
Electronic Journal of Statistics
Vol. 13 (2019) 284–309
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1529

Fast Bayesian variable selection for high

dimensional linear models: Marginal

solo spike and slab priors

Su Chen

Department of Statistics and Data Sciences
University of Texas at Austin
e-mail: s.chen@utexas.edu

and

Stephen G. Walker

Department of Mathematics
University of Texas at Austin

e-mail: s.g.walker@math.utexas.edu

Abstract: This paper presents a method for fast Bayesian variable selec-
tion in the normal linear regression model with high dimensional data. A
novel approach is adopted in which an explicit posterior probability for
including a covariate is obtained. The method is sequential but not order
dependent, one deals with each covariate one by one, and a spike and slab
prior is only assigned to the coefficient under investigation. We adopt the
well-known spike and slab Gaussian priors with a sample size dependent
variance, which achieves strong selection consistency for marginal posterior
probabilities even when the number of covariates grows almost exponen-
tially with sample size. Numerical illustrations are presented where it is
shown that the new approach provides essentially equivalent results to the
standard spike and slab priors, i.e. the same marginal posterior probabilities
of the coefficients being nonzero, which are estimated via Gibbs sampling.
Hence, we obtain the same results via the direct calculation of p proba-
bilities, compared to a stochastic search over a space of 2p elements. Our
procedure only requires p probabilities to be calculated, which can be done
exactly, hence parallel computation when p is large is feasible.
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1. Introduction

Variable selection for the linear model is currently a topic of immense interest.
In this paper, we consider the Gaussian linear regression model under high
dimensional setting. In particular,

Y = Xβ + σε, (1)

where Y is a n×1 vector of response variables, X is a n×p matrix of predictor
variables, β is a p × 1 vector of coefficients, σ2 an unknown variance term and
ε is a n× 1 vector of i.i.d. standard normal random errors. Variable selection in
the high-dimensional setup, p >> n, is a flourishing area, driven primarily by
challenging applications in various fields like genetics, finance, machine learning,
etc, with increasing availability of data. Sparsity has frequently been identified as
an underlying feature for these kind of data sets. For example, in genetic studies,
where the response variable corresponds to a particular observable trait, the
number of subjects n may be of order 103, while the number of genetic features
p can be of order 105. Despite the large number of features, usually only a few
have a genuine association with the trait. Therefore, it is reasonable to assume
that the true β, written as β∗, is sparse, i.e., has a fixed finite number of non-
zero elements, even when p is growing. In other words, let S∗ denote the set
of indices for the active covariates in the true model. The sparsity assumption
says that even if the total number of covariates p may grow with n, |S∗| is fixed.
Thus, zeros may be added to the coefficient vector β as n increases, but no
nonzero components. So we assume after exceeding some dimension p ≥ |S∗|,
after which as n increases, only zeros can be added to the vector β. However,
we do not need the index in the set S∗ to be fixed, as long as |S∗| is fixed. This
is a typical assumption for the variable selection literature for diverging number
of covariates regarding selection consistency, such as in [15] and [18].

There has been a substantial body of literature on variable selection for high-
dimensional data in both the frequentist and the Bayesian paradigm, given the
practical importance of the problem. Frequentist solutions are often available
based on maximizing a penalized likelihood, with a penalty on the model com-
plexity. This includes the well-known least absolute shrinkage and selection op-
erator (LASSO), [22], the smoothly clipped absolute deviation SCAD, [9], the
adaptive LASSO, [23], and the Dantzig selector, [4], among others. Another im-
portant frequentist solution involves a screening algorithm to first reduce the
data dimension, and then to use some classical methods to perform variable
selection on the reduced data. This idea is implemented in sure independence
screening (SIS), [10], nonparametric independence screening (NIS), [8], iterative
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varying-coefficient screening (IVIS), [21], to name a few. A detailed review of
the selective methods above and other frequentist methods is provided by [10].

From the Bayesian perspective, popular methods for variable selection in-
clude [17], who introduced the spike and slab prior for specifically seeking a
posterior probability of a model; stochastic search variable selection (SSVS),
[12], and [13]; empirical Bayes variable selection, [11]; spike-and-slab variable
selection, [14]. A comprehensive review is provided in [7] and [19]. Among more
recent developments we mention the method of [2] which uses the idea of penal-
ized credible regions; the non-local prior, [15]; Bayesian shrinking and diffusing
(BASAD) prior [18]; and Spike and Slab Lasso [20]. Other notable works in
Bayesian variable selection include [3], which involves multivariate distributions
and [5], who use Bayes factors and model selection ideas.

Here we discuss the spike and slab prior, which is the most popular prior for
Bayesian variable selection. A binary latent vector Z, of same dimension as the
regression coefficient β, is usually introduced to indicate whether each coefficient
βj is “in or out”. A prior distribution on the binary vector Z is assumed to be
the prior distribution on model space. The prior for βj given Zj = 0 is usually
a point mass at 0 or a normal distribution concentrated around 0, called the
spike prior; and the prior for βj given Zj = 1 is a flat or diffused distribution,
called the slab prior. The posterior distribution of the latent vector Z is used
to identify the model with the highest posterior probability, thus the selection
criteria. Various forms of spike and slab priors have been proposed together
with different form of prior on the model space. To the best of our knowledge,
all existing Bayesian variable selection methods rely on MCMC to do posterior
inference; thus one drawback of all these methods is the feasibility of MCMC
chain to fully explore the model space of dimension 2p, particularly when p
is moderate to large. The method proposed in this paper is born out of this
concern; we do not need MCMC, indeed all the results are analytical.

To make the introduction concrete we first introduce the model and associ-
ated notation. We can rewrite (1) as

Y = xjβj +X[−j]β[−j] + σε

for j = 1, . . . , p. Here the xj is the jth column of the design matrixX, andX[−j]

is the design matrix X without the jth column. The reason why we isolate xj

and βj will become clear later. We also introduce the latent binary variable using
the same notation Zj , to indicate whether the particular covariate βj subject
to selection is truly active or not. Without loss of generality, we assume that Y
and each column of X are standardized with mean 0 and standard deviation 1,
therefore no intercept term in the regression model.

With suitable normal priors for (βj , β[−j]) and σ2, it is possible to obtain
a closed form expression for the posterior distribution of (βj , β[−j]). However,
for variable selection involving the spike and slab prior, this is no longer pos-
sible and necessarily MCMC methods need to be implemented, which is far
from trivial. Using a particular model involving the spike and slab prior for βj

only, and a conjugate Gaussian prior for the other β[−j], we are able to write
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down an explicit expression for P (Zj = 0|data). Our procedure only requires
p probabilities to be calculated, which can be done with exact expressions and
in parallel, thus computation is super fast. We also prove that the marginal
posterior probability for each covariate to be included in the model is asymp-
totically consistent if we carefully choose the prior parameters to depend on the
sample size n and number of covariates p, with some regularity conditions on
the design matrix. In addition, strong selection consistency holds in the sense
that the posterior probability of the true model converges to one even when
the number of covariates p grows with n at nearly exponential rate. In the pa-
per, we have compared our approach to BASAD [18], which is the traditional
spike-and-slab prior with sample size dependent prior variance, which utilizes
a marginal posterior probability selection procedure to achieve strong selection
consistency. We illustrate that our method provides results that are essentially
equivalent to BASAD in two ways: numerically through simulation studies, and
also theoretically through proving the same strong selection consistency with
similar conditions.

The remaining sections of the paper are as follows. Section 2 describes the
model, the motivation and some conditions on the prior parameters. Section
3 provides the posterior inference and describes our methodology for variable
selection based on the proposed model. Section 4 presents the main results
on the convergence of the posterior distribution of Z and the strong selection
consistency. In Section 5 we discuss some computational aspects of the proposed
method and present simulation studies. We also show performance of our method
compared to some popular existing methods in variable selection. In Section 6,
some possible strategies for tuning hyper parameters for the proposed method
are discussed for practical purposes. The paper concludes with a discussion in
Section 7.

