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We present in this review recent developments in the theory of metastable
Markov chains. The goal of the theory consists in describing the evolution of a
Markov chain by a simpler dynamics, typically one whose state-space is much
smaller than the original one, preserving the “macroscopic” features of the orig-
inal process.

To illustrate the problem, we present in the next section an example which
motivates the definitions of metastability introduced in Section 2. We then de-
velop three general methods, based on the characterization of Markov chains as
solutions of a martingale problems, to derive the metastable behavior of these
dynamics.

There are two recent and compulsory monographs on this subject. The first
one, by Olivieri and Vares [111], addresses the problem from the perspective of
the large deviations theory, and the second one, by Bovier and Den Hollander
[31], uses potential theoretic tools. We do not recall these approaches here and
refer the reader to the books. The reader will also find there physical motiva-
tions, an historical account and an exhaustive list of references, three aspects
which are overlooked here. We tried, though, to include in the references the
articles published after 2015.

Throughout the article, all new notation and concepts are introduced in blue.
We believe this will help the reader who may want to skip some introductory
parts. We present in Section A and B all results on Markov chains and potential
theory used in the article. Comments on the method presented in this review
are left to the end of Subsection 2.3.
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1. A random walk in a graph

We present in this section an example of a Markov chain to motivate three
different definitions of metastability. Denote by EN , N ≥ 1, the set shown in
Figure 1. In this picture, each large square represents a d-dimensional discrete
cube of length N , ΛN = {1, . . . , N}d, d ≥ 2. Each pair of neighboring cubes
has one and only one common point. In particular, EN has 4(Nd − 1) elements.
Elements of EN are represented by the Greek letters η, ξ, ζ, and are called
points or configurations.

Fig 1. The set EN .

Let Ej,N , 0 ≤ j ≤ 3, be copies of ΛN . The set EN is formed by the union
of the sets Ej,N in which some corner points have been identified. We denote
by E0,N the north cube and proceed labeling the sets in the clockwise order so
that E3,N represents the west cube.

Denote by ηN (t) the continuous-time, EN -valued, Markov chain which waits
a mean-one exponential time at each configuration and then jumps uniformly
to one of the neighbor points. This Markov chain is clearly irreducible. Denote
by deg (η), η ∈ EN , the degree of the configuration η, that is the number
of neighbors. The measure πN , defined by πN (η) = Z−1

N deg (η), where ZN is
the normalizing constant which turns πN a probability measure, satisfies the
detailed balance conditions, and is therefore the unique stationary state.

The purpose of this section is to provide a synthetic description of the Markov
chain ηN (t). In this example, the reduced model is evident. Denote by ΥN :
EN → {0, 1, 2, 3} the projection which sends a configuration in Ej,N to j:

ΥN (η) =

3∑
k=0

k χEk,N
(η) ,

where χA stands for the indicator function of the set A. The value of ΥN at the
intersections of the cubes is not important and can be set arbitrarily.
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The derivation of the asymptotic evolution of the coarse-grained model

YN (t) = ΥN (ηN (t))

is based on properties of random walks evolving on discrete cubes. Denote by
zN (t) the symmetric, continuous-time random walk on ΛN [the process ηN (t)
restricted to ΛN ], and by πΛN

its stationary state, the probability measure which
gives weights proportional to the degree of the vertices. It is well known, cf. [96,
Proposition 10.13], that the mixing time of zN (t) is of order N2 and that the
time needed to hit a point at distance N is of order αN = N2 logN in dimension
2, and αN = Nd in dimension d ≥ 3.

Assume that the chain starts at the center of the cube Ej,N . Denote by
B the set of points which belong to more than one cube, called hereafter the
intersection points, and by HN

B the hitting time of B:

HN
B = inf{t ≥ 0 : ηN (t) ∈ B} .

Since the mixing time is of order N2 and the hitting time HN
B is of a much

larger order, the chain equilibrates, or thermalizes, before reaching one of the
corners of Ej,N . This mean that the distribution of the chain approaches πΛN

before attaining B. In particular, ηN (t) looses track of its starting point before
hitting one of the corners, and it reaches one of the two intersection points with
a probability close to 1/2.

After thermalizing inside the cube Ej,N , the random walk ηN (t) wanders
around Ej,N for a length of time of order αN , and then attains a point in
the intersection of Ej,N with Ej±1,N , where summation is performed modulo 4.
Denote this point by ξ, and assume, to fix ideas, that it belongs to Ej,N∩Ej+1,N .

Fix a sequence (�N : N ≥ 1) such that �N → ∞, �N/N → 0. The precise
choice of �N is not important. Denote by VN the set of points in EN which are
at an Euclidean distance �N or less from ξ. After hitting ξ, the random walk
performs some short excursions from ξ to ξ which remain in VN . Some of these
excursions are contained in the set Ej,N and some in Ej+1,N .

It takes a time of order �2N for ηN (t) to escape from VN , that is, to reach a
point in V c

N , the complement of VN . Note that �2N is much smaller than αN and
so the escape time from VN is negligible in this time-scale.

Starting from a point at the external boundary of VN , it takes a time of order
N2 log �N in dimension 2 and Nd in dimension d ≥ 3 to hit again the set B.
Since this time is much longer than the mixing time, once in V c

N , before hitting
the set B again, the process equilibrates inside the cube. Thus, we are back
to the initial situation, and we can iterate the previous argument to provide
a complete description of the evolution of the random walk ηN (t) among the
cubes.

According to the previous analysis, the evolution of the random walk can be
described as follows. Starting from a point not too close from the corners, the
random walk equilibrates in the cube from where it starts before it reaches one
of the intersection points. Since it has equilibrated, it reaches one of the two
boundary points with equal probability. Then, after some short excursion close
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to the intersection point, it escapes from the corner to one of the neighboring
cubes, with equal probability due to the symmetry of the set EN . In particular,
with probability 1/2 the random walk returns to the cube from which it came
when it hit the intersection point. The escape time being much shorter than the
equilibration time, the small excursions around the intersection can be neglected
in the asymptotic regime. After escaping, the process equilibrates in the cube
where it is and we may iterate the description of the evolution.

Loss of memory being the essence of Markovian evolution, in the time-scale
αN , the coarse-grained, speeded-up process

YN (t) := YN (tαN ) = ΥN (ηN (tαN ))

should evolve as a S := {0, 1, 2, 3}-valued, continuous-time Markov chain Y(t)
with holding rates equal to some λ > 0 and jump probabilities given by p(j, j±
1) = 1/2.

In which sense can YN (t) converge to a Markov chain? Figure 2 presents a
typical realization of the process YN (t). The process remains a time interval
of order αN at a point x ∈ S until ηN (t) reaches an intersection point. At this
time, ηN (t) performs very short excursions [in the time scale αN ] in both neigh-
boring squares. These short excursions are represented in Figure 2 by the bold
rectangles to indicate a large number of oscillations in a very short time interval.
After many short excursions the random walk escapes from the boundary and
remains in one of the neighboring cubes for a new time interval of order αN .

Fig 2. A typical trajectory of the process XN (t). The red arrows indicate the length of the
time intervals which are of order αN .

These fluctuations in very short time intervals, represented by the black rect-
angles in Figure 2, rule out the possibility that YN (t) converges in any of the
Skorohod topologies. Thus, either we content ourselves with the convergence
of the finite-dimensional distributions or we need to adjust the trajectories of
YN (t) by removing these short excursions.

The first step consists in introducing a set ΔN ⊂ EN to separate the squares
Ej,N . This procedure is illustrated in Figure 3, where Ej

N represents Ej,N \ΔN .
The set ΔN is not unique. We only require that it is small enough for the fraction
of time spent in ΔN to be negligible, but large enough for the process, starting
from a point outside of ΔN , to equilibrate before it hits an intersection point.

In the example of this section, the set Ek
N can be the points of Ek,N which

are at distance at least �N from the intersection points, or, as in Figure 3, the



148 C. Landim

set of points at distance greater than �N from the faces of the cubes. Here, as
above, �N is a sequence such that �N → ∞, �N/N → 0.

Fig 3. The sets Ek
N are indicated in blue. The two red dots represent points in E0

N and E2
N .

The trace process ηE(t) may jump from one to the other. It has therefore long jumps, in
contrast with the original random walks which only jumps to nearest neighbors. The picture
is misleading as the annulus around each blue square is much smaller than the square.

In the next section, we propose two different types of amendments of the
trajectories of ηN (t) to achieve convergence in the Skorohod topology of the
coarse-grained model.

Before we turn to that, consider the example shown in Figure 4. Assume
that each line has N points, counting the common intersection point. Consider
a random walk evolving on this graph. The process waits a mean-one exponential
time at the end of which it jumps to one of its neighbors with equal probability.
Since one-dimensional random walks on a set of N points equilibrate in a time
of order N2, and since it hits a point a distance N in the same time-scale,
there is no separation of scales and the argument presented above to claim the
possibility of a synthetic description of the dynamics does not apply.

Fig 4. A random walk on a graph which does not have a synthetic description as a 3-state
Markov chain.
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The article is organized as follows. In Section 2, we propose three different
definitions of metastability. We present, in Sections 4–7, a general scheme to de-
rive the metastable behavior of a Markov chain in the sense of Definition 2.2 for
dynamics which “visit points”. This approach is based on the characterization
of Markov chains as solutions of martingale problems, examined in Section 3.
In the following two sections, an alternative approach is proposed for dynamics
in which the entropy plays a role in the metastable behavior. In Section 10,
we discuss tightness. In Section 11, we show that conditions (T1), (T2) entail
the metastability in the sense of the last passage, and, in Section 12, we prove
that these conditions together with property (12.1) lead to the convergence of
the finite-dimensional distributions. In Section A and B we recall some general
results on Markov chains and potential theory used in the article. In the last
section, we list some dynamics which fall within the scope of the theory.

2. Metastability as model reduction

The phenomenon described in the previous section, in which a process remains
a long time in a set in which it equilibrates before it attains, in a very short
transition, another set where the same behavior is observed, is shared by many
different types of dynamics (cf. Section 13 for many examples).

For this reason, we present in a general framework the adjustments needed in
the trajectory of the coarse-grained model to yield convergence in the Skorohod
topology. Let (EN : N ≥ 1) be a sequence of finite state spaces. Elements of EN

are represented by the Greek letters η, ξ, ζ. Denote by ηN (t) a continuous-time,
EN -valued, irreducible Markov chain. Its generator is represented by LN and
its unique stationary state by πN . Therefore, for every function f : EN → R,

(LN f)(η) =
∑

ξ∈EN

RN (η, ξ)
[
f(ξ)− f(η)

]
,

where RN (η, ξ) stands for the jump rates.
For a nonempty subset A of EN , let HA, resp. H

+
A , stands for the hitting

time of the set A, resp. the return time to A,

HA := inf{t ≥ 0 : ηN (t) ∈ A} , H+
A = inf{t ≥ τ1 : ηN (t) ∈ A} . (2.1)

in this formula, τ1 represents the time of the first jump of ηN (t), τ1 = inf{t ≥
0 : ηN (t) 	= ηN (0)}.

Assume that EN contains n > 1 disjoint sets E1
N , . . . ,En

N , called valleys,
separated by a set ΔN , so that E1

N , . . . ,En
N ,ΔN forms a partition of EN . Let

S := {1, . . . , n}, and denote by ΦN : EN → S ∪ {d} the projection which sends
a configuration in E

j
N , ΔN to j, d, respectively:

ΦN (η) :=

n∑
k=1

k χEk
N
(η) + dχΔN

(η) .

Let XN (t) be the (S ∪ {d})-valued process given by

XN (t) := ΦN

(
ηN (t)

)
. (2.2)
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In the example of the previous section, the trajectory of XN (t) = ΦN (ηN (t))
resembles the one presented in Figure 2 with additional spikes due to very short
excursions [in the time scale αN ] out of Ek

N which occur far from the intersection
points.

2.1. Last passage

The first adjustment of the trajectories which enables convergence in the Sko-
rohod topology consists in removing the fast fluctuations by recording the last
set Ek

N visited by ηN (t). For t > 0, denote by ηN (t−) the left limit of ηN at t:

ηN (t−) = lim
s→t , s<t

ηN (s) .

Let XV
N (t) be given by

XV
N (t) := ΦN

(
ηN ( vN (t) )

)
. (2.3)

where

vN (t) =

{
t if ηN (t) ∈ EN ,

wN (t)− otherwise ,

and wN (t) represents the last time before t the process was in one of the valleys
Ek
N :

wN (t) := sup{s ≤ t : ηN (s) ∈ EN} and EN :=

n⋃
k=1

Ek
N .

If the set on the right-hand side is empty, we set wN (t) = 0. This remark is not
important as we will always start the process from a configuration in EN . Note
that XV

N (t) ∈ S because ηN (vN (t)) ∈ EN for all t ≥ 0 whenever ηN (0) ∈ EN .
Here is an alternative way, may be simpler, to define the process XV

N (t).
Define inductively the sequence of stopping times (Tj : j ≥ 0) by T0 = 0,

Tj+1 = inf
{
t ≥ Tj : Φ(ηN (t)) ∈ S \ {Φ(ηN (Tj)) }

}
, j ≥ 0 .

Hence, Tj+1 is the first time after Tj at which Φ(ηN (t)) takes a value different
from d and Φ(ηN (Tj)). In other words, Tj+1 is the first time after Tj at which the
process ηN (t) visits a new valley. Then, by definition of XV

N (t), on the interval
[Tj , Tj+1), X

V
N (t) = ΦN

(
ηN (Tj ):

XV
N (t) =

∑
j≥0

ΦN

(
ηN (Tj )

)
χ[Tj ,Tj+1)(t) .

Here, recall, χA stands for the indicator function of the set A.
The time change vN (t) removes the rapid oscillations from the trajectory.

Indeed, in the example of the previous section assume that the process starts
from a configuration in Ek

N , and denote by E
j
N the next valley visited. Recall

that H
E

j
N
represents the hitting time of this valley. In the time interval [0, H

E
j
N
),
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during the rapid excursions of the random walk ηN (t) in ΔN , XV
N (t) remains

equal to k. In particular, the fast fluctuations in the time interval [0, H
E

j
N
] are

washed out. We may iterate the argument starting from time H
E

j
N

to extend

this property to the full trajectory.

Since H
E

j
N

is of order αN , the trajectory of XV
N (t) is formed by a sequence

of time intervals of this magnitude in which the process remains constant. The
objections raised above for the convergence in the Skorohod topology are thus
overturned, and we may expect, due to the loss of memory which emerges from
the equilibration, that in the time scale αN , XV

N (t) converges to a S-valued
Markov chain in the Skorohod topology.

Definition 2.1 (Metastability according to LP). The Markov chain ηN (t) is
said to be metastable, in the sense of last passage, in the time-scale θN if there
exists a partition {E1

N , . . . ,En
N ,ΔN} of the state space EN and a S-valued,

continuous-time Markov chain X(t) such that

(LP1) For any k ∈ S = {1, . . . , n} and any sequence (ηN : N ≥ 1) such
that ηN ∈ Ek

N , starting from ηN , XV
N (t) = XV

N (t θN ) converges in the
Skorohod topology to X(t).

(LP2) The time spent in ΔN is negligible: For all t > 0

lim
N→∞

max
η∈EN

EN
η

[ ∫ t

0

χΔN

(
ηN (sθN )

)
ds

]
= 0 .

The sets E
j
N are called valleys and the process X(t) the reduced model.

The main difficulty in proving such a result lies in the fact that the process
ηN ( vN (t) ) is not markovian. For this reason we propose an alternative modi-
fication of the trajectory which keeps this property. This method requires the
definition of the trace of a process, which we present below in the context of
continuous-time Markov chains taking values in a finite state space.

2.2. Trace process

Let E be a finite set and let η(t) be an irreducible, continuous-time, E-valued
Markov chain. Denote by R(η, ξ), η 	= ξ ∈ E, the jump rates of this chain,
by λ(η) =

∑
ξ∈E R(η, ξ) the holding rates, and by π the unique stationary

probability measure.

Denote byD([0,∞), E) the space of right-continuous trajectories ω : [0,∞)→
E which have left limits endowed with the Skorohod topology [26]. This notation
will be used below, without further comments, replacing E by another metric
space. Let Pη, η ∈ E, be the probability measures on D([0,∞), E) induced
by the Markov chain η(t) starting from η. Expectation with respect to Pη is
represented by Eη.

Fix a non-empty, proper subset F of E and denote by TF (t), t ≥ 0, the total
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time the process η(t) spends in F on the time-interval [0, t]:

TF (t) :=

∫ t

0

χF (η(s)) ds ,

where, we recall, χF represents the indicator function of the set F . Denote by
SF (t) the generalized inverse of the additive functional TF (t):

SF (t) := sup{s ≥ 0 : TF (s) ≤ t} . (2.4)

The irreducibility guarantees that for all t > 0, SF (t) is finite almost surely.

The process TF is continuous. It is either constant, when the chain visits con-
figurations which do not belong to F , or it increases linearly. Figure 5 illustrates
this behavior. Denote by ηF (t) the trace of the chain η(t) on the set F , defined
by ηF (t) := η(SF (t)). Taking the trace of the process corresponds to changing
the axis of time in Figure 5. When the process hits F c, time is frozen until η(t)
reaches F again, at which time the clock is restarted. In particular, ηF (t) takes
values in the set F .

Fig 5. An example of the transformation which maps the chain η(t) into its trace on the
set {a, b}. The first graph shows the trajectory of η(t), the second one the function TF (t) for
F = {a, b}, and the third one the trajectory ηF (t) = η(SF (t)). Note that SF (t) is obtained
from TF (t) by inverting the roles of the x and y axes.

It can be proven [15, Section 6] that ηF (t) is an irreducible, continuous-time,
F -valued Markov chain. The jump rates of the chain ηF (t), denoted by RF (η, ξ),
are given by

RF (η, ξ) := λ(η)Pη[H
+
F = Hξ] , η , ξ ∈ F , η 	= ξ , (2.5)

where the hitting time HA and the return time H+
A have been introduced in

(2.1).

The unique stationary probability measure of the trace chain, denoted by
πF (η), is the measure π conditioned to F :

πF (η) =
π(η)

π(F )
, η ∈ F . (2.6)

Moreover, πF is reversible if so is π [15].
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2.3. Metastability

We return to the chain ηN (t) introduced at the beginning of this section. De-
note by PN

η , η ∈ EN , the probability measures on D([0,∞), EN ) induced by

the Markov chain ηN (t) starting from η. Expectation with respect to PN
η is

represented by EN
η .

Denote by ηEN (t) the trace of the process ηN (t) on the set EN . As explained in
Figure 5, by taking the trace of ηN (t) on EN we first remove from the trajectory
the time-intervals corresponding to the excursions in ΔN (the intervals in black
in the leftmost picture of Figure 5), and then, we push back the trajectory, as in
the rightmost picture of this figure. This procedure removes rapid fluctuations
from the trajectory providing an alternative definition of metastability.

Let ΨN : EN → S the projection which sends a configuration in E
j
N to j:

ΨN (η) =

n∑
k=1

k χEk
N
(η) .

In contrast with ΦN , ΨN is defined only on EN . Let XT
N (t) be the process given

by
XT

N (t) := ΨN

(
ηEN (t)

)
. (2.7)

Note that XT
N (t) is not a Markov chain, but just a hidden Markov chain. It

corresponds to the trace on S of the process XN (t) introduced in (2.2).

Definition 2.2 (Metastability). The Markov chain ηN (t) is said to be metastable
in the time-scale θN if there exists a partition {E1

N , . . . ,En
N ,ΔN} of the state

space EN and a S-valued, continuous-time Markov chain X(t) such that

(T1) For any k ∈ S = {1, . . . , n} and any sequence (ηN : N ≥ 1) such that ηN ∈
Ek
N , starting from ηN , the process XT

N (t) := XT
N (tθN ) = ΨN (ηEN (tθN ))

converges in the Skorohod topology to X(t);
(T2) The time spent in ΔN is negligible: For all t > 0

lim
N→∞

max
η∈EN

EN
η

[ ∫ t

0

χΔN

(
ηN (sθN )

)
ds

]
= 0 .

The first condition asserts that in the time scale θN the trace on S of the
process XN (t) converges to a Markov chain, while the second one states that
in this time scale the amount of time the process XN (t) spends outside S is
negligible, uniformly over initial configurations in EN . In particular, condition
(T2) can be stated as

lim
N→∞

max
η∈EN

EN
η

[ ∫ t

0

χd

(
XN (sθN )

)
ds

]
= 0 .

Remark 2.3. The use of the word “metastability”, instead of tunneling, to
name the phenomenon described in the previous section, might be inadequate.
Metastability has been used to represent the transition from a metastable state to
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a stable one. This corresponds to the case in which the reduced model X(t) takes
value in a set with two elements, one being transient and the other absorbing.
We allow ourselves this abuse of nomenclature.

Remark 2.4. The same sequence of Markov chains (ηN (t) : N ≥ 1) may
have more that one metastable description. In a certain time-scale αN , one may
observe transitions between shallow valleys and in a much longer time-scale βN

transitions between deeper valleys.

Remark 2.5. There are examples of Markov chains [63, 62, 78, 79, 13] with a
countably infinite number of valleys. In these cases, the reduced model X(t) is
a continuous-time Markov chain in a countable state-space. In this article, we
restrict ourselves to the finite case to avoid technical issues on the martingale
problem.

Remark 2.6. One of the main features of metastability is the fast transition
between valleys. This information is encapsulated in condition (T2) which states
that the time spent outside the valleys is negligible. In particular, the transition
time between two valleys is negligible in the metastable time-scale.

Remark 2.7. All results presented in this review are in asymptotic form, they
characterize the limiting behavior of the coarse-grained model. Quantitative es-
timates at fixed N are important in concrete problems. For example, to describe
synthetically a molecular dynamics which can be represented as a Markov chain
in a very large, but fixed, state space. The problem consists in finding a reduced
model which keeps the main features of the original chain. It might be interesting
to adapt the approach presented here to this framework.

The transition path theory [54, 101, 33, 98] has been designed for this set-up,
as well as the intertwining method [11, 8, 9, 10]. See also the results by Bianchi
and Gaudillière [24]

Remark 2.8. In constrast with the pathwise approach [38, 111], no attempt is
made here to describe the transition path between two valleys.

Remark 2.9. In the example of the previous section, the process XN (t) re-
mains constant in time-intervals of length of order αN . In this sense, ΨN can
be understood as a slow variable, since it evolves in a much longer time-scale
than the original process, and metastability as the search for slow variables and
the description of the evolution of these slow variables.

Remark 2.10. In most examples, as the Ising model at low temperature [104,
105], metastability is observed as a result of the presence of an energy barrier
which the system has to overpass to reach a new region of the state-space.

The example of the previous section is of different nature. In this model, there
is no energy landscape but a bottleneck which creates a metastable behavior. Here,
entropy [the number of configurations] determines the height of the barriers.
Say, for example, that three squares are 3-dimensional while the last one is 2-
dimensional. In this case, in the time-scale N3, one observes an evolution among
the 3-dimensional cubes and the last square can be included in the set ΔN as
the time spent there is of order N2 logN .
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In other models, as random walks in a potential field, both energy and entropy
play a role.

2.4. Finite-dimensional distributions

Definition 2.1 describes the evolution of a modified version of the original pro-
cess, and Definition 2.2 the one of the trace. To avoid tiny surgeries of the
trajectories, we may turn to the convergence of the finite-dimensional distri-
butions, an alternative adopted by Kipnis and Newman in [81] and Sugiura
[121, 122].

Definition 2.11 (Metastability according to FDD). The Markov chain ηN (t)
is said to be metastable, in the sense of finite-dimensional distributions, in the
time-scale θN if there exists a partition {E1

N , . . . ,En
N ,ΔN} of the state space

EN and a S-valued, continuous-time Markov chain X(t) such that the finite-
dimensional distributions of XN (t) := XN (tθN ) converge to the ones of X(t).

Note that while XN (t) takes value in S ∪ {d}, X(t) is S-valued.

