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1. Introduction

Case-control studies are popular tools in investigating risk factors associated
with various uncommon diseases, such as cancer and myocardial infarction, of-
ten because these studies are relatively less expensive and more convenient to
implement compared with designs such as cross-sectional and prospective co-
hort studies (Chatterjee et al., 2009). Typically, a population-based case-control
study employs a random sample of cases (diseased subjects) and a separate
random sample of controls (non-diseased subjects). It also collects covariate in-
formation on the exposure of interest and other risk factors. The primary task
of case-control studies lies in understanding the relationship between disease
rates and covariates, usually via a prospective logistic regression analysis, which
gives an efficient estimator of all parameters except the intercept, under the
conditions that the disease rate is unknown and no parametric model for the
predictors is available in the underlying source population (Prentice and Pyke,
1979). It is however now well-recognized in gene-environment interaction studies
that estimation of interactions can be made much more efficient if the distri-
bution of the gene given the environment is modeled parametrically (Piegorsch
et al., 1994; Chatterjee and Carroll, 2005; Chen et al., 2008, 2009).

Recently, there has been considerable interest in using case-control data for
a separate task, namely examining the interrelationship between covariates, say
Y and X, where Y is a scalar and X is potentially multivariate (Jiang et al.,
2006; Lin and Zeng, 2009; Li et al., 2010; Wei et al., 2013; Tchetgen, 2014). For
example, in Section 6, we describe a case-control study involving breast cancer.
Mammographic density, age at first live birth, age at menarche and body mass
index are all known to be predictors of breast cancer, but it is also of interest
to examine the effects of age at first live birth, age at menarche and body mass
index, X, on mammographic density, Y in this case-control study.

The main difficulty of such secondary analysis is that the case-control data
is not a random sample from the underlying source population, which we refer
to as true population throughout the paper. In fact the case-control samples are
taken separately from the case subpopulation and the control subpopulation. As
a consequence, the relationship between covariates Y and X in the secondary
analysis under the case-control context can be very different from the relation-
ship in the true population. Hence, simply regressing Y on X and ignoring the
case-control sampling scheme can be grossly misleading.

A simple approach to secondary analysis is using only controls if the disease
rate is rare, say less than 1%. This type of approach is widely used, because if the
disease rate is < 1%, the controls make up more than 99% of the population, and
analysis of them is close to that of the entire population. However, this approach
can have relatively low efficiency because it ignores the information carried by
the cases. A more efficient approach is to adopt a semiparametric framework,
assuming a parametric distribution for Y given X, e.g., linear regression with
normally distributed and homoscedastic regression errors, as well as known or
rare disease rate (Jiang et al., 2006; Lin and Zeng, 2009; Li et al., 2010; Wei et al.,
2013; Tchetgen, 2014). This approach improves estimation efficiency compared
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with the controls only method because both cases and controls are taken into
account.

However, the disease rate in the source population being sampled is often
unknown and some diseases may not be so rare as less than 1%, so that the
controls-only analysis can have considerable bias. This prompted Ma and Car-
roll (2016) to propose a further improved approach, which does not require
a known or a rare disease assumption, and also, unlike the papers referenced
above, does not assume normality or homoscedasticity of the regression error.
In fact, they only specify a mean model to describe the relationship between
covariates. Their semiparametric estimator involves positing density functions
for X and Y given X that may or may not be true. The resulting estimator is
(a) consistent and asymptotically normally distributed even if the posited func-
tions are incorrectly specified; and (b) it is efficient if the posited functions are
correctly specified. An estimator with the properties (a) and (b) will be called
locally efficient throughout this article.

Because the approach of Ma and Carroll (2016) was developed by adopt-
ing a superpopulation concept and viewing case-control samples as independent
and identically distributed observations sampled from the superpopulation, they
need to link the quantities in the superpopulation to the ones in the true popu-
lation. As a consequence, several additional conditional distributions arise in the
likelihood formulation, including quantities conditional on the covariates. This
leads to the need to perform several nonparametric regressions on the covariates
in their estimator. When the covariate dimension increases, such nonparametric
regressions inevitably suffer from the curse of dimensionality.

