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in estimator for the heterogeneity parameter is further constructed, and
shown to possess the asymptotic distribution as if the commonality infor-
mation were available. Furthermore, we develop a heterogeneity test for the
linear components and a homogeneity test for the non-linear components
accordingly. The performance of the proposed methods is evaluated via
simulation studies and an application to the Medicare Provider Utilization
and Payment data.
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1. Introduction

Recent revolutions in technologies have produced many kinds of massive data,
where the number of variables p is fixed but the sample size N is very large. In
this paper we consider massive heterogeneous data. The analysis of non-massive
heterogeneous data has been well studied in the literature. For example, non-
massive heterogeneous data can be handled by fitting mixture models [1] and by
modeling variance functions [3]. However, as far as we are aware, [21] is the only
work that considers the analysis of massive heterogeneous data. They proposed a
partially linear framework for modelling massive heterogeneous data, attempt-
ing to extract the common feature across all sub-populations while exploring
heterogeneity of each sub-population. But the partially linear framework can
only deal with only one common feature. In this paper, we propose an additive
partially linear framework for modelling massive heterogeneous data, which can
be applied to extract several common features across all sub-populations while
exploring heterogeneity of each sub-population.

The additive partially linear models (APLMs) are a generalization of multiple
linear regression models, and at the same time they are a special case of general-
ized additive nonparametric regression models [7]. As discussed in [11], APLMs
allow an easier interpretation of the effect of each variable and are preferable to
completely nonparametric additive models, since they combine both parametric
and nonparametric components when it is believed that the response variable
depends on some variables in a linear way but is non-linearly related to the re-
maining independent variables. Estimation and inference for APLMs have been
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well studied in literature [e.g., 2, 13]. Recently, [6] proposed an approach for
the analysis of heterogeneous data, fitting both the mean function and variance
function using different additive partially linear models.

In this paper, we generalize the partially linear model (PLM) considered in
[21] and propose an additive partially linear model (APLM) for modeling mas-
sive heterogeneous data. Let {(Yi,Xi,Zi)}Ni=1 be the observations from a sam-
ple of N subjects. We assume that there exist s independent sub-populations,
and the data from the jth sub-population follow the following additive partially
linear model,

Y (j) = XTβ
(j)
0 +

K∑
k=1

g0k(Zk) + ε, for j = 1, . . . , s, (1.1)

where X = (X1, . . . , Xd)
T, Z = (Z1, . . . , ZK), β

(j)
0 = (β

(j)
01 , . . . , β

(j)
0d )

T is the
vector of unknown parameters for jth sub-population, g01, . . . , g0K are unknown
smooth functions, and ε has zero mean and variance σ2. Under model (1.1),
Y (j) depends on X linearly but with coefficients varying across different sub-
populations, whereas Y (j) depends on Z through additive non-linear functions
that are common to all sub-populations. This model implies that the hetero-

geneity of the data is coming from the difference among β
(j)
0 , j = 1, . . . , s.

Compared with [21], the novelty of this paper is two-fold. First, we consider
a more general and practical model. The partially linear model considered in
[21] is a special case of (1.1) where K = 1. Second, we use a different nonpara-
metric tool (i.e., the regression splines tool) to fit the non-parametric functions
than the reproducing kernel Hilbert Space (RKHS) tool that was used in [21],
making the theoretical development easier and computational implementation
faster. The first fold of novelty is more significant than the second one, because
it allows to consider more than one non-parametric components (K > 1). How-
ever, the theoretical novelty of our approach is limited, because it would be
straightforward generate the PLM in [21] to the APLM using the same RKHS
tool. Instead, we propose to use the regression splines tool, because the resulting
computational implementation is fast, especially for massive data. In order to
understand this, let’s count the number of knots when the RKHS tool and the
regression splines are used, respectively. If the RKHS tool is used, the number of
knots is N for each non-parametric component, and therefore the total number
of knots is equal to KN . If the regression splines is used, the number of knots is
to be denoted as JN , satisfying that JN � N , and therefore the total number
of knots is equal to KJN . The computational gain is small if the PLM is fitted,
but the gain is significant if the APLM is fitted for massive data where N is
extremely large.

The rest of the paper is organized as follows. We propose the main methods
in Section 2 and some hypothesis testing procedures in Section 3, deriving their
asymptotic properties. We evaluate the performance of the proposed methods
via simulation studies in Section 4 and a real data application in Section 5.
We conclude the paper with a brief summary in Section 6 and relegate all the
technical proofs to the Appendix.
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2. Methods

2.1. Notation and assumptions

Recall that β
(j)
0 is the true sub-population specific parameter-vector for the jth

sub-population, j = 1, . . . , s, and g0(z) = g01(z1) + · · · + g0K(zK) is the true
additive common non-parametric function. Without loss of generality, assume
that g0k = g0k(·), k = 1, . . . ,K, have a common support [0, 1]. We propose to
use polynomial splines [2] to approximate smooth function g0k, k = 1, . . . ,K.
Let SN be the space of polynomial splines on [0, 1] of degree � ≥ 1, with a
sequence of JN interior knots,

t−� = · · · = t−1 = t0 = 0 < t1 < · · · < tJN
< 1 = tJN+1 = · · · = tJN+�+1,

where JN increases with the overall sample size N . Although we can choose
different sequences of interior knots for different non-parametric functions in
different sub-populations, for simplicity, as in [11], here we consider the same
sequence of equally spaced knots and let hN = 1/(JN + 1) be the distance
between neighboring knots.

Assume that Xi are i.i.d. with X and Zi are i.i.d. with Z. Define T =
(X,Z). Let m

(j)
0 (T ) = XTβ

(j)
0 + g0(Z), Γ(z) = E(X|Z = z), and X̃ =

X − Γ(Z). And C⊗2 denotes CCT for any matrix or vector C. Let r be a
positive integer and ν ∈ (0, 1] such that p = r + ν > 2. Let H be the collection
of functions h on [0, 1] whose rth derivative exists and satisfies the Lipschitz
condition of order ν,∣∣∣h(r)(z′)− h(r)(z)

∣∣∣ ≤ C|z′ − z|ν , ∀ 0 ≤ z′, z ≤ 1,

where and hereafter C is a generic positive constant. In order to derive asymp-
totic results, we make the following mild assumptions.

(A1) Each component function g0k ∈ H, k = 1, . . . ,K;
(A2) The distribution of Z is absolutely continuous and its density f is bounded

away from zero and infinity on [0, 1]K ;
(A3) There exists c > 0 such that c‖ω‖2 ≤ ωTE(X⊗2|Z = z)ω ≤ C‖ω‖2, for

any vector ω ∈ Rd;
(A4) The number of interior knots JN satisfies: N1/(4p) � JN � N1/4;
(A5) The projection function Γ(z) has the additive form Γ(z) = Γ1(z1) + · · ·+

ΓK(zK), where Γk ∈ H, E[Γk(zk)] = 0 and E[Γk(zk)]
2 < ∞, k = 1, . . . ,K.

In addition, to quantify the asymptotic consistencies of the non-parametric
estimators, we consider both the empirical norms and the corresponding pop-
ulation norms. Let ‖z‖ be the Euclidean norm, ‖z‖∞ be the supremum norm,
and ‖z‖1 be the absolute-value norm of a vector z, respectively. For a ma-
trix C, its L2-norm is defined as ‖C‖2 = sup‖u‖�=0 ‖Cu‖/‖u‖. Let ‖ϕ‖∞ =
supx∈[0,1] |ϕ(x)| be the supremum norm of a function ϕ on [0, 1]. Following [9]

and [14], for any measurable function φ1 and φ2 on [0, 1]K , the empirical inner
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product and norm for the jth sub-sample and the whole sample, respectively,
are defined as

〈φ1, φ2〉jn =
1

n

∑
i∈Gj

φ1(Zi)φ2(Zi), ‖φ‖2jn =
1

n

∑
i∈Gj

φ2(Zi),

〈φ1, φ2〉N =
1

N

N∑
i=1

φ1(Zi)φ2(Zi), ‖φ‖2N =
1

N

N∑
i=1

φ2(Zi).

If φ1 and φ2 are L2-integrable, the population inner product and norm are
defined as

〈φ1, φ2〉 =
∫
[0,1]K

φ1(z)φ2(z)f(z)dz, ‖φ‖22 =

∫
[0,1]K

φ2(z)f(z)dz,

where f is the density of Z. Similarly, for the kth component of Z, Zk with
density fk, the empirical norm on the jth sub-sample, the empirical norm on the
whole sample, and the population norm of any L2-integrable univariate function
ϕ on [0, 1] are defined as

‖ϕ‖2jnk =
1

n

∑
i∈Gj

ϕ2(Zik), ‖ϕ‖2Nk =
1

n

N∑
i=1

ϕ2(Zik), ‖ϕ‖22k =

∫ 1

0

ϕ2(zk)fk(zk)dzk.

2.2. Estimations for each sub-population

First we consider the estimations for β
(j)
0 and g0 = g0(·) based on the data from

the jth sub-population only, j = 1, . . . , s. To this aim, let Gj denotes the index

set of all the observations from the sub-population j, and let G(j)
n = {g(j)(·)} be

the collection of additive functions with the form that g(j)(z) = g
(j)
1 (z1)+ · · ·+

g
(j)
K (zK), where each component function g

(j)
k ∈ SN and

∑
i∈Gj

g
(j)
k (Zik) = 0.

Thus
∑

i∈Gj
g(j)(Zi) = 0 for any g(j) ∈ G(j)

n . For the jth sub-population, we
consider the following estimators,

(β̂
(j)

, ĝ(j)) = argmin
βββ∈Rd, g∈G(j)

n

⎧⎨⎩L(j)
n (β, g) =

1

2

∑
i∈Gj

[
Yi −XT

i β − g(Zi)
]2⎫⎬⎭ . (2.1)

For the kth covariate Zk, let bm,k(zk) be the B-spline basis functions of degree

� equipped with JN knots defined above. For any g ∈ G(j)
n , we can write g(z) =

b(z)Tγ, where b(z) = {bm,k(zk),m = −�, . . . , JN , k = 1, . . . ,K}T, which is a
K(JN+�+1)-dim vector given z, along withK(JN+�+1)-dim coefficient-vector
γ = {γm,k,m = −�, . . . , JN , k = 1, . . . ,K}T. Therefore, (2.1) is equivalent to

argmin
βββ∈Rd, γγγ∈RK(JN+�+1)

⎧⎨⎩l(j)n (β,γ) =
1

2

∑
i∈Gj

[
Yi −XT

i β − b(Zi)
Tγ

]2⎫⎬⎭ , (2.2)
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if we consider the empirically centered estimator ĝ(j)(z) =
∑K

k=1 ĝ
(j)
k (z), where

ĝ
(j)
k (zk) =

JN∑
m=−�

γ̂m,kbm,k(zk)−
1

n

∑
i∈Gj

JN∑
m=−�

γ̂m,kbm,k(zik). (2.3)

We derive some asymptotic results associated with the sub-population specific
estimators, summarized in the following theorem.