3. Martingale problems

The proof of condition (T1) in Definition 2.2 relies on the uniqueness of solutions
of martingale problems, the subject of this section. To avoid technical problems,
we restrict ourselves to the context continuous-time Markov chains taking values
in a finite state-space E. We refer to the classical books [120, 55] for further
details.

Recall the notation introduced in Subsection 2.2. Assume that the Markov
chain η(t) is defined on the probability space (Ω,F ,P), where Ω = D([0,∞), E)
and F represents the Borel σ-algebra of D([0,∞), E). Let (Fo

t : t ≥ 0) be the
filtration generated by {η(s) : 0 ≤ s ≤ t}.

Denote by L the generator of the Markov chain η(t): for every function f :
E → R,

(Lf)(η) =
∑
ξ∈E

R(η, ξ) [f(ξ)− f(η)] . (3.1)

It is well known that for every f : E → R,

Mf (t) = f(η(t)) − f(η(0)) −
∫ t

0

(Lf)(η(s)) ds (3.2)

is a zero-mean martingale in (Ω, (Fo
t ),P).

It turns out that the converse is true. Let A be the generator of an E-valued,
irreducible, continuous-time Markov chain, and ν a probability measure on E.

Definition 3.1 (The martingale problem (A, ν)). A probability measures P on
(Ω,F) is a solution of the martingale problem associated to the generator A and
the measure ν if for every f : E → R the process Mf given by (3.2) [with L
replaced by A] is a martingale in (Ω, (Fo

t ),P) and P[η(0) = η] = ν(η) for all
η ∈ E.
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Next result is a particular case of Theorem 4.4.1 in [55].

Theorem 3.2. Let A be the generator of an E-valued, irreducible, continuous-
time Markov chain. For every probability measure ν in E, there exists a unique
solution of the martingale problem associated to the generator A and the measure
ν. Moreover, under this solution, the process η(t) is the continuous-time Markov
chain whose generator is A.

This result provides a simple strategy to prove condition (T1) of Definition
2.2. Fix k ∈ S, a sequence ηN ∈ Ek

N , and denote by PN the probability measure
onD([0,∞), S) induced by the processXT

N (t) = XT
N (tθN ) and the measure PN

ηN
.

Prove first that the sequence PN is tight. Then, to characterize the limit points,
show that they solve a martingale problem (L, δk), where L is the generator of
a S-valued Markov chain [guessed a priori] and δk the probability measure on
S concentrated on k. Tightness is postponed to Section 10 and uniqueness is
discussed in the next sections.

4. The martingale approach

We carry out in this section the strategy outlined in the previous section to
prove the uniqueness of limit points of the sequence XT

N (t). It is based on the
uniqueness of solutions of martingale problems, presented above, and on the
fact that limits of martingales are martingales recalled below.

Let (Ω,F ,P) be a probability space, (Ft : t ≥ 0) a filtration, and (MN : N ≥
1) a sequence of martingales measurable with respect to the filtration.

Lemma 4.1. Assume that for each t ≥ 0, MN (t) converges in L1(P) to a
random variable M(t). Then, M(t) is a martingale with respect to the filtration
(Ft : t ≥ 0).

Proof. Fix 0 ≤ s < t and a bounded random variable Y , measurable with
respect to Fs. Since MN is a martingale,

E
[
MN (t)Y

]
= E

[
MN (s)Y

]
.

As Y is bounded and MN (t), MN (s) converge in L1(P) to M(t), M(s), respec-
tively. The same identity holds with MN replaced by M . Moreover, M(t), M(s)
belong to L1(P). Since this identity is in force for all bounded random variable
Y , E[M(t) | Fs ] = M(s), as claimed.

Fix k ∈ S, a configuration ηN in Ek
N , and denote by PN the probability

measure on D([0,∞), S) induced by the process XT
N (t) and the measure PN

ηN
.

The main result of this section asserts that all limit points of the sequenceXT
N (t)

solve a martingale problem (L, δk) if we can prove a local ergodic theorem and
calculate the limit of the coarse-grained jump function, properties (P1) and (P2)
formulated at the end of this section.
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Fix a function F : S → R. As the trace process is a Markov chain, (3.2)
applied to the function F ◦ΨN yields that under PN

ηN

MN (t) = F
(
ΨN (ηEN

tθN
)
)
− F

(
ΨN (ηEN

0 )
)
−

∫ tθN

0

[LEN
(F ◦ΨN ) ] (ηEN

s ) ds

(4.1)
is a martingale. In this formula, LEN

represents the generator of the trace pro-
cess ηEN (t). Since XT

N (t) = ΨN (ηEN (tθN )), changing variables this expression
becomes

F
(
XT

N (t)
)
− F

(
XT

N (0)
)
−

∫ t

0

θN [LEN
(F ◦ΨN ) ] (ηEN (sθN )) ds .

Denote by RT
N (η, ξ) the jump rates of the trace chain ηEN (t). The expression

inside of the integral can be written as

θN
∑
ξ∈EN

RT
N (ζ, ξ)

{
(F ◦ΨN ) (ξ)− (F ◦ΨN ) (ζ)

}
where ζ = ηEN (sθN ) .

Writing EN as ∪�E
�
N , since ΨN (ξ) = � for ξ ∈ E�

N , this expression is equal to

θN
∑
�∈S

∑
ξ∈E�

N

RT
N

(
ηEN (sθN ) , ξ

) {
F (�) − F (XT

N (s))
}

=
∑
�∈S

R
(�)
N

(
ηEN (sθN )

) {
F (�) − F (XT

N (s))
}
,

where R
(�)
N (ζ) represent the jump rate from the configuration ζ to the set E�

N

for the trace process speeded-up by θN :

R
(�)
N (ζ) = θN

∑
ξ∈E�

N

RT
N (ζ, ξ) . (4.2)

Up to this point, we proved that the martingale MN (t) is equal to

F
(
XT

N (t)
)
− F

(
XT

N (0)
)
−

∫ t

0

∑
�∈S

R
(�)
N

(
ηEN (sθN )

) {
F (�)− F (XT

N (s))
}
ds .

If the functions R
(�)
N were constant over the sets E�

N , R
(�)
N (η) = r

(�)
N (ΨN (η)) for

some r
(�)
N : S → R+, the martingale MN (t) could be written in terms of the

process XT
N (s):

MN (t) = F (XT
N (t))−F (XT

N (0))−
∫ t

0

∑
�∈S

r
(�)
N (XT

N (s))
{
F (�)−F (XT

N (s))
}
ds.

Furthermore, if for all j 	= � ∈ S, the sequences r
(�)
N (j) converged to some

r(j, �) ∈ R+, one could replace in the previous formula r
(�)
N (XT

N (s)) by r(XT
N (s),

�) at the cost of a small error.
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Therefore, under the two previous conditions, up to a negligible error,

F (XT
N (t)) − F (XT

N (0)) −
∫ t

0

∑
�∈S

r(XT
N (s), �)

{
F (�) − F (XT

N (s))
}
ds (4.3)

is a martingale.
Denote by P a limit point of the sequence PN . Let X(t) represent the coor-

dinate process of D([0,∞), S):

X(t, ω) = ω(t) , ω ∈ D([0,∞), S) , t ≥ 0 .

Assume that P[X(t−)=X(t)] = 1 for all t > 0, where X(t−)= lims<t,s→t X(s).
Suppose, without loss of generality, that PN converges to P. Let L be the

generator of the S-valued Markov chain associated to the jump rates r. As
P[X(t−) = X(t)] = 1, the finite-dimensional projections are continuous (cf.
equation (13.3) in [26]). Thus, since the expression in (4.3) is uniformly bounded,
we may pass to the limit and conclude from Lemma 4.1 that

F (X(t)) − F (X(0)) −
∫ t

0

(LF )(X(s)) ds

is a martingale under the measure P. Moreover, as ηN ∈ Ek
N , PN [X(0) = k] = 1

for all N so that P[X(0) = k] = 1. Therefore, P is a solution of the (L, δk)
martingale problem. By Theorem 3.2, this property characterizes P, and under
this measure the coordinate process is a continuous-time Markov chain whose
generator is L.

We summarize the conclusions of the previous analysis in Theorem 4.2 below.
We first formulate the main hypotheses.

(P1) (Local ergodicity). The mean rate functions R
(�)
N (η), introduced in (4.2),

can be replaced by coarse-grained functions r
(�)
N . More precisely, there exist

sequences of functions r
(�)
N : EN → R+, � ∈ S, which are constant on the

sets E
j
N , j ∈ S, and such that for every function F : S → R, t > 0, and

sequence ηN ∈ EN ,

lim
N→∞

EηN

[ ∫ t

0

F (XT
N (s))

{
R

(�)
N

(
ηEN (sθN )

)
− r

(�)
N (XT

N (s))
}
ds

]
= 0 .

(P2) (The coarse-grained jump rates). The sequence of functions r
(�)
N , � ∈ S,

called the coarse-grained jump functions, converge. More precisely, since
these functions are constant over the valleys Ek

N , they can be written as

r
(�)
N (η) =

∑
k∈S

rN (k, �) χEk
N
(η)

for some non-negative real numbers rN (k, �), named the coarse-grained
jump rates. Note from the formula for the martingale MN (t) that the
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values of rN (�, �) are unimportant. We assume that these rates converge:
There exist r(j, �) ∈ [0,∞), such that for all j 	= � ∈ S,

lim
N→∞

rN (j, �) = r(j, �) . (4.4)

Theorem 4.2. Fix k ∈ S, a sequence ηN ∈ Ek
N , and denote by PN the prob-

ability measure on D([0,∞), S) induced by the process XT
N (t) and the measure

PN
ηN

. Assume that conditions (P1) and (P2) are in force. Then, every limit point

P of the sequence PN such that

P
[
X(t−) = X(t)

]
= 1 for all t > 0 .

solves the (L, δk) martingale problem, where L is the generator of the S-valued
Markov chain whose jump rates are r(j, �).

Note that we do not need to prove property (P1) with an absolute value
inside the expectation. This observation simplifies considerably the proof of this
replacement.

We present in Sections 5, 6 sufficient conditions, formulated in terms of the
stationary state and of capacities between the sets Ej

N , for conditions (P1), (P2)
to hold. In Sections 8, 9 we propose alternative proofs of the uniqueness of limit
points for the sequence PN .

5. Local ergodicity

In this section, we provide sufficient conditions, formulated in terms of the sta-

tionary state and of capacities, to replace the jump rates R
(k)
N , introduced in

(4.2), by coarse-grained jump functions which are constant on each set Ek
N . We

assume that the reader is acquainted with the results on potential theory of
Markov chains, recapitulated in Section B

Recall from (2.1) the definition of the hitting time HA and the return time
H+

A of a subset A of EN . For two non-empty, disjoint subsets A, B of EN , denote
by capN (A,B) the capacity between A and B:

capN (A,B) =
∑
η∈A

πN (η)λN (η)PN
η

[
HB < H+

A

]
, (5.1)

where λN (η) stands for the holding rate at η of the Markov chain ηN (t): λN (η) =∑
ξ∈EN

RN (η, ξ).

Recall that
R

(k)
N (η) = θN

∑
ξ∈Ek

N

RT
N (η, ξ) ,

where RT
N (η, ξ) represents the jump rates of the trace process. Thus, R

(k)
N (η) is

the rate at which the trace process jumps from η to Ek
N multiplied by θN . In

view of equation (2.5) for the jump rates of the trace process,

R
(k)
N (η) = θN λN (η) Pη

[
H+

EN
= HEk

N

]
= θN λN (η) Pη

[
HEk

N
< H+

Ĕk
N

]
,

(5.2)
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where
Ĕk
N :=

⋃
j �=k

E
j
N , k ∈ S .

In particular, R
(k)
N vanishes in the interior of the sets Ej

N , where by interior we

mean the set of configurations in E
j
N whose neighbors belong to E

j
N [the configu-

ration ξ ∈ E
j
N such that

∑
ζ �∈E

j
N
RN (ξ, ζ) = 0]. This means that R

(k)
N is a singular

function. While it vanishes in the interior of the sets Ej
N , it assumes a large value

at the boundary because the right-hand side of (5.2) is multiplied by θN .
The goal of this section is to replace the time integral of the singular function

R
(k)
N by the time integral of a very regular function, one which is constant at each

set Ej
N . This replacement is expected to hold whenever the process equilibrates

in the valleys Ej
N before it jumps to a new one.

Let fN : EN → R be a sequence of real functions defined on EN . Fix t > 0,
and consider the time integral∫ t

0

fN
(
ηEN (sθN )

)
ds =

1

θN

∫ tθN

0

fN
(
ηEN (s)

)
ds .

The time integral can be decomposed according to the sojourns in the sets Ej
N . If

the process equilibrates during these visits, by the ergodic theorem, we expect
the integral of fN over these time-intervals to be close to the integral of the
mean value of fN on these sets. Hence, let

f̂N (η) = EπE

[
fN | GN

]
, (5.3)

where GN represents the σ-algebra of subsets of EN generated by the sets E
j
N ,

j ∈ S, and πE the stationary state of the trace process ηEN (t) [which, by (2.6),
is the stationary state πN conditioned to EN ].

Clearly,

f̂N (η) =
∑
j∈S

FN (j) χ
E

j
N
(η) , where FN (j) =

1

πN (Ej
N )

∑
ζ∈E

j
N

πN (ζ) fN (ζ) .

The function f̂N is the candidate, and one expects that, under certain conditions
on the sequence fN ,

1

θN

∫ tθN

0

{
fN

(
ηEN (s)

)
− f̂N

(
ηEN (s)

) }
ds

vanishes as N → ∞.

Theorem 5.1. Let fN , gN : EN → R be sequences of functions such that

(a) For each j ∈ S, there exists a configuration ξj,N such that

lim
N→∞

1

θN
max
η∈E

j
N

∑
ζ∈E

j
N
| fN (ζ) |πN (ζ)

capN (η, ξj,N )
= 0 ,

where the supremum is carried over all configurations η 	= ξj,N .
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(b) The sequence gN is uniformly bounded and is constant over each set Ej
N :

There exist a finite constant C0 and a sequence of functions GN : S → R

such that

gN (η) =
∑
j∈S

GN (j) χ
E

j
N
(η) and max

η∈EN

∣∣ gN (η)
∣∣ ≤ C0

for all N ≥ 1.

Then, for all t > 0,

lim
N→∞

max
η∈EN

∣∣∣EN
η

[ ∫ t

0

{
fN

(
ηEN (sθN )

)
− f̂N

(
ηEN (sθN )

)}
gN

(
ηEN (sθN )

)
ds
]∣∣∣ = 0.

In the reversible case, this result follows from Corollary 6.5 and Proposition
6.10 in [15] and from the hypotheses of the theorem. In the nonreversible case,
it follows from Corollary 6.5 in [15] and Proposition A.2 in [19].

Remark 5.2. The proof of this result takes advantage of the fact that the ab-
solute value is outside of the expectation.

Remark 5.3. To turn the martingale MN (t), introduced in the previous section,

into a function of XT
N , we only need to prove the previous theorem for fN = R

(j)
N ,

j ∈ S. In this special case, by (5.1) and (5.2),

1

θN

∑
ζ∈E

j
N

| fN (ζ) |πN (ζ) = capN (Ej
N , Ĕj

N ) .

In particular, condition (a) of the theorem becomes that for all j ∈ S, there
exists ξj,N ∈ E

j
N such that

lim
N→∞

max
η∈E

j
N , η �=ξj,N

capN (Ej
N , Ĕj

N )

capN (η, ξj,N )
= 0 . (5.4)

Remark 5.4. The configuration ξj,N has no special role. By Theorem 2.7 in
[15], if condition (5.4) holds for one configuration in E

j
N , it holds for all.

The coarse-grained jump function, denoted by r
(j)
N in (4.4), is given by R̂

(j)
N .

Thus, by (5.3) and (5.2),

r
(j)
N (η) = R̂

(j)
N (η) = EπE

[
R

(j)
N | GN

]
=

∑
k∈S

rN (k, j) χEk
N
(η) ,

where, for k 	= j,

rN (k, j) =
1

πN (Ek
N )

∑
ζ∈Ek

N

πN (ζ)R
(j)
N (ζ)

=
θN

πN (Ek
N )

∑
ζ∈Ek

N

πN (ζ)λN (ζ)Pζ

[
H

E
j
N
< H+

Ĕ
j
N

]
.

(5.5)
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Remark 5.5. Hypothesis (a) of Theorem 5.1 requires the process to visit all
configurations of the valley E

j
N before it reaches a new one. Dynamics which

display this behavior are said to “visit points”. This class includes condensing
zero-range processes [16, 85, 4, 117], random walks in a potential field [91, 92,
93] or models in which the valleys are singletons as the inclusion process [25]
or random walks evolving among random traps [63, 62, 78, 79], but it does
not contain the example of Section 1. For such dynamics, in which the entropy
plays a role in the metastable behavior, a different approach is needed. This is
discussed in Sections 8 and 9.

6. The coarse-grained jump rates

In this section, we investigate the asymptotic behavior of the coarse-grained
jump rates rN (k, j), defined in (5.5). This is condition (P2) of Theorem 4.2.

6.1. Reversible case

In the reversible case, we may express the coarse-grained jump rates rN (j, k) in
terms of capacities. If follows from the explicit formulae (5.1), (5.5) and from
an elementary argument taking advantage of the reversibility that

πN (Ej) rN (j, k)

= θN
1

2

{
capN (Ej , Ĕj) + capN (Ek, Ĕk) − capN

(
Ej ∪ Ek , ∪��=j,kE

�
)}

.

Here and below we often write Ej , Ĕj for E
j
N , Ĕj

N , respectively. Therefore, in
the reversible case, one can compute the limit of the coarse-grained jump rates
rN (j, k) if one can calculate the asymptotic behavior of πN (Ej) and of

θN capN
(
∪j∈A Ej , ∪k∈BE

k
)

for non-empty subset A, B of S such that A ∩B = ∅, A ∪B = S.

6.2. Nonreversible case

Summing over j 	= k in (5.5) provides a formula for the coarse-grained holding
rates, denoted by λN (j):

λN (k) :=
∑
j �=k

rN (k, j) =
θN

πN (Ek)

∑
ζ∈Ek

πN (ζ)λ(ζ)Pζ

[
H

Ĕk < H+
Ek

]
. (6.1)

The expression on the right-hand side corresponds to the capacity between Ek

and Ĕk. Therefore,

πN (Ej)λN (j) = θN capN (Ej , Ĕj) , j ∈ S . (6.2)
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Remark 6.1. Equation (6.2) provides a formula for the magnitude of the scal-
ing parameter θN . To derive a non-trivial limit for the coarse-grained model
XT

N , time has to be rescaled by the inverse of the capacity between the sets Ej

and Ĕj:

θN ≈ πN (Ej)

capN (Ej , Ĕj)
·

The asymptotic behavior of the coarse-grained holding rates can be computed
through formula (6.2) provided one can estimate the capacities and the measures
of the valleys. Once this has been done, to compute the jump rates, it remains
to estimate the jump probabilities.

Recall from Section A the definition of a collapsed chain. Fix j ∈ S, and
denote by ηC,j(t) the Markov chain obtained from the chain ηN (t) by collapsing

the valley Ej to a point, denoted by j. The chain ηC,j(t) takes value in EC,j
N :=

(EN \ Ej) ∪ {j}.
Let PC,j

η , η ∈ EC,j
N , be the probability measure on D([0,∞), EC,j

N ) induced

by the collapsed process ηC,j(t) starting from η. Expectation with respect to
PC,j
η is represented by EC,j

η . By the last formula of the proof of [19, Proposition
3.4], for any k ∈ S, k 	= j,

pN (j, k) :=
rN (j, k)

λN (j)
= P

C,j
j

[
HEk < H

Ĕj,k

]
, where Ĕj,k :=

⋃
�∈S\{j,k}

E�
N .

Denote byPj the probability measure onD([0,∞), S) induced by the reduced
modelX(t) starting from j. We present below a set of sufficient conditions which
ensure that pN (j, k) converges to Pj [Hk < HS\{j,k}]. This approach has been
developed and gradually refined in [85, 92, 117], and it is based on the premise
that the capacities can be calculated through the Thomson and the Dirichlet
principles.

Denote by L2(πN ) the space of square-summable functions f : EN → R

endowed with the scalar product 〈 · , · 〉πN
given by

〈 f , g 〉πN
:=

∑
η∈EN

f(η) g(η)πN (η) .

We assume that the generator LN of the Markov chain ηN (t) satisfies a sector
condition with a constant C0 independent of N : For every f , g ∈ L2(πN ),

〈LNf , g 〉2πN
≤ C0 〈 (−LN )f , f 〉πN

〈 (−LN )g , g 〉πN
. (6.3)

Suppose that for fixed j, k ∈ S, k 	= j,

lim
N→∞

θN capN (Ek, Ĕj,k) = capS(k, S \ {j, k}) ,

lim
N→∞

θN capN (Ej , Ĕj) = capS(j, S \ {j}) ,
(6.4)

where capS(A,B), A, B ⊂ S, represents the capacity with respect to the reduced
model X(t).



164 C. Landim

We also assume that the capacities for the collapsed process ηC,j(t) can be

calculated: Denote by capC,j
N (A,B) the capacity between A, B ⊂ EC,j

N , A∩B =
∅ induced by the collapsed process ηC,j(t). We assume that the limit of the

capacity capC,j
N (Ek, Ĕj,k) coincides with capS(k, S \ {j, k}):

lim
N→∞

θN capC,j
N (Ek, Ĕj,k) = capS(k, S \ {j, k}) . (6.5)

The computation of the capacities requires test flows or test functions which
approximate the optimal ones in the variational principles. It is thus implicitly
assumed in hypotheses (6.4) and (6.5) that explicit expressions for such flows
or functions are available. We assume below that there exists a sequence of
functions V N

j,k : EN → [0, 1] close to the equilibrium potential hN
Ek,Ĕj,k

, given by

hN
Ek,Ĕj,k(η) := PN

η

[
HEk < H

Ĕj,k

]
,

in the sense that

lim
N→∞

θN DN (V N
j,k) = lim

N→∞
θN DN

(
hN
Ek,Ĕj,k

)
= capS(k, S \ {j, k}) , (6.6)

where DN (f) stands for the Dirichlet form of f :

DN (f) := 〈 (−LN ) f , f 〉πN
.

The last identity in (6.6) follows from the fact, proved in (B.7), that

DN (hN
Ek,Ĕj,k

) = capN (Ek, Ĕj,k) and from assumption (6.4).

We assume, furthermore, that V N
j,k is constant in each valley E�

N :

V N
j,k(η) =

∑
�∈S

P�[Hk < HS\{j,k}]χE�(η) for all η ∈ EN . (6.7)

Hence, V N
j,k is equal to 1, 0 in Ek

N , Ĕj,k
N , respectively, while on E

j
N it is given by

the probability appearing in (6.7).
Finally, as V N

j,k approximates hN
Ek,Ĕj,k

, which is harmonic on ΔN ∪ Ej , it is

also reasonable to require LN V N
j,k to be small in these sets. We assume that

lim
N→∞

θN
∑

η∈ΔN

∣∣(LN V N
j,k)(η)

∣∣πN (η) = lim
N→∞

θN

∣∣∣ ∑
η∈Ej

(LN V N
j,k)(η)πN (η)

∣∣∣ = 0.

(6.8)

Proposition 6.2. Fix j, k ∈ S, k 	= j, and assume that conditions (6.3)–(6.8)
are in force. Then,

lim
N→∞

pN (j, k) = Pj [Hk < HS\{j,k}] .

The proof of this proposition is divided in several lemmata. Since V N
j,k is

constant on Ej , we may collapse it to a function defined on EC,j
N . Recall from
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(6.7) the value of V N
j,k at Ej and let V C,j

j,k : EC,j
N → [0, 1] be given by

V C,j
j,k (j) = Pj [Hk < HS\{j,k}] , V C,j

j,k (η) = V N
j,k(η) , η ∈ EC,j

N \ {j} .

The dependence of V C,j
j,k on N has been omitted.