In this paper, we work in the superpopulation framework and handle the
potential dimensionality problem using a dimension reduction modeling ap-
proach. We assume several quantities of interest depend on the covariates X
only through linear combinations of X and/or known functions of X. This al-
lows us to avoid multivariate nonparametric regression. However, because of the
inherent relation between the covariates assumed in the original true popula-
tion, the dimension reduction structure is not completely arbitrary. Instead, it is
subject to various constraints, which makes the problem different from the clas-
sical dimension reduction modeling and estimation. Taking these various special
features into consideration, we construct asymptotically consistent estimators
for the regression parameters in the true population model. These estimators
have a parametric convergence rate and are robust to the misspecification of the
conditional distribution of Y given X.

We emphasize that ours is not a paper about advancing dimension reduction
modeling, which already has a massive literature (Ma and Zhu, 2013b; Li, 1991;
Li and Duan, 1989; Li, 1992; Li and Dong, 2009; Li and Wang, 2007; Li et al.,
2008, 2005; Dong and Li, 2010; Ma and Zhu, 2012b, 2013a; Zhu et al., 2010;
Cook, 2009; Cook and Li, 2002; Yin and Cook, 2002; Cook, 1994; Setodji and
Cook, 2004; Cook and Setodji, 2003; Yin and Bura, 2006; Xia, 2007). Instead it
is about using dimension reduction ideas for solving a semiparametric problem
in the secondary analysis of case-control studies when the dimensionality of the
covariates is potentially large.
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2. Methodology

2.1. Background

Let D be disease status, where D = 1 denotes a case and D = 0 denotes a
control. Also let (XT, Y )T be a (p + 1) × 1 vector of covariates, where X is
a p-dimensional vector and Y is a scalar. We assume that both X and Y are
continuous and they are related to disease status D via a logistic regression
model

pr(D = d|X = x, Y = y) = f true
D|X,Y (d,x, y) = H(d,x, y,α)

=
exp{d(αc + xTα1 + yα2)}
1 + exp(αc + xTα1 + yα2)

, (2.1)

where α = (αc,α
T
1 , α2)

T.

As mentioned before, the goal of secondary analysis is to investigate the
relationship between X and Y in the source population, which we assume is of
the form

Y = m(X,β) + ε, (2.2)

where m(·) is a smooth function known up to a parameter β. The error term ε
satisfies Etrue(ε|X) = 0, but no other assumptions about ε are made, especially
normality or homoscedasticity or independence from X. Under mild conditions,
the parameters θ = (αT,βT)T defined in (2.1) and (2.2) are identifiable (Ma
and Carroll, 2016).

2.2. Superpopulation Model Framework and Efficient Estimator

From model (2.2), the conditional distribution of Y given X and the marginal
distribution of X with respect to the true population are

f true
Y |X(y,x,β) = η2{y −m(x,β),x} = f true

ε|X (ε,x), (2.3)

f true
X (x) = η1(x). (2.4)

Here η2 is an unknown probability density function with mean 0, which is free
of the unknown parameters β, ε is the error term defined in (2.2), i.e., ε = Y −
m(X,β) and η1 is another probability density function which is also unknown.
The superscript “true” emphasizes that the probability densities in (2.3) - (2.4)
are defined under the true population.

Suppose we draw a case-control sample with N1 cases and N0 controls. Be-
cause of the sampling design, classical large-sample asymptotic theory does not
work here. The idea of a superpopulation is to construct a hypothetical pop-
ulation with infinite sample size and a fixed ratio of cases to controls, N1/N0,
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then treat the case-control sample as a random sample from the superpopula-
tion with sample size N = N0 +N1 (Ma, 2010). The explicit form of the joint
density of (X, Y,D) in such a superpopulation is

fX,Y,D(x, y, d) = (Nd/N)f true
X,Y |D(x, y, d)

=
Nd

N

η1(x)η2(ε,x)H(d,x, y,α)∫
η1(x)η2(ε,x)H(d,x, y,α)dμ(x)dμ(y)

.

Here we use the fact that the distribution of (X, Y ) conditional on the disease
status D in the superpopulation and in the true population are identical, which
links the distributions in these two populations.