Theorem 2.1. Under Assumptions (A1)–(A5), if the number of knots satisfies
that JN � n1/2, we have, for each sub-population, j = 1, . . . , s,

‖ĝ(j) − g0‖2 = OP

(
J
1/2
N n−1/2 + hp

N

)
and

‖ĝ(j) − g0‖jn = OP

(
J
1/2
N n−1/2 + hp

N

)
.

If the number of knots further satisfies that JN � n1/(2p) we have

√
n
(
β̂
(j)

− β
(j)
0

) d−→ N
(
0, σ2D−1

)
,

where D = E(X̃
⊗2

).

Remark 1. Assume that we consider s = O(N1−γ) sub-samples, each sub-
sample of n = O(Nγ) observations, where γ is some positive number be-
tween 0 and 1. In order to minimize the mean-square error of estimating g0,

OP (J
1/2
N n−1/2 + hp

N ), the best selection of JN is O(N
γ

2p+1 ), or equivalently,

O(n
1

2p+1 ). Under this selection, the mean-square error achieves the optimal rate,

O(N
pγ

2p+1 ), or equivalently, O(n
p

2p+1 ).

Remark 2. On the other hand, in order to ensure that β̂
(j)

is
√
n-consistent

for estimating β
(j)
0 , we should adopt under-smoothing tuning with JN � n1/(2p)

and carefully determine a balance between the number of sub-samples and the
size of each sub-sample. For example, this can be achieved if we select JN as
O(Nq) with 1/(4p) < q < 1/4, and consider s = O(N1−γ) sub-samples, each
sub-sample of n = O(Nγ), with 2q < γ < 2pq. The order of JN is consistent with
the existing results in the literature. The recommended balance between s and
n provides a guidance for the appropriate application of the divide-and-conquer
strategy.

2.3. Aggregation of commonality

We consider the aggregated estimator, g(z) = 1
s

∑s
j=1 ĝ

(j)(z), as the final esti-
mator of g0(z) based on the whole sample. Let GN be the collection of functions
with the additive form g(z) = g1(z1) + · · · + gK(zK), where gk ∈ SN and∑s

j=1

∑
i∈Gj

gk(Zik) = 0. Thus, for any g ∈ GN ,
∑s

j=1

∑
i∈Gj

g(Zi) = 0. In
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order to ensure that g ∈ GN , as in (2.3), we center the individual estimator

ĝ
(j)
k (zk) via ĝ

(j)
k (zk) =

∑JN

m=−� γ̂m,kbm,k(zk) − 1
N

∑N
i=1

∑JN

m=−� γ̂m,kbm,k(zik).

To abuse the notation, we still denote the centered estimator as ĝ
(j)
k (zk) and

ĝ(j)(z) =
∑K

k=1 ĝ
(j)
k (zk). We derive the mean-square error of g in the following

theorem.

Theorem 2.2. Under Assumptions (A1)–(A5), if JN � n1/2, we have

‖g − g0‖2 = OP

(
J
1/2
N N−1/2 + hp

N

)
, and ‖g − g0‖N = OP

(
J
1/2
N N−1/2 + hp

N

)
.

Remark 3. In order to minimize the mean-square error of estimating g0 using

the aggregated estimator, if we select JN as O(N
1

2p+1 ), the mean-square error

achieves the optimal rate O(N
p

2p+1 ).

Remark 4. We compare the mean-square error of g with that of the following
“oracle estimator”:

ĝoracle = argmin
g∈GN

1

2

s∑
j=1

∑
i∈Gj

[
Yi −XT

i β
(j)
0 − g(Zi)

]2
.

assuming β
(j)
0 , j = 1, . . . , s, are known. Following the proof of Theorem 2.1, we

can show that ‖ĝoracle − g0‖2 = OP

(
J
1/2
N N−1/2 + hp

N

)
. Therefore, as long as

n � J2
N , the means-square errors of the aggregated estimator g and the oracle

estimator ĝoracle are of the same order.

We conclude this subsection with some results for the massive homogeneous

data where β
(j)
0 ≡ β0, j = 1, . . . , s. These results are of their own interest, when

the divide-and-conquer strategy is applied to massive homogeneous data, where

β0 and g0 are estimated using the aggregated estimators β = 1
s

∑s
j=1 β̂

(j)
and

g, respectively. The result for g is the same as that in Theorem 2.2 and the
result for β is stated in the following corollary.

Corralary 2.1. Consider homogeneous massive data where β
(j)
0 ≡ β0, j =

1, . . . , s. Under Assumptions (A1)–(A5), if JN � N1/(2p) and n � N1/2, we
have √

N(β − β0)
d−→ N

(
0, σ2D−1

)
.

2.4. Efficiency boosting for heterogeneous parameters

The asymptotic variance matrix of β̂
(j)

derived in Theorem 2.1 shows that there

is some room to improve the estimation efficiency, because D−1 = E−1(X̃
⊗2

)
is bigger than the Cramer-Rao lower bound, E−1(X⊗2). Therefore, we re-
substitute the aggregated estimator of g, g, into (2.1) to improve the efficiency
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of estimating β
(j)
0 . This leads to the following more efficient estimator,

β̆
(j)

= argmin
β(j)∈Rd

1

2

∑
i∈Gj

[
Yi −XT

i β
(j) − g(Zi)

]2
. (2.4)

for j = 1, · · · , s. We derive the asymptotic normality of β̆
(j)

in the following
theorem.

Theorem 2.3. Under Assumptions (A1)–(A5), if JN satisfies the condition
that JN � n1/2 given in the first part of Theorem 2.1 and the condition that
JN � N1/(2p) given in Corollary 2.1, and it further satisfies that JN � s1/2,
then we have

√
n
(
β̆
(j) − β

(j)
0

) d−→ N
(
0, σ2A−1

)
,

where A = E(X⊗2).

Remark 5. As in Remarks 1–2, assume that we consider s = O(N1−γ) sub-
samples, each sub-sample of n = O(Nγ) observations, where γ is some positive
number between 0 and 1. In order to satisfy all the conditions in Theorem 2.3,
we can consider N2q � n � N1−2q, with 1/(2p) < q < 1/4, and select JN =
O(Nq). If X and Z are not independent, then A−1 ≺ D−1, implying that we
can achieve such efficiency boosting through balancing between n and s.

2.5. Practical issues

In this subsection, we consider several practical issues, including selection of
the number of knots JN , determination of linear components and non-linear
components, and how to conduct statistical inference.

We first consider the selection of JN . All the theoretical results need Assump-

tion (A4):N
1
4p � JN � N

1
4 . Besides this, different theorem (or corollary) needs

different an extra condition. Here is the list of those conditions:

(a) JN � n1/2;

(b) JN � n1/(2p);

(c) JN � N1/(2p) and n � N1/2;

(d) JN � N1/(2p) and JN � s1/2.

In Theorem 2.1, under Condition (a), we derive the bound for the mean-square
error of each sub-population specific estimator ĝ(j), j = 1, · · · s. In Theorem 2.1,
under Conditions (a) and (b), we derive the asymptotic normality for each sub-

population specific estimator β̂
(j)

, j = 1, · · · s. In Theorem 2.2, under Condition
(a), we derive the bound for the mean-square error of the aggregated estimator g.
In Corollary 2.1, under Condition (c) and for the massive homogeneous data, we
derive the asymptotic normality for the aggregated estimator β. In Theorem 2.3,
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under Condition (d), we derive the asymptotic normality for each sub-population

specific efficiency-boosted estimator β̆
(j)

. These conditions can be satisfied by
carefully selecting the balance between n and s, with some guidance provided
in Remarks 1–5.

However, it is hard to use these theoretical requirements on the order of
JN to guide the selection of JN in practice. If computational power allows, we
can utilize cross-validation to select JN adaptively. If cross-validation is used,
as discussed in [20], we should consider distributed cross-validation aiming for
global optimality (selecting a single JN based on the entire dataset) instead of
subsample cross-validation aiming for local optimality (selecting an JN for each
subsample separately). As we consider massive data here, we don’t recommend
any data-driven tuning procedure, which requires heavy computational cost. In-
stead, as in most studies using regression splines, we recommend the fixed choice
of the number of internal knots JN (e.g., some small number between 2 and 10).
Although pre-specifying a fixed JN which might be sub-optimal, it is much
more convenient and computationally efficient than any data-driven procedure.
This is another advantage of the regression splines compared with smoothing
splines: the number of knots in the regression splines can be determined di-
rectly in terms of model construction without looking at the data, while in the
smoothing splines the tuning parameter λ, which controls the balance between
goodness-of-fit and function smoothness, has to be determined adaptively. In
order to determine tuning parameter λ in the smoothing splines, we have to use
data-driven procedure as in [20].

Another practical issue is the determination of linear components and non-
linear components. In practice, we rely on graphical tools such as box-plot and
scatterplot to have a rough idea on which components might be linear or non-
linear. For the setting in this paper, we consider parametric function for each
heterogeneous component (the sample size is smaller for each subsample, so a
simpler model is considered) and non-parametric function for each homogeneous
component (the sample size is larger for the entire sample, so a more flexible
model is considered). Motivated by [12] and [21], some formal hypothesis testing
methods for heterogeneity and homogeneity are proposed in the next section.

The third practical issue is conducting statistical inferences about the re-
gression parameters. In the above theorems, we derive the explicit formulas
for their corresponding covariance matrices by examining the asymptotic nor-
mality. If the covariance matries were to involve the density of error term, we
wouldn’t apply the plug-in procedure to estimate them as discussed in Section 4
of [16]. Fortunately, all the asymptotic covariance matrices we developed in the
above theorems can be estimated using the plug-in procedure and conducting
statistical inferences is straightforward. In addition, as discussed in Remark 2,
in order to achieve the estimation efficiency of regression parameters, the non-
parametric functions should be under-smoothing. This is another reason that
we don’t recommend data-driven method for the determination of JN . If JN is
selected adaptively, the estimation of regression parameters may be sub-efficient
and it is also subject to the problem of inference-after-selection.
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3. Hypothesis testing

3.1. Testing heterogeneity

As in [21], we develop statistical tests for the heterogeneity of the linear compo-
nents across sub-populations. First, we consider a general class of pairwise test
for heterogeneous parameters. Then, we develop a more general heterogeneity
test involving many (up to as many as s) sub-populations.

First, consider the following general class of pairwise test for heterogeneous
parameters:

H0 : Q
(
β
(j1)
0 − β

(j2)
0

)
= 0 vs. Ha : Q

(
β
(j1)
0 − β

(j2)
0

)
�= 0, (3.1)

where j1 �= j2 ∈ {1, . . . , s}, and Q = (qT
1 , . . . , q

T
d1
)T is a d1×d matrix with d1 ≤

d. This class of tests includes testing if either the whole vector or specific entries

of β
(j1)
0 are equal to those of β

(j2)
0 . It is straightforward to consider Q

(
β̂
(j1) −

β̂
(j2))

or Q
(
β̆
(j1) − β̆

(j2))
as test statistic, which is based on the estimators

from Subsection 2.2 or the estimators from Subsection 2.4, respectively. We
summarize the asymptotic properties of these two test statistics in the following
theorem, based on which we can conduct the Wald tests.