Let LC,j
N be the generator of the collapsed process ηC,j(t). For A, B ⊂ EC,j

N ,

A∩B = ∅, denote by h
(j)
A,B the solution of the boundary value elliptic problem{
(LC,j

N h ) (η) = 0 , η 	∈ A ∪B ,

h(η) = χA(η) , η ∈ A ∪B .

Denote by hj,k : EN → R the lifting of the function h
(j)

Ek,Ĕj,k
:

hj,k(η) = h
(j)

Ek,Ĕj,k
(j) , η ∈ Ej , hj,k(η) = h

(j)

Ek,Ĕj,k
(η) , η ∈ EN \ Ej .

Note that the function hj,k is constant and equal to pN (j, k) on the set Ej .

Lemma 6.3. We claim that

lim
N→∞

θN DN

(
hj,k − V N

j,k

)
= 0 .

Proof. RewriteDN (h−V ) as 〈h−V , (−LN [h−V ] ) 〉πN
and compute separately

the limit of the four terms.
By equation (A.15), DN (hj,k) = DC,j

N (h
(j)

Ek,Ĕj,k
), where DC,j

N represents the

Dirichlet form associated to the collapsed process. By (B.7), DC,j
N (h

(j)

Ek,Ĕj,k
) =

capC,j
N (Ek, Ĕj,k). Hence, by assumption (6.4),

lim
N→∞

θN DN (hj,k) = capS(k, S \ {j, k}) .

By assumption (6.6), the same result holds for Vj,k in place of hj,k.
It remains to examine the cross terms. By (A.15),

〈Vj,k , (−LN hj,k) 〉πN
= 〈V C,j

j,k , (−L
C,j
N h

(j)

Ek,Ĕj,k
) 〉πC,j

N
,

where πC,j
N stands for the stationary measure πN collapsed at Ej . Since h

(j)

Ek,Ĕj,k

is harmonic on ΔN ∪ {j}, and since V C,j
j,k vanishes on Ĕj,k and coincides with

h
(j)

Ek,Ĕj,k
on Ek, the last expression is equal to∑

η∈Ek

V C,j
j,k (η) (−L

C,j
N h

(j)

Ek,Ĕj,k
) (η)πC,j

N (η)

=
∑
η∈Ek

h
(j)

Ek,Ĕj,k
(η) (−L

C,j
N h

(j)

Ek,Ĕj,k
) (η)πC,j

N (η) .
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Using again the harmonicity of h
(j)

Ek,Ĕj,k
on ΔN∪{j}, and the fact that it vanishes

on Ĕj,k, we may extend the sum to the entire set EC,j
N and conclude, as at the

beginning of the proof, that

lim
N→∞

θN 〈Vj,k , (−LN hj,k) 〉πN
= capS(k, S \ {j, k}) .

Similarly, since hj,k is equal to Vj,k on Ek ∪ Ĕj,k,

〈hj,k , (−LNVj,k ) 〉πN
=

∑
η∈Ek

Vj,k(η) (−LN Vj,k) (η)πN (η)

+
∑

η∈ΔN∪Ej

hj,k(η) (−LN Vj,k) (η)πN (η) .

Since Vj,k vanishes on Ĕj,k, the first term on the righ-hand side is equal to

DN (Vj,k) −
∑

η∈ΔN∪Ej

Vj,k(η) (−LN Vj,k) (η)πN (η) .

Therefore,

〈hj,k , (−LNVj,k ) 〉πN
= DN (Vj,k)

+
∑

η∈ΔN∪Ej

{hj,k(η) − Vj,k(η)} (−LN Vj,k) (η)πN (η) .

Since hj,k and Vj,k are constant in Ej , non-negative and bounded by 1, the
absolute value of the second term on the right-hand side is less than or equal to∑

η∈ΔN

∣∣ (LN Vj,k) (η)
∣∣πN (η) +

∣∣∣ ∑
η∈Ej

(LN Vj,k) (η)πN (η)
∣∣∣ .

By condition (6.8), this expression multiplied by θN converges to 0 as N → ∞.
Thus, by (6.6),

lim
N→∞

θN 〈hj,k , (−LNVj,k ) 〉πN
= capS(k, S \ {j, k}) .

Putting together all previous estimates yields the assertion.

Fix two non-empty subsets A, B of EN such that A ∩ B = ∅, Recall from
Section B that we represent by C1,0(A,B) the space of functions f : EN → [0, 1]
which are equal to 1 on A and 0 on B. Let fN

j,k = hj,k − Vj,k, and note that

this function is constant on each valley E�.

Lemma 6.4. Let fj,k(E
j) be the value of fj,k at Ej. Then, limN→∞ fj,k(E

j) = 0.

Proof. The function fj,k vanishes on Ek ∪ Ĕj,k = Ĕj , and it is constant on Ej .
Hence, if fj,k(E

j) 	= 0, the function F defined as F (η) = fj,k(η)/fj,k(E
j) belongs

to C1,0(E
j , Ĕj).
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Suppose that fj,k(E
j) 	= 0. On the one hand, by Lemma 6.3,

θN fj,k(E
j)2 DN (F ) = θN DN (fj,k) → 0. On the other hand, since F belongs

to C1,0(E
j , Ĕj), by (B.14), DN (F ) ≥ capsN (Ej , Ĕj), where capsN (Ej , Ĕj) repre-

sents the capacity associated to the symmetric dynamics. By the sector con-
dition, stated in assumption (6.3), and Lemma B.15, this symmetric capacity

is bounded below by c0 capN (Ej , Ĕj), where c0 = 1/C0 > 0. Hence, by (6.4),
lim infN→∞ θN DN (FN ) ≥ c0 capS(j, S \ {j}) > 0, which proves the assertion of
the lemma.

Proof of Proposition 6.2. By definition (6.7) of Vj,k, Vj,k(E
j) = Pj [Hk <

HS\{j,k}]. The claim of the proposition follows from Lemma 6.4 and the fact
that

hj,k(E
j) = h

(j)

Ek,Ĕj,k
(j) = pN (j, k) .

Remark 6.5. Assumption (6.3) can be replaced by the hypothesis that

lim inf
N→∞

θN capsN (Ej , Ĕj) > 0 . (6.9)

Proof. We only used the sector condition, assumption (6.3), in the proof of
Lemma 6.4 to guarantee that θN DN (F ) is bounded below by a strictly positive

constant. Since DN (F ) ≥ capsN (Ej , Ĕj), by (6.9), lim infN→∞ θN DN (F ) > c0,
as needed.

7. The negligible set ΔN

We provide in this section sufficient conditions for assumption (LP2) or (T2) to
hold. Recall from (5.5) that rN (k, j) represents the coarse-grained jump rates.
Assume that they converge: For all j 	= k, there exists r(k, j) ∈ [0,∞) such that

lim
N→∞

rN (k, j) = r(k, j) . (7.1)

Recall that we represent by X(t) the reduced model, the S-valued Markov chain
whose jump rates are given by r(k, j). Denote by A ⊂ S the subset of S formed
by the points which are absorbing for the reduced model X(t). Next result is
Theorem 2.7 in [15] and Theorem 2.1 in [19].

Theorem 7.1. Assume that conditions (5.4) and (7.1) are in force. Assume,
furthermore, that for all k ∈ A, t > 0,

lim
N→∞

max
η∈Ek

N

EN
η

[ ∫ t

0

χΔN

(
ηN (sθN )

)
ds

]
= 0 ; (7.2)

and that for all j 	∈ A

lim
N→∞

πN (ΔN )

πN (Ej
N )

= 0 . (7.3)

Then, property (LP2) is in force.
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Remark 7.2. In the previous theorem, we may replace conditions (7.2), (7.3)
by the assumption

lim
N→∞

1∑
k �=j rN (j, k)

πN (ΔN )

πN (Ej
N )

= 0

for all j ∈ S.

In some spin dynamics, the valleys are formed by few configurations and the
following simple argument applies.

Lemma 7.3. Assume that

lim
N→∞

max
η∈EN

πN (ΔN )

πN (η)
= 0 .

Then, condition (LP2) is in force.

Proof. Fix t > 0. Clearly, dividing and multiplying by πN (η),

EN
η

[ ∫ t

0

χΔN

(
ηN (sθN )

)
ds

]
≤ 1

πN (η)
EN
πN

[ ∫ t

0

χΔN

(
ηN (sθN )

)
ds

]
.

Since πN is the stationary state, the previous expression is equal to t πN (ΔN )/
πN (η), which proves the lemma.

8. The Poisson equation

We present here an alternative method to prove uniqueness of limit points of
the sequence of measures PN introduced in Section 4. It relies on asymptotic
properties of the solutions of Poisson equations.

Assume that we are able to foretell the dynamics of the reduced model, and
denote by L its generator. Fix a function F : S → R, and let G = LF . Denote
by f , g : EN → R the function given by

f =
∑
k∈S

F (k)χEk
N
, g =

∑
k∈S

G(k)χEk
N
. (8.1)

The functions f , g are constant on each valley E�
N and vanish at ΔN . The

method presented below relies on the assumption that the solution fN of the
Poisson equation

θN LN fN = g

is almost constant on each set Ek
N . A solution of this equation exists only if g has

zero-mean with respect to πN , which is not necessarily the case. Therefore, we
need first to turn g into a zero-mean function and then to consider the solution
of the Poisson equation. This is the content of conditions (A1), (A2).
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Assume that there exists a sequence of function gN : EN → R such that

(A1) gN has zero-mean with respect to πN , vanishes on ΔN and converges to
g uniformly on EN ;

(A2) Denote by fN the unique solution of the Poisson equation

θN LNf = gN (8.2)

in EN . There exists a finite constant C0 such that

sup
N≥1

max
η∈EN

|fN (η)| ≤ C0 , and lim
N→∞

max
η∈EN

∣∣ fN (η)− f(η)
∣∣ = 0 .

The natural candidate for gN in conditions (A1) and (A2) is the function g
itself, but it does not have zero-mean. To fulfill this condition, denote by π the
stationary state of the reduced model. We expect πN (Ek

N ) to converge to π(k).
Hence,

lim
N→∞

EπN
[g] = lim

N→∞

∑
k∈S

G(k)πN (Ek
N ) =

∑
k∈S

(LF )(k)π(k) = 0 .

A reasonable candidate for gN is thus g − εN χE1
N
, where εN = EπN

[g]/πN (E1
N )

vanishes as N → ∞ [if πN (E1
N ) → π(1) > 0].

Properties (A1), (A2) have been proved in [57, 118] for elliptic operators
on Rd of the form LNf = eN V ∇ · (e−N V a∇f), in [94] for one-dimensional
diffusions with periodic boundary conditions, and in [106] for condensing zero-
range processes.

The main result of this section, Theorem 8.2 below, asserts that conditions
(A1), (A2) guarantee uniqueness of limit points of the sequence PN . The proof
of this result requires some preparation.

Let QN
η , η ∈ EN , be the probability measure on D([0,∞), EN ) induced by

the speeded-up process ξN (t) := ηN (tθN ) starting from η. Keep in mind that
the generator of this process is θN LN . Denote by (Fo

t : t ≥ 0) the σ-algebra of
subsets of D([0,∞), EN ) generated by {η(s) : 0 ≤ s ≤ t}, where η(s) represents
the coordinate process. Fix η ∈ EN and denote by {Fη

t : t ≥ 0} the usual
augmentation of {Fo

t : t ≥ 0} with respect to QN
η . We refer to Section III.9 of

[115] for a precise definition. The advantage of Fη
t with respect to Fo

t is that it
is right-continuous: Fη

t = ∩s>tFη
s .

Recall from (2.4) the definition of the time change SEN
(t) associated to the

additive functional TEN
(t). Clearly, for all r ≥ 0, t ≥ 0,

{SEN
(r) ≥ t} = {TEN

(t) ≤ r} . (8.3)

Lemma 8.1. For each t ≥ 0 and η ∈ EN , SEN
(t) is a stopping time with respect

to the filtration (Fη
t : t ≥ 0).

Proof. Fix t ≥ 0, r ≥ 0 and η ∈ EN . By (8.3),

{SEN
(t) ≤ r} =

⋂
q

{SEN
(t) < r + q} =

⋂
q

{TEN
(r + q) > t} ,
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where the intersection is carried out over all q ∈ (0,∞)∩Q. By definition of TEN
,

{TEN
(r + q) > t} belongs to Fη

r+q. Hence, as the filtration is right-continuous,
{SEN

(t) ≤ r} ∈ ∩q Fη
r+q = Fη

r , which proves the lemma.

Let (GN,η
t : t ≥ 0) be the filtration given by GN,η

t = Fη
SEN

(t), and denote

by ξEN (t) the trace of the coordinate process η(t) on EN : ξEN (t) = η(SEN
(t)).

Clearly, the process ξEN (t) is adapted to the filtration (GN,η
t ). Moreover, as the

coordinate process corresponds to the distribution of ξN (t), ξEN (t) corresponds
to the trace of the speeded-up process ξN (t) on EN .

It is easy to check that we may commute the trace operation with the accel-
eration of the process:

ηEN (tθN ) = ξEN (t) .

On the left-hand side, we first computed the trace of the chain ηN (t) on EN

and then accelerated it by θN , while on the right-hand side we first speeded-up
the chain ηN (t) by θN and then computed the trace of the result on EN . In
particular, the process XT

N (t), introduced in assumption (T1), corresponds to
the projection of ξEN (t) on S through ΨN :

XT
N (t) = ΨN (ξEN (t)) . (8.4)

Moreover, the measure PN on D([0,∞), S) represents the distribution of the
process ΨN (ξEN (t)). We may now state the main result of this section.

Theorem 8.2. Fix k ∈ S and a sequence ηN ∈ Ek
N . Assume that conditions

(A1) and (A2) are in force for every function F : S → R. Then, every limit
point P of the sequence PN such that

P
[
X(t−) = X(t)

]
for all t > 0 . (8.5)

solves the (L, δk) martingale problem.

Proof. Fix a function F : S → R. Let fN : EN → R be the function given by
assumption (A2). Then,

MN (t) = fN (η(t)) − fN (η(0)) −
∫ t

0

θN (LNfN )(η(s)) ds

= fN (η(t)) − fN (η(0)) −
∫ t

0

gN (η(s)) ds

is a martingale in (D([0,∞), EN ), (FηN

t ),QN
ηN

).
Since {SEN

(t) : t ≥ 0} are stopping times with respect to the filtration (FηN

t ),

MN (SEN
(t)) is a martingale with respect to (FηN

SEN
(t)) = (GN,ηN

t ). Hence, by

definition of the trace process ξEN (t),

M̂N (t) := MN (SEN
(t)) = fN (ξEN (t)) − fN (ξEN (0)) −

∫ SEN
(t)

0

gN (η(s)) ds
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is a martingale with respect to the filtration GN,ηN

t . Since gN vanishes on ΔN ,
we may insert in the integral the indicator function of the set EN . Then, a
change of variables yields that this integral is equal to∫ SEN

(t)

0

gN (η(s))χEN
(η(s)) ds =

∫ t

0

gN (η(SEN
(s))) ds .

Therefore,

M̂N (t) = fN (ξEN (t)) − fN (ξEN (0)) −
∫ t

0

gN (ξEN (s)) ds

is a {GN,ηN

t }-martingale.
By (A1) and (A2), gN , resp. fN , converge to g, resp. f , uniformly in EN as

N → 0. Hence, since ξEN (s) ∈ EN for all s ≥ 0, we may replace in the previous
equation gN , fN by g, f , respectively, at a cost which vanishes as N → ∞.
Therefore,

M̂N (t) = f(ξEN (t)) − f(ξEN (0)) −
∫ t

0

g(ξEN (s)) ds + oN (1)

is a {GN,ηN

t }-martingale.
Since f and g are constant on each set Ek

N , by (8.1) and (8.4), f(ξEN (t)) =
F (ΨN (ξEN (t))) = F (XT

N (t)), g(ξEN (s)) = G(ΨN (ξEN (s))) = G(XT
N (s)), and

F (XT
N (t)) − F (XT

N (0)) −
∫ t

0

(LF )(XT
N (s)) ds + oN (1)

is a martingale because G = LF .
Since PN corresponds to the distribution of XT

N ,

M̂(t) = F (X(t)) − F (X(0)) −
∫ t

0

(LF )(X(s)) ds

is a martingale under PN up to a small error. Let P be a limit point of the
sequence PN satisfying (8.5), and assume, without loss of generality, that PN

converges to P. By (8.5), the one-dimensional projections are continuous, and

we may pass to the limit to obtain that M̂(t) is a martingale under P.
On the other hand, as ηN ∈ Ek

N , PN [X(0) = k] = 1 for all N , so that
P[X(0) = k] = 1. This proves that any limit point of the sequence PN satisfying
(8.5) is a solution of the (L, δk) martingale problem.

9. Local ergodic theorem in L2

It is not clear whether the scheme presented in the previous section can be
applied to a large class of dynamics. The proof of condition (A2) is unclear even
for the simple example of Section 2.
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The method presented in Sections 4–6 has also a drawback. As the function

f =
∑

k∈S F (k)χEk
N

has a sharp interface, the jump rates R
(k)
N which appear

in the computation of LEN
f , are singular functions, vanishing at the interior

of the valleys and taking large values at the boundary. This lack of smoothness
turns the proof of the local ergodic theorem more demanding.

Following [20], we propose below an alternative approach, in which we replace
the indicator function χEk

N
by “smooth” approximations obtained by solving the

resolvent equation (
I − γN LEN

)
f = χEk

N
, (9.1)

where LEN
represents the generator of the trace process ηEN (t), I the identity

and γN a suitable sequence of positive numbers.
The resolvent equation (9.1) has a unique solution, denoted by uk

N . Equation
(9.12) provides a stochastic representation of the solution, different from the
usual one given in terms of a time integral. This guarantees existence. Unique-
ness can be proven as follows. Let u1, u2 be two solutions, and set w = u1 −u2.
The function w solves (9.1) with a right-hand side equal to 0. Multiply both
sides of the equation by w and integrate with respect to πE to get that w = 0
because 〈LEN

f , f〉πE
≤ 0 for all functions f : EN → R.

Note that γN LEN
uk
N has the same regularity as uk

N because it is equal to
uk
N − χEk

N
. We prove in Lemmata 9.1, 9.2 that uk

N is close to χEk
N

and that the

local ergodic theorem holds for LEN
uk
N if γN is larger than the equilibration

times in the valleys and smaller than the transition times between valleys.

9.1. The enlarged process

We assume below that the reader is familiar with the results on enlarged and
reflected chains summarized in Section A.

We do not require below the process ηN (t) to be reversible, but we impose

certain conditions on the reflected processes. Denote by ηR,k
N (t) the process ηN (t)

reflected at Ek
N . Recall that this means that we forbid all jumps between Ek

N

and its complement, and consider the resulting dynamics in Ek
N .

Denote by πEk the stationary measure πN conditioned to Ek
N . We assume

that for all k ∈ S the reflected process at Ek
N is irreducible and that πEk is a

stationary state (and therefore the unique stationary state up to multiplicative
constants). If the process is reversible, the second condition follows from the
first one. By Lemma A.7, this is also the case in the non-reversible setting if the
valley Ek

N is formed by cycles.

Denote by L
R,k
N the generator of the process ηR,k

N (t) and by tk,Nrel the relaxation
time of the symmetric part of the generator:

1

tk,Nrel

= inf
f

〈 (−L
R,k
N ) f , f 〉π

Ek

〈 f , f 〉π
Ek

,

where the infimum is carried over all zero-mean functions f : Ek
N → R.
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Let E�,k
N be copies of the sets Ek

N , k ∈ S, and set

E�
N :=

⋃
k∈S

E
�,k
N , Ĕ

�,k
N :=

⋃
j �=k

E
�,j
N .

Denote by P� : EN ∪E�
N → EN ∪E�

N the application which maps a configuration
in EN , E�

N , to its copy in E�
N , EN , respectively.

Fix a sequence γN , and denote by ζN (t) the γN -enlargement of the trace
process ηEN (t). The process ζN (t) is a Markov chain taking values in EN ∪ E�

N

and whose generator, denoted by LEN ,�, is given by

(LEN ,�f)(η) =
∑
ξ∈EN

RT
N (η, ξ)

{
f(ξ)− f(η)

}
+

1

γN

{
f(P�η)− f(η)

}
, η ∈ EN ,

(LEN ,�f)(η) =
1

γN

{
f(P�η)− f(η)

}
, η ∈ E�

N .

In this formula, RT
N (η, ξ) represents the jump rates of the trace process ηEN (t).

Hence, from a configuration η ∈ E�
N the chain may only jump to P�η and this

happens at rate 1/γN . From a configuration η ∈ EN , besides the jumps of the
original chain, the enlarged process may also jump to P�η and this happens at
rate 1/γN . The parameter γN will be large, which makes the jumps between E�

N

and EN rare.
The stationary state of ζN (t), denoted by π�

E, is given by

π�
E(η) = π�

E(P�η) = (1/2)πE(η) , η ∈ EN ,

where, recall, πE stands for the stationary state πN conditioned to EN .
In dynamics in which the process jumps to a new valley before visiting all

configurations in the valley, as configurations are not visited, it makes more
sense to suppose that the dynamics starts from a distribution rather than from
a configuration. Denote this initial distribution by νN and assume that there
exist � ∈ S and a finite constant C0 such that for all N ≥ 1

νN (E�
N ) = 1 and EπE

[ (dνN
dπE

)2 ]
≤ C0

πE(E�
N )

· (9.2)

Note that the measure πE� satisfies this condition.
For two non-empty, disjoint subsets A, B of EN ∪ E∗

N , denote by cap�(A,B)
the capacity between A and B for the enlarged process. Consider two sequences
(aN : N ≥ 1), (bN : N ≥ 1) of positive real numbers. We say that aN is much
smaller than bN , aN � bN , if limN→∞ aN/bN = 0.

Lemma 9.1. Fix k ∈ S, two sequences of positive numbers γN , θN , and a
sequence of probability measures νN satisfying (9.2). Assume that γN � θN and
that there exists a finite constant C0 such that for all N ≥ 1

cap�(E
�,k
N , Ĕ�,k

N )

π�
E(E

�,k
N )

≤ C0

θN
· (9.3)
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Then, representing by uk
N the solution of the resolvent equation (9.1),

lim
N→∞

sup
t≥0

EνN

[ ∣∣χEk
N
(ηE(tθN )) − uk

N (ηE(tθN ))
∣∣ ] = 0 .

Denote by ζE
�
N (t) the trace of the process ζN (t) on E�

N , and by P�,γN
η , η ∈

EN∪E�
N , the probability measure onD([0,∞),EN∪E�

N ) induced by the enlarged
process starting from η. Let r�N (j, k), j 	= k ∈ S, be the coarse-grained jump

rates at which the trace process ζE
�
N (t) jumps from E

�,j
N to E

�,k
N . By (5.5), these

rates are given by

r�N (j, k) =
1

π�
E(E

�,j
N )

∑
η∈E

�,j
N

π�
E(η)λ�(η)P

�,γN
η

[
H(E�,k

N ) < H+(Ĕ�,j
N )

]
, (9.4)

where λ�(η) represents the holding rates of ζN (t). Since the enlarged process
jumps from η ∈ E�

N to P�η at rate γN , the previous expression is equal to

1

γN πE(E
j
N )

∑
η∈E

j
N

πE(η)P
�,γN
η

[
H(E�,k

N ) < H(Ĕ�,j
N )

]
.

According to Section 6, in the reversible case, the coarse-grained jump rates
r�N (j, k) can be expressed in terms of capacities, while in the non-reversible
case they can be computed if there are good approximations of the equilibrium
potential. Assume, from now on, that these rates converge: There exist a time-
scale θN and jump rates r(j, k) such that

lim
N→∞

θN r�N (j, k) = r(j, k) for all j 	= k ∈ S . (9.5)

Condition (9.3) follows from this hypothesis since

cap�(E
�,k
N , Ĕ�,k

N ) = π�
E(E

�,k
N )

∑
��=k

r�N (k, �) .