Ma and Carroll (2016) derived the semiparametric efficient score function
corresponding to the above superpopulation, Seff(Xi, Yi, Di) = {S(Xi, Yi, Di)−
g{Yi −m(Xi,β),Xi)} − (1 −Di)v0 −Div1. The resulting efficient estimating
equation is

N∑
i=1

{S(Xi, Yi, Di)− g{Yi −m(Xi,β),Xi)} − (1−Di)v0 −Div1 = 0, (2.5)

where

S(x, y, d,θ) =

{
∂ log{H(d,x, y,α)}/∂α

∂ log{η2(ε,x)}/∂β

}
. (2.6)

Although as a function, η2 does not depend on β, its first argument ε contains
β. Other quantities used in (2.5) are defined in (2.7).

π0 ≡ ptrueD (0) =
∫
η1(x)η2(ε,x)H(0,x, y)dμ(x)dμ(y);

π1 ≡ ptrueD (1) =
∫
η1(x)η2(ε,x)H(1,x, y)dμ(x)dμ(y);

b0 ≡ E{fD|X,Y (1,X, y) | D = 0}; b1 ≡ E{fD|X,Y (0,X, y) | D = 1};
μs(x, y) ≡ E(S | ε,X = x); c0 ≡ E(S | D = 0)− E{μs(X, Y ) | D = 0};
c1 ≡ E(S | D = 1)− E{μs(X, Y ) | D = 1};

κ(x, y) ≡
[

1∑
d=0

{NdH(d,x, y)}/(Nπd)

]−1

;

t1(X) ≡
[
Etrue

{
ε2κ(X, Y ) | X

}]−1
;

t2(X) ≡ Etrue {εμs(X, Y ) | X} − (c0/b0)Etrue

{
εfD|X,Y (0,X, Y ) | X

}
;

t3(X) ≡ −b−1
0 Etrue

{
εfD|X,Y (0,X, Y ) | X

}
;

a(x) ≡ t1(x){t2(x) + t3(x)u0};
u0 ≡ (1 − E[εt1(X)t3(X)κ(X, Y ) | D = 0])−1E[εt1(X)t2(X)κ(X, Y ) |
D = 0]; u1 ≡ −(N0/N1)u0;

v0 ≡ (π1/b0)(u0 + c0);v1 ≡ −(π0/b0)(u0 + c0);

g(ε,x) ≡ μs(x, y)− εa(x)κ(x, y)−v0fD|X,Y (0,x, y)−v1fD|X,Y (1,x, y).

(2.7)
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3. Approach via Dimension Reduction

3.1. Background

The estimating equation (2.5) contains three expectations conditional on covari-
ates X, i.e., Etrue

{
ε2κ(X, Y ) | X

}
, Etrue {εμs(X, Y ) | X} and Etrue{εfD|X,Y (0,

X, Y ) | X}, which need to be estimated nonparametrically. However, such es-
timation may be extremely hard when the covariates X are multivariate. To
bypass the potential curse of dimensionality problem caused by the multivari-
ate nature of X, we use a dimension reduction modeling strategy, i.e., we assume
all three quantities in the conditional expectations depend on X only through
several linear combinations XTγ or several linear combinations of functions of
X. Under such a dimension reduction structure, we can construct nonparamet-
ric regression estimators for high dimensional covariates X in a way similar
to the univariate case with desired bias and MSE order, hence facilitating the
estimation procedure via solving the estimating equation (2.5).

Let f0(X, Y,α) = fD|X,Y (0,X, Y ). All three functions κ(x, y),μs(x, y) and
f0(x, y) depend on πd = πd(α). To emphasize this, we replace πd with πd(α̃) in
those three functions and we use the notation κ(x, y, α̃),μs(x, y, α̃), f0(x, y, α̃)
to distinguish them from the ones using the true parameter value α. In addition,
we define ε(X, Y, β̃) = Y − m(X, β̃) to distinguish it from the true ε = Y −
m(X,β).

