = μ

]≤ 2 exp
(−m · d2

TV(μ, ν)/2
)
.

In particular,

(A.11) m ≥ 2

d2
TV(μ, ν)

log
2

ε

samples are sufficient to distinguish between the measures with error probability at most ε.
Both the lower and upper bounds for the number of samples required in terms of to-

tal variation distance are sharp, as illustrated by the following examples, where we use
Bernoulli(s) to denote the law of a Bernoulli random variable with parameter s ∈ [0,1]:
(1) μ := Bernoulli(0) and ν := Bernoulli(δ), where dTV(μ, ν) = δ and �(δ−1) samples
are necessary and sufficient, and (2) μ := Bernoulli(1/2) and ν := Bernoulli(1/2 + δ),
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where dTV(μ, ν) = δ and �(δ−2) samples are necessary and sufficient. More generally, for
α ∈ [0,1], if μ := Bernoulli(δ1−α/2) and ν := Bernoulli(δ1−α/2 + δ), then dTV(μ, ν) = δ

and �(δ−1−α) samples are necessary and sufficient.
If d2

H(μ, ν) is much smaller than dTV(μ, ν), then the lower bound (A.10) can be improved.
The following type of result seems to be folklore; we saw a version of it in [13], Corollary 1.
It says that m = �(1/d2

H(μ, ν)) samples are necessary to distinguish between μ and ν.

LEMMA A.5. If μ and ν are probability measures with dH(μ, ν) ≤ 1/2, then for m ≥
1/(4d2

H(μ, ν)),

1 − dTV
(
μm,νm)≥ exp

{−9m · d2
H(μ, ν)

}
.

In particular, 1 − dTV(μm, νm) ≥ ε if

m ≤ 1

9d2
H(μ, ν)

log
1

ε
.

PROOF. Define r := �1/(4d2
H(μ, ν))� ≥ 1. By equation (A.2) and Lemma A.4,

d2
TV
(
μr, νr)≤ d2

H
(
μr, νr)≤ rd2

H(μ, ν) ≤ 1/4.

This allows us to apply equation (A.9) as follows:

1 − dTV
(
μm,νm)≥ exp

{
−3

2
·
⌈
m

r

⌉
dTV

(
μr, νr)}≥ exp

{
−3 · m

r
dTV

(
μr, νr)}

≥ exp
{
−3 · m

r

√
rdH(μ, ν)

}
≥ exp

{−3
√

8 · m · d2
H(μ, ν)

}
,

where in the last step, we used r ≥ 1/(8d2
H(μ, ν)). �
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