The sequence θN represents the time-scale at which the process jumps be-
tween valleys. The proof of a metastable behavior is set up on the ground that
this time-scale is much larger than the equilibration time inside the valleys. This
hypothesis is formulated here by requiring the relaxation times of the processes
reflected at a valleys to be much smaller than θN : for all k ∈ S,

tk,Nrel � θN . (9.6)

Let wk
N = LEN

uk
N . Recall from (5.3) that GN represents the σ-algebra of

subsets of EN generated by the sets Ej
N , j ∈ S. Let

ŵk
N (η) = EπE

[
wk

N | GN

]
. (9.7)
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Lemma 9.2. Fix � ∈ S, and a sequence of probability measures νN satisfying
(9.2). Assume that for all j, k ∈ S,

πN (Ek
N )

πN (E�
N )

tj,Nrel � θN . (9.8)

Let γN be a sequence such that maxj,k α
j,k
N � γN � θN , where αj,k

N stands for
the left-hand side of (9.8). Then, for all T > 0, k ∈ S,

lim
N→∞

EνN

[
sup

t≤TθN

∣∣∣ ∫ t

0

{
wk

N (ηEN (s))− ŵk
N (ηEN (s))

}
ds

∣∣∣ ] = 0 .

By (9.12) and a straightforward computation,

ŵk
N (η) =

∑
j∈S

r�N (j, k) χ
E

j
N
(η) ,

where r�N (j, k), j 	= k, are the coarse-grained jump rates introduced in (9.4),
and r�N (j, j) = −

∑
k �=j r

�
N (j, k). Thus, for every function F : S → R,∑

k∈S

F (k) ŵk
N (η) =

∑
j∈S

χ
E

j
N
(η)

∑
k �=j

r�N (j, k) [F (k)− F (j) ] . (9.9)

Fix � ∈ S and a sequence of probability measures satisfying conditions (9.2).
Let PN be the probability measure on D([0,∞), S) induced by the process XT

N

and the measure νN . Next theorem is the main result of this section.

Theorem 9.3. Fix � ∈ S and a sequence νN of probability measures satisfying
(9.2). Assume that conditions (9.5) and (9.8) are in force. Then, every limit
point P of the sequence PN such that

P
[
X(t−) = X(t)

]
for all t > 0 . (9.10)

solves the (L, δ�) martingale problem, where L is the generator of the S-valued
Markov chain whose jump rates are r(j, k).

Theorem 9.3 describes the asymptotic evolution of the trace of the Markov
η(t) on EN . The next lemma shows that in the time scale θN the time spent on
the complement of EN is negligible. The proof is similar to the one of Lemma
7.3 and uses Schwarz inequality and assumption (9.2) to replace νN by πN .

Lemma 9.4. Assume that

lim
N→∞

π(ΔN )

π(Ej
N )

= 0

for all j ∈ S. Fix � ∈ S, and let {νN : N ≥ 1} be a sequence of probability
measures satisfying (9.2). Then, for every t > 0,

lim
N→∞

EνN

[ ∫ t

0

χΔN
(η(sθN )) ds

]
= 0 .
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Remark 9.5. The introduction of the enlarged process is inspired by the defi-
nition of the soft hitting time of Bianchi and Gaudillière [24].

Remark 9.6. Hypothesis (9.8) can be divided in two: Assume (9.6), and suppose
that there exist constants 0 < c0 < C0 < ∞ such that c0 πN (Ek

N ) ≤ πN (E�
N ) ≤

C0 πN (Ek
N ) for all k, � ∈ S.

Remark 9.7. Hypothesis (9.8) can be weaken as follows. Instead of fixing the
same rate γN for all valleys, we may choose a valley-dependent rate. This does
not alter the stationary state, and it permits to choose larger parameters γN for
deeper valleys. Assumption (9.8) may also be weaken to admit a deep valley, all
the other ones being shallow (cf. [20]).

Remark 9.8. In Subsection 13.5, we apply the method presented above to a
polymer model examined by Caputo et al. in [37, 35]. It can also be employed to
derive the reduced model of the random walk presented in Section 2. We refer to
in [20]. Lacoin and Teixeira [84] followed this scheme to prove the metastable
behavior of a polymer interface which interacts with an attractive substrate.

Proof of Theorem 9.3. Fix � ∈ S and a sequence νN of probability measures
satisfying (9.2). Fix a function F : S → R and a limit point P of the sequence
PN satisfying (9.10). Assume, without loss of generality, that PN converges to
P. We claim that

MF (t) := F (Xt) − F (X0) −
∫ t

0

(LF )(Xs) ds (9.11)

is a martingale under P, where L is the generator associated to the jump rates
r(j, k) introduced in (9.5).

Fix 0 ≤ s < t, q ≥ 1, 0 ≤ t1 < · · · < tq ≤ s, and a bounded function
g : Sq → R. Let G = g(X(t1), . . . , X(tq)), where X(s) represents the coordinate
process of D([0,∞), S). We shall prove that

E
[
MF (t)G

]
= E

[
MF (s)G

]
,

where E stands for the expectation with respect to P.
Fix a sequence γN such that for all j, k ∈ S,

πN (Ek
N )

πN (E�
N )

tj,Nrel � γN � θN ,

which is possible in view of (9.8), and recall that we denote by uk
N the solution

of (9.1). Let

HN (η) =
∑
k∈S

F (k)uk
N (η) , η ∈ EN .

By the Markov property of the trace process ηE(t),

MN
t = HN (ηE(tθN )) − HN (ηE(0)) −

∫ tθN

0

(LEN
HN )(ηE(s)) ds
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is a martingale. In particular, if

GN = g
(
XT

N (t1) , . . . , X
T
N (tq)

)
= g

(
XT

N (t1θN ) , . . . , XT
N (tqθN )

)
,

we have that
EνN

[
MN

t GN

]
= EνN

[
MN

s GN

]
,

so that

EνN

[
GN

{
HN (ηE(tθN )) − HN (ηE(sθN )) −

∫ tθN

sθN

(LEN
HN )(ηE(r)) dr

}]
= 0 .

By Lemma 9.1,

lim
N→∞

sup
r≥0

EνN

[ ∣∣HN (ηE(rθN )) − (F ◦ΨN )(ηE(rθN ))
∣∣ ] = 0 .

Thus, by the penultimate equation and sinceXT
N (t)=XT

N (tθN )=ΨN (ηEN (tθN )),

lim
N→∞

EνN

[
GN

{
F (XT

N (t)) − F (XT
N (s)) −

∫ tθN

sθN

(LEN
HN )(ηE(r)) dr

}]
= 0 .

By definition of HN and wk
N , introduced just above (9.7), LEN

HN =∑
k F (k)wk

N . Hence, by Lemma 9.2 and (9.9),

lim
N→∞

EνN

[
GN

{
F (XT

N (t)) − F (XT
N (s)) −

∫ t

s

(L�
NF )(XT

N (r)) dr
}]

= 0 .

where L�
N is the generator of a S-valued Markov chain given by

(L�
NF )(j) =

∑
k∈S

θN r�N (j, k) [F (k)− F (j) ] .

At this point, the martingale has been expressed as a function of the process
XT

N (t). By definition of the measure PN , the previous expectation is equal to

EN
[
g
(
X(t1) , . . . , X(tq)

){
F (X(t)) − F (X(s)) −

∫ t

s

(L�
NF )(X(r)) dr

}]
,

where, recall, X(t) represents the coordinate process in D([0,∞), S) and EN

expectation with respect to PN .
By assumption (9.5), (L�

NF )(k) converges to (LF )(k) for all k ∈ S. Therefore,
as PN converges to P and in view of (9.10) [which guarantees that the finite-
dimensional projections are continuous], passing to the limit, we get that

E
[
g
(
X(t1) , . . . , X(tq)

){
F (X(t)) − F (X(s)) −

∫ t

s

(LF )(X(r)) dr
}]

= 0 .

This shows that (9.11) holds, and completes the proof of the theorem.
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9.2. The resolvent equation

We examine in this subsection the asymptotic behavior of the solution of resol-
vent equation (9.1).

Fix γN > 0 and consider the γN -enlargement of the process ηEN (t). Let

hk
N : EN ∪ E�

N → [0, 1] be the equilibrium potential between the sets E
�,k
N and

Ĕ
�,k
N :

hk
N (η) := P�,γN

η

[
H(E�,k

N ) < H(Ĕ�,k
N )

]
. (9.12)

Since LEN ,�h
k
N = 0 on EN , we deduce that the restriction of hk

N to EN solves
the resolvent equation (9.1). Since the solution is unique, uk

N = hk
N on EN

and we have a simple stochastic representation of the solution of the resolvent
equations.

Remark 9.9. The enlargement of the chain ηEN (t) thus provides a stochastic
representation of the resolvent equation (9.1).

Lemma 9.10. There exists a finite constant C0, independent of N , such that
for all k ∈ S,

1

γN

∑
η∈Ek

N

πE(η) [1− uk
N (η)]2 + 〈 (−LEN

)uk
N , uk

N 〉πE
+

1

γN

∑
η∈Ĕk

N

πE(η)u
k
N (η)2

≤ C0

θN
πE(E

k
N ).

Proof. Denote the left-hand side of the inequality by AN , and by BN the same
expression with πE in place of π�

E. Since π�
E(η) = (1/2)πE(η), η ∈ EN , AN =

2BN . As uk
N and hk

N coincide on EN , we may replace the former by the latter.
On the other hand, as hk

N = χ
E

k,�
N

on E�
N , BN = DN,�(h

k
N ), where DN,�(f)

represents the Dirichlet form of f with respect to the enlarged process ζN (t).

By (B.7),

DN,�(h
k
N ) = cap�(E

�,k
N , Ĕ�,k

N ) .

Thus, AN = 2 cap�(E
�,k
N , Ĕ�,k

N ). By assumption (9.3), the capacity is less than or

equal to C0 π
�
E(E

�,k
N )/θN for some finite constant C0. This proves the assertion

because π�
E(E

�,k
N ) = (1/2)πE(E

k
N ).

Proof of Lemma 9.1. Fix � ∈ S, a sequence of probability measures νN sat-
isfying the hypotheses of the lemma and t > 0. Denote by SE(t), t ≥ 0,
the semigroup associated to the trace process ηE(t), and by fN

t the Radon-
Nikodym derivative dνNSE(t)/dπE. By (A.9), EπE

[(fN
t )2] ≤ EπE

[(fN
0 )2]. Hence,

by Schwarz inequality, the square of the expectation appearing in the statement
of the lemma is bounded above by

EπE

[(dνN
dπE

)2]
EπE

[ (
χE�

N
− u�

N

)2 ]
.
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By Lemma 9.10, the second term is bounded by C0 γN πE(E
�
N )/θN . Thus, by the

assumption on the sequence of probability measures νN , the previous displayed
formula is bounded by C0 γN/θN . This expression vanishes as N → ∞ by the
hypothesis on γN .

9.3. Local ergodicity

The proof of Lemma 9.2 is divided in several steps. Denote by 〈 · , · 〉πE
the scalar

product in L2(πE). For a zero-mean function f : EN → R, let ‖f‖−1 be the H−1

norm of f associated to the generator LEN
:

‖f‖2−1 = sup
h

{
2 〈 f , h〉πE

− 〈h , (−LEN
)h 〉πE

}
,

where the supremum is carried over all functions h : EN → R. By [82, Lemma
2.4], for every function f : EN → R which has zero-mean with respect to πE,
and every T > 0,

EπE

[
sup

0≤t≤T

(∫ t

0

f(ηEN (s)) ds
)2 ]

≤ 24T ‖f‖2−1 . (9.13)

Recall that we denote by πEk the stationary measure πN conditioned to Ek
N .

Let LR,Ek
N
be the generator of the reflected process ηN (t) at Ek

N . For a function

f : Ek
N → R which has zero-mean with respect to πEk , denote by ‖f‖k,−1 the

H−1 norm of f with respect to the generator LR,Ek
N
:

‖f‖2k,−1 = sup
h

{
2 〈 f , h 〉π

Ek
− 〈h , (−LR,Ek

N
)h 〉π

Ek

}
,

where the supremum is carried over all functions h : Ek
N → R. It is clear that∑

j∈S

πE(E
j
N ) 〈h , (−LR,Ej

N
)h 〉π

Ej ≤ 〈h , (−LEN
)h 〉πE

for any function h : EN → R. These expression are not equal because two
kinds of jumps appear on the right-hand side and do not on the left: The trace
process may jump between valleys, and it may also perform a jump inside a
valley (crossing the set ΔN ) which is not possible in the original dynamics.

It follows from the previous inequality and from the formulae for the H−1

norms that for every function f : EN → R which has zero-mean with respect to
each measure πEj ,

‖f‖2−1 ≤
∑
j∈S

πE(E
j
N ) ‖f‖2j,−1 . (9.14)

Lemma 9.11. Let {νN : N ≥ 1} be a sequence of probability measures on EN .
Then, for every function f : EN → R which has zero-mean with respect to each
measure πEj and for every T > 0,(

EνN

[
sup
t≤T

∣∣∣ ∫ t

0

f(ηE(s)) ds
∣∣∣ ] )2

≤ 24T EπE

[(νN
πE

)2] ∑
j∈S

πE(E
j
N ) ‖f‖2j,−1 .
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Proof. By Schwarz inequality, the expression on the left hand side is bounded
above by

EπE

[(νN
πE

)2]
EπE

[
sup
t≤T

(∫ t

0

f(ηE(s)) ds
)2 ]

.

By (9.13) and by (9.14), the second expectation is bounded by

24T
∑
j∈S

πE(E
j
N ) ‖f‖2j,−1 ,

as claimed.

Proof of Lemma 9.2. Fix � ∈ S, and a sequence of probability measures νN
satisfying the hypotheses of the lemma. Fix k ∈ S. Since wk

N − ŵk
N has zero-

mean with respect to each πEj , by the assumption on the sequence νN and
Lemma 9.11, the square of the expectation appearing in the statement of the
lemma is bounded by

C0 T θN
πE(E�)

∑
j∈S

πE(E
j
N ) ‖wk

N − ŵk
N‖2j,−1 (9.15)

for some finite constant C0.
By (9.1), on the set Ek

N , LEN
uk
N = − (1/γN ) (1 − uk

N ), so that wk
N − ŵk

N =
(1/γN ) (uk

N − ûk
N ). Hence, by the spectral gap of the reflected process,

‖wk
N − ŵk

N ‖2k,−1 =
1

γ2
N

‖uk
N − ûk

N ‖2k,−1 ≤ tk,Nrel

γ2
N

‖uk
N − ûk

N ‖2π
Ek

.

Since ‖uk
N − ûk

N ‖2π
Ek

≤ ‖uk
N − 1 ‖2π

Ek
, by Lemma 9.10,

‖wk
N − ŵk

N ‖2k,−1 ≤ C0
tk,Nrel

γN θN

for some finite constant C0.
Similarly, since LEN

uk
N = (1/γN )uk

N on the sets Ej
N , j 	= k,

‖wk
N − ŵk

N ‖2j,−1 =
1

γ2
N

‖uk
N − ûk

N ‖2j,−1 ≤ C0
πE(E

k
N )

πE(E
j
N )

tj,Nrel

γN θN
·

Therefore, the sum appearing in (9.15) is bounded by

C0 T |S| maxj∈S tj,Nrel

γN

πN (Ek
N )

πN (E�
N )

·

By the hypotheses of the lemma, this expression vanishes as N ↑ ∞, which
completes the proof.
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Proof of Lemma 9.4.. Fix � ∈ S, and let νN be a sequence of probability mea-
sures satisfying (9.2). By Schwarz inequality, the square of the expectation ap-
pearing in the statement of the lemma is bounded above by

1

πN (EN )
EπE

[ (dνN
dπE

)2]
EπN

[( ∫ t

0

χΔN

(
η(sθN )

)
ds
)2 ]

By assumption (9.2), the first expectation is bounded by C0/πE(E
�
N ). On the

other hand, by Schwarz inequality, the second expectation is less than or equal
to

tEπN

[ ∫ t

0

χΔN

(
η(sθN )

)
ds

]
= t2πN (ΔN ) .

The expression appearing in the penultimate displayed formula is thus bounded
above by C0 t

2 [πN (ΔN )/πN (E�
N ) ], which concludes the proof of the lemma.

10. Tightness

In this section, we present sufficient conditions for the tightness of the sequence
PN introduced in Theorems 4.2, 8.2 and 9.3. We need a slight generalization of
Lemma 8.1. Recall the notation introduced just before this lemma. We proved
there that for each t ≥ 0 and η ∈ EN , SEN

(t) is a stopping time with respect
to the filtration (Fη

t : t ≥ 0).

Lemma 10.1. Let {Gr : r ≥ 0} be the filtration given by Gr = Fη
SEN

(r), and let

τ be a stopping time with respect to {Gr}. Then, SEN
(τ) is a stopping time with

respect to {Fη
t }.

Proof. Fix a stopping time τ with respect to the filtration {Gr}. This means
that for every t ≥ 0, {τ ≤ t} ∈ Gt = Fη

SEN
(t). Hence, for all r ≥ 0,

{τ ≤ t} ∩ {SEN
(t) ≤ r} ∈ Fη

r .

We claim that {SEN
(τ) < t} ∈ Fη

t . Indeed, by (8.3), this event is equal to
{TEN

(t) > τ}, which can be written as⋃
q∈Q

{τ ≤ q} ∩ {TEN
(t) > q} =

⋃
q∈Q

{τ ≤ q} ∩ {SEN
(q) < t}

=
⋃
q∈Q

⋃
n≥1

{τ ≤ q} ∩ {SEN
(q) ≤ t− (1/n)} .

By the penultimate displayed equation, each term belongs to Fη
t−(1/n) ⊂ Fη

t ,

which proves the claim.
We may conclude. Since

{SEN
(τ) ≤ t} =

⋂
q

{SEN
(τ) < t+ q} ,
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where the intersection is carried out over all q ∈ (0,∞) ∩ Q, and since the
filtration {Fη

t } is right continuous, by the previous claim, {SEN
(τ) ≤ t} ∈

Fη
t .

Recall that ξN (t) = ηN (tθN ), and the definition of the measure QN
η intro-

duced just before Lemma 8.1. Expectation with respect to this measure is de-
noted by QN

η , as well. Note that ηEN (tθN ) = ξEN (t).

Lemma 10.2. Suppose that for all t > 0,

lim
N→∞

max
ξ∈EN

QN
ξ

[ ∫ t

0

χΔN
(ξN (s)) ds

]
= 0 , (10.1)

and that
lim
δ→0

lim sup
N→∞

max
j∈S

max
ξ∈EN

j

QN
ξ

[
H(Ĕj

N ) ≤ δ
]
= 0 . (10.2)

Then, the sequence of measures PN is tight. Moreover, every limit point P is
such that

P
[
X(t) 	= X(t−)

]
= 0

for every t > 0.

Proof. Fix η ∈ EN . According to Aldous’ criterion [26], we have to show that
for every δ > 0, R > 0,

lim
a0→0

lim sup
ε→0

supPN
η

[ ∣∣XT
N (τ + a) − XT

N (τ)
∣∣ > δ

]
= 0 ,

where the supremum is carried over all stopping times τ bounded by R and
all 0 ≤ a < a0. Since XT

N (t) = ΨN (ξEN (t)), the previous probability can be
written as

QN
η

[ ∣∣ΨN

(
ξEN (τ + a)

)
− ΨN

(
ξEN (τ)

) ∣∣ > δ
]
.

Since |ΨN

(
ξEN (τ + a)

)
− ΨN

(
ξEN (τ)

)
| > δ entails that ΨN

(
ξEN (τ + a)

)
	=

ΨN

(
ξEN (τ)

)
, the expression in the previous displayed equation is bounded by

QN
η

[
ΨN

(
ξEN (τ + a)

)
	= ΨN

(
ξEN (τ)

) ]
.

Fix b = 2a0 so that b − a ≥ a0. Decompose this probability according to the
event {SEN

(τ + a)− SEN
(τ) > b} and its complement.

Suppose that SEN
(τ+a)−SEN

(τ) > b. In this case, SEN
(τ)+b < SEN

(τ+a),
so that TEN

(SEN
(τ)+b) ≤ TEN

(SEN
(τ+a)) = τ+a. Hence, as TEN

(SEN
(t)) = t,

TEN
(SEN

(τ) + b)− TEN
(SEN

(τ)) ≤ a, that is,∫ SEN
(τ)+b

SEN
(τ)

χEN
(ξN (s)) ds ≤ a .

In other words, ∫ SEN
(τ)+b

SEN
(τ)

χΔN
(ξN (s)) ds ≥ b− a .



Metastable Markov chains 183

By Lemma 10.2, SE(τ) is a stopping time for the filtration {Fη
t }. Hence, by

the strong Markov property and since ξN (SEN
(t)) belongs to EN for all t ≥ 0,

QN
η

[
SEN

(τ + a)− SEN
(τ) > b

]
≤ QN

η

[ ∫ SEN
(τ)+b

SEN
(τ)

χΔN
(ξN (s)) ds ≥ b− a

]
≤ max

ξ∈EN

QN
ξ

[ ∫ b

0

χΔN
(ξN (s)) ds ≥ b− a

]
.

By Chebychev inequality, a change of variables and by our choice of b, this
expression is less than or equal to

1

(b− a)
max
ξ∈EN

QN
ξ

[ ∫ b

0

χΔN
(ξN (s)) ds

]
≤ 1

a0
max
ξ∈EN

QN
ξ

[ ∫ 2a0

0

χΔN
(ξN (s)) ds

]
.

By assumption (10.1), this expression vanishes as N → ∞ for every a0 > 0.
We turn to the case {SEN

(τ + a)− SEN
(τ) ≤ b}. On this set we have that{

ΨN (ξN (SEN
(τ + a))) 	= ΨN (ξN (SEN

(τ)))
}

⊂
{
ΨN (ξN (SEN

(τ) + c)) 	= ΨN (X(SE(τ))) for some 0 ≤ c ≤ b
}
.

Since SEN
(τ) is a stopping time for the filtration {Ft} and since ξN (SEN

(t))
belongs to EN for all t,

QN
η

[
ΨN (ξN (SEN

(τ + a))) 	= Ψ(ξN (SEN
(τ))) , SEN

(τ + a)− SE(τ) ≤ b
]

≤ max
ξ∈EN

QN
ξ

[
ΨN (ξN (c)) 	= ΨN (ξ) for some 0 ≤ c ≤ b

]
.

If ξ ∈ E
j
N , this later event corresponds to the event {H(Ĕj

N ) ≤ b}. The maximum
is thus bounded by

max
j∈S

max
ξ∈E

j
N

QN
ξ

[
H(Ĕj

N ) ≤ b
]
= max

j∈S
sup
ξ∈E

j
N

QN
ξ

[
H(Ĕj

N ) ≤ 2a0
]
.

By assumption (10.2), this expression vanishes as N → ∞ and then a0 → 0.
This completes the proof of the tightness.

The same argument shows that for every t > 0,

lim
a0→0

lim sup
N→∞

PN
[
X(t− a) 	= X(t) for some 0 ≤ a ≤ a0

]
= 0 .

Hence, if P is a limit point of the sequence PN ,

lim
a0→0

P
[
X(t− a) 	= X(t) for some 0 ≤ a ≤ a0

]
= 0 .

This completes the proof of the second assertion of the lemma since {X(t) 	=
X(t−)} ⊂ {X(t− a) 	= X(t) for some 0 ≤ a ≤ a0} for all a0 > 0.
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Conditions (10.1), (10.2), can be formulated in terms of capacities. Next
results is Theorem 2.6 in [15] and Theorem 2.1 in [19]. Note that we do not
require the process to be reversible.

Theorem 10.3. Assume that condition (5.4) is in force: For all j ∈ S, there
exists ξj,N ∈ E

j
N such that

lim
N→∞

max
η∈E

j
N , η �=ξj,N

capN (Ej
N , Ĕj

N )

capN (η, ξj,N )
= 0 .

Assume, furthermore, that the coarse-grained jump rates converge: For all j 	=
k ∈ S, there exists r(j, k) ∈ [0,∞) such that

lim
N→∞

rN (j, k) = r(j, k) .