2. The model

From here we use pn to denote the number of covariates to indicate that it can
grow with n. We assume that β is sparse in the sense that only a fixed and
finite number of components are nonzero. Our goal is to identify the nonzero
coefficients. The working model is as follows: for j = 1, . . . , pn,

Y|(X, β, σ2) ∼ N(βjxj +X[−j]β−j , σ
2I),

βj |Zj , σ
2 ∼

{
N(0, σ2τ20n) if Zj = 0
N(0, σ2τ21n) if Zj = 1

P(Zj = 1) = 1− P(Zj = 0) = qjn

β−j |σ2 ∼ N(0, σ2τ2nI), σ2 ∼ IG(a, b)

(2)

where N denotes normal and IG inverse gamma distribution. Here we assume
Y and each column of X are standardized such that

n∑
i=1

xij = 0,
n∑

i=1

x2
ij = n,

n∑
i=1

yi = 0, and
n∑

i=1

y2i = n. (3)
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For notational purposes, we denote the correlation coefficient between jth and
kth columns of the design matrix X as ρjk, where

ρjk =
xT
j xk

‖xj‖‖xk‖
=

xT
j xk

n
. (4)

We use the following notation for the support of true coefficients in the model:

S∗ ⊂ {1, 2, . . . , pn}, and S∗ = {j : β∗
j �= 0}. (5)

Strictly speaking we are working with pn models, one for each βj . We have
labeled the prior variances for the spike and slab to include the factors τ20n and
τ21n, respectively, reflecting the fact that they depend on n. For all the other
covariates not under investigation, we assign a conjugate Gaussian prior where
τ2n is a hyper-parameter. The idea is that we are selecting one covariate to be
under investigation while giving an appropriate shrinkage prior to all the other
covariates.

The motive for looking at each βj separately through the marginal posterior
distribution is as follows. Our argument is that using MCMC to infer the de-
pendence structure in the full posterior using spike and slab priors for each βj

is inadequate, and will not guarantee to reveal the correct information about
shared sparsity. For out of the 2p possible models for the Markov chain to visit,
it will actually only be a very small percentage which are visited. It would be
very difficult to pick off an accurate dependence structure from such a chain. In
some sense, for deciding accurately on the fate of each βj , we argue it is best
to treat β−j as a nuisance parameter and to integrate them out of the model.
Moreover, even if a MCMC has been employed, many variable selection proce-
dures then do concentrate on the marginal posteriors. Though note that these
marginal posteriors will not be exactly the same as ours; but should be close.
The advantage of our marginal posteriors is that they are available explicitly
and without the use of MCMC.

3. Posterior inference

Under the Bayesian model specified in the previous section, the probability
density function of Y given X, βj , β−j and σ2, is

p(Y |βj , β−j , σ
2)

=(2π)−n/2σ−n exp

[
− 1

2σ2
(Y − xjβj −X[−j]β−j)

T (Y − xjβj −X[−j]β−j)

]
(6)

If we multiply (6) by p(β[−j]|σ2) which is N(0, σ2τ2nI), and integrate over β[−j],
we obtain

p(Y |βj , σ
2)

∝σ−n|XT
[−j]X[−j] + τ−2I|−1/2 exp

[
− 1

2σ2
(Y − xjβj)

T (I − H̃j)(Y − xjβj)

]
(7)



Solo spike and slab 289

where

H̃j = X[−j]

(
XT

[−j]X[−j] + τ−2
n I

)−1

XT
[−j]

is a hat-matrix with a regularization term. Note in (7) it is straightforward to
find the mode for βj , which is

β̂j =
xT
j (I − H̃j)Y

xT
j (I − H̃j)xj

. (8)

What is worth pointing out is that this mode for βj , which we obtained after
integrating out all the other β’s but does not include the prior for βj , is almost
identical to the jth element in the Ordinary Least Square estimator for β in the
vanilla version of the linear model, with p < n. In fact, one can recover the jth
element of β̂OLS = (XTX)−1XTY by

β̂j

OLS
=

xT
j (I −Hj)Y

xT
j (I −Hj)xj

, (9)

where the H̃j is replaced by Hj = X[−j](X
T
[−j]X[−j])

−1XT
[−j]. This puts on

evidence that there is little loss of information by integrating out the β−j . In
fact, the posterior estimate of βj under our model is in the usual form of a
weighted average of (8) and the prior mean, which we choose to center at 0.
Thus it shares all the good asymptotic properties of (8), as is discussed in later
sections.

Now multiply (7) by p(βj |σ2) which is our spike and slab prior in (2), as a
mixture of two normal distributions,

p(Y |βj , σ
2)p(βj |σ2) ∝ (1−qjn)ω0j N(βj |μ0j , ξ

2
0j)+qjn ω1j N(βj |μ1j , ξ

2
1j). (10)

Given the conjugacy of inverse gamma prior of σ2, naturally we can multiply
(10) by IG(σ2|a, b) and integrate out σ2, so we obtain a mixture of two non-
standardized Student-t distributions,

p(βj |Y ) ∝ (1− qjn)F0jt0(βj |ν, μ0j , ψ0j) + qjnF1jt1(βj |ν, μ1j , ψ1j) (11)

where ν = n+ 2a. Here, for k ∈ {0, 1},

μkj =
xT
j (I − H̃j)Y

xT
j (I − H̃j)xj + τ−2

kn

(12)

ξ2kj =
σ2

xT
j (I − H̃j)xj + τ−2

kn

(13)

ωkj =

√
τ−2
kn

xT
j (I − H̃j)xj + τ−2

kn

exp

{
1

2σ2

(
(xT

j (I − H̃j)Y )2

xT
j (I − H̃j)xj + τ−2

kn

)}
(14)
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ψkj =
b+ 1

2Y
T (I − H̃j)Y − 1

2

(xT
j (I−H̃j)Y )2

xT
j (I−H̃j)xj+τ−2

kn

(n+ 2a)(xT
j (I − H̃j)xj + τ−2

kn )
(15)

Fkj =

√
τ−2
kn

xT
j (I − H̃j)xj + τ−2

kn

×

⎛⎝b+
Y T (I − H̃j)Y

2
−

(xT
j (I − H̃j)Y )2

2
(
xT
j (I − H̃j)xj + τ−2

kn

)
⎞⎠−(n

2 +a)

. (16)

Here we label the two t distributions as t0 and t1, being the“spike” t-distribution
and the “slab” t-distribution, respectively.

A natural variable selection procedure would be to use (11); if the weight in
front of the “slab” t distribution exceeds some pre-specified threshold, we select
this βj , and can use the mean μ1j as the posterior estimate of βj ; otherwise, we
do not select this βj and estimate it to be 0. Later we will show that such a pro-
cedure achieves strong selection consistency, meaning the posterior probability
of the selected model being the true model converges to 1.

We first explore the asymptotic behavior of the mean μ1j for the“slab” t-

distribution. In fact, understanding the behavior of xT
j (I − H̃j)Y is crucial as

this expression also appears in Fkj , which is the key term to determine the
posterior probability of a particular covariate being active or not. Now

μ1j ∼ N

(
xT
j (I − H̃j)Xβ∗

xT
j (I − H̃j)xj + τ−2

1n

, σ2
xT
j (I − H̃j)

2xj

(xT
j (I − H̃j)xj + τ−2

1n )2

)
. (17)

There are two sources of bias for μ1j as an estimator of β∗
j ; one is introduced by

the prior we put on β−j , specifically through H̃j ; and the other one is introduced

by the slab prior we put on βj . This is easily seen if we compare μkj with β̂j
OLS

,
which is an unbiased estimator. Specifically,

xT
j (I − H̃j)Xβ∗

xT
j (I − H̃j)xj + τ−2

1n

=
xT
j (I − H̃j)xjβ

∗
j

xT
j (I − H̃j)xj + τ−2

1n

+
xT
j (I − H̃j)X[−j]β

∗
−j

xT
j (I − H̃j)xj + τ−2

1n

=β∗
j −

β∗
j

1 + xT
j (I − H̃j)xjτ21n

+
xT
j (I − H̃j)X[−j]β

∗
−j

xT
j (I − H̃j)xj + τ−2

1n

.