Theorem 3.1. If the conditions in Theorem 2.1 hold, under the null hypothesis
(3.1),

√
nQ

(
β̂
(j1) − β̂

(j2)) d−→ N
(
0, 2σ2QD−1QT

)
.

Furthermore, if the conditions in Theorem 2.3 hold, under the null hypothesis
(3.1),

√
nQ

(
β̆
(j1) − β̆

(j2)) d−→ N
(
0, 2σ2QA−1QT

)
.

Based on Theorem 3.1, we can construct the Wald tests as what follows,

Ψ1 = I

{
Q
(
β̂
(j1) − β̂

(j2))
/∈
√

2

n
σ(QD−1QT)

1
2Z1−α/2

}
,

Ψ2 = I

{
Q
(
β̆
(j1) − β̆

(j2))
/∈
√

2

n
σ(QA−1QT)

1
2Z1−α/2

}
,

where α is a given significant level and Z1−α/2 is the (1−α/2) quantile of a stan-
dard normal distribution. It is clear that Ψ2 is more powerful than Ψ1 because

of a smaller variance of β̆
(j)

compared with β̂
(j)

. Coverage probabilities, length
of confidence intervals, nominal levels and powers are empirically evaluated in
simulation studies, which confirm our theoretical results.

Then, we consider a more general heterogeneity test involving many sub-
populations indexed by j, j ∈ S ⊆ {1, . . . , s}. Note that |S| is allowed to be
as large as s, i.e., all sub-populations. The null and alternative hypotheses are
formulated as
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H0 : Qβ
(j)
0 = Qβ̌

(j)

0 ∀j ∈ S vs. Ha : Q β
(j)
0 �= Qβ̌

(j)

0 ∃j ∈ S, (3.2)

where β̌
(j)

0 ’s are some predetermined values.
To test (3.2), it is natural to define the following test statistic:

TS = max
j∈S

√
n‖Q(β̆

(j) − β̌
(j)

0 )‖∞.

Its distribution can be approximated by bootstrapping the quantity

WS = max
j∈S

1√
n

∥∥∥∥∥∥
∑
i∈Gj

Q(Â
(j)

n )−1Xiei

∥∥∥∥∥∥
∞

,

where Â
(j)

n = 1
n

∑
i∈Gj

X⊗2
i and ei ∼ N (0, σ2)’s are i.i.d. The following theorem

summarizes the consistency of the proposed multiplier bootstrap method.

Theorem 3.2. Suppose the conditions in Theorem 2.3 are satisfied. Under
the null hypothesis (3.2), for any S ⊆ {1, . . . , s}, |S| = d, if s � J2

N log(pd),
(log(pdn))7/n ≤ c1n

−c2 for some constants c1, c2 > 0, and p2log(pd)/
√
n = o(1),

then we have
sup

α∈(0,1)

∣∣P (TS > cS(α)
)
− α

∣∣ = o(1),

where cS = inf{w ∈ R : P (WS ≤ w|X) ≥ 1− α}.
Remark 6. Actually, the above hypotheses can be extended to test the hetero-

geneity of all sub-populations without specifying β̌
(j)

0 ’s. With a similar argument
as that in [21], we only need to test if the differences of heterogeneity parameters
between any two consecutive sub-populations equal to zero. The modified test
statistic is

T ′
S = max

1≤j≤s−1

√
n‖Q(β̆

(j) − β̆
(j+1)

)‖∞,

and corresponding bootstrap quantity is given by

W ′
S = max

1≤j≤s−1

1√
n

∥∥∥∥∥∥
∑
i∈Gj

Q(Â
(j)

n )−1Xiei −
∑

i∈Gj+1

Q(Â
(j+1)

n )−1Xiei

∥∥∥∥∥∥
∞

.

Similarly, we define c′S = inf{w ∈ R : P (W ′
S ≤ w|X) ≥ 1− α}.

3.2. Testing homogeneity

Now we consider the test of whether the non-linear components, g0k(Zk), k =
1, 2, . . . ,K are homogeneous across all s sub-populations, which is the necessity
of doing aggregation of commonality. With a little abuse of notation, for the jth

sub-population, we denote the true unknown smooth functions as g
(j)
0k (Zk), k =
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1, . . . ,K. We apply the likelihood ratio principle to the following homogeneity
test for the kth smooth function,

H0 : g
(1)
0k (Zk) = · · · = g

(s)
0k (Zk) vs. Ha : g

(j)
0k

′s are not all the same. (3.3)

Let g−k =
∑

k′ �=k gk′ andZ−k = (Z1, . . . , Zk−1, Zk+1, . . . , ZK). The subscript
−k means removing the kth component therein. Define

L
(j)
nk (β, gk, g−k) =

1

2n

∑
i∈Gj

[
Yi −XT

i β − gk(Zk)− g−k(Zi,−k)
]2

.

We can construct a likelihood ratio test statistic as

LRTs
nk =

s−1∑
j=1

{
L
(j)
nk (β̂

(j)
, ĝ

(j)
k , ĝ

(j)
−k)− L

(j)
nk (β̂

(j)
, ĝ

(j+1)
k , ĝ

(j)
−k)

}
. (3.4)

Before providing the limiting distribution for the above test, extra notations
are required. We say that a statistic Tn is nearly χ2

bn
, denoted as Tn

a∼ χ2
bn
, if

(2bn)
−1/2(Tn − bn) weakly converges to N (0, 1) for some sequence bn → ∞.

Theorem 3.3. Suppose the conditions in Theorem 2.1 are satisfied. Under the

null hypothesis (3.3), if J
1/2
N = o(s), we have

− 1

3σ2
n · LRTs

nk
a∼ χ2

uN
,

where uN = 2
3 (s− 1)JN .

Remark 7. J
1/2
N = o(s) is a weak requirement, implying the number of sub-

populations cannot be too small to borrow sufficient information across all of
them. This phenomenon is also observed in [12], in which it is called the “blessing
of aggregation”. According to Remarks 1 and 2, JN = O(Nq), where 1/(4p) <

q < 1/4, implying that J
1/2
N = o(s) means γ < 1− q/2 with the minimum value

of 7/8 of the right hand side.

Remark 8. The above theorem considers testing one smooth function. If we
want to test the summation of all smooth functions, the result can be proved
similarly, which is summarized in the following theorem by removing the extra

condition J
1/2
N = o(s) due to no usage of both ĝ

(j+1)
k and ĝ

(j)
−k in the L

(j)
nk .

Theorem 3.4. Suppose the conditions in Theorem 2.1 are satisfied. Under the

null hypothesis H0 : g
(1)
0 (Z) = · · · = g

(s)
0 (Z), we have

− 1

3σ2
n · LRTs

nk
a∼ χ2

uN
,

where uN = 2
3 (s− 1)KJN .
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4. Simulation Studies

We conduct simulation studies to examine the impact of the balance between
sub-population sizes n and the number of sub-population s on the performance

of the proposed estimators, g and β̆
(j)

. We consider the following additive par-
tially linear model with two nonparametric components (K = 2) as the data
generating model:

Y (j) = Xβ
(j)
0 + g1(Z1) + g2(Z2) + ε,

g1(Z1) = 5 sin{2π(Z1 + 1)},
g2(Z2) = 100

(
e−1.625(Z2+1) − 4e−3.25(Z2+1) + 3e−4.825(Z2+1)

)
− C0,

where ε is generated from normal distribution N(0, 1), Z1, Z2 and W are gen-
erated independently from uniform distribution U(−1, 1), X = 1

2 (W +Z1), and
C0 is taken as 100(1− e−3.25)/3.25− 400(1− e−6.5)/6.5 + 300(1− e−9.75)/9.75

to make sure that E{g1(Z1)} = E{g2(Z2)} = 0. We can show that X̃ = W/2,

D = E(X̃2) = 1/12, and A = E(X2) = 1/6. In order to generate heterogenous

data, we let β
(j)
0 = j, for the jth sub-population, j = 1, . . . , s, with d = 1.

In order to g1 and g2 using polynomial splines, we consider cubic splines
(� = 3) and equal-spaced knots. We estimate the unknown error variance σ2

using σ2 =
∑s

j=1(σ̂
(j))2/s, where

(σ̂(j))2 =
1

n− d−K(JN + �)

∑
i∈Gj

[
Yi −Xiβ̂

(j) − ĝ(j)(Zi)
]2

.

We set the massive sample size N as 211, 212, 213, or 214. We set the number of
sub-samples s as N1−γ , where γ = max(0.4, 2q), . . . , 0.9, 1. We set the minimal
value of γ as max(0.4, 2q) to ensure that J2

N = O(N2q) � n = O(Nγ). For each
setting, we run 200 repetitions.

First, we evaluate the performance of the aggregated estimator, g, as an
estimator for g. We compute the root mean-square-error (RMSE) of g, un-
der different choices of JN and s, and different settings of N . The results
are summarized in Figure 1. The condition that J2

N � n, which is needed
in all the theorems, implies that the larger number of knots we take and the
shorter range of s we should consider. In Figure 1, for each selection of the
number of knots, we see that the performance of g is good and stable dur-
ing a wide range of s. We also see that the RMSE of g deteriorates quickly
when log(s)/log(N) is approaching 1 − 2q, q ≈ logN (JN ). For example, using
5 knots, N = 211, q = logN (5) ≈ 0.21 and then 1 − 2q ≈ 0.42; therefore, from
the second figure in the bottom row of Figure 1, we see that corresponding
RMSE increases a lot when the ratio approaches 0.5. In summary, from Fig-
ure 1, we see there is a clear boundary of log(s)/log(N): with this boundary,
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Fig 1. Root mean-square-errors of the aggregated estimator, g, under different settings of the
number of knots, the number of sub-samples, and the sample size.

the performance of g is very good, while beyond this boundary, the perfor-
mance is very bad. These findings confirm the theoretical results presented in
Theorem 2.2.

Second, we evaluate the performance of the proposed estimators, β̂
(j)

and

β̆
(j)

, for estimating β
(j)
0 . We consider 95% confidence intervals based on β̂

(j)

and β̆
(j)

respectively as follows:

CI1 =

[
β̂
(j)

± 1.96σ√
n

D−1/2

]
and CI2 =

[
β̆
(j) ± 1.96σ√

n
A−1/2

]
.

For simplicity, we summarize results for the first sub-population in Figures 2–4,
where both the coverage probabilities and the interval lengths are displayed,
with the results of β̂(1) in solid line with circle and those of β̆(1) in dashed line
with triangle.

From Figure 2 where N = 211 and Figure 3 where N = 214, we see that
within a proper range of s, CI1 and CI2 have similar coverage probabilities. We
also see that on average, the interval length of CI2 is shorter than that CI1.
This finding confirm that the asymptotic variance derived in Theorem 2.3 is
smaller than that in Theorem 2.1. However, the coverage probability of CI2 is
valid for a shorter range of log(s)/log(N), in contrast with that of CI1. This is
finding is consistent with that there are more conditions in Theorem 2.3 than
in Theorem 2.1.
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Fig 2. Coverage probabilities and interval lengths of 95% confidence intervals, CI1 and CI2,
under different settings of the number of knots and the number of sub-samples, with N = 211.