Let A ⊂ S be the set of absorbing points of the Markovian dynamics induced by
the rates r(j, k). Assume that for all j ∈ A, t > 0,

lim sup
N→∞

max
ξ∈EN

j

QN
ξ

[ ∫ t

0

χΔN
(ξN (s)) ds

]
= 0 .

Assume that for all k ∈ S \A,

lim
N→∞

πN (ΔN )

πN (Ek
N )

= 0 .

Then, conditions (10.1), (10.2) hold.

This result, which guarantees tightness, together with Theorems 4.2, 5.1 and
Remark 5.3, which provide uniqueness, yield the convergence of the sequence
XT

N .

Theorem 10.4. Fix k ∈ S, a sequence ηN ∈ Ek
N , and denote by PN the prob-

ability measure on D([0,∞), S) induced by the process XT
N (t) and the measure

PN
ηN

. Assume the hypotheses of Theorem 10.3. Then, the sequence PN converges
to the solution of the (L, δk) martingale problem, where L is the generator of
the S-valued Markov chain whose jump rates are r(j, k).

11. The last passage

We prove in this section that the last passage process, introduced in Definition
2.1, converges if conditions (T1), (T2) hold. In order to prove this statement,
we first define a metric in the path space D([0,∞), S ∪ {d}) which induces the
Skorohod topology. Assume that 0 	∈ S and identify the point d with 0 ∈ Z so
that S ∪ {d} is a metric space with the metric induced by Z.

For each integer m ≥ 1, let Λm denote the class of strictly increasing, con-
tinuous mappings of [0,m] onto itself. If λ ∈ Λm, then λ0 = 0 and λm = m. In



Metastable Markov chains 185

addition, consider the function

gm(t) =

⎧⎨⎩ 1 if t ≤ m− 1 ,
m− t if m− 1 ≤ t ≤ m ,
0 if t ≥ m .

For any integer m ≥ 1 and ω, ω′ ∈ D([0,∞), S ∪ {d}), define dm(ω, ω′) to be
the infimum of those positive ε for which there exists λ ∈ Λm satisfying

sup
t∈[0,m]

|λt − t| < ε and sup
t∈[0,m]

| gm(λt)ω(λt) − gm(t)ω′(t) | < ε .

Define the metric d in D([0,∞), S ∪ {d}) by

d(ω, ω′) =

∞∑
m=1

1

2m
{
1 ∧ dm(ω, ω′)

}
.

This metric induces the Skorohod topology in the path space D([0,∞), S ∪{d})
[26]. Next result is Proposition 4.4 in [15].

Recall from (2.3) the definition of XV
N (t) and let XV

N (t) = XV
N (tθN ). Recall

from assumption (T1) the definition of XT
N (t)

Theorem 11.1. Suppose that (ηN (t) : t ≥ 0), N ≥ 1, satisfies condition (T2).
Then, for any sequence (ηN : N ≥ 1), ηN ∈ EN ,

lim
N→∞

EηN

[
d(XV

N ,XT
N )

]
= 0 .

It follows from this result that the last-passage process XV
N (t) converges

whenever the trace process XT
N (t) converges and (T2) is in force.

12. The finite-dimensional distributions

Recall the definition of the process XN (t) defined in (2.2), and the one of the
reduced model X(t) introduced in Definition 2.1. Next result is Proposition 1.1
of [89].

Theorem 12.1. Assume that conditions (T1) and (T2) of Definition 2.2 are
in force, and that

lim
δ→0

lim sup
N→0

sup
η∈EN

sup
δ≤s≤2δ

PN
η

[
η(sθN ) ∈ ΔN

]
= 0 . (12.1)

Then, the finite-dimensional distributions of XN (t) = XN (tθN ) converge to the
finite-dimensional distributions of X(t).

With further mixing conditions one can prove that the state of the process
at time tθN is a time-dependent convex combinations of states supported in the
valleys.
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Denote by pt(j, k) the transition probabilities of the reduced model X(t), by
πk
N the measure πN conditioned to Ek

N , and by ‖μ − ν‖TV the total variation
distance between two probability measures μ and ν defined on EN . Let (SN (t) :
t ≥ 0) be the semigroup associated to the Markov chain ηN (t). Then, under
mixing conditions specified in [89], for every j ∈ S and sequence ηN ∈ EN

j ,

lim
N→∞

∥∥δηN
SN (tθN ) −

∑
k∈S

pt(j, k)π
k
N

∥∥
TV

= 0 ,

where δη, η ∈ EN , stands for the Dirac measure concentrated on the configura-
tion η.

13. Examples

We present in this section some dynamics whose metastable behavior has been
derived with the arguments presented in the article.

13.1. Random walks in a potential field

We describe the reversible version of the dynamics. The non-reversible one is
obtained by replacing 2-cycles, in the terminology of Subsection A.2, by k-cycles.

Let Ξ be an open and bounded subset of Rd, and denote by ∂ Ξ its boundary,
which is assumed to be a smooth manifold. Fix a twice continuously differen-
tiable function F : Ξ ∪ ∂ Ξ → R. We assume that the second partial derivatives
of F are Lipschitz continuous; that all the eigenvalues of the Hessian of F at the
critical points which are local minima are strictly positive; that the Hessian of F
at the critical points which are not local minima or local maxima has one strictly
negative eigenvalue, all the other ones being strictly positive. In dimension 1 this
assumption requires the second derivative of F at the local minima to be strictly
negative. Finally, we assume that for every x ∈ ∂ Ξ, (∇F )(x) ·n(x) > 0, where
n(x) represents the exterior normal to the boundary of Ξ, and x · y the scalar
product of x, y ∈ Rd. This hypothesis guarantees that F has no local minima
at the boundary of Ξ.

Denote by ΞN the discretization of Ξ: ΞN = Ξ ∩ (N−1Zd), N ≥ 1, where
N−1Zd = {k/N : k ∈ Zd}. The elements of ΞN are represented by the symbols
x = (x1, . . . ,xd), y and z. Let μN be the probability measure on ΞN defined
by

μN (x) =
1

ZN
e−NF (x) , x ∈ ΞN ,

where ZN is the partition function ZN =
∑

x∈ΞN
exp{−NF (x)}. Let {ηN (t) :

t ≥ 0} be the continuous-time Markov chain on ΞN whose generator LN is given
by

(LNf)(x) =
∑

y∈ΞN

‖y−x‖=1/N

e−(1/2)N [F (y)−F (x)] [f(y)− f(x)] , (13.1)
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where ‖ · ‖ represents the Euclidean norm of Rd. The rates were chosen for the
measure μN to be reversible for the dynamics.

We restrict our atention here to the evolution among the shallowest valleys.
One can infer from this discussion the general case which can be found in [91].
Denote by M the set of local minima and by S the set of saddle points of F in
Ξ. Let S1 be the set of the lowest saddle points:

S1 =
{
z ∈ S : F (z) = min{F (y) : y ∈ S}

}
.

We represent by z1, . . . , zn the elements of S1, S1 = {z1, . . . , zn}. Denote by
H the height of the saddle points in S1:

H = F (z1) .

Let Ω̂ be the level set of Ξ defined by

Ω̂ =
{
x ∈ Ξ : F (x) ≤ H

}
.

The set Ω̂ can be written as a disjoint union of connected components: Ω̂ =
∪1≤j≤κΩ̂j , where Ω̂j∩Ω̂k = ∅, j 	= k, and where each set Ω̂j is connected. Some
connected component may not contain any saddle point in S1, and some may
contain more than one saddle point. Denote by Ωj , 1 ≤ j ≤ m, the connected

components Ω̂j′ which contain a point in S1.
Each component Ωj is a union of valleys, Ωj = Wj,1 ∪ · · · ∪Wj,mj . The sets

Wj,a are defined as follows. Let Ω̊j be the interior of Ωj . Each set Wj,a is the

closure of a connected component of Ω̊j . The intersection of two valleys is a
subset of the set of saddle points: Wj,a ∩ Wj,b ⊂ S1. Figure 6 illustrates the
valleys of two connected components.

Fig 6. Some valleys which form two connected components Ω1 and Ω2. The blue dots represent
the saddle points and the gray regions the points x in the valleys such that F (x) < H − ε.

Fix 1 ≤ j ≤ m and a connected component Ω = Ωj . Let S = {1, . . . , �}
denote the set of the indices of the valleys forming the connected component Ω:
Ω = W1 ∪ · · · ∪W�. Recall that F (z) = H, z ∈ S1. For ε > 0, 1 ≤ a ≤ �, let
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W ε
a = {x ∈ Wa : F (x) < H − ε}, and let

Ea
N = W ε

a ∩ ΞN , 1 ≤ a ≤ � .

Each valley Wa contains exactly one local minimum of F , denoted by ma. Let
ha = F (ma).

Let θ̂a = H − ha > 0, a ∈ S, be the depth of the valley Wa. The depths θ̂a
provide the time-scale at which a metastable behavior is observed. Let θ1 < θ2 <
· · · < θp, p ≤ �, be the increasing enumeration of the sequence θ̂a, 1 ≤ a ≤ �:

{θ̂1, . . . , θ̂�} = {θ1, . . . , θp} .

The chain exhibits a metastable behavior on p different time scales in the set
Ω. Let Tq = {a ∈ S : θ̂a = θq}, 1 ≤ q ≤ p, so that T1, . . . , Tp forms a partition
of S, and let

Sq = Tq ∪ · · · ∪ Tp , 1 ≤ q ≤ p .

Define the projection Ψq
N : ΞN → Sq ∪ {0}, 1 ≤ q ≤ p, as

Ψq
N (x) =

∑
a∈Sq

aχEa
N
(x) .

Note that Ψq
N (x) = 0 for all points x which do not belong to ∪a∈SqE

a
N . Denote

by Xq
N (t) the projection of the Markov chain ηN (t) by Ψq

N :

Xq
N (t) = Ψq

N (XN (t)) .

The theory presented in Sections 4–6 yields the existence, for each 1 ≤ q ≤ p,
of a time-scale βq

N and a Sq-valued Markov chain Xq(t) with the following
property. For each a ∈ Sq and sequence of configurations xN in Ea

N , starting
from xN , the finite-dimensional distributions of the projected process Xq

N (t) =
Xq

N (tβq
N ) converge to the ones of Xq(t). The time-scales βq

N can be explicitly
computed and are related to the capacity between valleys.

We refer to [91, 92, 93, 90] for more details. This model is at the origin of
the study of metastability from a dynamical point of view. The first results can
be traced back at least to Hood [76], van’t Hoff [75], Arrhenius [7], Eyring [58]
and Kramers [83]. We refer to the recent books by Olivieri and Vares [111] and
Bovier and den Hollander [31] and to the review by Berglund [23] for references
and alternative derivations of these results.

13.2. Spin dynamics

Since the seminal paper by Cassandro, Galves, Olivieri and Vares [38], which
introduced the pathwise approach to metastability, the metastable behavior of
many spin dynamics have been derived in different ways. We do not review here
the main results, but just illustrate the theory developed in the previous sections
with one example. We again refer the reader to [111, 31] for a complete list of
references on the subject.
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Denote by ΛL = {1, . . . , L}2 the two-dimensional discrete torus with L2 el-
ements, and let ΩL = {−1, 0, 1}ΛL . Elements of ΩL are represented by the
Greek letter σ. For x ∈ ΛL, σ(x) ∈ {−1, 0, 1} stands for the value at x of the
configuration σ and is called the spin at x of σ.

The Blume–Capel model was introduced in [27, 36] to study the 3He –4He
phase transition. One can think as a system of particles with spins. The value
σ(x) = 0 corresponds to the absence of particles, while σ(x) = ±1 to the
presence of a particle with spin equal to ±1.

Fix an external field h ∈ R, a magnetic field λ ∈ R, and denote byH : ΩL → R

the Hamiltonian given by

H(σ) =
∑

(σ(y)− σ(x))
2 − h

∑
x∈ΛL

σ(x) − λ
∑
x∈ΛL

σ(x)2 ,

where the first sum is carried over all unordered pairs of nearest-neighbor sites
of ΛL.

Denote by μβ the Gibbs measure associated to the Hamiltonian H at inverse
temperature β. This is the probability measure on ΩL given by

μβ(σ) =
1

Zβ
e−βH(σ), (13.2)

where Zβ is the partition function, the normalization constant which turns μβ

into a probability measure.
We refer to [47] for a description of the ground states, the configurations

which minimize the Hamiltonian H, according to the values of the parameters h
and λ. In all cases, the ground states form a subset of the set {−1,0,+1}, where
−1,0,+1 represent the configurations of ΩL with all spins equal to −1, 0,+1,
respectively.

The continuous-time Metropolis dynamics at inverse temperature β is the
Markov chain on ΩL, denoted by {σt : t ≥ 0}, whose infinitesimal generator Lβ

acts on functions f : ΩL → R as

(Lβf)(σ) =
∑
x∈ΛL

Rβ(σ, σ
x,+) [f(σx,+)− f(σ)]

+
∑
x∈ΛL

Rβ(σ, σ
x,−) [f(σx,−)− f(σ)] .

In this formula, σx,± represents the configuration obtained from σ by modifying
the spin at x as follows,

σx,±(z) :=

{
σ(x)± 1 mod 3 if z = x ,

σ(z) if z 	= x ,

where the sum is taken modulo 3, and the jump rates Rβ are given by

Rβ(σ, σ
x,±) = exp

{
− β

[
H(σx,±)−H(σ)

]
+

}
, x ∈ ΛL ,

where a+, a ∈ R, stands for the positive part of a: a+ = max{a, 0}.
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The Gibbs measure μβ introduced in (13.2) satisfies the detailed balance
conditions (A.3), and is therefore reversible for the dynamics.

Assume from now on that the chemical potential vanishes, λ = 0, and that
the magnetic field h is small and positive, 0 < h < 2. In this situation, the con-
figurations −1, 0 are local minima of the Hamiltonian, while the configuration
+1 is a global minimum. Moreover, H(0) < H(-1).

Assume that 2/h is not an integer and let n0 = �2/h�, where �a� stands
for the integer part of a ∈ R+. Denote by Rc the set of configurations with
n0(n0 + 1) + 1 0-spins forming, in a background of −1-spins, a n0 × (n0 + 1)
rectangle with an extra 0-spin attached to the longest side of this rectangle. This
means that the extra 0-spin is surrounded by three −1-spins and one 0-spins
which belongs to the longest side of the rectangle.

It is proved in [87, 88] that, as the temperature vanishes, starting from −1
the process visits the set Rc before hitting 0 or +1:

lim
β→∞

P−1[HRc < H{0,+1}] = 1 .

The set Rc represents the energetic barrier which has to be surmounted to
pass from −1 to {0,+1}. Fix ξ ∈ Rc, let

Δ = H(ξ) − H(−1) = 4(n0 + 1)− [n0(n0 + 1) + 1] ,

and let θβ be given by

θβ =
μβ(−1)

cap(−1, {0,+1}) =
[
1 + oβ(1)

] 3

4(2n0 + 1)

1

|ΛL|
eΔ β ,

where oβ(1) is a remainder which vanishes as β → ∞.
Fix d 	= 0, ±1, and denote by Ψ : ΩL → {−1, 0, 1, d} the projection defined

by Ψ(−1) = −1, Ψ(0) = 0, Ψ(+1) = +1, and Ψ(σ) = d, otherwise. The
main results in [87, 88] state that, starting from −1, the finite-dimensional
distributions of the coarse-grained chain Xβ(t) = Ψ

(
σ(θβt)

)
converge to the

ones of the {−1, 0, 1}-valued, continuous-time Markov chain X(t) in which 1 is
an absorbing state, and whose jump rates are given by

r(−1, 0) = r(0, 1) = 1 , r(−1, 1) = r(0,−1) = 0 .

The metastable behavior of this model has been explored by Cirillo and
Olivieri [47], Manzo and Olivieri [100], and more recently by Cirillo and Nardi
[44], and Cirillo, Nardi and Spitoni [46]. The mean-field Potts model is another
spin dynamics in which the spin may take more than two values. It has been
examine recently in [92] and by Nardi and Zocca in [103].

13.3. Zero range processes

Denote by N the set of non-negative integers, N = {0, 1, 2, ...}, by TL, L ≥ 1,
the discrete, one-dimensional torus with L points, and by η the elements of NTL
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called configurations. The total number of particles at x ∈ TL for a configuration
η ∈ NTL is represented by ηx. Let EN , N ≥ 1, be the set of configurations with
N particles:

EN :=
{
η ∈ NTL :

∑
x∈TL

ηx = N
}
.

Fix α > 1, and define g : N → R+ as

g(0) = 0 , g(1) = 1 and g(n) =
a(n)

a(n− 1)
, n ≥ 2 ,

where a(0) = 1, a(n) = nα, n ≥ 1. In this way,
∏n

i=1 g(i) = a(n), n ≥ 1, and
{g(n) : n ≥ 2} is a strictly decreasing sequence converging to 1 as n ↑ ∞.

Fix 1/2 ≤ p ≤ 1, and denote by p(x) the transition probability given by
p(1) = p, p(−1) = 1 − p, p(x) = 0, otherwise. Let σx,yη be the configuration
obtained from η by moving a particle from x to y:

(σx,yη)z =

⎧⎨⎩ ηx − 1 for z = x
ηy + 1 for z = y
ηz otherwise .

The nearest-neighbor, zero-range process associated to the jump rates {g(k) :
k ≥ 0} and the transition probability p(x) is the continuous-time, EN -valued
Markov process {ηN (t) : t ≥ 0} whose generator LN acts on functions f : EN →
R as

(LNf)(η) =
∑

x,y∈TL
x �=y

g(ηx) p(y − x)
{
f(σx,yη)− f(η)

}
.

Hence, if there are k particles at site x, at rate pg(k), resp. (1− p)g(k), one of
them jumps to the right, resp. left. Since g(k) decreases to 1 as k → ∞, the more
particles there are at some site x the slower they jump, but the rate remains
bounded below by 1.

This Markov process is irreducible. The stationary probability measure, de-
noted by πN , is given by

πN (η) =
Nα

ZN

∏
x∈TL

1

a(ηx)
,

where ZN is the normalizing constant.
Fix a sequence {�N : N ≥ 1} such that 1 � �N � N , and let Ex

N , x ∈ TL,
be the set of configurations in which all but �N particles sit at x:

Ex
N :=

{
η ∈ EN : ηx ≥ N − �N

}
.

According to equation (3.2) in [15], for each x ∈ TL, πN (Ex
N ) → 1/L as N ↑ ∞.

Denote by ηEN (t) the trace of the process ηN (t) on EN = ∪xE
x
N , and let

ΨN : EN �→ S be given by

ΨN (η) =
∑
x∈S

x χ
Ex
N
(η) .
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Under some further conditions on the sequence �N , it can be proven, following
the method presented in Sections 4–6, that the time-rescaled coarse-grained
process XN (t) = XN (tN1+α) = ΨN (ηEN (tN1+α)) converges to a S-valued
Markov chain X(t). The jump rates of the reduced model X(t) are proportional
to the capacity of the random walk on the discrete torus with L points which
jumps to the right with probability p and to the left with probability 1 − p.
Moreover, in the time scale N1+α the time spent by the process ηN (t) on ΔN =
EN \ EN is negligible.

This model has been introduced by Evans [56] Godrèche examined the dy-
namics of the condensate in [68]. Its metastable behavior has been derived in
[16, 85, 117]. The reduced model is a TL-valued Markov chain whose jump rates
are proportional to the capacities of the underlying random walk associated to
p(·).

The nucleation phase of this model has been described in [14]. Armendáriz,
Grosskinsky and Loulakis [4] considered the case in which the total number of
sites increases with the number of particles, keeping a constant density. In this
situation, the reduced model is a Lévy-process.

Grosskinsky, Redig and Vafayi [72], Cao, Chleboun and Grosskinsky [34] and
Bianchi, Dommers and Giardinà [25] proved the metastable behavior of the
inclusion process, another interacting particle system which exhibits condensa-
tion.

Static aspects of condensation for this zero-range process and other dynamics
have been examined by Jeon, March and Pittel [80], Grosskinsky, Schütz and
Spohn [73], Armendáriz and Loulakis [5, 6], Chleboun and Grosskinsky [41, 42,
43], Grosskinsky, Redig and Vafayi [71], Godrèche and Luck [69], Armendáriz,
Grosskinsky and Loulakis [3], Fajfrová, Gobron and Saada [59].

In some dynamics the condensate is formed instantaneously as the size of the
system grows, Waclaw and Evans [123], Chau1, Connaughton and Grosskinsky
[39].

13.4. Random walks among random traps

Let (GN : N ≥ 1), GN = (VN , EN ), be a sequence of possibly random, finite,
connected graphs defined on a probability space (Ω,F ,P), where VN represents
the set of vertices and EN the set of unoriented edges. Assume that the number
of vertices, |VN |, converges to +∞ in P-probability. To fix ideas, one can consider
the d-dimensional discrete torus with Nd points.

Assume that on the same probability space (Ω,F ,P), we are given an i.i.d
collection of random variables {WN

j : j ≥ 1}, N ≥ 1, independent of the random
graph GN and whose common distribution belongs to the basin of attraction of
an α-stable law, 0 < α < 1. Hence, for all N ≥ 1 and j ≥ 1,

P[WN
j > t] =

L(t)

tα
, t > 0 ,

where L is a slowly varying function at infinity.
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For eachN ≥ 1, re-enumerate in decreasing order the weightsWN
1 , . . . ,WN

|VN |:

ŴN
j = WN

σ(j), 1 ≤ j ≤ |VN | for some permutation σ of the set {1, . . . , |VN |} and

ŴN
j ≥ ŴN

j+1 for 1 ≤ j < |VN |. Let (xN
1 , . . . , xN

|VN |) be a random enumeration

of the vertices of GN and define WN
xN
j

= ŴN
j , 1 ≤ j ≤ |VN |, turning GN =

(VN , EN ,WN ) into a finite, connected, vertex-weighted graph.
Consider for each N ≥ 1, a continuous-time random walk {ηN (t) : t ≥ 0} on

VN , which waits a mean WN
x exponential time at site x, after which it jumps

to one of its neighbors with uniform probability. The generator LN of this walk
is given by:

(LNf)(x) =
1

deg(x)

1

WN
x

∑
y∼x

[f(y)− f(x)]

for every f : VN → R, where y ∼ x means that {x, y} belongs to the set of edges
EN and where deg(x) stands for the degree of x: deg(x) = #{y ∈ VN : y ∼ x}.

Let ΨN : VN → {1, . . . , |VN |} be given by ΨN (xN
j ) = j. It has been proved

for a class of random graphs that there exists a time-scale θN for which time-
rescaled process XN (t) = ΨN (ηN (tθN )) converges to a K-process.

To describe the dynamics of the K-process, consider two sequences of positive
real numbers u = (uk : k ≥ 1) and Z = (Zk : k ≥ 1) such that∑

k≥1

Zk uk < ∞ ,
∑
k≥1

uk = ∞ .

Consider the set N∗ = {1, 2, . . . }∪{∞} of non-negative integers with an extra
point denoted by ∞. We endow this set with the metric induced by the isometry
φ : N∗ → R, which sends n ∈ N∗ to 1/n and ∞ to 0. This makes the set N∗ into
a compact metric space.

The K-process with parameter (Zk, uk) can be informally described as fol-
lows. Being at k ∈ N, the process waits a mean Zk exponential time, at the
end of which it jumps to ∞. Immediately after jumping to ∞, the process re-
turns to N. The hitting time of any finite subset A of N is almost surely finite.
Moreover, for each fixed n ≥ 1, the probability that the process hits the set
{1, . . . , n} at the point k is equal to uk/

∑
1≤j≤n uj . In particular, the trace of

the K-process on the set {1, . . . , n} is the Markov process which waits at k a
mean Zk exponential time at the end of which it jumps to j with probability
uj/

∑
1≤i≤n ui.

In contrast with the theory presented in the previous sections, here the re-
duced model takes value in a countably infinite space. Moreover, as ΨN is a
bijection, the process XN (t) is Markovian, and we do not need to remove a
piece of the state space by considering the trace, and we prove the convergence
of the projection to the reduce model.