(18)

The first bias term is easy to control with τ1n, the prior variance of the slab
normal, which is chosen to be large. In fact, all we need here is to have xT

j (I −
H̃j)xjτ

2
1n → ∞ as n → ∞, which is easy to achieve as xT

j (I − H̃j)xj will be of

order n. If, in addition, we let τ21n → ∞, this will speed up the convergence rate
of the posterior estimate of βj . We will show in Section 4 that τ20n together with
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qjn controls the size of the model, whereas τ21n controls the bias of the nonzero
β, and letting τ20n and τ21n to grow apart at a certain rate will be essential for
achieving strong selection consistency and optimal rates of convergence. The
following lemma sheds light on the behavior of the second bias term in (18). All
the proofs are included in Appendix.

Lemma 1. Let Xn be the design matrix defined in (2) with standardized
columns and dimension n × pn, where pn > n. Assume Σ = limn→∞ Σn =
limn→∞ XT

n Xn/n is well defined and has all eigenvalues bounded away from 0.
Then all the eigenvalues of (I− H̃n) are bounded away from 0 when supn nτ

2
n <

∞.

Lemma 2. If supn nτ
2
n < ∞, then n−1 xT (I − H̃j)x = O(1) for any n-

dimensional vector x with x′x = n.

Lemma 3. For any j ∈ S∗c and k ∈ S∗, if

sup
j∈S∗c

max
k∈S∗

∣∣∣∣∣ ρjk
1 +

∑
l �=j,l �=k ρkl

∣∣∣∣∣ = O
(√

nτ2n
)

then xT
j (I − H̃j)xk = O(

√
n).

Lemma 3 is essential to our result for pairwise consistency, when we consider
a true inactive covariate. The key term we need is to bound xT

j (I−H̃n)xk where
xj is an inactive covariate and xk is an active covariate.

Next, we have the following lemma regarding the behavior of μ0j and μ1j , the
means of the“spike” and “slab” t-distributions, respectively. Not surprisingly,
we would expect the “spike” t-distribution to converge to a point mass centered
at 0, and the “slab” t-distribution to converge to a point mass centered at the
true β∗ value. This can be achieved by adding conditions on the spike and slab
normal variances to be sample size dependent.

Lemma 4. Given the same assumption of Lemmas 1 - 3, and also nτ20n → 0,

nτ21n → ∞ as n → ∞, then μ0j
q.m.−−−→ 0, and μ1j

q.m.−−−→ β∗
j where β∗

j is the true

parameter value for the jth covariate in (2), which implies μ0j
P−→ 0, and μ1j

P−→
β∗
j . Here Xn

q.m.−−−→ X ( or Xn
L2

−−→ X ) is defined by limn→∞ E[(Xn −X)2] = 0.

Now we want to examine the posterior probability of a particular covariate βj

being active or not, i.e. whether we should select this covariate into the model.
From (11), we have

P(Zj = 1|Y ) = 1− P(Zj = 0|Y ) =
qjnF1j

qjnF1j + (1− qjn)F0j
(19)

where the expressions of F1j and F0j are given in (16). To achieve strong se-
lection consistency, one necessary condition is that P(Zj = 0|Y ) → I{β∗

j =0},

as n → ∞. Therefore, we need to look at the asymptotic behavior of the key
term F1j/F0j . From now on we assume a = b = 0 for simplicity since the same
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asymptotic results follow easily for any a, b > 0. We also assume qjn = qn, that
is the prior probability for any particular covariate to be an active one is the
same. Rewrite F1j/F0j as

F1j

F0j
=

√√√√xT
j (I − H̃j)xjτ20n + 1

xT
j (I − H̃j)xjτ21n + 1

(
Y T (I − H̃j)Y − φ2

0j

Y T (I − H̃j)Y − φ2
1j

)n
2

(20)

where, for k ∈ {0, 1},

φkj =
√

xT
j (I − H̃j)xj + τ−2

kn · μkj

∼ N

⎛⎝ xT
j (I − H̃j)Xβ∗√

xT
j (I − H̃j)xj + τ−2

kn

, σ2
xT
j (I − H̃j)

2xj

xT
j (I − H̃j)xj + τ−2

kn

⎞⎠ (21)

The next lemma explores the asymptotic behavior of φ0j . We show that with
slightly stronger conditions on τ20n, φ0j inherits similar properties as μ0j , as
stated in Lemma 4. This is also essential to our result for strong selection con-
sistency.

Lemma 5. Given the same assumption of Lemma 4, and in addition nτ0n → 0

as n → ∞, then φ0j
q.m.−−−→ 0.

With all the fundamental lemmas in place, in the next section we present the
main results of the paper.

4. Main results

In this section, we consider the model given by (2) and assume throughout the
paper that pn > n → ∞. The same theoretical results can be obtained for the
pn ≤ n case with relaxed conditions. However, our focus here would be the high
dimensional case. We first state the conditions needed for the main results:

Condition 1. Dimension of pn: pn = enδn for some δn → 0 as n → ∞; that
is, log(pn)/n → 0.

Condition 2. Prior parameters:

sup
j∈S∗c

max
k∈S∗

∣∣∣∣∣ ρjk
1 +

∑
l �=j,l �=k ρkl

∣∣∣∣∣ = O
(√

nτ2n
)
and τ2n = O

(
1

n

)
,

with nτ0n → 0, nτ21n → ∞, log(τ1n/τ0n)/n → 0 and qn ∼ p−1
n

Condition 3. Regularity of the design: The maximum nonzero eigenvalues of
the Gram matrix XTX/n are bounded away from infinity.

We will discuss these conditions after Theorem 1 which states the pairwise
consistency.
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Theorem 1. Assume Conditions 1 - 3 hold. From model (2), there exists an
increasing sequence dn with limn→∞ dn = d > 0, depending on the data, such
that,

If β∗
j = 0, P(Zj = 1|Y ) = OP

(
qn

τ0n
τ1n

)
(22)

If β∗
j �= 0, P(Zj = 0|Y ) = OP

(
1

qn

τ1n
τ0n

e−ndn

)
. (23)

Therefore, P(P(Zj = I{β∗
j =0}|Y ) > ε) → 0 for any ε > 0.

The proof is provided in the Appendix. The following arguments give some
heuristics for the pairwise consistency in Theorem 1. It states that the posterior
probability of misspecifying a particular covariate (that is either including a
inactive covariate or not including an active one) goes to 0 as we gather more
data, given the conditions above. The speed of convergence for pairwise consis-
tency depends on two things: the ratio of the spike variance (τ0n) over the slab
variance (τ1n), and the choice of qn, which is the prior probability of including
a particular covariate.

To better understand the asymptotic behaviors of the key terms and the
role each condition plays, we take a simple example of the p = 2 case as an
illustration. Suppose y = β1x1 + β2x2 + σε, and we consider β1. We assume the
data is centered and scaled such that x′

1x1 = x′
2x2 = yT y = n, x′

1x2 = x′
2x1 =

nρ. Simple calculations gives the following quantities,

H̃1 =
τ2n

nτ2n + 1
x2x

T
2

xT
1 (I − H̃1)x1 = n

(
nτ2n(1− ρ2) + 1

nτ2n + 1

)
xT
1 (I − H̃1)y = n

(
nτ2n(1− ρ2) + 1

nτ2n + 1
β1 +

ρ

nτ2n + 1
β2 +

1

n

(
x1 −

nτ2nρ

nτ2n + 1
x2

)T

ε

)

yT (I − H̃1)y = n

(
1− nτ2n

nτ2n + 1

(
(β1ρ+ β2)

2 +

(
xT
2 ε

n

)2
))

.