There are two cases that need to be considered, namely that (i) m(·) defined
in (2.2) is a linear function of X; and (ii) that m(·) is not a linear function of

X. In case (i), we set Zβ̃ = X, while in case (ii), we set Zβ̃ = {XT,m(X, β̃)}T.
Regardless of whetherm(X,β) is linear or nonlinear, our dimension reduction

models are

Etrue{ε2(X, Y, β̃)κ(X, Y, α̃) | X} = ζ1(Z
T
β̃
γ1, α̃), (3.1)

Etrue{ε(X, Y, β̃)μs(X, Y, α̃) | X} = ζ2(Z
T
β̃
γ2,X, α̃), (3.2)

Etrue{ε(X, Y, β̃)f0(X, Y, α̃) | X} = ζ3(Z
T
β̃
γ3, α̃), (3.3)

for α̃ and β̃ that are in a neighborhood of α and β. Here Zβ̃ is a finite dimen-

sional vector, each element of which is a function of X. The subscript β̃ indicates
Zβ̃ may depend on the unknown parameter β̃. The three indices γ1,γ2,γ3 are
vectors or matrices that have the same row size as the length of Zβ̃ and with 	
columns. The lower square blocks of all three matrices γ1,γ2,γ3 are set to be
identity to ensure identifiability. Throughout the text, we use the notation γ−1

to denote the submatrix of γ without the lower square block for any matrix
γ. ζ1(·), ζ2(·), ζ3(·) are three unknown functions. Strictly speaking, model (3.2)
is not a standard dimension reduction model. However, in Appendix A.1, we
describe its actual form, which in general consists of three different standard
dimension reduction models.
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3.2. Data Generating Mechanisms for Which (3.1)-(3.3) Are Valid

The dimension reduction models (3.1)-(3.3) are used here only as working mod-
els to facilitate the estimation procedure. We do not intend to include these
models as part of our original model assumptions and thereby take these struc-
tures into account to further improve estimation efficiency.

There are at least two simple and important data generating mechanisms
for which (3.1)-(3.3) hold: (a) when ε is independent of X; and (b) when, as
in equation (1) of Lian et al. (2015), ε = v(XTω)ε∗, where v(·) is an unknown
smooth function and ε∗ is independent of X with mean 0 and variance 1. More
generally, we have the following result, proved in Appendix Section A.4, and
including the two special cases given above.

Proposition 1. Suppose ε = Q(XTω, ε∗), where Q(·) is an arbitrary smooth
function and ε∗ is independent of X. Then the dimension reduction models
(3.1)-(3.3) hold for any m(X,β) model.

3.3. Estimation

As stated in Section 3.2, models (3.1)-(3.3) can often be used as working models
to facilitate the multivariate nonparametric regression. Therefore, in the rest
of the derivation, we use the general model (3.1)-(3.3) without specifying the
particular form of Zβ̃. Of course, we need to estimate γj and ζj(·) for j = 1, 2, 3.
To resolve the issue of estimating conditional expectations in the true population
while we only have a random sample from the superpopulation, the key point
is to recognize the connection between the two populations and to adjust the
case-control data in the context of conditional expectations via

Etrue{h(D,X, Y )} =

1∑
d=0

πdE{h(D,X, Y ) | D = d},

where h(·) is any function such that h(D,X, Y ) has finite mean. Hence we can
simply weight cases by π1/N1 and controls by π0/N0 and this will give us the
ζj(·)’s. Take ζ1(·) as an example. A valid estimating equation for ζ1(·) is

0 =

1∑
d=0

(πd/Nd)

N∑
i=1

I(Di = d){ε2iκ(Xi, Yi)−

ζ1(z
Tγ1)}Kh(z

Tγ1 − ZT
i γ1), (3.4)

since

E[
1∑

d=0

(πd/Nd)
N∑
i=1

I(Di = d){ε2iκ(Xi, Yi)− ζ1(z
Tγ1)}Kh(z

Tγ1 − ZT
i γ1)]

=

1∑
d=0

πdEtrue[{ε2κ(X, Y )− ζ1(z
Tγ1)}Kh(z

Tγ1 − ZTγ1)|D = d]