The K-process has been introduced by Fontes and Mathieu [63] who also
proved the convergence to the K-process of the trap model in the complete
graph. Fontes and Lima [62] considered the case of the hypercube. These results
have been extended to d-dimensional torus, d ≥ 2, and to random graphs in
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[78, 79]. More recently, Cortines, Gold and Louidor considered a continuous time
random walk on the two-dimensional discrete torus, whose motion is governed
by the discrete Gaussian free field [49].

13.5. A polymer in the depinned phase

Fix N ≥ 1 and denote by EN the set of all lattice paths starting at 0 and ending
at 0 after 2N steps:

EN = {η ∈ Z2N+1 : η−N = ηN = 0 , ηj+1 − ηj = ±1 , −N ≤ j < N} .

Fix 0 < α < 1 and denote by ηN (t) the EN -valued Markov chain whose gener-
ator LN is given by

(LNf)(η) =

N−1∑
j=−N+1

cj,+(η) [f(η
j,+)−f(η)] +

N−1∑
j=−N+1

cj,−(η) [f(η
j,−)−f(η)] .

In this formula ηj,± represents the configuration which is equal to η at every
site k 	= j and which is equal to ηj ± 2 at site j.

The jump rate cj,+(η) vanishes at configurations η which do not satisfy the
condition ηj−1 = ηj+1 = ηj + 1, and it is given by

cj,+(η) =

⎧⎪⎨⎪⎩
1/2 if ηj−1 = ηj+1 	= ±1,

1/(1 + α) if ηj−1 = ηj+1 = 1,

α/(1 + α) if ηj−1 = ηj+1 = −1

for configurations which fulfill the condition ηj−1 = ηj+1 = ηj + 1. Let −η
stand for the configuration η reflected around the horizontal axis, (−η)j = −ηj ,
−N ≤ j ≤ N . The rates cj,−(η) are given by cj,−(η) = cj,+(−η).

Denote by Σ(η) the number of zeros in the path η, Σ(η) =
∑

−N≤j≤N 1{ηj =
0}. The probability measure πN on EN defined by πN (η) = (1/Z2N )αΣ(η), where
Z2N is a normalizing constant, is easily seen to be reversible for the dynamics
generated by LN .

Denote by gN the spectral gap of the chain. The exact asymptotic behavior
of gN is not known, but, by [37, Theorem 3.5], gN ≤ C(α)(logN)8/N5/2 for
some finite constant C(α).

Fix a sequence �N such that 1 � �N � N , and let

E1
N =

{
η ∈ EN : ηj > 0 for all − (N − �N ) < j < (N − �N )

}
,

E2
N = {η ∈ EN : −η ∈ E1

N} , ΔN = EN \ (E1
N ∪ E2

N ) .

By equation (2.27) in [35], πN (E1
N ) = πN (E1

N ) = (1/2) +O(�
−1/2
N ).

Denote by g
R,j
N the spectral gap of the chain reflected at Ej

N , j = 1, 2. By [35,
Proposition 2.6], taking �N = (logN)1/4, for every ε > 0, there exists N0 such
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that for all N ≥ N0, g
R,j
N ≥ N−(2+ε). In particular, choosing ε small enough and

�N = (logN)1/4,

gN � g
R,1
N

for all N large enough. This shows that the chain equilibrates inside each valley
in a much shorter time-scale than the one in which it jumps between valleys.

Let νN be a sequence of probability measures concentrated on E1
N and which

fulfills conditions (9.2). Set θN = 1/gN . The method presented in Section 9
yields that the time-rescaled coarse-grained process XT

N (t) = XT
N (tθN ), intro-

duced in condition (T1) of Definition 2.2, converges to the {1, 2}-valued Markov
chain which starts from 1 and jumps from m to 3 − m at rate 1/2. Moreover,
in the time scale θN , the time spent by the process ηN (t) outside the set EN is
negligible. We refer the reader to [20] for the proofs.

The interest of this model is that the entropy plays an important role. In
contrast with the models presented in the previous subsections, the metastable
behavior is not determined by an energy landscape, but by a repulsion in a
bottleneck region of the space. In particular, in the terminology introduced in
Remark 5.5, this dynamics does not visit points and the method presented in
Sections 4–6 does not apply.

Note that the metastable behavior has been derived without a precise knowl-
edge of the time-scale at which it occurs. Of course, the jumps between valleys
take place in the time-scale θN , the inverse of the spectral gap, but the exact
asymptotic behavior of gN is not known, and not needed in the proof of the
metastable behavior of the dynamics.

This model has been introduced in [37, 35]. The results described in this
subsection are taken from [20].

13.6. Coalescing random walks

Fix d ≥ 2. Denote {e1, . . . , ed} the canonical basis of Rd, and by p the probability
measure on Zd given by

p(x) =
1

2d
if x ∈ {± e1, . . . ,± ed} , p(x) = 0 otherwise .

Let Td
N be the discrete d-dimensional torus with Nd points. Denote by EN the

family of nonempty subsets of Td
N . Consider coalescing random walks on Td

N .
This is the EN -valued, continuous-time Markov chain, represented by (AN (t) :
t ≥ 0), whose generator LN is given by

(LNf)(A) =
∑
x∈A

∑
y �∈A

p(y−x){f(Ax,y)−f(A)}+
∑
x∈A

∑
y∈A

p(y−x){f(Ax)−f(A)},

where Ax,y, resp. Ax, is the set obtained from A by replacing the point x by y,
resp. removing the element x:

Ax,y = [A \ {x}] ∪ {y} , Ax = A \ {x} .
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In contrast with the previous dynamics, in this example the reduced model
takes value in a countably infinite state space. Let S = {1, 1/2, 1/3, . . . } ∪ {0},
and let C1(S) be the set of functions f : S → R of class C1, that is f ∈ C1(S)
is the restriction to S of a continuously differentiable function defined on R. For
each f ∈ C1(S) define Lf : S → R as

(Lf)(y) :=

⎧⎪⎪⎨⎪⎪⎩
(
n
2

){
f
(

1
n−1

)
− f

(
1
n

)}
, if y = 1

n and n ≥ 2 ,

0 , if y = 1 ,

(1/2)f ′(0) , if y = 0 .

Proposition 2.1 in [13] asserts that for each x ∈ S there exists a unique solution
to the (L, δx)-martingale problem.

Consider the partition of EN given by

EN =
⋃
n∈N

En
N , where En

N := {A ⊂ Td
N : |A| = n} , n ∈ N .

In this formula, |A| stands for the number of elements of A. Let ΨN : EN → S
be the corresponding projection:

ΨN (A) = 1/|A| , A ∈ EN .

To define the metastable time-scale, consider two independent random walks
(xN

t )t≥0 and (yNt )t≥0 on Td
N , both with jump probability given by p(·), starting

at the uniform distribution. Let θN be the expected meeting time:

θN := E
[
min{t ≥ 0 : xN

t = yNt }
]
. (13.3)

Since xN
t − yNt evolves as a random walk speeded-up by 2, θN represents the

expectation of the hitting time of the origin for a simple symmetric random
walk speeded-up by 2 which starts from the uniform measure. In a general
graph, though, the time-scale should be given by (13.3) mutatis mutandis.

Consider a continuous-time, random walk (xt)t≥0 on Zd with jump proba-
bilities given by p(·) and which starts from the origin. Assume that d ≥ 3, and
denote by vd the escape probability: vd = P0[H

+
0 = ∞]. It can be shown that

lim
N→∞

θN
Nd

=
1

2 vd
in dimension d ≥ 3 ,

lim
N→∞

θN
N2 logN

=
1

π
in dimension d = 2 .

The factor 2 in the denominator appears because the process has been speeded-
up by 2. In particular, in d = 2, 1/π should be understood as (1/2)(2/π). We
refer to [13] for a proof of this result.

Consider the time-rescaled coarse-grained process

XN (t) = ΨN (AN (θN t)) , t ≥ 0 .
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Note that in this example we do not take the trace of the process on some set,
but we just project it on a smaller state space.

Applying the ideas presented in the previous sections, it is proved in [13]
that, starting from the configuration in which each site is occupied by a particle,
XN (t) converges in the Skorohod topology to the Markov chain whose generator
is given by L and which starts from 0.

This model has been first considered by Cox [50], who proved that the coa-
lescence time [the time all particles coalesced into one] is asymptotically equal
to a sum of independent exponential random variables. This result has been ex-
tended by Oliveira [107, 108] to the case of transitive graphs. Related questions
have been examined by Aldous and Fill [2], Durrett [53], Cooper, Frieze and
Radzik [48], Chen, Choi and Cox [40].

13.7. Further examples

We mention in this last subsection other models whose metastable behavior has
been derived with the tools presented in the previous sections.

The metastable behavior of sequences of continuous-time Markov chains on a
fixed finite state-space has been examined in [17, 95]. This problem has been ad-
dressed with large deviations techniques by Scopolla [116], Olivieri and Scopolla
in [109, 110], Manzo, Nardi, Olivieri and Scoppola [99] and Cirillo, Nardi and
Sohier [45].

Properties of hitting times of rare events have been considered in [22]. Fer-
nandez, Manzo, Nardi, Scoppola and Sohier [60], and Fernandez, Manzo, Nardi
and Scoppola [61] examined this question through the pathwise approach.

The evolution, in the zero-temperature limit, of a droplet in the Ising model
under the conservative Kawasaki dynamics in a large two-dimensional square
with periodic boundary conditions has been derived in [18, 70]. The reduced
model in this example is a two-dimensional Brownian motion on the torus.

Misturini [102] considered the ABC model on a ring in a strongly asymmetric
regime. He derived the metastable behavior of the dynamics among the segre-
gated configurations in the zero-temperature limit. Here, the reduced model is
a Brownian motion.

Appendix A: Markov chains

We briefly present in this section some results on Markov chains used in the
article. Fix a finite set E. Consider a continuous-time, E-valued, Markov chain
(η(t) : t ≥ 0). Assume that the chain η(t) is irreducible and denote by π the
unique stationary state.

Elements of E are represented by the letters η, ξ. Let Pη, η ∈ E, be the
probability measure on D([0,∞), E) induced by the Markov chain η(t) starting
from η. Recall from (2.1) the definition of the hitting time and the return time
to a set.
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Denote by R(η, ξ), η 	= ξ ∈ E, the jump rates of the Markov chain η(t), and
let λ(η) =

∑
ξ∈E R(η, ξ) be the holding rates. Denote by p(η, ξ) the jump prob-

abilities, so that R(η, ξ) = λ(η) p(η, ξ). The stationary state of the embedded
discrete-time Markov chain is given by M(η) = π(η)λ(η).

Denote by L the generator of the Markov chain η(t),

(Lf)(η) =
∑
ξ∈E

R(η, ξ) [ f(ξ)− f(η) ] .

Let L2(π) be the set of square-summable functions f : E → R endowed with
the scalar product 〈 · , · 〉π given by

〈 f , g 〉π :=
∑

η∈EN

f(η) g(η)π(η) , ‖ f ‖2 = 〈 f , f 〉π .

Denote by L∗ the adjoint of the operator L in L2(π): For all functions f , g :
E → R,

〈L∗ f , g 〉π = 〈 f , L g 〉π . (A.1)

An elementary computation yields that

(L∗f)(η) =
∑
ξ∈E

R∗(η, ξ) [ f(ξ)− f(η) ] ,

where the jump rates R∗(η, ξ) satisfy

π(η)R∗(η, ξ) = π(ξ)R(ξ, η) , η 	= ξ ∈ E . (A.2)

The chain is said to be reversible if the generator L is self-adjoint: L∗ = L. It
is reversible if and only if the jump rates satisfy the detailed balance conditions:

π(η)R(η, ξ) = π(ξ)R(ξ, η) , η 	= ξ ∈ E . (A.3)

The operator L∗ corresponds to the generator of a Markov chain, represented
by η∗(t), and called the adjoint or time-reversed process. The holding rates
λ∗(η) =

∑
ξ∈E R∗(η, ξ) of this chain coincide with the original ones, λ∗(η) =

λ(η), and the jump probabilities p∗(η ξ) satisfy the balance conditions

M(η) p∗(η, ξ) = M(ξ) p(ξ, η) , η 	= ξ ∈ E . (A.4)

Let Ls be the symmetric part of the generator L:

Ls =
1

2
{L + L∗ } . (A.5)

The operator Ls is self-adjoint in L2(π) and it corresponds to the generator of
the Markov chain whose jump rates, denoted by Rs(η, ξ), are given by Rs(η, ξ) =
(1/2){R(η, ξ) +R∗(η, ξ)}. A simple computation shows that these rates satisfy
the detailed balance conditions (A.3).



Metastable Markov chains 199

Denote by D(f) the Dirichlet form of a function f : E → R:

D(f) := 〈 (−L) f , f 〉π = 〈 (−Ls) f , f 〉π . (A.6)

We leave to the reader the assignment of checking the last equality. An elemen-
tary computation shows that

D(f) =
1

2

∑
η∈E

∑
ξ∈E

π(η)R(η, ξ) [ f(ξ)− f(η) ]2 . (A.7)

This formula holds even in the non-reversible case. In the sum, each unordered
pair {η, ξ} ⊂ E, ξ 	= η, appears twice.

Denote by (S(t) : t ≥ 0), the semigroup associated to the generator L, so
that (d/dt)S(t) = LS(t) = S(t)L. Fix a probability measure ν on E and let ft
be the Radon-Nikodym derivative of νS(t) with respect to π. We claim that

d

dt
ft = L∗ft . (A.8)

Indeed, fix a function g : E → R and consider the mean Eν [g(η(t))], where
Eν represents the expectation with respect to the measure Pν =

∑
η∈E ν(η)Pη.

This expectation can be written as∑
η∈E

ν(η) [S(t) g](η) =
∑
η∈E

[ν S(t)](η) g(η) =
∑
η∈E

π(η) ft(η) g(η) = 〈 ft , g 〉π .

As (d/dt)S(t)g = S(t)Lg, taking derivative on both sides of this identity we
get that ∑

η∈E

ν(η) [S(t)Lg](η) = 〈 d

dt
ft , g 〉π .

The left-hand side can be written as 〈 ft , L g 〉π = 〈L∗ft , g 〉π. Hence, for all
functions g, 〈 (d/dt)ft , g 〉π = 〈L∗ft , g 〉π, which proves claim (A.8).

By (A.8) and (A.1),

d

dt
〈 ft , ft 〉π = 2 〈Lft , ft 〉π = − 2D(ft) ≤ 0 .

The inequality follows from the positiveness of the Dirichlet form derived in
(A.7). Integrating in time yields that

‖ ft ‖2 + 2

∫ t

0

D(fs) ds ≤ ‖ f0 ‖2 .

In particular, for all 0 ≤ s ≤ t,

〈 ft , ft 〉π ≤ 〈 fs , fs 〉π . (A.9)

The spectral gap of the generator, denoted by g, is the value of the smallest
positive eigenvalue of the symmetric part of the generator:

g = inf
f

〈 (−L) f , f 〉π
〈 f , f 〉π

,
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where the infimum is carried over all functions f : E → R which are orthog-
onal to the constants, i.e., which have zero-mean with respect to π: Eπ[f ] =
〈 f , 1 〉π = 0.

A.1. Reflected chain

Fix a non-empty, proper subset F of E. Denote by (ηR,F (t) : t ≥ 0), the Markov
chain η(t) reflected at F . This is the F -valued process obtained from η(t) by
forbidding all jumps between F and E \ F . The generator LR,F of this Markov
process is given by

(LR,F f) (η) =
∑
ξ∈F

R(η, ξ)
{
f(ξ)− f(η)

}
, η ∈ F .

Assume that the reflected process ηR,F (t) is irreducible. It is easy to show
that the conditioned probability measure πF defined by

πF (η) =
π(η)

π(F )
, η ∈ F , (A.10)

satisfies the detailed balance conditions (A.3) for the reflected process if the
chain is reversible.

In general, πF may not be invariant. Consider, for example, an asymmetric
random walk on the circle. The uniform measure is invariant, but its restric-
tion to an interval I is not invariant for the process reflected at I. For cycle
generators, however, it is possible to reflect the chain preserving the stationary
state.

A.2. Cycle generators

The results of this subsection are taken from Section 4 of [95]. We refer to [93]
for an application.

Cycle: A cycle is a sequence of distinct configurations (η0, η1, . . . , ηn−1, ηn = η0)
whose initial and final configuration coincide: ηi 	= ηj ∈ E, i 	= j ∈ {0, . . . , n−1}.
The number n is called the length of the cycle.

Cycle generator: A generator L is said to be a cycle generator associated to the
cycle c = (η0, η1, . . . , ηn−1, ηn = η0) if there exists reals ri > 0, 0 ≤ i < n, such
that

R(η, ξ) =

{
ri if η = ηi and ξ = ηi+1 for some 0 ≤ i < n ,

0 otherwise .

We denote this cycle generator by Lc,r, where r = (r0, . . . , rn−1). Most of the
time we omit the dependence on r and write Lc,r simply as Lc. Note that

(Lc,rf) (η) = (Lcf) (η) =
n−1∑
i=0

χ{ηi}(η) ri [f(ηi+1)− f(ηi)] ,
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and that the chain is irreducible only if {η0, η1, . . . , ηn−1} = E.
Consider a cycle c = (η0, η1, . . . , ηn−1, ηn = η0) of length n ≥ 2 and let Lc be

a cycle generator associated to c. Denote the jump rates of Lc by R(ηi, ηi+1).
A measure π is stationary for Lc if and only if

π(ηi)R(ηi, ηi+1) is constant . (A.11)

Sector condition: Next lemma asserts that every cycle generator satisfies a sector
condition. The proof of this result can be found in [82, Lemma 5.5.8].

Lemma A.1. Let Lc be a cycle generator associated to a cycle c of length n.
Then, Lc satisfies a sector condition with constant 2n: For all f , g : E → R,

〈 Lc f , g 〉2π ≤ 2n 〈 (−Lc f) , f 〉π 〈 (−Lc g) , g 〉π .

Cycle decomposition: Every generator L, stationary with respect to a probabil-
ity measure π, can be decomposed as the sum of cycle generators which are
stationary with respect to π.

Lemma A.2. Let L be a generator of an E-valued, irreducible Markov chain.
Denote by π the unique invariant probability measure. Then, there exists cycles
c1, . . . , cp such that

L =

p∑
j=1

Lcj ,

where Lcj are cycle generators associated to cj which are stationary with respect
to π.

Proof. The proof consists in eliminating successively all 2-cycles (cycles of length
2), then all 3-cycles and so on up to the |E|-cycle if there is one left. Denote
by R(η, ξ) the jump rates of the generator L and by C2 the set of all 2-cycles
(η, ξ, η) such that R(η, ξ)R(ξ, η) > 0. Note that the cycle (η, ξ, η) coincides with
the cycle (ξ, η, ξ).

Fix a cycle c = (η, ξ, η) ∈ C2. Let c̄(η, ξ) = min{π(η)R(η, ξ), π(ξ)R(ξ, η)}
be the minimal conductance of the edge (η, ξ), and let Rc(η, ξ) be the jump
rates given by Rc(η, ξ) = c̄(η, ξ)/π(η), Rc(ξ, η) = c̄(η, ξ)/π(ξ). Observe that
Rc(ζ, ζ

′) ≤ R(ζ, ζ ′) for all (ζ, ζ ′), and that Rc(ξ, η) = R(ξ, η) or Rc(η, ξ) =
R(η, ξ).

Denote by Lc the generator associated the the jump rates Rc. Since π(η)Rc(η,
ξ) = c̄(η, ξ) = π(ξ)Rc(ξ, η), by (A.11), π is a stationary state for Lc (actually,
reversible). Let L1 = L − Lc so that

L = L1 + Lc .

As Rc(ζ, ζ
′) ≤ R(ζ, ζ ′), L1 is the generator of a Markov chain. Since both L

and Lc are stationary for π, so is L1. Finally, if we draw an arrow from ζ to ζ ′

if the jump rate from ζ to ζ ′ is strictly positive, the number of arrows for the
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generator L1 is equal to the number of arrows for the generator L minus 1 or 2.
This procedure has therefore strictly decreased the number of arrows of L.

We may repeat the previous algorithm to L1 to remove from L all 2-cycles
(η, ξ, η) such that R(η, ξ)R(ξ, η) > 0. Once this has been accomplished, we may
remove all 3-cycles (η0, η1, η2, η3 = η0) such that

∏
0≤i<3 R(ηi, ηi+1) > 0. At

each step at least one arrow is removed from the generator which implies that
after a finite number of steps all 3-cycles are removed.

Once all k-cycles have been removed, 2 ≤ k < |E|, we have obtained a
decomposition of L as

L =

|E|−1∑
k=2

Lk + L̂ ,

where Lk is the sum of k-cycle generators and is stationary with respect to
π, and L̂ is a generator, stationary with respect to π, and with no k-cycles,
2 ≤ k < |E|. If L̂ has an arrow, as it is stationary with respect to π and has no
k-cycles, L̂ must be an |E|-cycle generator, providing the decomposition stated
in the lemma.

Corollary A.3. The generator L satisfies a sector condition with constant
bounded by 2|E|: For all f , g : E → R,

〈Lf , g 〉2π ≤ 2|E| 〈 (−Lf) , f 〉π 〈 (−Lg) , g 〉π .

Proof. Fix f and g : E → R. By Lemma A.2,

〈Lf, g〉2π =
( p∑

j=1

〈Lcjf, g〉π
)2

,

where Lcj is a cycle generator, stationary with respect to π, associated to the
cycle cj . By Lemma A.1 and by Schwarz inequality, since all cycles have length
at most |E|, the previous sum is bounded by

2|E|
p∑

j=1

〈(−Lcjf), f〉π
p∑

k=1

〈(−Lckg), g〉π = 2|E| 〈(−Lf), f〉π 〈(−Lg), g〉π ,

as claimed

Remark A.4. A generator L is reversible with respect to π if and only if it
has a decomposition in 2-cycles. Given a measure π on a finite state space,
by introducing k-cycles satisfying (A.11) it is possible to define non-reversible
dynamics which are stationary with respect to π. The previous lemma asserts
that this is the only way to define such dynamics.

Remark A.5. The decomposition in cycles is not unique. There may exist cy-
cles and vectors c1, . . . , cp, r1, . . . , rp and ĉ1, . . . , ĉq, r̂1, . . . , r̂q such that {c1, . . . ,
cp} 	= {ĉ1, . . . , ĉq},

L =

p∑
j=1

Lcj ,rj =

q∑
k=1

Lĉk,r̂k
,
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and π is a stationary state for all cycle generators. We leave the reader to find
an example. However, in view of Lemma A.1, it is natural to look for one which
minimizes the length of the longest cycle.

Remark A.6. In a finite set, the decomposition of a generator into cycle gen-
erators is very simple. The problem for countably-infinite sets is much more
delicate. We refer to [65] for a discussion.

Let F be a proper subset of E and consider the chain reflected at F . The
last result of this subsection provides sufficient conditions for the measure π
conditioned to F to be a stationary state for the reflected process in the non-
reversible case.

Lemma A.7. Assume that the generator L can be written as a sum of cycle
generators:

L =

p∑
j=1

Lcj ,

where c1, . . . , cp are cycles and π is a stationary state for each Lcj . Then, the
measure π conditioned to F is stationary for the reflected chain at F if there
exists a subset A of {1, . . . , p} such that

LR,F =
∑
j∈A

Lcj .

Proof. Since π is a stationary state for each Lcj , it is also a stationary state
for LR,F =

∑
j∈A Lcj . As the reflected process does not leave the set F , the

measure π is stationary if and only if its restriction to F is stationary.

A.3. Enlarged chains

Let E� be a copy of E. The elements of E� are represented by the letters η, ξ.
Denote by P� : E ∪ E� → E ∪ E� the application which maps a configuration
in E, E�, to its copy in E�, E, respectively.

Following [24], for γ > 0 denote by ηγ(t) the Markov process on E∪E� whose
jump rates Rγ(η, ξ) are given by

Rγ(η, ξ) =

⎧⎪⎨⎪⎩
R(η, ξ) if η and ξ ∈ E,

1/γ if ξ = P�η,

0 otherwise.