To visualize the performance of CI2 more clearly, in Figure 4 we display the
coverage probability of CI2 in more detail for different settings of s and N , given
different numbers of knots. From Figure 4, we can see that, given the number of
knots, a larger N implies a wider valid range for s to achieve a good coverage;
given N , a larger number of knots implies a smaller transition point for s.

Third, we evaluate the heterogeneity tests using the following Wald test
statistics constructed based on Theorem 3.1:

Ψ1 = I

{
Q
(
β̂
(j1) − β̂

(j2))
/∈
√

2

n
σ(QD̂

−1
QT)1/2Cα/2

}
,

Ψ2 = I

{
Q
(
β̆
(j1) − β̆

(j2))
/∈
√

2

n
σ(QÂ

−1
QT)1/2Cα/2

}
,
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Fig 3. Coverage probabilities and interval lengths of 95% confidence intervals, CI1 and CI2,
under different settings of the number of knots and the number of sub-samples, with N = 214.

where Cα/2 is the upper α/2 quantile of a standard normal distribution, and

D̂ and Â are the sample estimators of D and A, respectively. The results are
summarized in Figure 5, where Ψ1 and Ψ2 are compared in terms of Type-I error
and power, under different settings of s and N . From Panel (a) of Figure 5, we
see that both Ψ1 and Ψ2 have appropriate type-I error within a wide range of
s, but they have inflated type-I error after s passes a transition point. Panels
(b)–(d) compare the testing powers under three different alternative hypotheses:

Ha : β
(j1)
0 − β

(j2)
0 = Δ, where Δ = 0.5, 1 and 1.5, respectively. We see that the

power increases as N increase and Δ increases. We also see the power of Ψ2

is larger than that of Ψ1 across different settings. These findings confirm the
asymptotic results stated in Theorem 3.1.
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Fig 4. Coverage probabilities of 95% CI2 confidence intervals under different settings of the
number of knots, the number of sub-samples, and the sample size.

Fourth, we evaluate the more general heterogeneity tests involving all sub-
populations using the test statistics constructed based on Theorem 3.2 and
Remark 6. The null and alternative hypotheses are formulated as follows:

H0 : β
(1)
0 = · · · = β

(s)
0 vs Ha : β

(1)
0 = β

(j)
0 +Δ j = 2, . . . , s,

where Δ = 0, 0.4, 0.6 and 1. Note that here Q = 1. In the simulations, we set

β
(j)
0 = 1 for the null hypothesis, and use 500 bootstrapping samples to obtain the

upper α = 0.05 quantile for W ′
S . The results are summarized in Figure 6, where

the y-axis shows the probability P (T ′
S > c′S), under different settings of s and

N . From Panel Δ = 0 of Figure 6, we see that the proposed test statistic T ′
S has

appropriate type-I error around the nominal level α = 0.05 within a wide range
of s, but they have inflated type-I error after s passes a transition point. Panels
(b)–(d) compare the testing powers under three different alternative hypotheses:

Ha : β
(1)
0 − β

(j)
0 = Δ, where 2 ≤ j ≤ s,Δ = 0.4, 0.6 and 1, respectively. We see

that the power increases as N increase and Δ increases. These findings confirm
the asymptotic results stated in Theorem 3.2.

Finally, we evaluate the homogeneity tests for one non-linear function using
the test statistic constructed based on Theorem 3.3. The null and alternative
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Fig 5. Type-I error and power of tests Ψ1 and Ψ2 under different settings of the number of
sub-samples and the sample size, using 4 knots.

hypotheses are formulated as follows:

H0 : g
(1)
01 (Z1) = · · · = g

(s)
01 (Z1) vs

Ha : g
(1)
01 (Z1) = g

(j)
01 (Z1) + Δ(Z1 + 1), j ≥ 2,

where Δ = 0, 0.5, 1.0 and 1.5. In the simulations, we set g
(j)
01 (Z1) = 5 sin{2π(Z1+

1)}, j ≥ 2 as used previously for the null hypothesis. The results are summarized
in Figure 7, where the y-axis shows the probability P (− 1

3σ2n·LRTs
nk > χ2

uN ,1−α)
under different settings of s and N and χ2

uN ,1−α is the (1 − α)-th quantile of
χ2
uN

. From Panel Δ = 0 of Figure 7, we see that the proposed test statistic
− 1

3σ2n · LRTs
nk has appropriate type-I error around the nominal level α = 0.05

if s is not too large nor too small (log(s)/log(N) > q/2), but they have inflated
type-I error after s passes a transition point. As we use a fixed number of knots,
the transition point shifts to the right as N increases so that JN � n1/2. Panels
(b)–(d) compare the testing powers under three different alternative hypotheses
with Δ = 0.5, 1.0 and 1.5, respectively. We see that the power increases as
N increase and Δ increases. Similar with observations in [12], the powers for
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Fig 6. Probability P (T ′
S > c′S) under different settings of the number of sub-samples and the

sample size, using 4 knots.

Δ > 0 return back to 1 when s is very large. This can still be explained by
highly deviated limiting distribution of the test statistic from both null and
alternative hypotheses. Therefore, the homogeneity test does not perform well
for very large s.

5. Real data application

We apply the proposed divide-and-conquer strategy for APLMs to the Medicare
Provider Utilization and Payment Data (the Physician and Other Supplier Pub-
lic Use File), with information on services and procedures provided to Medicare
beneficiaries by physicians and other healthcare professionals. This dataset was
prepared by the Centers for Medicare & Medicaid Services (CMS), as part of the
Obama Administration efforts to make our healthcare system more transparent,
affordable, and accountable. We downloaded the dataset “Medicare Physician
and Other Supplier Data CY 2014” from www.CMS.gov with more than nine
million records for health care providers from the U.S. or U.S. possessions. We
focus on the subset consisting of 50 U.S. states and the District of Columbia
(DC), which account for the majority part of the whole dataset.

www.CMS.gov
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Fig 7. Probability P (− 1
3σ2 n · LRTs

nk > χ2
uN ,1−α) under different settings of the number of

sub-samples and the sample size, using 4 knots, where χ2
uN ,1−α is the (1− α)-th quantile of

χ2
uN

.

Our goal is to model the outcome variable “average Medicare standardized
amt” (average amount that Medicare paid after beneficiary deductible and coin-
surance amounts have been deducted for the line item service and after standard-
ization of the Medicare payment has been applied) on other covariates, includ-
ing gender or entity of provider, provider type, Medicare participation status,
place of service, HCPCS drug indicator, number of distinct Medicare beneficia-
ries (“bene unique cnt”), number of services provided (“bene day srvc cnt”),
and number of distinct Medicare beneficiary/per day services (“line srvc cnt”).
Detailed explanations of these variables can be found in the official website
www.CMS.gov. All covariates except the last three are categorical variables, and
particularly the variable for provider type has 91 categories. Because those three
quantitative variables are all count data, we take the log10-transformation and
rescale each of them to the range [−1, 1] by using the formula (Z − minZ)/
(maxZ −minZ) × 2 − 1. Also, we apply the log10-transformation to the out-
come variable, which is skewed to the right. By excluding those records with
value 0 for quantitative variables and choosing records with overlapping ranges
for last three variables across states, the working dataset has 9,263,068 records,

www.CMS.gov
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and the corresponding file size is greater than 2GB. It is hard to apply any
complicated model fitting with iterative algorithms on a single PC with limited
memory.

Therefore, we turn to the developed divide-and-conquer strategy. It is natural
to split the data by location, such as states or counties. According to our theo-
retical results, the number of sub-populations cannot be too large. The number
of counties is more than 3,000 in U.S., while

√
9, 263, 068 ≈ 3044. Thus, we split

the whole dataset by states and DC, resulting in 51 sub-populations. The num-
ber of records for each sub-population varies from 14,809 (Alaska) to 719,970
(California), and the median number is 128,069. It is reasonable to hypothe-
size that those categorical covariates are heterogeneous because their effects on
the average amount that Medicare paid may vary across states. On the other
hand, the outcome variable is the standardized payment by removing geographic
differences in payment rates for individual services, and all three quantitative
covariates are numbers of services and beneficiaries. Then it is reasonable to
assume the effects of quantitative covariates are homogeneous.

We choose B-splines with degree of 3 to approximate the non-parametric
functions of those three quantitative covariates. Assumption (A4) requires that

the number of internal knots should be much smaller than N
1
4 ≈ 55. Addition-

ally, we expect these curves are smooth. Thus, we set the number of internal
knots as 5. Noting that the sizes of sub-populations are different, rather than a
simple average to obtain the aggregated curves, a weighted average is employed
by using weights nj/

∑s
j=1 nj , where nj is the size of the jth sub-sample.

Since the effects of those categorical covariates are allowed to be heteroge-
neous, we use box-plots to summarize the variabilities of their estimates across
51 sub-populations. From Figure 8, which displays the extent of heterogeneity,
we can see that only the effect of male versus female has small degree of hetero-
geneity around 0, and all the other estimates have substantial variabilities. We
further test the heterogeneity of the gender effects across 51 sub-populations via
the testing procedure proposed in Section 3.1. The bootstrapped (based on 500
bootstrapping samples) critical value is c′S = 2.69 under α = 1%, while the test
statistic W ′

S = 10.09 (p-value is 0). Although the range of this effect seems is
small, with such a large sample size, we can easily detect a small heterogeneity
across sub-populations. In summary, it implies that the effects of categorical
covariates on the average amount that Medicare paid vary a lot across states.

Figure 9 presents the non-parametric estimates of the effects of those three
quantitative covariates. The largest value of each quantitative covariate is dif-
ferent across states, so we only plot aggregated curves on the common range
from -1 to 0. From panels (a)–(c) of the figure, for each covariate, we can see
estimated curves from 51 sub-samples (dashed lines in black color) are almost
parallel to each other within a narrow band, while the aggregated curve (solid
line in red color) is right in the middle of those sub-sample specific curves. In
addition, we are interested in the validity of the aggregation for commonality,
noting that the sub-popualtion curves at boundaries vary more than they vary
around the middle parts. Then we test the homogeneity of the non-linear com-
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Fig 8. Box-plots of heterogeneous parameters without aggregation of commonality.across 50
states and the DC: the left panel shows estimates of gender/entity, Medicare participation
status, place of service and HCPCS drug status; the right panel shows estimates of 90 provider
types versus the reference type.

Fig 9. Estimates of smooth functions based on each sub-population and the aggregation. (a):
the estimated curves for “bene unique cnt”; (b): the estimated curves for “line srvc cnt”; (c):
the estimated curves for “line srvc cnt”.
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poents across 51 sub-populations on the range from −0.8 to −0.1 via the testing
procedure proposed in Section 3.2. The test statistic − 1

3σ2n · LRTs
nk = 480.24

and uN = 500. Therefore, the resulting p = 0.73 means failing to reject the null
hypothesis, and aggregation for commonality is a valid strategy.