= Etrue[{ε2κ(X, Y )− ζ1(z
Tγ1)}Kh(z

Tγ1 − ZTγ1)] = 0.
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HereKh(u) =
∏�

i=1 K(ui/h)/h
� for any 	-dimensional vector u = (u1, · · · , u�)

T.
Of course πd is not known. Thus, to implement the idea stated in (3.4), we

need an estimator of πd = πd(α). As an equation for π,

E

[
H(0,X, Y,α)

(N0/N)H(0,X, Y,α) + (N1/N)H(1,X, Y,α){π/(1− π)}

]
= 1 (3.5)

has a solution π = π0(α). It is the unique solution as long as pr{H(0,X, Y,α) >
0} > 0, since π/(1 − π) is strictly increasing, ranging from 0 to ∞. Based on
(3.5), we can construct a root-N consistent estimator of π0 and plug it into (3.4).
The resulting estimators of the ζ1(·) have the same bias and mean squared error
order as the usual nonparametric estimator. The proof is provided in Appendix
A.5.

For simplicity, one may use the same index in (3.1)-(3.3), i.e. assuming γ1 =
γ2 = γ3 = γ. As before, we restrict the lower square block of γ to be identity.
We provide detailed estimation procedures and algorithms for both cases, with
the algorithm for different indices in Appendix A.2.1 and that for the same
index in Appendix A.2.2.

Remark 1. It is worth pointing out that the estimation of π via (3.5) originates
from

π0 =

∫
H(0,X, Y,α)f true

Y |X(y,x,β)f true
X (x)dμ(x)dμ(y)

=

∫
H(0,X, Y,α)∑

d Nd/(Nπd)H(d,X, Y,α)

×
∑
d

Nd/(Nπd)H(d,X, Y,α)f true
Y |X(y,x,β)f true

X (x)dμ(x)dμ(y)

=

∫
H(0,X, Y,α)∑

d Nd/(Nπd)H(d,X, Y,α)
fX,Y (y,x,β)dμ(x)dμ(y).

Thus, the estimator takes into account the difference between the superpopula-
tion and the population from which the case-control sample is drawn, and thus
leads to a consistent estimator of π0.

3.4. Estimation Algorithm Using Different Indices

The estimating equation in (2.5) relies on the unknown probability density func-
tion η2. Here, we use a posited model η∗2 , which is not necessarily the truth, to
calculate the efficient score and other related quantities. The resulting estimat-
ing function is denoted by S∗

eff . We will show that the resulting estimator is still
consistent, and it is efficient if the posited model η∗2 is the correct one.

The main difficulty in calculating S∗
eff lies in approximating functions g,v0,

and v1, because they depend on three expectations conditional on covariates
X, which need to be estimated nonparametrically. We bypass this difficulty via
the dimension reduction strategy described in Section 3.1-3.3. A sketch of the
algorithm is the following.
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1. Posit a model for η2(ε,x) which has mean zero. Under this posited model,
calculate S∗ from (2.6).

2. Solve π̂0(α) =
N∑
i=1

H(0,Xi, Yi,α)[N0H(0,Xi, Yi,α)/π̂0(α) + N1H(1,Xi,

Yi,α)/{1− π̂0(α)}]−1, and set π̂1(α) = 1− π̂0(α).
3. Estimate the indices γ1,γ2,γ3 and the corresponding functions ζ1, ζ2, ζ3

defined in (3.1)-(3.3) respectively by following the procedure in Section
3.3.

4. Plug the estimation from Step 3 into the expression of functions g,v0 and
v1 in (2.7) to get ĝ, v̂0 and v̂1.

5. Form Ŝ∗
eff(Di,Xi, Yi) = S∗

i − ĝi − v̂Di and solve the corresponding esti-
mating equation.

For convenience, we adopt γ1 = γ2 = γ3 = γ in all the simulations, where
the lower square block of γ is set to be identity to ensure identifiability. The
algorithm in this simplified case is identical to the one described above except
step 3. The detailed algorithms for cases using different indices and using a
common index are given in Appendix A.2.