Therefore, being at some state ξ in E�, the process may only jump to P�ξ and
this happens at rate 1/γ. In contrast, being at some state ξ in E, the process
ηγ(t) jumps with rate R(ξ, ξ′) to the state ξ′ ∈ E, and jumps with rate 1/γ to
P�ξ. We call the process ηγ(t) the γ-enlargement of the process η(t).

Let π� be the probability measure on E ∪ E� defined by

π�(η) = π�(P�η) = (1/2)π(η) , η ∈ E .
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The probability measure π� is invariant for the enlarged process ηγ(t) and it is
reversible whenever π is reversible.

Let F be a subset of E. Think of F as a valley. If γ is much larger than the
mixing time, the distribution of η(HF�), where F� = {P�η : η ∈ F}, is very close
the stationary state conditioned to F .

A.4. Collapsed chains

The collapsed chain consists in collapsing a subset of the state-space to a point
and in the defining a dynamics which keeps the properties of the original evo-
lution as much as possible. This is a well-known technique, see for instance
[32, 1].

Fix a subset A of E, and let EA := [E \A]∪{d}, where d stands for an extra
configuration added to E and meant to represent the collapsed set A. Denote
by (ηC,A(t) : t ≥ 0) the chain obtained from η(t) by collapsing the set A to the
singleton {d}. This is the continuous-time Markov chain on EA with jump rates
RC,A(η, ξ), η, ξ ∈ EA, given by

RC,A(η, ξ) = R(η, ξ) , RC,A(η, d) =
∑
ζ∈A

R(η, ζ) , η , ξ ∈ E \A ,

RC,A(d, η) =
1

π(A)

∑
ξ∈A

π(ξ)R(ξ, η) , η ∈ E \A .

(A.12)
The collapsed chain {ηC,A(t) : t ≥ 0} inherits the irreducibility from the

original chain. Denote by πC,A the probability measure on EA given by

πC,A(d) = π(A) , πC,A(η) = π(η) , η ∈ E \A . (A.13)

Since ∑
ξ �∈A,ζ∈A

π(ξ)R(ξ, ζ) =
∑

ξ �∈A,ζ∈A

π(ζ)R(ζ, ξ) ,

one checks that πC,A is a stationary state, and therefore the unique invariant
probability measure, for the collapsed chain ηC,A(t).

The collapsed chain has to be understood as follows. Until the process hits
the set A, it evolves as the original one. When it reaches this set, it imme-
diately equilibrates and its position is replaced by the stationary distribution
conditioned to A.

In particular, we may couple the collapsed process with the original one until
the set A is reached, so that, for every η ∈ E \A, and B ⊂ E \A,

PC,A
η

[
Hd < H+

B

]
= Pη

[
HA < H+

B

]
, (A.14)

provided PC,A
η represents the distribution of the collapsed chain ηC,A(t) starting

from η. It follows from this identity and the explicit formulae for the jump rates
and the stationary state that for every B ⊂ E \A,

cap(A,B) = capC,A(d, B) ,
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where capC,A(d, B) represents the capacity between d and B for the collapsed
chain.

This identity ceases to hold if we replace A by a set in E \A because (A.14)
is incorrect if d, A are replaced by a set D ⊂ E \A.

Denote by LC,A the generator of the chain ηC,A(t). Fix two functions f ,
g : EA → R. Let F , G : E → R be defined by

F (η) = f(η) , η ∈ E \A , F (ζ) = f(d) , ζ ∈ A ,

with a similar definition for G. We claim that

〈LC,Af , g 〉πC,A = 〈LF , G 〉π . (A.15)

Conversely, if F , G : E → R are two functions constant over A, (A.15) holds if
we define f , g : EA → R by

f(η) = F (η) , η ∈ E \A , f(d) = F (ζ) for some ζ ∈ A ,

with an analogous equation for f , F replaced by g, G, respectively.
To prove (A.15), fix two functions f , g : EA → R. By definition of LC,A,

〈LC,Af , g 〉πC,A =
∑

η,ξ∈EA

πC,A(η)RC,A(η, ξ) [ f(ξ)− f(η) ] g(η) .

In view of (A.12), (A.13), this expression is equal to∑
η∈E\A

π(η)
{ ∑

ξ∈E\A
R(η, ξ) [ f(ξ)− f(η) ] +

∑
ζ∈A

R(η, ζ) [ f(d)− f(η) ]
}
g(η)

+
∑

ξ∈E\A

∑
ζ∈A

π(ζ)R(ζ, ξ) [ f(ξ) − f(d) ] g(d) .

Since F (η) = f(η) for η ∈ E \ A, and F (ξ) = f(d) for ξ ∈ A, with similar
identities with G, g replacing F , f , the last sum is equal to∑
η∈E\A

π(η)
{ ∑

ξ∈E\A
R(η, ξ) [F (ξ)− F (η) ] +

∑
ζ∈A

R(η, ζ) [F (ζ)− F (η) ]
}
G(η)

+
∑
ζ∈A

∑
ξ∈E\A

π(ζ)R(ζ, ξ) [F (ξ)− F (ζ) ]G(ζ) .

Since F is constant on A, we may add to this expression∑
η∈A

∑
ξ∈A

π(η)R(η, ξ) [F (ξ)− F (η)]G(η)

to obtain that the last displayed expression is equal to 〈LF,G〉π, which concludes
the proof of the first assertion of (A.15). The second statement is obtained
following the computation in the reverse order.
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Appendix B: Potential theory

In this section, we present general results on the potential theory of continuous-
time Markov chains used throughout the article.

Reversible Markov chains can be interpreted in terms of electrical circuits.
This description may provide some intuition on the notions introduced below,
as Dirichlet form, capacity or equilibrium potential. We refer to the monographs
of Doyle and Snell [52] and Gaudillière [66]. The analogy has been extended to
the non-reversible context by Balázs and Folly [12].

B.1. The capacity

Fix two non-empty subsets A, B of E such that A ∩ B = ∅. The capacity
between A and B, denoted by cap(A,B), is given by

cap(A,B) :=
∑
η∈A

M(η)Pη[HB < H+
A ] . (B.1)

The capacity is monotone in the second coordinate. Let B′ be a subset of E
such that A ∩B′ = ∅, B ⊂ B′. Since Pη[HB < H+

A ] ≤ Pη[HB′ < H+
A ], we have

that
cap(A,B) ≤ cap(A,B′) . (B.2)

By (A.4), for any sequence of configurations η0, η1, . . . , ηn such that p(ηi,
ηi+1) > 0, 0 ≤ i < n,

M(η0)

n−1∏
i=0

p(ηi, ηi+1) = M(ηn)

n−1∏
i=0

p∗(ηi+1, ηi) .

In particular, for any η ∈ A, ξ ∈ B,

M(η)Pη

[
HB < H+

A , HB = Hξ

]
= M(ξ)P∗

ξ

[
HA < H+

B , HA = Hη

]
.

Therefore, since∑
η∈A

M(η)Pη

[
HB < H+

A

]
=

∑
η∈A

∑
ξ∈B

M(η)Pη

[
HB < H+

A , HB = Hξ

]
,

by (B.1) and the penultimate identity we have that

cap(A,B) =
∑
ξ∈B

M(ξ)P∗
ξ [H

+
A < H+

B ] = cap∗(B,A) , (B.3)

where cap∗(A,B) represents the capacity between the sets A, B for the adjoint
process.

It follows from (B.2) and (B.3) that the capacity is monotone in the first
coordinate as well: if A′ is a subset of E such that A ⊂ A′, A′ ∩B = ∅,

cap(A,B) ≤ cap(A′, B) .
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B.2. A formula for the capacity

Recall the formula (A.7) for the Dirichlet form D(f) of a function f : E → R.
Fix two disjoint subsets A, B of E: A ∩ B = ∅. Denote by hA,B : E → R

the equilibrium potential between A and B. It is the unique solution of the
boundary-value elliptic problem{

(Lh ) (η) = 0 , η ∈ Ω := (A ∪B)c ,

h(η) = χA(η) , η ∈ A ∪B .
(B.4)

It has a stochastic representation as

hA,B(η) = Pη

[
HA < HB

]
. (B.5)

Since hA,B is harmonic on Ω, it vanishes over B and it is equal to 1 at A,

D(hA,B) = 〈 (−LhA,B) , hA,B 〉π = −
∑
η∈A

π(η) (LhA,B)(η) . (B.6)

By definition of the generator L and since hA,B is equal to 1 on A, the previous
expression is equal to

D(hA,B) =
∑
η∈A

∑
ξ∈E

π(η)R(η, ξ) [ 1− hA,B(ξ) ] .

By the representation (B.5) of the equilibrium potential, 1−hA,B(ξ) = Pξ[HB <
HA ]. By the strong Markov property at the first jump, for every η ∈ A,

Pη[HB < H+
A ] =

∑
ξ∈E

p(η, ξ)Pξ[HB < HA ] .

Hence,

D(hA,B) =
∑
η∈A

π(η)λ(η)Pη[HB < H+
A ] = cap(A,B) . (B.7)

The capacity is symmetric: By (B.5), hB,A = 1 − hA,B , and, by (A.7),
D(hA,B) = D(1− hA,B). Hence,

cap(A,B) = D(hA,B) = D(1− hA,B) = D(hB,A) = cap(B,A) . (B.8)

B.3. Flows

Denote by c(η, ξ) the conductance of the oriented edge (η, ξ), and by cs(η, ξ) its
symmetric version:

c(η, ξ) = π(η)R(η, ξ) , cs(η, ξ) =
1

2

{
c(η, ξ) + c(ξ, η)

}
. (B.9)

Note that cs(η, ξ) = (1/2)π(η) {R(η, ξ) +R∗(η, ξ) }.
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Let E be the set of oriented edges defined by

E := {(η, ξ) ∈ E × E : R(η, ξ) + R(ξ, η) > 0 } .

An anti-symmetric function φ : E → R is called a flow. The divergence of a flow
φ at η ∈ E is defined as

(divφ)(η) =
∑

ξ:(η,ξ)∈E

φ(η, ξ) ,

while its divergence on a set A ⊂ E is given by

(div φ)(A) =
∑
η∈A

(divφ)(η) .

The flow φ is said to be divergence-free at η if (divφ)(η) = 0.
Denote by F the set of flows endowed with the scalar product given by

〈φ, ψ〉 =
1

2

∑
(η,ξ)∈E

1

cs(η, ξ)
φ(η, ξ)ψ(η, ξ) , and let ‖φ‖2 = 〈φ, φ〉 .

Remark B.1. For a probability measure μ on E, define the flow φμ : E → R

by φμ(η, ξ) = μ(η)R(η, ξ) − μ(ξ)R(ξ, η). In this set-up, the stationary state
corresponds to the probability measure m which turns the flow φm divergence
free at every configuration.

B.4. The Dirichlet and the Thomson principles

For a function f : E → R, define the flows Φf , Φ
∗
f and Ψf by

Φf (η, ξ) = f(η) c(η, ξ) − f(ξ) c(ξ, η) ,

Φ∗
f (η, ξ) = f(η) c(ξ, η) − f(ξ) c(η, ξ) ,

Ψf (η, ξ) = cs(η, ξ) [ f(η)− f(ξ) ] .

(B.10)

By (A.2) and the fact that the jump rates Rs satisfy the detailed balance con-
ditions (A.3),

(div Φf )(η) = −π(η) (L∗f)(η) , (div Ψf )(η) = −π(η) (Lsf)(η) . (B.11)

It follows from the definition of these flows that for all functions f : E → R,
g : E → R,

〈Ψf ,Φg〉 = 〈 (−L) f , g 〉π , 〈Ψf ,Φ
∗
g〉 = 〈 (−L∗) f , g 〉π ,

〈Ψf ,Ψg〉 = 〈 (−Ls) f , g 〉π .
(B.12)

Fix two disjoint subsets A, B of E and two real numbers a, b. Denote by
Ca,b(A,B) the set of functions f : E → R which are equal to a on A and b on B:

Ca,b(A,B) :=
{
f : E → R : f |A ≡ a, f |B ≡ b

}
.
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Let Fa(A,B) be the set of flows from A to B with strength a ∈ R:

Fa(A,B) =
{
φ ∈ F : (div φ)(A) = a , (divφ)(η) = 0 , η ∈ Ω

}
.

In particular, F1(A,B) is the set of unitary flows from A to B.
Let h∗

A,B be the equilibrium potential corresponding to the adjoint dynamics.
It is the solution of the elliptic problem (B.4) with the adjoint generator L∗ in
place of L. It can be represented through the adjoint chain η∗(t) by equation
(B.5) with the obvious modifications.

Lemma B.2. Fix two disjoint and non-empty subsets A, B of E. For every
α ∈ R, γ ∈ R, f ∈ Cα,0(A,B), φ ∈ Fγ(A,B),

〈Φf − φ , ΨhA,B
〉 = α cap(A,B) − γ .

Proof. By definition of the scalar product, the left-hand side is equal to

1

2

∑
(η,ξ)∈E

{
Φf (η, ξ) − φ(η, ξ)

} [
hA,B(η) − hA,B(ξ)

]
.

On the one hand, by definition of Φf

1

2

∑
(η,ξ)∈E

Φf (η, ξ)
[
hA,B(η) − hA,B(ξ)

]
= −

∑
η∈E

π(η) f(η) (LhA,B)(η) .

Since f belongs to Cα,0(A,B) and hA,B is harmonic on Ω, we may restrict the
sum to the set A, and then replace f by αhA,B to conclude that the previous
sum is equal to

−α
∑
η∈E

π(η)hA,B(η) (LhA,B)(η) = αD(hA,B) .

By (B.7), this quantity is equal to α cap(A,B).
On the other hand, by definition of the divergence of a flow,

− 1

2

∑
(η,ξ)∈E

φ(η, ξ)
[
hA,B(η) − hA,B(ξ)

]
= −

∑
η∈E

hA,B(η) (div φ)(η) .

Since φ is divergence-free on Ω and hA,B = χA on A∪B, this expression is equal
to

−
∑
η∈A

(div φ)(η) = − γ .

This completes the proof of the lemma.

Theorem B.3 (Dirichlet principle). For any disjoint and non-empty subsets
A, B of E,

cap(A,B) = inf
f∈C1,0(A,B)

inf
φ∈F0(A,B)

‖Φf − φ‖2 .

Furthermore, the unique optimizers of the variational problem are given by

f =
1

2
(hA,B + h∗

A,B) and φ =
1

2
(Φh∗

A,B
− Φ∗

hA,B
) .
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Proof. Fix f in C1,0(A,B) and φ in F0(A,B). By Lemma B.2 and Schwarz
inequality,

cap(A,B)2 = 〈Φf − φ , ΨhA,B
〉2 ≤ ‖Φf − φ ‖2 ‖ΨhA,B

‖2 .

By (B.12) and (B.7),
‖ΨhA,B

‖2 = cap(A,B) (B.13)

Hence,
cap(A,B) ≤ inf

f∈C1,0(A,B)
inf

φ∈F0(A,B)
‖Φf − φ‖2 .

To complete the proof of the theorem, it remains to find f in C1,0(A,B) and

φ in F0(A,B) such that ‖Φf − φ‖2 = cap(A,B). We propose f0 = (1/2)(hA,B +
h∗
A,B) and φ0 = Φf0 −ΨhA,B

.
It is clear that f0 = (1/2)(hA,B + h∗

A,B) belongs C1,0(A,B). We claim that
φ0 = Φf0 − ΨhA,B

belongs to F0(A,B). By (B.11) and by definition of f0, the
divergence of φ0 at η is equal to

− 1

2
π(η)

{
(L∗hA,B)(η) + (L∗h∗

A,B)(η) − (LhA,B)(η) − (L∗hA,B)(η)
}
,

so that

(div φ0)(η) =
1

2
π(η)

{
(LhA,B)(η) − (L∗h∗

A,B)(η)
}
.

As hA,B and h∗
A,B are harmonic on Ω, φ0 is divergence-free on this set. On the

other hand, by (B.7), (B.3) and (B.8),

2
∑
η∈A

(div φ0)(η) = D(hA,B) − D(h∗
A,B) = cap(A,B) − cap∗(A,B) = 0 .

This proves that φ0 belongs to F0(A,B).
As f0, φ0 belong to C1,0(A,B), F0(A,B), respectively, and since Φf0 − φ0 =

ΨhA,B
, by (B.13),

inf
f∈C1,0(A,B)

inf
φ∈F0(A,B)

‖Φf − φ‖2 ≤ ‖Φf0 − φ0‖2 =
∥∥ΨhA,B

∥∥2 = cap(A,B) .

This completes the proof of the theorem.

Theorem B.4 (Thomson principle). For any disjoint and non-empty subsets
A, B of E,

1

cap(A,B)
= inf

ψ∈F1(A,B)
inf

g∈C0,0(A,B)
‖Φg − ψ‖2 .

Furthermore, the unique optimizers of the variational problem are given by

g =
1

2

h∗
A,B − hA,B

cap(A,B)
and ψ =

1

2

Φh∗
A,B

+Φ∗
hA,B

cap(A,B)
·
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Proof. Fix a function g in C0,0(A,B) and a flow ψ in F1(A,B). By Lemma B.2,
Schwarz inequality and (B.13),

1 = 〈Φg − ψ , ΨhA,B
〉2 ≤ ‖Φg − ψ ‖2 cap(A,B) ,

so that
1

cap(A,B)
≤ inf

ψ∈F1(A,B)
inf

g∈C0,0(A,B)
‖Φg − ψ ‖2 .

To complete the proof of the theorem, it remains to find g in C0,0(A,B) and
ψ in F1(A,B) such that ‖Φg − ψ ‖2 = 1/cap(A,B). Let g0 = (1/2) {h∗

A,B −
hA,B}/cap(A,B), which clearly belongs to C0,0(A,B), and let ψ0 = Φg0 + Ψh0 ,
where h0 = hA,B/cap(A,B).

We first claim that ψ0 belongs to F1(A,B). By (B.11),

(div ψ0)(η) = −π(η) (L∗g0)(η) − π(η) (Lsh0)(η)

= − π(η)

2 cap(A,B)

{
(L∗h∗

A,B)(η) + (LhA,B)(η)
}
.

This proves that ψ0 is divergence free on Ω. Moreover, the divergence of ψ0 on
A is given by

− 1

2 cap(A,B)

{∑
η∈A

π(η) (L∗h∗
A,B)(η) +

∑
η∈A

π(η) (LhA,B)(η)
}
.

By (B.6) and (B.7), this expression is equal to 1, which proves the claim.
By definition of g0, ψ0, h0 and by (B.13),

‖Φg0 − ψ0 ‖2 = ‖Ψh0 ‖2 =
1

cap(A,B)
·

This completes the proof of the theorem.

Remark B.5. It follows from the proofs of the theorems that the optimal flow
φ In Theorem B.3 can be written as

φ = Φf − Ψh ,

where f = (1/2) {h∗
A,B + hA,B} and h = hA,B. Similarly, the optimal flow ψ In

Theorem B.4 can be written as

ψ = Φg0 + Ψh0 ,

where g0 = (1/2) {h∗
A,B − hA,B}/cap(A,B) and h0 = hA,B/cap(A,B).

Theorem B.3 appeared in Gaudillière and Landim [67], and Theorem B.4 is
due to Slowik [119]. Similar Dirichlet and Thomson principles are available in
the context of diffusions processes, [90, 86].
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Remark B.6. Both theorems require an explicit knowledge of the invariant
measure which is not always available in non-reversible dynamics. An important
open problem consists therefore to derive formulas for the capacity which do not
involve the stationary state.

Remark B.7. These variational formulae, expressed as infima, provide simple
lower and upper bounds for the capacity. To obtain sharp bounds, good approxi-
mations of the harmonic functions are needed to produce test functions and test
flows close to the optimal ones. In concrete examples, one of the difficulties is
that the test flows constructed are never divergence free, and a correction has to
be introduced to remove the divergence of the test flow, [91, 93, 117].

Remark B.8. Similar variational formulae for the capacity hold in the context
of diffusions [90, 86].

B.5. Reversible dynamics

In the reversible case, the conductance is symmetric: c(η, ξ) = c(ξ, η). In partic-
ular, all flows Φf , Φ

∗
f , Ψf , introduced in (B.10), coincide, and the optimal flow

φ of Theorem B.3 vanishes because the equilibrium potentials h∗
A,B , hA,B are

equal. Hence, in the reversible case,

cap(A,B) = inf
f∈C1,0(A,B)

‖Φf‖2 = inf
f∈C1,0(A,B)

〈 (−L) f , f 〉π .

where the last identity follows from (B.12). We recover in this way the Dirichlet
principle for reversible dynamics:

cap(A,B) = inf
f∈C1,0(A,B)

D(f) (B.14)

In the Thomson principle, the optimal function g vanishes, and we recover
the Thomson principle for reversible dynamics:

1

cap(A,B)
= inf

ψ∈F1(A,B)
‖ψ‖2 .

In the reversible case, the Thomson principle can also be expressed in terms
of functions.

Lemma B.9. We have that

1

cap(A,B)
= inf

f

D(f)(∑
η∈A π(η) (Lf)(η)

)2 ,

where the infimum is carried over all functions f : E → R such that (Lf)(η) = 0
for all η ∈ E \ (A ∪B).
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Proof. Fix a function f : E → R such that (Lf)(η) = 0 for all η ∈ E \ (A ∪B).
By Schwarz inequality and equation (A.7) for the Dirichlet form,( 1

2

∑
η,ξ∈E

π(η)R(η, ξ) [ f(ξ) − f(η) ] [hA,B(ξ) − hA,B(η) ]
)2

≤ D(f)D(hA,B) .

As the chain is reversible, the jump rates satisfy the detailed balance conditions
(A.3). We may thus rewrite the sum appearing on the left-hand side as

−
∑

η,ξ∈E

π(η)R(η, ξ) [ f(ξ) − f(η) ]hA,B(η) = −
∑
η∈E

π(η) (Lf)(η)hA,B(η) .

Since hA,B = χA on A∪B and Lf = 0 on the complement, the previous sum is
equal to

−
∑
η∈A

π(η) (Lf)(η) .

We have thus proved that

sup
f

(∑
η∈A

π(η) (Lf)(η)
)2 1

D(f)
≤ D(hA,B) ,

where the supremum is carried over all functions f satisfying the assumptions
of the lemma. This inequality is actually an identity because the equilibrium
potential hA,B belongs to the class of functions considered [it is harmonic on Ω]
and ∑

η∈A

π(η) (LhA,B)(η) = D(hA,B) .

To complete the proof of the lemma, it remains to recall that cap(A,B) =
D(hA,B).

Remark B.10. By inserting test functions, the previous lemma provides lower
bounds for the capacity between two sets. In practical situations, however, it is
almost impossible to find functions which are harmonic at every point of Ω. But
it might be possible to find functions which are almost harmonic in the sense
that Lf is small. The previous proof applied to any test function yields that for
every ε > 0,

(1− ε)
(∑

η∈A

π(η) (Lf)(η)
)2

− 1

ε

(∑
η∈Ω

π(η)
∣∣ (Lf)(η)

∣∣ )2

≤ D(f)D(hA,B)

where we used Young’s inequality 2ab ≥ −εa2 − ε−1b2 and the fact that the
absolute value of the harmonic function is bounded by 1. The advantage of this
inequality with respect to the Thomson principle lies in the fact that it holds for
all functions f : E → R and not only for the harmonic ones in Ω. However, the
resulting lower bound for the capacity will be sharp only if f is almost harmonic
on Ω.

Remark B.11. The previous remark can be extended to all principles stated in
the previous and in the next section. It is this version which is used in concrete
examples. We refer to Theorem 5.3 of [117].
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B.6. Dirichlet principle II

We provide in this subsection an alternative variational formula for the capacity
in terms of functions only.