(24)
Assuming nτ20n → 0, and nτ21n → ∞ then

(i) if β1=0,

P(Z1=1|Y )∼qn
τ0n
τ1n

(
1 +

ρ2β2
2

(1 + nτ2n(1− ρ2))(1 + nτ2n(1− β2
2))

)
n
2

(ii) if β1 �=0,

P(Z1=0|Y )∼ 1

qn

τ1n
τ0n

(
1− (β1 + nτ2n(1− ρ2)β1 + ρβ2)

2

(1 + nτ2n(1− ρ2))(1 + nτ2n(1− (ρβ1 + β2)2))

)
n
2 .

(25)

Here we look for conditions to ensure both probabilities above converge to 0. The
second probability has an exponential decay term no matter how nτ2n behaves,
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therefore the only condition required is log(τ1n/τ0n)/n → 0. Now for the first

probability to also converge to 0, if nτ2n is bounded, we need |ρ| = O
(

1√
n

)
; and

if nτ2n → ∞, then we need |ρ| = O
(√

nτ2n
)
. We can see that these conditions are

a special case of the general conditions where pn diverges, because here the term∣∣∣ ρjk

1+
∑

l �=j,l �=k ρkl

∣∣∣ collapses to |ρ| in the p = 2 case. This over simplified example

provides some insights about how each part controls the posterior probability
and affects pairwise consistency when selecting one particular covariate.

In the general pn case, if β∗
j = 0, then both φ1j and φ0j defined in (21) are

stochastically bounded and centered at 0 (see Theorem 1). The dominant term of

ζn =
{
(Y T (I − H̃j)Y − φ2

0j)/(Y
T (I − H̃j)Y − φ2

1j)
}n/2

in (20) is Y T (I−H̃j)Y

which grows at the order of n, thus ζn converges to a constant. If β∗
j �= 0, then φ0j

is still stochastically bounded and centered at 0, but the mean of φ1j is growing

at the order of
√
n. Therefore, (Y T (I − H̃j)Y − φ2

1j)/(Y
T (I − H̃j)Y − φ2

0j) is
strictly less than 1, and hence ζn decays exponentially in n.

Here we discuss the necessity of the conditions in order to support (22) and
(23). Condition 1 restricts the number of covariates to be no greater than ex-
ponential n, and Condition 2 provides the shrinking and diffusing rates for the
spike and slab prior. Particularly, we require that the variance of spike prior
goes to 0 faster than n−2, and the variance of slab prior to be larger in order
than n−1. In other words, we need the spike variance and slab variance to be
growing apart at a speed of n. However, we also require that this speed not
be faster than exponential n. For the variance of the Gaussian prior we put on
all the other covariates not subject to selection, we require it to be bounded
both above and below. This makes sense intuitively, as we get more data, we do
want to put more shrinkage on all the other covariates, given the assumption of
sparsity; but neither do we want to shrink them too aggressively, in a way that
the shrinkage “cancels” out any information from all the other covariates. It is
not surprising that the condition on τ2n depends on pn, but implicitly through
all the correlations between the columns of the design matrix.

We also require that pnqn is bounded, which is a natural assumption given the
sparsity of β, such that the true β only has a fixed number of nonzero elements.
Condition 3 restricts the maximum and minimum non zero eigenvalues of the
Gram matrix to be bounded away from infinity and zero as the dimension of
the matrix grows as n grows; a standard assumption for the design matrix.

Note that Condition 2 is not only a condition on prior parameters, but also
a condition on identifiability, because it implies

sup
j∈S∗c

max
k∈S∗

∣∣∣∣∣ ρjk
1 +

∑
l �=j,l �=k ρkl

∣∣∣∣∣ = O

(
1√
n

)
. (26)

We did not list (26) as a separate condition for the sake of being concise.
This condition explicitly ensures identifiability as it restricts the magnitude
of the correlation between active and inactive covariates in the true model.
Identifiability is an assumption embedded in all variable selection methods for
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diverging numbers of covariates. The scale of 1/
√
n is no more than assuming

asymptotic independence between the active covariates and inactive ones. The
key point is that if asymptotically the active and inactive covariates are highly
correlated then strong selection consistency cannot be achieved as p grows much
faster than n. We see that this condition is equivalent to Condition 4.4 in [18],
which is stated to be a“mild regularity condition that allows us to identify the
true model”. We confirm this point here; when pn >> n, (26) is trivial because
there can be at most n columns of X being independent, and the remaining

pn − n columns will be correlated, which implies
∣∣∣∑l �=j,l �=k ρkl

∣∣∣ = O(pn − n).

Thus, as long as pn − n ≥ √
n, (26) is valid. Note that the restriction is only

imposed on the correlation between the active and inactive covariates, and there
is no restriction on the correlation structure within the active covariates or
inactive covariates.

When pn ≤ n, Theorem 1 still holds with simpler conditions. The upper
bound of τ2n in Condition 2 is no longer required as it is only needed for the hat
matrix to be well defined when pn > n, and the lower bound can be relaxed

to τ2n = O( 1√
n
) because supj∈S∗c maxk∈S∗

∣∣∣ ρjk

1+
∑

l �=j,l �=k ρkl

∣∣∣ ≈ O(1) when pn is

small. As a consequence, identifiability is unnecessary as well.

Let T denote a pn dimensional binary vector that represents the true model,
i.e. each element in T being 0 represents an inactive covariate, and each ele-
ment being 1 represents an active covariate. With such notation, we have the
following theorem which ensures the strong selection consistency for our model
selection procedure. We include βj as an active covariate if the marginal poste-
rior probability exceeds some specified cut off value, that is, P(Zj = 1|Y ) > c
for some to be specified 0 < c < 1.

Theorem 2. Assume Conditions 1 - 3 hold. From model (2), we have P(Z =

T |Y )
P−→ 1 as n → ∞, that is, the posterior probability of the true model goes

to 1 as the sample size increases to ∞. In particular, for any 0 < ε < 1,
P[P(Zj = Tj |Y ) > ε for all j = 1, . . . , pn] ≥ 1−O (τ0n/τ1n) → 1 as n → ∞.

Theorem 2 ensures that the variable selection procedure based on the marginal
posterior probabilities finds the right model with probability going to 1. When
the number of potential covariates pn is growing with n, convergence of marginal
posterior probabilities does not assure consistency for overall model selection.
Recall that in Condition 2 we require qn ∼ p−1

n , which is essential to derive The-
orem 2 from Theorem 1. This condition ensures the probability of incorrectly
including an inactive covariate in the model will stay sufficiently small as pn
grows. Due to the sparsity assumption, the inactive covariates is of order pn,
to be canceled by the qn term in (22). On the other hand, since the number
of active covariates in the true model is of constant order, (23) going to 0 is
enough to make sure the probability of missing an active covariate will also stay
sufficiently small. Interestingly, (23) also depends on qn ∼ p−1

n in a way that we
have log pn/n → 0 so that the term qn in the denominator will not cancel out
the exponential term and the whole thing still goes to 0.
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5. Simulation study

In this section, we validate the performance of the proposed method under sev-
eral experimental settings, and compare with some existing competitive variable
selection methods from both the classical, as well as the Bayesian paradigms.
In particular, we compare our method with the least absolute shrinkage and
selection operator (LASSO), [22], and Bayesian shrinking and diffusing prior
(BASAD), [18]. We have used R code for all the methods, either from existing
R packages or code kindly shared by the authors. In all simulation results, we
will refer to our method as SoloSS; for Solo Spike and Slab priors.

The proposed method has four turning parameters. In all the empirical work
we use

τ20n = n−1, τ21n = n, τ2n =

{
1√
n
, if n ≥ pn

1
n , if n < pn

, and qn = 0.05.