4. Distribution Theory

We now establish the asymptotic distribution theory of our estimators, stated
as Theorem 1 below, with necessary regularity conditions C1-C11 listed in Ap-
pendix A.3. The proof of Theorem 1 is detailed and lengthy and is thus sketched
in the Appendix Section A.5. While Theorem 1 holds for both the estimator us-
ing different indices and the estimator using a common index, we only provide
the proof and regularity conditions for the algorithm with different indices. One
can easily adapt the conditions and proof to the case of a common index.

Under the regularity conditions C1-C11 listed in Appendix A.3, the following
theorem holds. The proof is in the Appendix Section A.5.

Theorem 1. Define

A = E {∂S∗
eff(D,X, Y,θ)/∂θ}

and

B = cov {S∗
eff(D,X, Y,θ)} .

The estimator θ̂ obtained from solving the estimating equation

N∑
i=1

Ŝ∗
eff(Di,Xi, Yi, θ̂) = 0 (4.1)

satisfies
√
N(θ̂ − θ) → Normal{0,A−1B(A−1)T} and θ̂ is locally efficient, see

the definition of locally efficient in Section 1.
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5. Simulations

5.1. Setup

We performed a series of simulations to understand the behaviour of our method
and compare it to competitors. The simulations displayed in this section are for
the case that the regression errors ε are Gaussian or centered Gamma, both
homoscedastic and heteroscedastic.

In these simulations, we considered different disease rates, different dimen-
sions and distributions for X and different error variance structures. The results
indicate that our methods have small bias and good coverage probability in all
the cases we examined. Here, due to space limitations, we only list the results for
two typical scenarios, where the first one is homoscedastic and the second one
is heteroscedastic. In both cases, we chose a balanced design with N1 = 1000
cases and N0 = 1000 controls, set the disease rate to be approximately 4.5%
and let X be exchangeable with p = dim(X) = 4.

More specifically, we generated X = (X1, · · · , X4)
T in the following way.

1. Generate X∗ = Normal(0,Σ), where Σ = (Σi,j)1≤i,j≤4 and Σi,j = 1 if

i = j and Σi,j = ρ for |ρ| < 1 if 1 ≤ i �= j ≤ 4.
2. Let X = Φ(X∗) = {Φ(X∗

1), · · · ,Φ(X∗
4)}T, where Φ is the cumulative dis-

tribution function of a standard normal random variable.

Hence, X is an exchangeable vector of i-th random variables satisfying Xi =
Uniform[0, 1] for i = 1, · · · , 4 and corr(Xi, Xj) = corr(Xk, Xl) for all i �= j, k �= l.
In our simulation studies, we used ρ = 0.2, which resulted in corr(Xi, Xj) ≈
0.191 for all 1 ≤ i �= j ≤ 4.

As mentioned in the opening paragraph of this section, in this section we
display results when the regression errors are Gaussian or Gamma. Specifically,
we generated homoscedastic errors ε as Normal(0, 1) and we generated het-
eroscedastic errors ε such that ε | X ∼ Normal(0, [1+{XT(α1+α2β1)}2]3/2/4).
In the Gamma case, we generated homoscedastic errors ε from a Gamma dis-
tribution with shape parameter 0.4, scale parameter 1.8 and then normalized it
to have mean 0 and variance 1; we generated heteroscedastic errors ε using the
same distribution except that ε was multiplied by [1+{XT(α1+α2β1)}2]3/4/2.

To obtain an approximately 4.5% disease rate in both Gaussian and Gamma
cases with both homoscedastic and heteroscedastic errors, we first set αc =
−3.6,α1 = (−1.0, 0.3, 0.5, 0.7)T and α2 = 0.6 in the logistic model pr(D =
1|X, Y ) = H(αc +XTα1 + Y α2). Then we set the regression model for Y to be
linear, i.e., Y = β0 +XTβ1 + ε and let β0 = −1.1,β1 = (0.5, 1.0, 0.3, 0.5)T. For
each setting, we generated 1,000 simulated data sets.