Fix two disjoint subsets A, B of E. Let F0(A,B)⊥ be the set of flows in F

which are orthogonal to all flows in F0(A,B). By [97, Theorem 8.7], for every
function f in C1,0(A,B),

inf
φ∈F0(A,B)

‖Φf − φ‖2 = sup
ψ∈F0(A,B)⊥

〈Φf , ψ 〉2
〈ψ , ψ 〉 ,

where the supremum is carried over all ψ 	= 0. We may rewrite the right-hand
side to obtain that

inf
φ∈F0(A,B)

‖Φf − φ‖2 = sup
ψ∈F0(A,B)⊥

{
2 〈Φf , ψ 〉 − 〈ψ , ψ 〉

}
, (B.15)

which is more convenient.
Let C(A,B) be the set of functions f : E → R which are constant in A and

B:
C(A,B) :=

⋃
a,b∈R

Ca,b .

Lemma B.12. We have that

F0(A,B)⊥ =
{
Ψf : f ∈ C(A,B)

}
.

Proof. Denote by A the set on the right-hand side. Its is clear that A ⊂
F0(A,B)⊥. Indeed, fix φ ∈ F0(A,B) and f in Ca,b for some a, b ∈ R. Then,

〈Ψf , φ 〉 =
1

2

∑
(η,ξ)∈E

[ f(η)− f(ξ) ]φ(η, ξ) =
∑
η∈E

f(η) (divφ)(η) .

As f is constant equal to a, b on A, B, respectively, this sum can be written as

a
∑
η∈A

(divφ)(η) +
∑

η �∈A∪B

f(η) (divφ)(η) + b
∑
η∈B

(divφ)(η) . (B.16)

Each of these sums vanish because φ belongs to F0(A,B).
It remains to show that A⊥ ⊂ F0(A,B). Let φ be a flow in A⊥. Then, for all

a, b ∈ R, f in Ca,b,
〈Ψf , φ 〉 = 0 .

In the first part of the proof, we showed that the left-hand side of this identity
is equal to (B.16). Hence, for all a, b ∈ R and all f : E \ (A ∪ B) → R, (B.16)
vanishes. From this we conclude that for all ξ 	∈ A ∪B,∑

η∈A

(divφ)(η) = (divφ)(ξ) =
∑
η∈B

(divφ)(η) = 0 .

This proves that φ belongs to F0(A,B) and completes the proof of the lemma.
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It follows from (B.15), the previous lemma and (B.12) that

inf
φ∈F0(A,B)

‖Φf − φ‖2 = sup
g∈C(A,B)

{
2 〈 f , L g 〉π − 〈 (−Lsg) , g 〉π

}
,

where the set C(A,B) has been introduced in the statement of Lemma B.12.
We replaced g by −g in the previous expression to remove the minus sign in the
first term.

The previous argument permitted to formulate in terms of functions a varia-
tional formula originally expressed through flows. Since, by (A.6), 〈Lsg , g 〉π =
〈Lg , g 〉π, in the previous formula we may replace Ls by L. This identity to-
gether with Theorem B.3 provides a Dirichlet principle in terms of functions
only. This is the content of the next result. In contrast with the one formulate
in terms of flows, it involves an inf sup instead of an inf inf which is simpler to
estimate.

Theorem B.13. Let A, B be disjoint, non-empty subsets of E. Then,

cap(A,B) = inf
f∈C1,0(A,B)

sup
g∈C(A,B)

{
2 〈 f , L g 〉π − 〈 (−L) g , g 〉π

}
.

Moreover, the optimal function is given by f = (1/2){hA,B + h∗
A,B}.

Theorem B.13 has been proved by Doyle [51] and, independently, by Gau-
dillière and Landim [67]. A version in the context of diffusions is due to Pinsky
[112, 113].

Remark B.14. It is also possible to transform the variational problem

inf
g∈C0,0(A,B)

‖Φg − ψ‖2

into a supremum over flows satisfying certain identities. The resulting varia-
tional formula does not seem to be useful.

B.7. Sector condition

Recall from (A.5) that we denote by Ls the symmetric part of the operator L
in L2(π): Ls = (1/2)(L + L∗). This operator is self-adjoint in L2(π) and the
corresponding Markov chain, denoted by ηs(t) is reversible. Moreover, for every
function f : E → R,

〈 (−Ls) f , f 〉π = 〈 (−L) f , f 〉π = D(f) .

Therefore, the Dirichlet form associated to the operator Ls, denoted by Ds(f)
and defined by the leftmost term of the previous equation, coincides with the
Dirichlet form of the original process.

In particular, if we represent by caps(A,B) the capacity between two disjoint,
non-empty subsets A, B with respect to the chain ηs(t), by (B.14),

caps(A,B) = inf
f∈C1,0(A,B)

Ds(f) = inf
f∈C1,0(A,B)

D(f) .
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Hence, as ha,B belongs to C1,0(A,B), by (B.7) and the previous identity,

caps(A,B) ≤ cap(A,B) . (B.17)

It turns out that a converse inequality holds if the generator satisfies a sector
condition. Recall that a generator L satisfies a sector condition with constant
C0 if for every functions f , g : E → R,

〈Lf , g 〉2π ≤ C0 〈 (−L) f , f 〉π 〈 (−L) g , g 〉π .

Next result states that the capacity between two sets can be estimated by by the
symmetric capacity between these set if the generator satisfies a sector condition

Lemma B.15. Suppose that the generator L satisfies a sector condition with
constant C0. Then, for every pair of disjoint subsets A, B of E,

cap(A,B) ≤ C0 cap
s(A,B) .

Remark B.16. By equation (6.2), the height of a valley is proportional to the
inverse of the capacity. Thus, equation (B.17) asserts that the height of a valley
in non-reversible dynamics is smaller than the one in the reversible version.
Therefore, non-reversible dynamics mix faster than their reversible counterpart.

Remark B.17. When the state space E is finite, the generator always satisfies
a sector condition (cf. Corollary A.3), but Lemma B.15 holds in the context of
countably-infinite state spaces and diffusions.

B.8. Recurrence

We assume in this section that the set E is countably infinite. A classical problem
in the theory of Markov chains is to determine wether a chain is recurrent or
not. Potential theory is a powerful tool in this framework.

Here is an open problem, for instance. Consider the random walk in random
environment evolving on Z2 as follows. For each line l(k) = {(x, k) : x ∈ Z} flip
a fair coin. If it comes head, on this line the random walk may only jump to
the right, while it may only jump to the left if it comes tail. This represented
by drawing an arrow from (x, k) to (x+1, k) for each x ∈ Z if the side shown is
head, or from (x, k) to (x− 1, k) if it is tail. Do the same thing for each column
to obtain a graph as in Figure 7.

As illustrated in Figure 7, each point (x, y) in Z2 is the tail of two arrows.
Denote by η(t) the random walk on Z2 which waits a mean-one exponential
time ate each site of Z2 and which jumps with equal probability along one of
the two arrows.

It is clear that for almost all environments the random walk is irreducible and
that the uniform measure is stationary [because the flow formed by the arrows
is divergence-free]. It is an open problem to determine if this random walk is
almost-surely recurrent or transient.
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Fig 7. A random walk in random environment evolving on Z2. At the tail of the two red
arrows, the random walk may only jump, with equal probability, to the left or to the bottom.

In view of this example, consider a chain η(t) defined on a countably infinite
space E which is irreducible and assume that there exists a stationary state,
denoted by π. Note that π may not be summable, as in the example above.
But we assume that π is explicitly known because all estimates below involve π.
This is clearly a strong hypothesis and in many cases a stationary state is not
known.

Recall that the Markov chain η(t) is recurrent if and only if there exist a
configuration η ∈ E such that Pη[H

+
η = ∞] = 0. There is nothing special about

η. If this identity holds for some configuration η, due to the irreducibility, it
holds for every. Let (Bn : n ≥ 1) be a sequence of finite subsets of E containing
η and increasing to E, η ∈ Bn ⊂ Bn+1, ∪nBn = E. Then,

Pη

[
H+

η = ∞
]
= lim

n→∞
Pη

[
HBc

n
< H+

η

]
.

By definition (B.1) of the capacity, for any finite set B containing the site 0,

1

M(η)
Pη

[
HBc < H+

η

]
= cap(η,Bc) ,

where M(ξ) = π(ξ)λ(ξ), λ(ξ) being the holding rate at ξ. Hence, the Markov
chain η(t) is recurrent if and only if there exist a configuration η ∈ E and a
sequence of finite subsets Bn containing η and increasing to E such that

lim
n→∞

cap(η,Bc
n) = 0 . (B.18)

The proof of the recurrence is thus reduced to the estimation of the capacity
between a configuration and the complement of a finite set.

Of course, if condition (B.18) holds for some configuration η ∈ E and for some
sequence of finite subsets Bn containing η and increasing to E, it also holds for
all configurations ξ ∈ E and for all sequences of finite subsets Cn containing ξ
and increasing to E.

The next two results, taken from [67], follow from the previous observation
and the estimate (B.17) and Lemma B.15. Recall from the previous subsection
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that ηs(t) stands for the reversible version of the process η(t) whose generator
is given by Ls introduced in (A.5).

Theorem B.18. Let η(t) be a irreducible Markov chain on a countable state
space E which admits a stationary measure. The process is transient if the
Markov chain ηs(t) is.

Theorem B.19. Let η(t) be a irreducible Markov chain on a countable state
space E which admits a stationary measure. The process is recurrent if its gen-
erator satisfies a sector condition and if the Markov chain ηs(t) is recurrent.

It follows from these results, cf. [67], that a irreducible Markov chain on a
countable state space E which admits a stationary measure is recurrent if the
Markov chain ηs(t) is recurrent and if

∑
(η,ξ)∈E

ca(η, ξ)
2

cs(η, ξ)
< ∞ ,

where the symmetric conductance cs has been introduced in (B.9), and the
asymmetric one is given by ca(η, ξ) = (1/2) [ c(η, ξ)− c(ξ, η) ].

Benjamini and Hermon [74, 21] used Theorem B.18 to investigate the recur-
rence of non-backtracking random walks and to show that for every transient,
nearest-neighbor Markov chain on a graph, the graph formed by the vertices it
visited and edges it crossed is a.s. recurrent for simple random walk.

B.9. Equilibrium measure

Fix two proper, disjoint subsets A, B of E: A ∩B = ∅, A 	= ∅, B 	= ∅. Define
the equilibrium measures νAB , ν

∗
AB on A as

νAB(η) =
M(η)Pη

[
HB < H+

A

]
cap(A,B)

, ν∗AB(η) =
M(η)P∗

η

[
HB < H+

A

]
cap∗(A,B)

η ∈ A .

For a probability measure μ on E, denote by Pμ the measure on D([0,∞), E)
induced by the Markov chain η(t) starting from μ: Pμ =

∑
η∈E μ(η)Pη. Expec-

tation with respect to Pμ is represented by Eμ.

Proposition B.20. Fix two proper, disjoint subsets A, B of E. For every
function g : E → R,

Eν∗
AB

[ ∫ HB

0

g(η(t)) dt
]

=
〈 g , h∗

AB〉π
cap(A,B)

· (B.19)

Proof. We first claim that the proposition holds for indicator function of a
configuration. Fix an arbitrary element ξ of E. If ξ belongs to B the right
and the left-hand side of (B.19) vanish. We may therefore assume that ξ does
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not belong to B. In this case we may write the expectation appearing in the
statement of the lemma as

Eν∗
AB

[ HB−1∑
n=0

en
λ(ξ)

χ{ξ}(Yn)
]
,

where (Yn : n ≥ 0) is the discrete-time, embedded Markov chain, (en : n ≥ 0)
is a sequence of i.i.d. mean-one, exponential random variables, independent of
the jump chain (Yn : n ≥ 0), and HB the hitting time of the set B for the
discrete time Markov chain Yn. By the Markov property and by definition of
the harmonic measure ν∗AB , this expression is equal to

1

λ(ξ)

∑
η∈A

∑
n≥0

ν∗AB(η)Pη

[
Yn = ξ , n < HB

]
=

1

λ(ξ) cap∗(A,B)

∑
n≥0

∑
η∈A

M(η)P∗
η

[
HB < H+

A

]
Pη

[
Yn = ξ , n < HB

]
.

We may replace the hitting time and the return time HB , H
+
A by the respec-

tive times HB , H
+
A for the discrete chain. On the other hand, since η and ξ do

not belong to B, the event {Y0 = η , Yn = ξ , n < HB} represents all paths
that started from η, reached ξ at time n without passing through B. In par-
ticular, by the detailed balanced relations between the process and its adjoint,
M(η)Pη[Yn = ξ , n < HB ] = M(ξ)P∗

ξ [Yn = η , n < HB ] and the last sum
becomes

M(ξ)

λ(ξ) cap∗(A,B)

∑
n≥0

∑
η∈A

P∗
η

[
HB < H+

A

]
P∗
ξ

[
Yn = η , n < HB

]
=

M(ξ)

λ(ξ) cap∗(A,B)

∑
n≥0

∑
η∈A

P∗
ξ

[
Yn = η , n < HB , HB ◦ ϑn < H+

A ◦ ϑn

]
,

where we used the Markov property in the last step. In this formula (ϑk : k ≥ 1)
stands for the group of discrete time shift. Summing over η the sum can be
written as

M(ξ)

λ(ξ) cap∗(A,B)

∑
n≥0

P∗
ξ

[
Yn ∈ A , n < HB , HB ◦ ϑn < H+

A ◦ ϑn

]
.

The set inside the probability represents the event that the process Yk visits A
before visiting B and that its last visit to A before reaching B occurs at time
n. Hence, since M(ξ) = λ(ξ)π(ξ), since by (B.3), (B.8) cap∗(A,B) = cap(A,B)
and since g is the indicator function of the configuration ξ, summing over n we
get that the previous expression is equal to

1

cap∗(A,B)
π(ξ)P∗

ξ

[
HA < HB

]
=

〈 g , h∗
AB〉π

cap(A,B)
·

By linearity, we get the desired result for all functions g : E → R.
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In the particular case where A = {η} for η 	∈ B we have that

Eη

[ ∫ HB

0

g(η(s)) ds
]

=
〈 g , h∗

{η}B 〉π
cap({η}, B)

(B.20)

for all functions g : E → R.
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Probab. Statist. 52, 286–322 (2016). MR3449304

[41] P. Chleboun, S. Grosskinsky: Finite size effects and metastability in zero-
Range condensation. J. Stat. Phys. 140, 846–872 (2010). MR2673337

[42] P. Chleboun, S. Grosskinsky: Condensation in stochastic particle systems
with stationary product measures. J. Stat. Phys. 154, 432–465 (2014).
MR3162548

[43] P. Chleboun, S. Grosskinsky: A dynamical transition and metastability in
a size-dependent zero-range process. Journal of Physics A: Mathematical
and Theoretical, 48, p. 055001, (2015). MR3300272

https://arxiv.org/1507.02104
http://www.ams.org/mathscinet-getitem?mr=3568024
http://www.ams.org/mathscinet-getitem?mr=1813041
http://www.ams.org/mathscinet-getitem?mr=2094397
http://www.ams.org/mathscinet-getitem?mr=3445787
http://www.ams.org/mathscinet-getitem?mr=0101557
http://www.ams.org/mathscinet-getitem?mr=3217531
http://www.ams.org/mathscinet-getitem?mr=3192172
http://www.ams.org/mathscinet-getitem?mr=2948687
http://www.ams.org/mathscinet-getitem?mr=2386733
http://www.ams.org/mathscinet-getitem?mr=0749840
http://www.ams.org/mathscinet-getitem?mr=3449304
http://www.ams.org/mathscinet-getitem?mr=2673337
http://www.ams.org/mathscinet-getitem?mr=3162548
http://www.ams.org/mathscinet-getitem?mr=3300272


Metastable Markov chains 223

[44] E. N. M. Cirillo, F. R. Nardi: Relaxation height in energy landscapes: an
application to multiple metastable states. Journal of Statistical Physics
150, 1080–1114 (2013). MR3038678

[45] E. Cirillo, F. Nardi, J. Sohier: Metastability for general dynamics with
rare transitions: escape time and critical configurations. J. Stat. Phys.
161, 365–403 (2015) MR3401022

[46] E. N. M. Cirillo, F. R. Nardi, C. Spitoni: Sum of exit times in a series of
two metastable states. Eur. Phys. J. Spec. Top. 226, 2421–2438 (2017).

[47] E. N. M. Cirillo, E. Olivieri: Metastability and nucleation for the Blume-
Capel model. Different mechanisms of transition. J. Stat. Phys. 83, 473–
554 (1996). MR1386350

[48] C. Cooper, A. Frieze, T. Radzik: Multiple random walks in random regular
graphs. SIAM J. Discrete Math. 23, 1738–1761 (2009). MR2570201

[49] A. Cortines, J. Gold, O. Louidor: Dynamical freezing in a spin glass system
with logarithmic correlations. Electron. J. Probab. 23, paper 59 (2018).
MR3814253

[50] J. T. Cox: Coalescing random walks and voter model consensus times on
the torus in Zd. Ann. Probab. 17, 1333–1366 (1989). MR1048930

[51] P. Doyle: Energy for Markov chains. Unpublished manuscript available at
http://www.math.dartmouth.edu/∼doyle (1994).

[52] P. G. Doyle, J. L. Snell: Random walks and electric networks, volume 22 of
Carus Mathematical Monographs. Mathematical Association of America,
Washington, DC, 1984. http://arxiv.org/abs/math/0001057. MR0920811

[53] R. Durrett: Some features of the spread of epidemics and information on
a random graph. Proc. Nat. Acad. Sci. USA 107 4491–4498 (2010).

[54] E. Weinan, E. Vanden-Eijnden: Towards a theory of transition paths. J.
Stat. Phys. 123, 503–523 (2006). MR2252154

[55] S. N. Ethier, Th. G. Kurtz: Markov processes. Characterization and con-
vergence. Wiley Series in Probability and Mathematical Statistics: Prob-
ability and Mathematical Statistics. John Wiley & Sons, Inc., New York,
1986. MR0838085

[56] M. R. Evans: Phase transitions in one-dimensional nonequilibrium sys-
tems. Braz. J. Phys. 30, 42–57 (2000).

[57] L. C. Evans, P. R. Tabrizian: Asymptotic for scaled Kramers-
Smoluchowski equations. SIAM J. Math. Anal. 48, 2944–2961 (2016).
MR3542005

[58] H. Eyring: The activated complex in chemical reactions. J. Chem. Phys.
3, 107–115 (1935).
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Statist. 52, 669–702 (2016). MR3498005

[103] F. R. Nardi, A. Zocca: Tunneling behavior of Ising and Potts models in
the low-temperature regime. arXiv:1708.09677 (2017).

[104] E. J. Neves, R. H. Schonmann: Critical droplets and metastability for a
Glauber dynamics at very low temperatures. Comm. Math. Phys. 137,
209–230 (1991). MR1101685

[105] E. J. Neves, R. H. Schonmann: Behavior of droplets for a class of Glauber
dynamics at very low temperature. Probab. Theory Related Fields 91,
331–354 (1992). MR1151800

[106] C. Oh, F. Rezakhanlou: Metastability of zero range processes via Poisson
equations, preprint (2019).

[107] R. I. Oliveira: On the coalescence time of reversible random walks. Trans.
Am. Math. Soc. 364, 2109–2128 (2012). MR2869200

[108] R. I. Oliveira: Mean field conditions for coalescing random walks. Ann.
Probab. 41, 3420–3461 (2013). MR3127887

[109] E. Olivieri, E. Scoppola: Markov Chains with Exponentially Small Tran-
sition Probabilities: First Exit Problem from a General Domain. I. The
Reversible Case J. Stat. Phys. 79, 613–647 (1995). MR1327899

[110] E. Olivieri, E. Scoppola: Markov Chains with Exponentially Small Tran-
sition Probabilities: First Exit Problem from a General Domain. II. The
General Case J. Stat. Phys. 84, 987–1041 (1996). MR1412076

[111] E. Olivieri and M. E. Vares: Large deviations and metastability. Encyclo-
pedia of Mathematics and its Applications, vol. 100. Cambridge University
Press, Cambridge, 2005. MR2123364

[112] R. G. Pinsky: A generalized Dirichlet principle for second order non-
selfadjoint elliptic operators. SIAM J. Math. Anal. 19, 204–213 (1988).
MR0924555

[113] R. G. Pinsky: A minimax variational formula giving necessary and suffi-
cient conditions for recurrence or transience of multidimensional diffusion
processes. Ann. Probab. 16, 662–671 (1988). MR0929069

http://www.ams.org/mathscinet-getitem?mr=1892228
http://www.ams.org/mathscinet-getitem?mr=2070109
http://www.ams.org/mathscinet-getitem?mr=1858997
http://www.ams.org/mathscinet-getitem?mr=2480117
http://www.ams.org/mathscinet-getitem?mr=3498005
https://arxiv.org/1708.09677
http://www.ams.org/mathscinet-getitem?mr=1101685
http://www.ams.org/mathscinet-getitem?mr=1151800
http://www.ams.org/mathscinet-getitem?mr=2869200
http://www.ams.org/mathscinet-getitem?mr=3127887
http://www.ams.org/mathscinet-getitem?mr=1327899
http://www.ams.org/mathscinet-getitem?mr=1412076
http://www.ams.org/mathscinet-getitem?mr=2123364
http://www.ams.org/mathscinet-getitem?mr=0924555
http://www.ams.org/mathscinet-getitem?mr=0929069


Metastable Markov chains 227

[114] F. Rezakhanlou, I. Seo: Scaling limit of metastable diffusions, preprint
(2018).

[115] L. C. G. Rogers, D. Williams: Diffusions, Markov Processes, and Mar-
tingales: Volume 1, Foundations. Cambridge University Press, 1994.
MR1780932

[116] E. Scoppola: Renormalization group for Markov chains and application to
metastability. J. Stat. Phys. 73, 83–121 (1993). MR1247859

[117] I. Seo: Condensation of non-reversible zero-range processes,
arXiv:1801.05934 (2018). MR3922538

[118] I. Seo, P. R. Tabrizian: Asymptotics for scaled Kramers-Smoluchowski
equations in several dimensions with general potentials, preprint (2017).

[119] M. Slowik: A note on variational representations of capacities for reversible
and nonreversible Markov chains. Unpublished, Technische Universität
Berlin, 2012.

[120] D. W. Stroock, S. R. S. Varadhan: Multidimensional diffusion processes.
Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag,
Berlin, 2006. MR2190038

[121] M. Sugiura: Metastable behaviors of diffusion processes with small param-
eter. J. Math. Soc. Japan 47, 755–788 (1995). MR1348758

[122] M. Sugiura: Asymptotic behaviors on the small parameter exit problems
and the singularly perturbation problems. Ryukyu Math. J. 14, 79–118
(2001). MR1897280

[123] B. Waclaw, M. R. Evans: Explosive Condensation in a Mass Transport
Model. Phys. Rev. Lett. 108, 070601 (2012).

http://www.ams.org/mathscinet-getitem?mr=1780932
http://www.ams.org/mathscinet-getitem?mr=1247859
https://arxiv.org/1801.05934
http://www.ams.org/mathscinet-getitem?mr=3922538
http://www.ams.org/mathscinet-getitem?mr=2190038
http://www.ams.org/mathscinet-getitem?mr=1348758
http://www.ams.org/mathscinet-getitem?mr=1897280

	A random walk in a graph
	Metastability as model reduction
	Last passage
	Trace process
	Metastability
	Finite-dimensional distributions

	Martingale problems
	The martingale approach
	Local ergodicity
	The coarse-grained jump rates
	Reversible case
	Nonreversible case

	The negligible set N
	The Poisson equation
	Local ergodic theorem in L2
	The enlarged process
	The resolvent equation
	Local ergodicity

	Tightness
	The last passage
	The finite-dimensional distributions
	Examples
	Random walks in a potential field
	Spin dynamics
	Zero range processes
	Random walks among random traps
	A polymer in the depinned phase
	Coalescing random walks
	Further examples

	Markov chains
	Reflected chain
	Cycle generators
	Enlarged chains
	Collapsed chains

	Potential theory
	The capacity
	A formula for the capacity
	Flows
	The Dirichlet and the Thomson principles
	Reversible dynamics
	Dirichlet principle II
	Sector condition
	Recurrence
	Equilibrium measure

	Acknowledgments
	References