These prior choices provide good performance. Our specific choice for the spar-
sity level is set to be 5%, which is the oracle choice of qn for the pn = 100 case.
We discuss in Section 6 how to tune this parameter and a possible method to
quickly find the oracle choice. Note here we are using the same choice of qn for
the pn = 1000 case to demonstrate the performance of our method when qn is
not optimized. The variance of the Gaussian prior for all the other covariates
not under selection is chosen to be different for the p ≤ n and p > n case, as
motivated by Theorem 1. All the tuning parameters for BASAD are chosen by
the same criteria described in [18], and results were summarized from 5, 000
iterations of MCMC, with a burn-in of 1, 000. For the LASSO, the penalty pa-
rameter is optimized by cross-validation using the built-in function in the R
package “glmnet”.

We consider two values of pn, namely 100 and 1000, with a fixed value of
n = 100; similar scenarios in Narisetty et al. [18] and [15]. For both pn = 100
and pn = 1000, we set the number of active covariates to be 5 to reflect different
sparsity levels, and the true value of the active coefficients are taken to be 2. In
each case, we show results averaged over 100 data sets generated with different
random seeds. Each data vector xj of the design matrix X ′ = (x1, · · · , xn)
is assumed to follow the Gaussian distribution with mean 0 and covariance
matrix Σpn , for i = 1, . . . , n. We consider four types of covariance structure of
Σpn = (σi,j) for 1 ≤ i, j ≤ pn described as following, and present simulation
results for each case.

• Case 1. Identity: Σpn = I no correlation among the covariates.

Table 1

Simulation result for Case 1, pn = 100

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.392 1.000 0.002
BASAD 0.014 1.000 0.008 1.000 23.806
SoloSS 0.002 0.999 0.002 1.000 0.006
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Table 2

Simulation result for Case 1, pn = 1000

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.529 1.000 0.003
BASAD 0.000 0.873 0.002 0.920 1382.163
SoloSS 0.004 0.848 0.057 0.872 0.880

• Case 2. Equal correlation: Σpn has diagonal elements 1 and off diagonal
elements 0.25. This exhibits a moderate dependence structure uniformly
among the covariates.

Table 3

Simulation result for Case 2, pn = 100

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.525 1.000 0.002
BASAD 0.015 1.000 0.011 1.000 24.363
SoloSS 0.002 0.999 0.000 1.000 0.006

Table 4

Simulation result for Case 2, pn = 1000

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.741 1.000 0.003
BASAD 0.000 0.895 0.003 0.948 1031.487
SoloSS 0.005 0.863 0.047 0.886 0.751

• Case 3. Block dependence: Σpn has block covariance setting where the
true active covariates have common correlation ρ1 = 0.25, and the true
inactive covariates have common correlation ρ2 = 0.75 and each pair of
active and inactive covariate are assume to be independent. This interest-
ing covariance structure is adopted from [18], where it attributes different
correlations depending on whether the covariate is active or not.

Table 5

Simulation result for Case 3, pn = 100

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.075 1.000 0.002
BASAD 0.022 1.000 0.012 1.000 25.064
SoloSS 0.002 1.000 0.000 1.000 0.006

Table 6

Simulation result for Case 3, pn = 1000

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.100 1.000 0.003
BASAD 0.001 0.993 0.016 1.000 1102.925
SoloSS 0.003 0.998 0.000 1.000 0.845

• Case 4. Autoregressive: Σpn is defined by σij = 0.5|i−j| for 1 ≤ i ≤ j ≤ pn.
In this case, we have a decaying correlation structure depending on the
distance |i− j|. As the distance increases, the correlation decreases.
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Table 7

Simulation result for Case 4, pn = 100

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.159 1.000 0.002
BASAD 0.014 1.000 0.015 1.000 25.596
SoloSS 0.002 1.000 0.000 1.000 0.007

Table 8

Simulation result for Case 4, pn = 1000

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.162 1.000 0.004
BASAD 0.000 0.886 0.007 0.894 1098.953
SoloSS 0.004 0.996 0.018 0.998 0.648

The summary of our results are presented in Tables 1–8. In these tables,
both BASAD and SoloSSS present the median probability model chosen by
thresholding posterior probability of including a covariate at 0.5; this is shown
to be optimal in some sense by [1]. The columns of the tables show the average
marginal posterior probability assigned to inactive and active covariates, PP0
and PP1 respectively, false discovery rate (FDR), true positive rate (TPR),
and run time on the same machine. Based on our simulation experiment, we
highlight the following findings:

(i) Looking at all scenarios, LASSO often have higher true positive rate at the
cost of overfitting and false discoveries, especially under the more sparse
model setting for pn = 1000. The false discovery rate can be as high as
70%, while our method remains less than 5%.

(ii) Our proposed method is performing better than BASAD in more than half
of the scenarios, especially for Cases 3 and 4 where there is a moderate
level of correlation among covariates.

(iii) In all scenarios where BASAD shows better results, our method shows
only slightly worse result, where the difference is almost ignorable. We
argue that given our method only takes a tiny fraction of time to run
compared to BASAD, the performance of our proposed method is truly
remarkable.

(iv) The reported runtime for our method is recorded as a fully parallelization
procedure. It seems that LASSO is still the fastest one among the com-
parison, however the runtime for LASSO does NOT include the time to
do cross-validation for selecting the optimal tuning parameter, while the
simulation results presented for LASSO is indeed using the optimal tuning
parameter selected by cross-validation.

(iv) Note that BASAD needs to compute the inverse of the covariance ma-
trix for each iteration of MCMC, which is computationally prohibitive
for ultrahigh-dimensional data. In fact, any other MCMC based Bayesian
method available suffers from this computation bottleneck. Our method
only requires to compute the inverse of the covariance matrix once while
paralleling pn same calculation, which is the key to ensure scalability to
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big data problems.

Next, we present another simulation study which we raise pn to be 5000, and
we still consider the true model with 5 active covariates but we choose true β to
be 0.6. All the other aspects in the set-up remains unchanged as the simulation
shown before. This represent a very difficult scenario with high dimension, high
sparsity, and low signal to noise ratio. In this case, we are comparing to LASSO,
and Spike-and-Slab LASSO (SSLASSO) [20], which replaced the (BASAD) [18]
method and acts as a practical compromise, because the traditional Spike-and-
Slab priors that require MCMC to do posterior inference is not realistic in such
high dimension. In both SSLASSO and BASAD, they showed simulation with
pn = 1000, which they considered the high dimension cases.

Table 9

Simulation result for Case 1, pn = 5000, low signal

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.477 0.714 0.009

SSLASSO NA NA 0.015 0.528 0.683
SoloSS 0.002 0.474 0.201 0.476 10.593

Table 10

Simulation result for Case 2, pn = 5000, low signal

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.821 0.882 0.009

SSLASSO NA NA 0.163 0.482 0.936
SoloSS 0.002 0.439 0.261 0.412 10.040

Table 11

Simulation result for Case 3, pn = 5000, low signal

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.177 1.000 0.01

SSLASSO NA NA 0.928 0.03 2.475
SoloSS 0.002 0.972 0.089 0.989 9.088

Table 12

Simulation result for Case 4, pn = 5000, low signal

Methods PP0 PP1 FDR TPR run time
LASSO NA NA 0.211 0.988 0.008

SSLASSO NA NA 0 0.516 0.782
SoloSS 0.002 0.978 0.114 0.982 9.674

The summary of our results are presented in Tables 9–12. We have some
interesting findings here:

(i) As expected, under such difficult set-up, the performance of all methods
suffered greatly compared to that presented before. In general, no method
has dominated others in all 4 cases.
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(ii) We have not tuned our prior parameters in this scenario, so we were using
the same choices as before. However, the SSLASSO R package is using
cross-validation as a default choice to find optimal tuning parameters.
Therefore, it is not surprising that their performance is better in some
cases.

(iii) LASSO still suffers from very high FDR, especially in Cases 1 and 2,
where SSLASSO performs better. Our method performs slightly worse
than SSLASSO, while showing similar pattern in terms of striking a bal-
ance between FDR and TPR.