We set the posited model η∗2 to be Normal(0, 1) and adopted the estima-
tion algorithm discussed in Section 3.4 and Appendix A.2 for the three im-
portant conditional expectations Etrue

{
ε2κ(X, Y ) | X

}
, Etrue{εμs(X, Y ) | X}

and Etrue{εfD|X,Y (0,X, Y ) | X}. In steps (a)-(c) in Appendix A.2 that in-
volves nonparametric calculations, we used the asymptotically justified band-
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width h = cn
−1/5
0 : we found that when c ∈ [1, 6], the estimation results are very

similar.

5.2. Results

We contrasted three methods. The first one is ordinary least squares using
controls only. The second one is the semiparametric efficient method that as-
sumes the regression error ε to be normally distributed with homoscedastic
variance and E(Y | X) to be linear in X, or equivalently in our notation,
m(X,β) = β0 +XTβ1 (Lin and Zeng, 2009). This method also requires a rare
or known disease rate, which was set to 0.1% in the simulations. The third is
our method described in Section 3.4, which does not require the rare disease
assumption and does not put any restriction on ε other than that E(ε|X) = 0.

To implement Lin and Zeng’s method, we used their software SPREG pro-
vided on http://dlin.web.unc.edu/software/spreg-2/, which adopts the rare dis-
ease assumption if the input disease rate is less than 1%. This software was
designed to work in a semiparametric framework where it assumes a fully para-
metric Gaussian model for ε but the distribution of X is nonparametric. How-
ever, through multiple attempts we found that their software can only handle
the case where components ofX are independent. Thus, before running SPREG,
we decorrelated X by multiplying it by L−1, where L is the Cholesky decom-
position of the cov(X) = Σ satisfying LLT = Σ. In the simulations, we used
the true covariance matrix Σ to fulfill the restriction of SPREG. However when
dealing with the mammographic density data in Section 6, the true covariance
matrix Σ is unknown. We estimated it using only the controls.

The results are summarized in Tables 1-2. In the homoscedastic Gaussian sce-
nario (Table 1), the approach using only controls (“Ctrl”) is asymptotically valid
with small bias and near nominal coverage. Lin and Zeng’s method (“Param”),
which assumes normality and homoscedasticity, has the smallest standard de-
viation among the three methods since it is efficient if the errors are normal.
However, it suffers from slight bias since the true disease rate is 4.5%, larger than
1%. Our method (“Semi”), which assumes neither normality nor rare disease,
is superior considering overall performance. It has the smallest bias compared
with the other two methods. In addition, its mean-squared error efficiency is
from 60.0% to 79.9% greater than using only controls and is comparable to
Lin and Zeng’s method. In the homoscedastic Gamma case (Table 2), Lin and
Zeng’s methods has considerable bias, under-coverage and loss of mean squared
error efficiency.

In the heteroscedastic scenario, for both Gaussian and Gamma errors, both
the “Ctrl” and the “Param” methods suffered from low coverage probabilities
while our approach (“Semi”) maintains nominal coverage. The approach using
only controls is reasonably unbiased in the Gaussian case but suffers from much
larger bias in the Gamma case. In both cases, Lin and Zeng’s parametric method
gives badly biased estimates, low coverage probabilities and low mean squared
error efficiency. Taking β13, the third element in β1, as an example, while the
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Homoscedastic Gaussian error Heteroscedastic Gaussian error
β1 0.5 1.0 0.3 0.5 0.5 1.0 0.3 0.5

Ctrl
mean 0.514 0.977 0.280 0.480 0.543 0.940 0.254 0.433
s.d. 0.113 0.115 0.114 0.111 0.106 0.103 0.100 0.101
est. sd 0.114 0.113 0.113 0.113 0.102 0.102 0.102 0.102
95% 0.957 0.941 0.951 0.947 0.922 0.910 0.937 0.900

Param

mean 0.523 0.970 0.273 0.461 0.264 1.257 0.495 0.781
s.d. 0.082 0.085 0.087 0.084 0.089 0.083 0.088 0.086
est. sd 0.083 0.084 0.087 0.087 0.089 0.082 0.088 0.088
95% 0.948 0.942 0.933 0.932 0.250 0.115 0.406 0.101
MSE Eff 1.759 1.717 1.618 1.484 0.204 0.196 0.263 0.170