6. Summary

In this paper, we develop a framework for additive partially linear models for
massive heterogeneous data, using the divide-and-conquer strategy. As summa-
rized in [19], the divide-and-conquer strategy is one of the three commonly used
strategies for analyzing massive data, with the other two being the sub-sampling
strategy and the sequential updating strategy. However, the sub-sampling and
sequential updating strategies are only suitable for analyzing homogeneous mas-
sive data. We can combine the divide-and-conquer and sub-sampling strategies
to analyze heterogeneous data, by dividing the data into homogeneous sub-
groups and then conducting sub-sampling within each subgroup. We can also
combine the divide-and-conquer and sequential updating strategies to analyze
heterogeneous data, by dividing the data into homogeneous subgroups and then
conducting sequential updating within each subgroup.

The framework developed in this paper extends the partially linear framework
proposed in [21]. Their partially linear framework considers only one common
feature, using the smoothing-splines technique to fit the non-parametric function
based on the general reproducing kernel Hilbert space (RKHS) theory [17].
Although the smoothing-splines technique and the RKHS theory have been well
developed in the framework of generalized additive models [7], we find it very
hard to extend them to our goal of analyzing massive data with multiple common
features. Instead, we adopt polynomial splines for modeling the non-parametric
effects of multiple common features simultaneously across all sub-populations
while exploring heterogeneity of each sub-population. The proposed methods
can be implemented easily and perform well in both simulation studies and the
real data application.

Appendix

A.1. Technical lemmas for Section 2.2

Define the centered version of B-spline basis as

b∗m,k(zk) = bm,k(zk)−
E[bm,k]

E[b1,k]
b1,k(zk), k = 1, . . . ,K,m = −�+ 1, . . . , JN ,

and the standardized version of B-spline basis as

Bm,k(zk) =
b∗m,k(zk)

‖b∗m,k‖2k
, m = −�+ 1, . . . , JN , k = 1, . . . ,K.
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Then the minimization problem (2.2) is equivalent to the following minimization
problem:

(β̂
(j)

, γ̂(j)) = argmin
βββ∈Rd, γγγ∈RK(JN+�)

1

2

∑
i∈Gj

[
Yi −XT

i β −B(Zi)
Tγ

]2
,

where B(z) = {Bm,k(zk),m = −� + 1, . . . , JN , k = 1, . . . ,K}T. Here, to abuse

the notation, we still use γ̂(j). Then ĝ(j)(z) = γ̂TB(z) is a spline estimator of g0
for the jth sub-population, and the centered spline estimators of a component
function is

ĝ
(j)
k (zk) =

JN∑
m=−�+1

γ̂m,kBm,k(Zk)−
1

n

∑
i∈Gj

JN∑
m=−�+1

γ̂m,kBm,k(Zik).

In practice, basis {bm,k,m = −� + 1, . . . , JN , k = 1, . . . ,K} is used for compu-
tational implementation, while {Bm,k} is convenient for asymptotic analysis.

[4] showed that for any function f ∈ H and N ≥ 1, there exists a function

f̃ ∈ SN such that ‖f̃ − f‖∞ ≤ Chp
N . Thus, for g0 satisfying Assumption (A1),

there exists a g̃(j)(z) = BT(z)γ̃j ∈ G(j)
n s.t. ‖g̃(j) − g0‖∞ = O(hp

N ) and g̃(j)(z)

is the best least-squares projection of g0(z) into the space G(j)
n , implying

〈g̃(j)(z)− g0(z),B(z)〉jn = 0, j = 1, . . . , s. (A.1)

Define

β̃
(j)

= argmin
β

1

2

∑
i∈Gj

[
Yi − g̃(j)(Zi)−XT

i β
]2

,

and let m
(j)
0i ≡ m

(j)
0 (T i) = g0(Zi) + XT

i β
(j)
0 , m̃

(j)
0 (t) = g̃(j)(z) + xTβ

(j)
0 , and

m̃
(j)
0i ≡ m̃

(j)
0 (T i) = g̃(j)(Zi) +XT

i β
(j)
0 .

Additionally, let θ =
( γ
β

)
, θ̂

(j)
=

(
γ̂(j)

β̂
(j)

)
, θ̃

(j)
=

(
γ̃(j)

β̃
(j)

)
, l̂

(j)
n (θ) =

l
(j)
n (γ,β), and

m̃
(j)
i ≡ m̃(j)(T i) = g̃(j) +XT

i β̃ = BT(Zi)γ̃
(j) +XT

i β̃
(j)

.

Define

V (j)
n

.
=

∂2 l̂
(j)
n (θ)

∂θ∂θT
=

1

n

∑
i∈Gj

{
(B(Zi))

⊗2 B(Zi)X
T
i

XiB
T(Zi) X⊗2

i

}
.

Lemma A.1. Under Assumptions (A1)–(A4), for each sub-population j,

√
n(β̃

(j)
− β

(j)
0 )

d−→ N (0,A−1Σ1A
−1),

where A = E(X⊗2) and Σ1 = E(ε2X⊗2).
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Proof. Let δ̃
(j)

=
√
n(β̃

(j)
− β

(j)
0 ). Then δ̃

(j)
minimizes

l̃(j)n (δ) =
1

2

∑
i∈Gj

[(
Yi − m̃

(j)
0i − 1√

n
XTδ

)2

− (Yi − m̃0i)
2

]
.

Let A(j)
n = 1

n

∑
i∈Gj

X⊗2
i . By taking derivatives with respect to δ, we obtain

∂l̃
(j)
n (δ)

∂δ
= A(j)

n δ − 1√
n

∑
i∈Gj

(Yi − m̃
(j)
0i )Xi = 0,

which implies

δ̃
(j)

=
1√
n
(A(j)

n )−1
∑
i∈Gj

εiXi +
1√
n
(A(j)

n )−1
∑
i∈Gj

(
g0(Zi)− g̃(j)(Zi)

)
Xi.

With similar arguments with those of Lemma A.1 in [11] and the fact ‖g̃(j) −
g0‖∞ = O(hp

N ), the lemma follows.

Lemma A.2. Under Assumptions (A1)–(A4), if JN � n

(logn)2
, there exists a

constant C such that supj ‖(V
(j)
n )−1‖2 ≤ C, a.s.

Proof. For each sub-population j, Lemma A.2 in [11] showed there exists a

constant C such that ‖(V (j)
n )−1‖2 ≤ C, a.s., if

sup
f1,f2∈G(j)

n

∣∣∣∣ 〈f1, f2〉jn − 〈f1, f2〉
‖f1‖2‖f2‖2

∣∣∣∣ = O

(
logn

(nhN )1/2

)
= o(1), a.s.,

by Lemma A.8 in [18]. Here constant C is taken to be large enough to ensure
that the above result holds for all j = 1, · · · , s. The condition JN � n

(logn)2

implies O
(
logn/(nhN )1/2

)
= o(1). Therefore, the lemma is proved.

Lemma A.3. Under Assumptions (A1)–(A4), for each sub-population j, we
have ∥∥∥∥θ̂(j)

− θ̃
(j)
∥∥∥∥ = OP

(
J
1/2
N n−1/2 + hp

N

)
.

Proof. It follows that

∂l̂
(j)
n (θ)

∂θ

∣∣∣∣∣
θ=θ̂

(j)
− ∂l̂

(j)
n (θ)

∂θ

∣∣∣∣∣
θ=θ̃

(j)
=

∂2 l̂
(j)
n (θ)

∂θ∂θT

∣∣∣∣∣
θ=θ

(j)

(
θ̂
(j)

− θ̃
(j))

,

where θ
(j)

is between θ̂
(j)

and θ̃
(j)

. Thus, we have

θ̂
(j)

− θ̃
(j)

= −
(

∂2 l̂
(j)
n (θ)

∂θ∂θT

∣∣∣∣∣
θ=θ

(j)

)−1
∂l̂

(j)
n (θ)

∂θ

∣∣∣∣∣
θ=θ̃

(j)
.
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We can write

1

n

∂l̂
(j)
n (θ)

∂θ

∣∣∣
θ=θ̃

(j) = − 1

n

∑
i∈Gj

(Yi −m
(j)
0i )

(
B(Zi)

Xi

)
+
1

n

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))
(
B(Zi)

Xi

)
+
1

n

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )

(
B(Zi)

Xi

)
.

First, by (A.1), we have
∑

i∈Gj
(g̃(j)(Zi) − g0(Zi))B(Zi) = 0. With similar

arguments with those of Lemma A.3 in [11], we have∥∥∥∥∥∥ 1n
∑
i∈Gj

(Yi −m
(j)
0i )B(Zi)

∥∥∥∥∥∥ = OP

(
J
1/2
N n−1/2

)
,

∥∥∥∥∥∥ 1n
∑
i∈Gj

(Yi −m
(j)
0i )Xi

∥∥∥∥∥∥ = OP

(
n−1/2

)
,

∥∥∥∥∥∥ 1n
∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))Xi

∥∥∥∥∥∥ = OP (hp
N ) ,

∥∥∥∥∥∥ 1n
∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )B(Zi)

∥∥∥∥∥∥ = oP

(
J
1/2
N n−1/2

)
,

∥∥∥∥∥∥ 1n
∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )Xi

∥∥∥∥∥∥ = oP

(
n−1/2

)
.

Therefore, by Lemma A.2, we have

‖θ̂
(j)

− θ̃
(j)

‖ ≤ ‖(V (j)
n )−1‖2

∥∥∥∥∥ 1n ∂l̂
(j)
n (θ)

∂θ

∣∣∣
θ=θ̃

(j)

∥∥∥∥∥ = OP

(
J
1/2
N n−1/2 + hp

N

)
.

Lemma A.4. Under Assumptions (A1)–(A4), for each sub-population j, if
JN � n

(logn)2
, we have∥∥∥ĝ(j) − g0

∥∥∥
2
= OP

(
J
1/2
N n−1/2 + hp

N

)
,∥∥∥ĝ(j) − g0

∥∥∥
jn

= OP

(
J
1/2
N n−1/2 + hp

N

)
,∥∥∥ĝ(j)k − g0k

∥∥∥
2k

= OP

(
J
1/2
N n−1/2 + hp

N

)
,∥∥∥ĝ(j)k − g0k

∥∥∥
jnk

= OP

(
J
1/2
N n−1/2 + hp

N

)
,

where k = 1, . . . ,K.
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Proof. The proof is similar with that of Lemma A.4 in [11] by applying Lem-
mas A.2 and A.3 and noting that

sup
f∈SN

‖f‖jnk
‖f‖2k

= OP

(
logn

(nhN )1/2

)
= oP (1), k = 1, . . . ,K,

which is implied by Lemma A.8 in [18] under condition JN � n/(logn)2.

Lemma A.5. Under Assumptions (A1)–(A4), for each sub-population j, if
n � J2

N , we have

1

n

∑
i∈Gj

X̃iΓ(Zi)
T
(
β̂
(j)

− β
(j)
0

)
= oP (n

−1/2),

1

n

∑
i∈Gj

(
ĝ(j)(Zi)− g0(Zi)

)
X̃i = oP (n

−1/2),

Proof. The proof is similar with that of Lemma A.5 in [11] by making following
revisions. We only show the second equality, and the first one can be proved
similarly.