(iv) One surprising result is for Case 3 where the design matrix has block corre-
lation structure, SSLASSO pretty much failed, and our method performs
the best. The reason for this is that the EM algorithm that SSLASSO em-
ploys to explore the posterior mode will be easily stuck on a local mode
when the posterior shows a clear sign of multi-modal. The extra long run-
time of SSLASSO compared to other cases is also confirming that EM
algorithm is having difficulty converging.

(iv) For Cases 3 and 4, our performance is similar to LASSO, but slightly
better. The superior performance of our method in Case 3 is supported
by the asymptotic theorem where one of the conditions to achieve strong
selection consistency is to restrict the highest correlation between any
active and inactive covariates while keeping the correlation between others
not too small, as referred to the condition for identifiability in (26).

(v) If we include the time to run cross-validation, our runtime will be in sim-
ilar magnitude as LASSO, but our method provide explicit probability of
including a particular variable while neither LASSO and SSLASSO has
the ability to do so.
To conclude, this simulation study shows under high dimension where most
of other Bayesian variable selection methods no longer apply, our method
has the tendency to mimic the better-perform method under different
cases of design matrix, and can perform competitive or even better, which
is a very desirable property. We are aware that SSLASSO is also very
scalable to high dimension, but it can fail under certain scenarios where
our method performs well, which makes these two methods complimentary
to each other in some sense.

6. Strategies for tuning parameters

In this section, we discuss some possible strategies for tuning each of the prior
parameters. Sensitivity analysis suggests results are quite robust to the choice
of τ0n and τ1n as long as they are set to be far apart. Our default choices for
them would be τ20n = 1/n and τ21n = n, which are supported by the conditions
to achieve strong selection consistency.

A default choice for τ2n is to choose the variance for all the other β[−j] not
subject to selection to be the same as βj , the one put under the spike and
slab prior. One can simply derive this from the conditional variance formula
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Var(βj) = E[Var(βj | Zj ]+Var(E[βj | Zj ]) = qnτ
2
1n+(1−qn)τ

2
0n. One issue here is

such a choice depends on other tuning parameters qn, τ0n and τ1n, but in practice
it is natural to replace qn with 1

pn
and use the default choices for the spike and

slab variances as above. Thus we suggest a default choice for τ2n when pn >> n
to be n/pn + (pn − 1)/npn. Such a choice yields τ2n ≈ 1/n, which is consistent
with the asymptotic condition on τ2n. However, for the cases where pn ≤ n and
both are in relatively low dimensions, this default choice will rely heavily on the
ratio of n and pn, and thus may not be a reasonable choice. Here we recommend
another way to tune τ2n for small n and pn, which is to use cross validation to
choose the best ridge regression penalty parameter, and set τ2n accordingly. This
is based on the fact that putting a Gaussian prior on all the other β[−j]s is
equivalent to ridge regression, and even though our approach will integrate out
all the other β[−j]s when making selection decision on the particular βj , using
the optimal shrinkage penalty parameter for all the other β[−j]s should not be a
bad idea. The following tables show the same simulation study results using such
tuning strategies for τn, and all the other tuning parameters remain the same.
We highlight some measures improved by employing such tuning strategies,
but notice that both have reasonable performance compared to our choices in
Section 5.

Table 13

Simulation results for τ2n = n
pn

+ pn−1
npn

pn = 100 PP0 PP1 FDR TPR
Case 1 0.023 1.000 0.159 1.000
Case 2 0.023 1.000 0.132 1.000
Case 3 0.015 1.000 0.064 1.000
Case 4 0.014 1.000 0.062 1.000

pn = 1000 PP0 PP1 FDR TPR
Case 1 0.014 0.926 0.199 0.940
Case 2 0.014 0.933 0.172 0.958
Case 3 0.009 1.000 0.012 1.000
Case 4 0.012 0.998 0.120 0.998

Table 14

Simulation results for τ2n chosen by cross validation using R package glmnet

pn = 100 PP0 PP1 FDR TPR
Case 1 0.002 0.988 0.000 0.996
Case 2 0.002 0.959 0.000 0.974
Case 3 0.002 1.000 0.000 1.000
Case 4 0.002 0.998 0.000 1.000

pn = 1000 PP0 PP1 FDR TPR
Case 1 0.007 0.872 0.110 0.896
Case 2 0.006 0.889 0.072 0.918
Case 3 0.004 1.000 0.002 1.000
Case 4 0.005 0.997 0.030 0.998

The most sensitive prior parameter is qn, which is not surprising, as we are
doing variable selection based on marginal posteriors for one covariate at a time;
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thus the prior probability of including a covariate plays a more important role
than other turning parameters. Here we discuss two possible tuning strategies
for qn:

• finding the oracle choice by repeatedly updating qn from the data:

1. start with qn = 1/pn, run the variable selection procedure.

2. if number of active covariates selected from above is ŝ, update qn =
ŝ/pn, and run the variable selection procedure again.

3. stop until qn does not update anymore, which would be the estimate
of oracle choice for qn.

4. repeat by setting initial qn = 1/2 and use same steps above to es-
timate the oracle choice of qn. If the data is informative enough, it
should be the same as in step 3. If not, set oracle estimate to be
somewhere in between.

• setting qn adaptively based on ridge regression estimate of β:

– sort
∣∣∣β̂ridge

∣∣∣ by descending order, and choose qjn = 0.5

∣∣∣∣ β̂j
ridge

max(β̂ridge)

∣∣∣∣
for top ρ% of the βj and use default value 1/p for the rest.

– this strategy outperforms others when we have prior knowledge of
at least ρ% of active covariates in the true model. It will be able to
capture some small signal with such adaptive qjn.

For simulation results showing in Section 5, we were using the oracle choice
of qn = 0.05 for the pn = 100 scenario, and this was achieved by first test
running our method by setting qn = 1/pn, and then a second test run of setting
qn = 1/2, and both selected 5 active covariates for all 4 data generating cases.
Similar tuning approach can be adopted for larger pn scenarios, but we chose
to use the same choice of qn = 0.05 to show robustness. Therefore it was safe
to conclude our method produces satisfactory results under high dimensional
setting even when the tuning parameter qn was misspecified, and it will indeed
detect sparseness in the data.

7. Discussion

In this paper, we have presented a fast Bayesian variable selection method for
the sparse high-dimensional regression problem using a novel spike and slab
prior. The method is sequential, which deals with each covariate one at a time,
and an explicit posterior probability for including a covariate is obtained, with-
out the computational burden of MCMC. This allows natural parallelization of
computing p covariates at the same time for ultrahigh dimensional data, and
avoids the daunting task of exploring the enormous model space with dimen-
sion of 2p. Under mild regularity conditions on the design matrix, our approach
achieves strong selection consistency in the sense that the posterior probabil-
ity of the true model converges to one. Simulation studies show that the finite
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sample performance under a variety of settings are equivalent with MCMC, yet
using only a fraction of the computation time. To our knowledge, this is the
only available MCMC free Bayesian method for variable selection under the
high dimensional setting.

For high dimensional data, the strong selection consistency of Bayesian meth-
ods has only been established very recently. So [16] have shown the equivalence
of posterior consistency and model selection consistency under appropriate spar-
sity assumptions, and [6] have proved theoretical results related to the posterior
consistency for the regression parameters. To our knowledge, [18] is the only pa-
per that has established strong selection consistency while allowing the number
of covariates to grow at nearly exponential with sample size. However, we have
achieved the same strong selection consistency result under similar conditions
as in [18], but with a simpler theoretical proof and no computational burden
of having to use MCMC. Finally, we believe our approach can be extended to
more general models beyond linear regression.