Let w1(Z, g) = g(Z)X̃, and it follows

E
∥∥w1(Z, ĝ(j))−w1(Z, g0)

∥∥2 = E
∥∥∥(ĝ(j)(Zi)− g0(Zi))X̃i

∥∥∥2 ≤ O
(
E‖ĝ(j)−g0‖22

)
.

By Lemma A.2 of [8], the logarithm of the ε-bracketing number of the class of

functions A(j)
1 (δ) = {w1(·, ĝ) − w1(·, g0) : ĝ ∈ G(j)

n , ‖ĝ − g0‖2 ≤ δ} is c{(JN −
�)log(δ/ε)+log(δ−1)}. Thus, the corresponding entropy integral J[](δ,A(j)

1 (δ), ‖·
‖2) ≤ cδ{(JN−�)1/2+log1/2(δ−1)}. According to Lemma 7 of [15] and Lemma A.4,

‖ĝ(j) − g0‖∞ ≤ cJ
1/2
N ‖ĝ(j) − g0‖2 = OP (JNn−1/2 + J

1/2
N hp

N ). Let r−1
n,N =

J
1/2
N n−1/2 + hp

N , then

E

∣∣∣∣∣∣ 1n
∑
i∈Gj

{
ĝ(j)(Zi)− g0(Zi)

}
X̃i − E

{
ĝ(j)(Zi)− g0(Zi)

}
X̃i

∣∣∣∣∣∣
≤ n−1/2Cr−1

n,N

{
(JN + �)1/2 + log1/2(rn,N )

}
×

⎡⎣1 + cr−1
n,N

{
(JN + �)1/2 + log1/2(rn,N )

}
r−2
n,N

√
n

C0

⎤⎦
≤ O(1)n−1/2Cr−1

n,N

{
(JN + �)1/2 + log1/2(rn,N )

}
,

where the second inequality is based on the fact rn,NJ
1/2
N /

√
n = O(1).

Under condition that n � J2
N , we have JN/

√
n = o(1), implying JNn−1/2 +

J
1/2
N hp

N = o(1), and then r−1
n,NJ

1/2
N = o(1). Therefore, the above term is bounded

by o(n−1/2).
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A.2. Technical lemmas for Section 2.3

Let g̃ = 1
s

∑s
j=1 g̃

(j). In order to ensure that g̃ ∈ GN , we re-center the individual

estimator g̃(j)(z) via

g̃(j)(z) =

K∑
k=1

JN∑
m=−�

γ̃m,kbm,k(zk)−
1

N

K∑
k=1

N∑
i=1

JN∑
m=−�

γ̃m,kbm,k(zik).

To abuse the notation, we still denote the centered estimator as g̃(j)(z). Lemma

A.2 shows ‖(V (j)
n )−1‖2 ≤ C a.s., j = 1, . . . , s, if n � J2

N . This property plays a

key role in all following proofs. Define u
(j)
i = (V

(j)
n )−1

(
B
(
Zi

)
Xi

)
= {u(j)

im,m =

1, . . . ,K(JN + �) + d}T, and it follows
∑

i∈Gj
(u

(j)
i )⊗2 = n(V

(j)
n )−1. Let em

denote a (K(JN + �) + d)-dim vector with its mth entry as 1 and 0 otherwise,

and thus u
(j)
im = eTmu

(j)
i .

Lemma A.6. Under Assumptions (A1)–(A4), if n � J2
N , we have∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

εiu
(j)
i

∥∥∥∥∥∥ = OP

(
J
1/2
N N−1/2

)
.

Proof. If follows∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

εiu
(j)
i

∥∥∥∥∥∥
2

=
1

N2

K(JN+�)+d∑
m=1

⎧⎨⎩
s∑

j=1

∑
i∈Gj

εiu
(j)
im

⎫⎬⎭
2

.

Observing that

1

N
E

⎧⎨⎩
s∑

j=1

∑
i∈Gj

εiu
(j)
im

⎫⎬⎭
2

=
1

N2
E

⎡⎣ s∑
j=1

∑
i∈Gj

ε2i (u
(j)
im)2

⎤⎦ =
σ2

N2
E

⎡⎣ s∑
j=1

∑
i∈Gj

(u
(j)
im)2

⎤⎦
=

σ2

N2
E

⎡⎣ s∑
j=1

neTm(V (j)
n )−1em

⎤⎦ ≤ NCσ2

N2
,

where the last inequality is due to the fact eTm(V
(j)
n )−1em ≤ ‖(V (j)

n )−1‖22‖em‖2 ≤
C a.s.. Thus ∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

εiu
(j)
i

∥∥∥∥∥∥ = OP

(
J
1/2
N N−1/2

)
.

Lemma A.7. Under Assumptions (A1)–(A4), if n � J2
N , we have∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))u
(j)
i

∥∥∥∥∥∥ = OP

(
J
1/2
N hp

N

)
.
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Proof. Note that

1

N

s∑
j=1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))u
(j)
i

=
1

N

s∑
j=1

(V (j)
n )−1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))

(
B
(
Zi

)
Xi

)

=
1

N

s∑
j=1

(V (j)
n )−1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))
(

0
Xi

)
,

where the last equality follows from (A.1).
Therefore, it follows∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))u
(j)
i

∥∥∥∥∥∥
≤ 1

N

s∑
j=1

∥∥∥(V (j)
n )−1

∥∥∥
2

∑
i∈Gj

∥∥∥(g̃(j)(Zi)− g0(Zi))
(

0
Xi

)∥∥∥
≤C

N

s∑
j=1

∑
i∈Gj

∥∥∥(g̃(j)(Zi)− g0(Zi))
∥∥∥
∞

∥∥∥( 0
Xi

)∥∥∥
1
= OP (h

p
N ).

Lemma A.8. Under Assumptions (A1)–(A4), if n � J2
N , we have∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
i

∥∥∥∥∥∥ = oP

(
J
1/2
N N−1/2

)
.

Proof. It follows∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
i

∥∥∥∥∥∥
2

=
1

N2

K(JN+�)+d∑
m=1

⎧⎨⎩
s∑

j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
im

⎫⎬⎭
2

.

The proof of Lemma A.1 shows

β̃
(j)

− β
(j)
0 =

1

n
(A(j)

n )−1
∑
i∈Gj

εiXi +
1

n
(A(j)

n )−1
∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))Xi.

Then ∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
im

=
1

n

∑
i2∈Gj

εi2X
T
i2

⎛⎝ ∑
i1∈Gj

u
(j)
i1m

(A(j)
n )−1Xi1

⎞⎠
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+
1

n

∑
i2∈Gj

(g̃(j)(Zi2)− g0(Zi2))X
T
i2

⎛⎝ ∑
i1∈Gj

u
(j)
i1m

(A(j)
n )−1Xi1

⎞⎠
=

∑
i∈Gj

εiX
T
i v

(j)
m +

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))X
T
i v

(j)
m ,

where v
(j)
m =

∑
i∈Gj

u
(j)
im(A(j)

n )−1Xi. Thus, we have

1

N2
E

⎧⎨⎩
s∑

j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
im

⎫⎬⎭
2

=
1

N2
E

⎧⎨⎩
s∑

j=1

∑
i∈Gj

εiX
T
i v

(j)
m +

s∑
j=1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))X
T
i v

(j)
m

⎫⎬⎭
2

=
1

N2
E

⎧⎨⎩
s∑

j=1

∑
i∈Gj

εiX
T
i v

(j)
m

⎫⎬⎭
2

+
1

N2
E

⎧⎨⎩
s∑

j=1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))X
T
i v

(j)
m

⎫⎬⎭
2

≤ σ2

N2
E

s∑
j=1

∑
i∈Gj

{
XT

i v
(j)
m

}2
+

1

N
‖g̃(j)(Zi)− g0(Zi)‖2∞E

s∑
j=1

∑
i∈Gj

{
XT

i v
(j)
m

}2
.

Observing that

∑
i∈Gj

{
XT

i v
(j)
m

}2

=
∑
i∈Gj

(v(j)
m )TXiX

T
i v

(j)
m = n(v(j)

m )TA(j)
n v(j)

m

=
1

n

⎛⎝∑
i∈Gj

u
(j)
imXT

i (A
(j)
n )−1

⎞⎠A(j)
n

⎛⎝∑
i∈Gj

u
(j)
imA(j)

n )−1Xi

⎞⎠
=

⎛⎝ 1√
n

∑
i∈Gj

u
(j)
imXi

⎞⎠T

(A(j)
n )−1

⎛⎝ 1√
n

∑
i∈Gj

u
(j)
imXi

⎞⎠
Based on the Central Limit Theorem and Slutsky’s Theorem, it follows

E

⎧⎨⎩∑
i∈Gj

(
XT

i v
(j)
m

)2

⎫⎬⎭ = O(1).

Therefore,

1

N2
E

⎧⎨⎩
s∑

j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
im

⎫⎬⎭
2

= O

(
s

N2
+

sh2p
N

N

)
= o

(
1

N

)
,
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noting that h2p
N � N−1. Then, we have∥∥∥∥∥∥ 1

N

s∑
j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
i

∥∥∥∥∥∥ = oP

(
J
1/2
N N−1/2

)
.

A.3. Proofs of theorems

Proof of Theorem 2.1. The results about ĝ(j) are implied by Lemma A.4 di-

rectly. We only need to prove the stated result about β̂
(j)

. Note that the ondition
that J2

N � n implies that JN � n

(logn)2
. Also the condition that JN � n1/(2p)

implies that hp
N = O(J−p

N ) � n−1/2. Therefore, the stated result about β̂
(j)

can be showed by Lemmas A.1–A.5, following the same argument of proving
Theorem 1 in [11].

Proof of Theorem 2.2. We first quantify ‖ĝ(j) − g0‖2. Noting ‖g̃ − g0‖2 ≤
‖g̃ − g0‖∞ = O(hp

N ) and

1

s

s∑
j=1

(
ĝ(j)(z)− g̃(j)(z)

)
=

1

s
BT(z)

s∑
j=1

(γ̂(j) − γ̃(j)),

we have ∥∥∥∥∥∥1s
s∑

j=1

(
ĝ(j)(z)− g̃(j)(z)

)∥∥∥∥∥∥
2

2

=

∫
[0,1]K

⎡⎣1

s

s∑
j=1

(
ĝ(j)(z)− g̃(j)(z)

)⎤⎦2

f(z)dz

=
1

s

s∑
j=1

(
γ̂(j) − γ̃(j)

)T [
EB(z)BT(z)

] s∑
j=1

(
γ̂(j) − γ̃(j)

)

≤ C

s2

∥∥∥∥∥∥
s∑

j=1

(
γ̂(j) − γ̃(j)

)∥∥∥∥∥∥
2

≤ C

s2

∥∥∥∥∥∥
s∑

j=1

(
θ̂
(j)

− θ̃
(j)
)∥∥∥∥∥∥

2

.