Appendix A: Appendix

Proof of Lemma 1. For ease of notation write H̃ = X(XTX + τ−2
n I)−1XT

with the subscript n removed from X. Let X/
√
n = SV D be the singular

value decomposition, so S is a n × n unitary matrix, V is a n × p rectangular
diagonal matrix with elements (λ1, . . . , λn), and D is a p × p unitary matrix.
Then Σn = XTX/n = DTV TV D where V TV is a p × p diagonal matrix with
the diagonal elements being the eigenvalues of Σn, which are (λ2

1, . . . , λ
2
n). For

the pn > n case, the rank of XTX is n, the λ2
j are bounded away from 0, and

write εn = 1/(nτ2n). Then

I − H̃ = I −X(XTX + τ−2
n I)−1XT

= I − SV D(DTV TV D + εnD
TD)−1DTV TST

= I − SV (V TV + εnI)
−1V TST

= I − SV
[
diag

(
1

λ2
1+εn

, · · · , 1
λ2
n+εn

, 1
εn
, · · · , 1

εn

)]
V TST

= SST − S
[
diag

(
λ2
1

λ2
1+εn

, · · · , λ2
n

λ2
n+εn

)]
ST

= S
[
diag

(
εn

λ2
1+εn

, · · · , εn
λ2
n+εn

)]
ST .

Hence the eigenvalues of I − H̃ are (εn/(λ
2
j + εn))

n
j=1 which are clearly upper

bounded by 1 and are bounded away from 0 when supn nτ
2
n < ∞.

Proof of Lemma 2. This follows immediately from Lemma 1, since

λminx
Tx ≤ xTAx ≤ λmaxx

Tx

where A is a symmetric matrix, with λmin and λmax being its minimum and
maximum eigenvalues.
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Proof of Lemma 3. Now xT
j (I − H̃j)xk is the kth element of the vector

xT
j (I − H̃j)X−j , and so we first look at (I − H̃j)X−j and for simplicity of

notation, we suppress the subscript j in H̃j and X−j . Now

(I − H̃)X = X −X(XTX + τ−2
n I)−1XTX

= X −X(XTX + τ−2
n I)−1(XTX + τ−2

n I − τ−2
n I)

= X(XTX + τ−2
n I)−1τ−2

n

= X(τ2nX
TX + I)−1.

Now write xT
j (I−H̃)X = xT

j X(τ2nX
TX+I)−1 = ω, then xjX = ω(τ2nX

TX+I)
and we want to show that for each element ωk/

√
n < ∞ for all large n. Now

xT
j xk = nρjk for any j ∈ S∗c and k ∈ S∗, hence

xjX = n[ρj1, . . . , ρjpn ] = ω(τ2nX
TX + I)

= [ω1, . . . , ωpn ]

⎡⎢⎢⎣
nτ2n + 1, nτ2nρ12, · · · , nτ2nρ1pn

nτ2nρ21, nτ
2
n + 1, · · · , nτ2nρ2pn

· · ·
nτ2nρpn1, nτ

2
nρpn2, · · · , nτ2n + 1

⎤⎥⎥⎦

= nτ2n [ω1, · · · , ωpn ]

⎡⎢⎢⎢⎣
1 + 1

nτ2
n
, ρ12, · · · , ρ1pn

ρ21, 1 +
1

nτ2
n
, · · · , ρ2pn

· · ·
ρpn1, ρpn2, · · · , 1 + 1

nτ2
n

⎤⎥⎥⎥⎦
= n

⎡⎣τ2nω1

pn∑
l=1,l �=j

ρ1l +
ω1

n
, · · · , τ2nωpn

pn∑
l=1,l �=j

ρpnl +
ωpn

n

⎤⎦ .

Hence,

max
k∈S∗

|ωk| = max
k∈S∗

|ρjk|
τ2n

∣∣∣∑pn

l=1,l �=j ρkl

∣∣∣+ 1
n

≤ 1

τ2n
max
k∈S∗

|ρjk|∣∣∣∑pn

l=1,l �=j ρkl

∣∣∣
≤ 1

τ2n
sup

j∈S∗c
max
k∈S∗

|ρjk|
τ2n

∣∣∣∑pn

l=1,l �=j ρkl

∣∣∣
≤

√
n.

Proof of Lemma 4. This is an immediate consequence of (17) and Lemma 1;
as we have E(μ1j) → β∗

j , Var(μ1j) → 0, E(μ0j) → 0 and Var(μ0j) → 0.
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Proof of Lemma 5. Given

φ0j ∼ N

⎛⎝ xT
j (I − H̃j)Xβ∗√

xT
j (I − H̃j)xj + τ−2

0n

, σ2
xT
j (I − H̃j)

2xj

xT
j (I − H̃j)xj + τ−2

0n

⎞⎠
we have

Eφ0j =
xT
j (I − H̃j)xjβ

∗
j√

xT
j (I − H̃j)xj + τ−2

0n

+
xT
j (I − H̃j)X[−j]β

∗
[−j]√

xT
j (I − H̃j)xj + τ−2

0n

∼
nβ∗

j√
n+ τ−2

0n

+
xT
j (I − H̃j)X[−j]β

∗
[−j]√

n+ τ−2
0n

≤ nτ0nβ
∗
j + τ0nx

T
j (I − H̃j)X[−j]β

∗
[−j] → 0.

Varφ0j ∼ n

n+ τ−2
0n

=
nτ20n

nτ20n + 1
→ 0.

Since nτ20n → 0 and n−1/2xT
j (I − H̃j)X[−j]β

∗
[−j] = O(1), using Lemma 1, it is

that φ0j
qm−−→ 0.

Proof of Theorem 1. From the model given in (2),

p(βj |Y ) ∝ (1− qjn)F0jt(βj |ν, μ0j , ψ0j) + qjnF1jt(βj |ν, μ1j , ψ1j)

where ν = n+ 2a, and for k ∈ {0, 1},

μkj =
xT
j (I − H̃j)Y

xT
j (I − H̃j)xj + τ−2

kn

ξ2kj =
σ2

xT
j (I − H̃j)xj + τ−2

kn

ψkj =
b+ 1

2Y
T (I − H̃j)Y − 1

2

(xT
j (I−H̃j)Y )2

xT
j (I−H̃j)xj+τ−2

kn

(n+ 2a)(xT
j (I − H̃j)xj + τ−2

kn )

Fkj =

√
τ−2
kn

xT
j (I − H̃j)xj + τ−2

kn

(
b+

1

2
Y T (I − H̃j)Y − 1

2
φ2
kj

)−(n
2 )

μkj ∼ N

(
xT
j (I − H̃j)Xβ∗

xT
j (I − H̃j)xj + τ−2

kn

, σ2
xT
j (I − H̃j)

2xj

(xT
j (I − H̃j)xj + τ−2

kn )2

)

φkj =
√
xT
j (I − H̃j)xj + τ−2

kn · μkj

∼ N

⎛⎝ xT
j (I − H̃j)Xβ∗√

xT
j (I − H̃j)xj + τ−2

kn

, σ2
xT
j (I − H̃j)

2xj

xT
j (I − H̃j)xj + τ−2

kn

⎞⎠ .
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Now assume a = b = 0 and qjn = qn, we want to look at the key terms

F1j

F0j
=

√√√√xT
j (I − H̃j)xjτ20n + 1

xT
j (I − H̃j)xjτ21n + 1

(
Y T (I − H̃j)Y − φ2

0j

Y T (I − H̃j)Y − φ2
1j

)n
2

.

First we consider β∗
j = 0. Now

P(Zj = 1|Y ) =
qn

F1j

F0j

qn
F1j

F0j
+ (1− qn)

∼ qn
F1j

F0j
= OP

(
qn

τ0n
τ1n

)
since

F1j

F0j
=

√√√√xT
j (I − H̃j)xjτ20n + 1

xT
j (I − H̃j)xjτ21n + 1

(
1 +

φ2
1jφ

2
0j

Y T (I − H̃j)Y − φ2
1j

)n
2

→ OP

(
τ0n
τ1n

)
provided

φ2
1j − φ2

0j

Y T (I − H̃j)Y − φ2
1j

≤ OP

(
1

n

)
.