Then we consider

∥∥∥∥ 1
s

∑s
j=1

(
θ̂
(j)

− θ̃
(j)
)∥∥∥∥. The proof of Lemma A.3 implies

that

θ̂
(j)

− θ̃
(j)

= (V (j)
n )−1 1

n

∂l̂
(j)
n (θ)

∂θ

∣∣∣
θ=θ̃

(j) ,

where 1
n

∂l̂(j)n (θ)

∂θ

∣∣∣
θ=θ̃

(j) is equal to⎧⎨⎩− 1

n

∑
i∈Gj

(Yi −m
(j)
0i ) +

1

n

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi)) +
1

n

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )

⎫⎬⎭(B(Zi)

Xi

)
.
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Then 1
s

∑s
j=1

(
θ̂
(j)

− θ̃
(j)
)

is equal to

− 1

N

s∑
j=1

∑
i∈Gj

εiu
(j)
i +

1

N

s∑
j=1

∑
i∈Gj

(g̃(j)(Zi)− g0(Zi))u
(j)
i

+
1

N

s∑
j=1

∑
i∈Gj

XT
i (β̃

(j)
− β

(j)
0 )u

(j)
i .

Therefore, combining Lemmas A.6-A.8, we have

1

s

∥∥∥∥∥∥
s∑

j=1

(
θ̂
(j)

− θ̃
(j)
)∥∥∥∥∥∥ = OP

(
J
1/2
N N−1/2 + hp

N

)
.

and further we have,

‖g − g0‖2 =

∥∥∥∥∥∥1s
s∑

j=1

ĝ(j) − 1

s

s∑
j=1

g̃(j) + g̃ − g0

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥1s
s∑

j=1

(
ĝ(j) − g̃(j)

)∥∥∥∥∥∥
2

+ ‖g̃ − g0‖2

= OP

(
J
1/2
N N−1/2 + hp

N

)
.

Next we quantify ‖g − g0‖N . Using Lemma A.8 in [18], we have

CN ≡ sup
f1,f2∈GN

∣∣∣∣ 〈f1, f2〉N − 〈f1, f2〉
‖f1‖‖f2‖

∣∣∣∣ = O

(
logN

(NhN )1/2

)
, a.s.

Therefore, noting g, g̃ ∈ GN , we have

‖g − g0‖N ≤ ‖g − g̃‖N + ‖g̃ − g0‖N = OP

(
J
1/2
N N−1/2 + hp

N

)
.

Proof of Corollary 2.1. For homogenous massive data, β̂
(j)

, j = 1, . . . , s, are

i.i.d. random vectors. [10] showed that if E(β̂
(j)

− β0) = o(N−1/2), then β is

as efficient as β̂, which is defined as via the following minimization using all N
observations,

(β̂, ĝ) = argmin
βββ∈Rd, g∈GN

1

2

s∑
j=1

∑
i∈Gj

[
Yi −XT

i β − g(Zi)
]2

.

[11] showed that √
N(β̂ − β0)

d−→ N
(
0, σ2D−1

)
.
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Therefore it suffices to show that E(β̂
(j)

−β0) = o(N−1/2). Following the proof
of Theorem 2.1, we have⎛⎝ 1

n

∑
i∈Gj

X̃
⊗2

i +
1

n

∑
i∈Gj

X̃iΓ(Zi)
T

⎞⎠ (β̂
(j)

− β0)

=
1

n

∑
i∈Gj

εiX̃i −
1

n

∑
i∈Gj

(
ĝ(j)(Zi)− g0(Zi)

)
X̃i,

and it follows

β̂
(j)

− β0 =

⎛⎝ 1

n

∑
i∈Gj

X̃
⊗2

i +
1

n

∑
i∈Gj

X̃iΓ(Zi)
T

⎞⎠−1

×

⎡⎣ 1

n

∑
i∈Gj

εiX̃i −
1

n

∑
i∈Gj

(
ĝ(j)(Zi)− g0(Zi)

)
X̃i

⎤⎦ .

Under Assumption A3 and the fact that E(φ(Z)X̃) = 0 for any measurable
function φ, we can show that

0 < c ≤ E

∥∥∥∥∥∥ 1n
∑
i∈Gj

X̃
⊗2

i +
1

n

∑
i∈Gj

X̃iΓ(Zi)
T

∥∥∥∥∥∥
2

≤ C,

where c and C are some positive constants. Moreover, we have

E

⎧⎨⎩ 1

n

∑
i∈Gj

(
ĝ(j)(Zi)− g0(Zi)

)
X̃i

⎫⎬⎭ = E
(
ĝ(j)(Z)− g0(Z)

)
X̃i

= O(hp
N ) = o(N−1/2).

Therefore, if n � N1/2, by Cauchy-Schwarz inequality we have E(β̂
(j)

−β0) =
o(N−1/2).

Proof of Theorem 2.3. The estimating equation is∑
i∈Gj

Xi

{
Yi −XT

i β̆
(j) − g(Zi)

}
= 0.

Since Yi = XT
i β

(j)
0 + g0(Zi) + εi, we have

√
n
(
β̆
(j) − β

(j)
0

)
= n−1/2

∑
i∈Gj

(
A(j)

n

)−1

XT
i εi + n−1/2

∑
i∈Gj

(
A(j)

n

)−1

Xi(g0(Zi)− g(Zi)).
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Considering the first term on the right hand side of the above equation, we have

n−1/2
∑
i∈Gj

(
A(j)

n

)−1

XT
i εi

d−→ N (0, σ2A−1).

Consider the second term on the right hand side. Let w2(Z, g) = g(Z)(A(j)
n )−1X.

We have

E
∥∥w2(Z, g)− w2(Z, g0)

∥∥2 = E

∥∥∥∥(g(Zi)− g0(Zi))
(
A(j)

n

)−1

Xi

∥∥∥∥2
≤ O

(
E‖g − g0‖22

)
.

By Lemma A.2 of [8], the logarithm of the ε-bracketing number of the class
of functions A2(δ) = {w2(·, g) − s(·, g0) : g ∈ GN , ‖g − g0‖2 ≤ δ} is c{(JN −
�)log(δ/ε)+log(δ−1)}. Thus, the corresponding entropy integral J[ ](δ,A2(δ), ‖·
‖2) ≤ cδ{(JN − �)1/2 + log1/2(δ−1)}. According to Lemma 7 of [15] and The-

orem 2.2, ‖g − g0‖∞ ≤ cJ
1/2
N ‖g − g0‖2 = OP (JNN−1/2 + J

1/2
N hp

N ). Let r−1
N =

J
1/2
N N−1/2 + hp

N , then

E

∣∣∣∣∣∣ 1n
∑
i∈Gj

{
(g(Zi)− g0(Zi))

(
A(j)

n

)−1

Xi

}

−E

{
(g(Zi)− g0(Zi))

(
A(j)

n

)−1

Xi

}∣∣∣∣
≤ n−1/2Cr−1

N

{
(JN + �)1/2 + log1/2(rN )

}
×

⎡⎣1 + cr−1
N

{
(JN + �)1/2 + log1/2(rN )

}
r−2
N

√
n

C0

⎤⎦
≤ O(s1/2)n−1/2Cr−1

N

{
(JN + �)1/2 + log1/2(rN )

}
= O(n−1/2)×O

(
JNn−1/2 + s1/2J

1/2
N hp

N

)
= O(n−1/2)×O

(
JNn−1/2 +

(
n−1N1+q(1−2p)

)1/2)
≤ O(n−1/2)×O

(
JNn−1/2 +

(
n−1N1/(2p)

)1/2)
,

where the last inequality is due to the condition that JN � N1/(2p). The con-
dition that J2

N � n implies that O(JNn−1/2) = o(1) and n � N1/(2p) to make
sure that the above expectation has an order o(n−1/2). Furthermore,

E

{
(g(Zi)− g0(Zi))

(
A(j)

n

)−1

Xi

}
≤ O(E‖g − g0‖∞) = O(JNN−1/2).

Thus,

n−1/2
∑
i∈Gj

(
A(j)

n

)−1

Xi(g0(Zi)− g(Zi)) = O(JNs−1/2) + oP (1) = oP (1),
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where the last equality is due to the condition that J2
N � s. Therefore, the

theorem is proved.

Proof of Theorem 3.1. Under the null hypothesis, we have

√
nQ

(
β̂
(j1) − β̂

(j2))
=

√
nQ

(
β̂
(j1) − β

(j1)
0

)
−

√
nQ

(
β̂
(j2) − β

(j2)
0

)
.

By Theorem 2.1, we have

√
nQ

(
β̂
(jt) − β

(jt)
0

) d−→ N
(
0, σ2QD−1QT

)
,

where t = 1 or 2. Therefore,
√
nQ

(
β̂
(j1) − β̂

(j2)) d−→ N
(
0, 2σ2QD−1QT

)
.

Consider the second result. According to the proof of Theorem 2.3, we have

√
n
(
β̆
(j) − β

(j)
0

)
= n−1/2

∑
i∈Gj

(
A(j)

n

)−1

XT
i εi

+n−1/2
∑
i∈Gj

(
A(j)

n

)−1

Xi(g0(Zi)− g(Zi)).

Thus, with similar arguments in the proof of Theorem 2.3, we have

√
nQ

(
β̆

(j1) − β̆
(j2))

=
√
nQ

(
β̆

(j1) − β
(j1)
0

)
−

√
nQ

(
β̆

(j2) − β
(j2)
0

)
= n−1/2

∑
i∈Gj1

Q
(
A(j1)

n

)−1
XT

i εi + n−1/2
∑

i∈Gj1

Q
(
A(j1)

n

)−1
Xi(g0(Zi)− g(Zi))

−n−1/2
∑

i∈Gj2

Q
(
A(j2)

n

)−1
XT

i εi − n−1/2
∑

i∈Gj2

Q
(
A(j2)

n

)−1
Xi(g0(Zi)− g(Zi))

= n−1/2
∑

i∈Gj1

Q
(
A(j1)

n

)−1
XT

i εi − n−1/2
∑

i∈Gj2

Q
(
A(j2)

n

)−1
XT

i εi + op(1)

d−→ N
(
0, 2σ2QA−1QT

)
.

Therefore, the second result is also proved.

Proof of Theorem 3.2. First of all, based on the proof of Theorem 2.3, we have

√
n
(
β̆
(j) − β̌

(j)

0

)
= n−1/2

∑
i∈Gj

(
Â

(j)

n

)−1

XT
i εi +Ri.

where Ri = n−1/2
∑

i∈Gj

(
Â

(j)

n

)−1

Xi(g0(Zi) − g(Zi)). Also, we have shown

there
max
j∈S

‖Ri‖∞ = OP (JNs−
1
2 ).

Noting that s � J2
N log(pd), it follows

max
j∈S

‖Ri‖∞ = oP (log
− 1

2 (pd)).
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Then, the rest of the proof follows a similar line with the counterpart of Theo-
rem 3.9 in [21] by discussing the asymptotic differences between approximation
terms.