To see this, we have

φ2
1j − φ2

0j

Y T (I − H̃j)Y − φ2
1j

=

(xT
j (I−H̃j)Y )2

xT
j (I−H̃j)xj+τ−2

1n

− (xT
j (I−H̃j)Y )2

xT
j (I−H̃j)xj+τ−2

0n

Y T (I − H̃j)Y − (xT
j (I−H̃j)Y )2

xT
j (I−H̃j)xj+τ−2

1n

=

(xT
j (I − H̃j)Y )2

(
τ−2
0n −τ−2

1n

xT
j (I−H̃j)xj+τ−2

0n

)
(Y T (I − H̃j)Y )(xT

j (I − H̃j)xj + τ−2
1n )− (xT

j (I − H̃j)Y )2

≤
(xT

j (I − H̃j)Y )2

(Y T (I − H̃j)Y )(xT
j (I − H̃j)xj)− (xT

j (I − H̃j)Y )2

∼
(xT

j (I − H̃j)Y )2

(Y T (I − H̃j)Y )(xT
j (I − H̃j)xj)

∼
(
1

n
xT
j (I − H̃j)Y )

)2

=

(
1

n
xT
j (I − H̃j)X[−j]β

∗
[−j] +

1

n
xT
j (I − H̃j)ε

)2

= OP

(
1

n

)
.
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Here the last equation is due to Lemma 3 and the following equations:

E

[
1

n
xT
j (I − H̃j)ε

]
=

1

n
xT
j (I − H̃j)E[ε] = 0

Var

(
1

n
xT
j (I − H̃j)ε

)
=

1

n2
xT
j (I − H̃j)

2xjVar (ε) = O

(
1

n

)
.

On the other hand, if β∗
j �= 0,

P(Zj = 0|Y ) =
(1− qn)

qn
F1j

F0j
+ (1− qn)

∼ 1

qn

F0j

F1j
= OP

(
1

qn

τ1n
τ0n

e−ndn

)
since

F0j

F1j
=

√√√√xT
j (I − H̃j)xjτ21n + 1

xT
j (I − H̃j)xjτ20n + 1

(
1−

φ2
1j − φ2

0j

Y T (I − H̃j)Y − φ2
0j

)n
2

→ OP

(
τ1n
τ0n

e−ndn

)
.

To show the last argument, since we have φ0j
qm−−→ 0, thus φ2

0j
P−→ 0, it suffices

to show the following:

φ2
1j

Y T (I − H̃j)Y

=
(xT

j (I − H̃j)Y )2

(xT
j (I − H̃j)xj + τ−2

1n )(Y T (I − H̃j)Y )

=
xT
j (I − H̃j)xj

xT
j (I − H̃j)xj + τ−2

1n

(xT
j (I − H̃j)Y )2

(xT
j (I − H̃j)xj)(Y T (I − H̃j)Y )

∼ n

n+ τ−2
1n

(
β∗
j +

1

n
xT
j (I − H̃j)X[−j]β

∗
[−j] +

1

n
xT
j (I − H̃j)ε

)2

∼ (β∗
j )

2 > 0.

Now the above quantity will be 0 only if xT
j (I − H̃j)Y = 0, and we argue this

is not the case. Given xj being a true active covariate, xj cannot be completely
uncorrelated with Y which prevents xT

j Y = 0; xj cannot be a linear combination

of any of other xk in the design matrix which prevents xT
j (I − H̃j) = 0; and Y

should not be in column space of design matrix which prevents (I − H̃j)Y = 0.

Proof of Theorem 2. We have

P (Z �= T |Y ) ≤ P
(
∪pn

j=1(Zj �= Tj)|Y
)
≤

pn∑
j=1

P (Zj �= Tj |Y )
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=
∑
j∈S∗

P (Zj = 0|Y ) +
∑

j∈S∗C

P (Zj = 1|Y )

= s∗OP

(
1

qn

τ1n
τ0n

e−ndn

)
+ (pn − s∗)OP

(
qn

τ0n
τ1n

)
= OP

(
1

qn

τ1n
τ0n

e−ndn

)
+OP

(
τ0n
τ1n

)
.

Let Ej be the event that the marginal posterior probability of jth covariate
P (Zj = Tj |Y ) > ε for any 0 < ε < 1. We show that P [∪pn

j=1E
c
j ] → 0, then

P [P (Zj = Tj |Y ) > ε for all j = 1, . . . , pn] = P [∩pn

j=1Ej ] = 1 − P [∪pn

j=1E
c
j ] → 1.

Hence,

P [∪pn

j=1E
c
j ] = P [P (Zj = Tj |Y ) ≤ ε for some j = 1, . . . , pn]

≤
pn∑
j=1

P [P (Zj = Tj |Y ) ≤ ε]

=

pn∑
j=1

P [P (Zj �= Tj |Y ) > ε]

= O

(
1

qn

τ1n
τ0n

e−ndn

)
+O

(
τ0n
τ1n

)
→ 0.

Acknowledgements

The authors are grateful for the comments of an Associate Editor and referee
made on an earlier version of the paper.

References

[1] Barbieri, M. M., Berger, J. O. et al. (2004). Optimal predictive model
selection. Annals of Statistics 32 870–897. MR2065192

[2] Bondell, H. D. and Reich, B. J. (2012). Consistent high-dimensional
Bayesian variable selection via penalized credible regions. Journal of the
American Statistical Association 107 1610–1624. MR3036420

[3] Brown, P. J., Vannucci, M. and Fearn, T. (1998). Multivariate
Bayesian variable selection and prediction. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology) 60 627–641. MR1626005

[4] Candes, E., Tao, T. et al. (2007). The Dantzig selector: Statistical esti-
mation when p is much larger than n. Annals of Statistics 35 2313–2351.
MR2382644

[5] Casella, G. and Moreno, E. (2006). Objective Bayesian variable se-
lection. Journal of the American Statistical Association 101 157–167.
MR2268035

[6] Castillo, I., Schmidt-Hieber, J., van der Vaart, A. et al. (2015).
Bayesian linear regression with sparse priors. Annals of Statistics 43 1986–
2018. MR3375874

http://www.ams.org/mathscinet-getitem?mr=2065192
http://www.ams.org/mathscinet-getitem?mr=3036420
http://www.ams.org/mathscinet-getitem?mr=1626005
http://www.ams.org/mathscinet-getitem?mr=2382644
http://www.ams.org/mathscinet-getitem?mr=2268035
http://www.ams.org/mathscinet-getitem?mr=3375874


Solo spike and slab 309

[7] Clyde, M. and George, E. I. (2004). Model uncertainty. Statistical Sci-
ence 81–94. MR2082148

[8] Fan, J., Feng, Y. and Song, R. (2011). Nonparametric independence
screening in sparse ultra-high-dimensional additive models. Journal of the
American Statistical Association 106 544–557. MR2847969

[9] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Statistical
Association 96 1348–1360. MR1946581

[10] Fan, J. and Lv, J. (2010). A selective overview of variable selection in high
dimensional feature space. Statistica Sinica 20 101. MR2640659

[11] George, E. and Foster, D. P. (2000). Calibration and empirical Bayes
variable selection. Biometrika 87 731–747. MR1813972

[12] George, E. I. and McCulloch, R. E. (1993). Variable selection via
Gibbs sampling. Journal of the American Statistical Association 88 881–
889.

[13] George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian
variable selection. Statistica sinica 339–373.

[14] Ishwaran, H. and Rao, J. S. (2005). Spike and slab variable selec-
tion: Frequentist and Bayesian strategies. Annals of Statistics 730–773.
MR2163158

[15] Johnson, V. E. and Rossell, D. (2012). Bayesian model selection in
high-dimensional settings. Journal of the American Statistical Association
107 649–660. MR2980074

[16] Liang, F., Song, Q. and Yu, K. (2013). Bayesian subset modeling for
high-dimensional generalized linear models. Journal of the American Sta-
tistical Association 108 589–606. MR3174644

[17] Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selec-
tion in linear regression. Journal of the American Statistical Association
83 1023–1032. MR0997578

[18] Narisetty, N. N., He, X. et al. (2014). Bayesian variable selection with
shrinking and diffusing priors. Annals of Statistics 42 789–817. MR3210987
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