Proof of Theorem 3.3. The estimates for gk and g−k depends on B-spline ba-
sis expansions. Denote γk as coefficients for basis Bk(Zk) of the kth function
gk, and γ−k as coefficients for basis B−k(Z−k) of g−k. With a little abuse of
notations, we write

L
(j)
nk (β,γk,γ−k)

=
1

2n

∑
i∈Gj

[
Yi −XT

i β −BT
k (Zik)γk −BT

−k(Zi,−k)γ−k

]2
=

1

2n

∑
i∈Gj

[
εi +XT

i (β
(j)
0 − β) +BT

k (Zik)(γ̃
(j)
k − γk)

+(g
(j)
0k (Zik)− g̃

(j)
k (Zik)) + (g0,−k(Zi,−k)−BT

−k(Zi,−k)γ−k)
]
,

where g̃
(j)
k (Zik) = BT

k (Zik)γ
(j)
k .

Consider the derivative of L
(j)
nk (β,γk,γ−k) with respect to γk:

∇L
(j)
nk (β,γk,γ−k) = − 1

n

∑
i∈Gj

εiBk(Zik) +
1

n

∑
i∈Gj

Bk(Zik)
⊗2(γk − γ̃

(j)
k )

+
1

n

∑
i∈Gj

(g̃
(j)
k (Zik)− g

(j)
0k (Zik))Bk(Zik)

+
1

n

∑
i∈Gj

(BT
−k(Zi,−k)γ−k − g0,−k(Zi,−k))Bk(Zik)

+
1

n

∑
i∈Gj

XT
i (β − β

(j)
0 )Bk(Zik).

By plugging estimates based on the jth sub-population, it follows that

∇L
(j)
nk (β̂

(j)
, γ̂

(j)
k , γ̂

(j)
−k) = − 1

n

∑
i∈Gj

εiBk(Zik) +
1

n

∑
i∈Gj

Bk(Zik)
⊗2(γ̂

(j)
k − γ̃

(j)
k )

+
1

n

∑
i∈Gj

(g̃
(j)
k (Zik)− g

(j)
0k (Zik))Bk(Zik)

+
1

n

∑
i∈Gj

(BT
−k(Zi,−k)γ̂

(j)
−k − g0,−k(Zi,−k))Bk(Zik)

+
1

n

∑
i∈Gj

XT
i (β̂

(j)
− β

(j)
0 )Bk(Zik),

∇L
(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k) = − 1

n

∑
i∈Gj

εiBk(Zik)
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+
1

n

∑
i∈Gj

(g̃
(j)
k (Zik)− g

(j)
0k (Zik))Bk(Zik)

+
1

n

∑
i∈Gj

(BT
−k(Zi,−k)γ̂

(j)
−k − g0,−k(Zi,−k))Bk(Zik)

+
1

n

∑
i∈Gj

XT
i (β̂

(j)
− β

(j)
0 )Bk(Zik).

Then, we obtain

∇L
(j)
nk (β̂

(j)
, γ̂

(j)
k , γ̂

(j)
−k) = ∇L

(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k) +

1

n

∑
i∈Gj

Bk(Zik)
⊗2(γ̂

(j)
k − γ̃

(j)
k ).

Due to the stationary equation to (2.2), we have

∇L
(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k) = − 1

n

∑
i∈Gj

Bk(Zik)
⊗2(γ̂

(j)
k − γ̃

(j)
k ).

Let E{Bk(Zik)
⊗2} = Σk. According to Lemma A.2, we know Σk’s eigenval-

ues are bounded and away from 0. Thus,

∇L
(j)
nk (β̂

(j)
, γ̂

(j)
k , γ̂

(j)
−k)−∇L

(j+1)
nk (β̂

(j+1)
, γ̂

(j+1)
k , γ̂

(j+1)
−k )

= −(Σk + oP (1))(γ̂
(j)
k − γ̂

(j+1)
k ),

where the last equation is due to γ̃
(j)
k = γ̃

(j+1)
k under the null hypothesis.

By Taylor expansion, we have

∇L
(j)
nk (β̂

(j)
, γ̂

(j+1)
k , γ̂

(j)
−k)

= ∇L
(j)
nk (β̂

(j)
, γ̃

(j+1)
k , γ̂

(j)
−k) +

1

n

∑
i∈Gj

Bk(Zik)
⊗2(γ̂

(j+1)
k − γ̃

(j+1)
k )

= ∇L
(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k)−∇L

(j+1)
nk (β̂

(j+1)
, γ̃

(j+1)
k , γ̂

(j+1)
−k ) + oP (1).

Then, applying Taylor expansion again leads to

L
(j)
nk (β̂

(j)
, γ̂

(j)
k , γ̂

(j)
−k)− L

(j)
nk (β̂

(j)
, γ̂

(j+1)
k , γ̂

(j)
−k)

= ∇L
(j)
nk (β̂

(j)
, γ̂

(j+1)
k , γ̂

(j)
−k)

T(γ̂
(j)
k − γ̂

(j+1)
k )

+
1

2
(γ̂

(j)
k − γ̂

(j+1)
k )T(Σk + oP (1))(γ̂

(j)
k − γ̂

(j+1)
k )

= −1

2
(∇L

(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k)−∇L

(j+1)
nk (β̂

(j+1)
, γ̃

(j+1)
k , γ̂

(j+1)
−k ))T(Σk + oP (1))

×(∇L
(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k)−∇L

(j+1)
nk (β̂

(j+1)
, γ̃

(j+1)
k , γ̂

(j+1)
−k )).
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Based on Lemmas A.1–A.5, we can verify that

∇L
(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k) = − 1

n

∑
i∈Gj

εiBk(Zik) +RN ,

where ‖RN‖2 = OP ((J
1/2
N n−1/2 + hp

N )J
1/2
N ). It is straightforward to have:

∇L
(j)
nk (β̂

(j)
, γ̃

(j)
k , γ̂

(j)
−k)−∇L

(j+1)
nk (β̂

(j+1)
, γ̃

(j+1)
k , γ̂

(j+1)
−k )

d
= − 1

n

∑
i∈Gj

⋃
Gj+1

εiBk(Zik) +RN .

Therefore,

nLRTs
nk

=− n
s−1∑
j=1

{⎡⎢⎣ 1

n

∑
i∈Gj

⋃
Gj+1

εiBk(Zik)

⎤⎥⎦
T

Σ−1
k

⎡⎢⎣ 1

n

∑
i∈Gj

⋃
Gj+1

εiBk(Zik)

⎤⎥⎦
+OP ((J

1/2
N n−1/2 + hp

N )J
1/2
N n−1/2)

}

=−
s−1∑
j=1

1

n

∑
i∈Gj

⋃
Gj+1

ε2iBk(Zik)
TΣ−1

k Bk(Zik)

−
s−1∑
j=1

1

n

∑
(i1<i2)∈Gj

⋃
Gj+1

2εi1εi2Bk(Zi1k)
TΣ−1

k Bk(Zi2k)

+OP ((J
1/2
N n−1/2 + hp

N )JNn1/2).

The rate of the first term for nLRTs
nk can be found investigating the moment

1

n2

∑
i∈Gj

⋃
Gj+1

E
{
ε2iBk(Zik)

TΣ−1
k Bk(Zik)− Eε2iBk(Zik)

TΣ−1
k Bk(Zik)

}2

≤ 2

n
Eε4i (Bk(Zik)

TΣ−1
k Bk(Zik))

2

≤2C

n
J2
N < ∞,

where C is some constant. Also, E[Bk(Zik)
TΣ−1

k Bk(Zik)] = JN . Then, it fol-
lows

s−1∑
j=1

1

n

∑
i∈Gj

⋃
Gj+1

ε2iBk(Zik)
TΣ−1

k Bk(Zik) = 2(s− 1)σ2JN + oP (sJN ). (A.2)
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Let W
(j)
i1i2

= 2εi1εi2Bk(Zi1k)
TΣ−1

k Bk(Zi2k), and then define

W (N) =

s−1∑
j=1

∑
(i1<i2)∈Gj

⋃
Gj+1

W
(j)
i1i2

.

The next step is to show the asymptotic normality of n−1W (N), which follows
a similar line with the proof of Theorem 4.1 in [12] using Proposition 3.2 in

[5]. First, it is easy to see E(W
(j)
i1i2

|Zi1k) = 0, ∀i1 < i2. Second, bounds for sev-
eral moments of W (N) are derived. Define σ(N)2 = Var(W (N)) and following
quantities:

UI =

s−1∑
j=1

∑
(i1<i2)

∈Gj

⋃
Gj+1

E[(W
(j)
i1i2

)4],

UII =

s−1∑
j=1

∑
(i1<i2<i3)

∈Gj

⋃
Gj+1

{
E[(W

(j)
i1i2

)2(W
(j)
i1i3

)2] + E[(W
(j)
i2i1

)2(W
(j)
i2i3

)2]

+E[(W
(j)
i3i1

)2(W
(j)
i3i2

)2]
}

UIII =

s−1∑
j=1

∑
(i1<i2<i3<i4)

∈Gj

⋃
Gj+1

{
E[W

(j)
i1i2

W
(j)
i1i3

W
(j)
i4i2

W
(j)
i4i3

] + E[W
(j)
i1i2

W
(j)
i1i4

W
(j)
i3i2

W
(j)
i3i4

]

+E[W
(j)
i1i3

W
(j)
i1i4

W
(j)
i2i3

W
(j)
i2i4

].
}

By the definition of Σk and E(ε4i ) < ∞, we have

E[(W
(j)
i1i2

)4] ≤ 24E
[
ε4i1ε

4
i2(Bk(Zi1k)

TΣ−1
k Bk(Zi2k))

4
]
= O(J4

N )

E[(W
(j)
i1i2

)2(W
(j)
i1i3

)2] ≤ E[(W
(j)
i1i2

)4] = O(J4
N )

E[W
(j)
i1i2

W
(j)
i1i3

W
(j)
i4i2

W
(j)
i4i3

] = O(JN )

Then it follows that

UI = O(sn2J4
N ), UII = O(sn3J4

N ), UIII = O(sn4J4
N ).

Third,

σ(N)4 ∼
[
(s− 1)

(
2n

2

)
4σ4JN + 2(s− 2)

(
n

2

)
4σ4JN

]2
∼ (12σ4(s− 1)n2JN )2

because E[(W
(j)
i1i2

)2] = 4σ4JN . Since UI , UII and UIII have a smaller order than
σ(N)4 under the condition J2

N � n, Proposition 3.2 in [5] shows that

1√
12σ4(s− 1)n2JN

W (N)
d−→ N (0, 1). (A.3)
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Last, under the condition Jn � n
1
2p from Theorem 2.1 and s2 � JN , we

know (J
1/2
N n−1/2 + hp

N )JNn1/2 � (J
1/2
N + n−1/2n1/2)JN � sJN . Therefore, by

combining (A.2) and (A.3), we have

1√
2 2
3 (s− 1)JN

(
− 1

3σ2
nLRTs

nk − 2

3
(s− 1)JN

)
d−→ N (0, 1).
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