Semi

mean 0.507 0.992 0.292 0.493 0.510 0.986 0.289 0.484
s.d 0.089 0.088 0.086 0.087 0.102 0.093 0.092 0.098
est. sd 0.091 0.093 0.091 0.094 0.093 0.095 0.089 0.100
95% 0.960 0.964 0.961 0.975 0.932 0.957 0.936 0.950
MSE Eff 1.600 1.755 1.799 1.666 1.240 1.606 1.396 1.490

Table 1

Simulation study in Section 5 with N1 = 1, 000 cases and N0 = 1, 000 controls, disease rate
of approximately 4.5% and 4-dimensional correlated covariates X over 1,000 simulated data
sets. The results for the homoscedastic normal error model are listed on the left and the

results for the heteroscedastic normal error model are listed on the right. The three analyses
performed are “Ctrl”, which is ordinary least squares using only controls, “Param”, which
is semiparametric efficient method proposed by Lin and Zeng (2009) assuming normality
and homoscedasticity, and “Semi”, which is our new estimator described in Section 3.4.

Here, we list the sample mean (“mean”), the sample standard deviation (“s.d.”), the mean
estimated standard deviation (“est. sd”) and the coverage for the nominal 95% confidence
intervals (“95%”) for all three methods. In addition, we computed the mean squared error

efficiency compared to using only controls for the “Param” and “Semi” methods.

Homoscedastic Gamma error Heteroscedastic Gamma error
β1 0.5 1.0 0.3 0.5 0.5 1.0 0.3 0.5

Ctrl
mean 0.522 0.967 0.277 0.470 0.581 0.902 0.228 0.394
s.d. 0.102 0.101 0.103 0.099 0.086 0.087 0.084 0.090
est. sd 0.100 0.100 0.100 0.100 0.087 0.087 0.087 0.087
95% 0.942 0.939 0.934 0.938 0.858 0.782 0.876 0.751

Param

mean 0.630 0.830 0.165 0.301 0.173 1.393 0.585 0.922
s.d. 0.135 0.135 0.135 0.135 0.144 0.124 0.127 0.137
est. sd 0.131 0.134 0.135 0.136 0.138 0.127 0.133 0.130
95% 0.820 0.750 0.831 0.691 0.368 0.124 0.427 0.105
MSE Eff 0.307 0.239 0.307 0.186 0.110 0.100 0.125 0.098

Semi

mean 0.502 0.995 0.299 0.501 0.513 0.981 0.291 0.482
s.d 0.068 0.068 0.067 0.068 0.084 0.081 0.073 0.088
est. sd 0.066 0.068 0.066 0.069 0.087 0.096 0.085 0.105
95% 0.948 0.958 0.947 0.955 0.948 0.958 0.953 0.946
MSE Eff 2.314 2.449 2.528 2.345 1.922 2.463 2.261 2.388

Table 2

Simulation study in Section 5 with N1 = 1, 000 cases and N0 = 1, 000 controls, disease rate
of approximately 4.5% and 4-dimensional correlated covariates X over 1,000 simulated data
sets. The results for the homoscedastic gamma error model are listed on the left and the

results for the heteroscedastic gamma error model are listed on the right. The three analyses
performed are “Ctrl”, which is ordinary least squares using only controls, “Param”, which
is semiparametric efficient method proposed by Lin and Zeng (2009) assuming normality
and homoscedasticity, and “Semi”, which is our new estimator described in Section 3.4.

Here, we list the sample mean (“mean”), the sample standard deviation (“s.d.”), the mean
estimated standard deviation (“est. sd”) and the coverage for the nominal 95% confidence
intervals (“95%”) for all three methods. In addition, we computed the mean squared error

efficiency compared to using only controls for the “Param” and “Semi” methods.
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nominal coverage is 95%, the actual coverage rates are 40.6% and 43.7% in the
Gaussian and Gamma case, respectively. Our approach has no larger than 4%
bias compared with the truth, which is the best among three methods. It also
achieves the best coverage probabilities and smallest mean-squared errors.

We have done other simulations with different disease rates, and the overall
picture remains the same as what we have described above. For example, in the
Appendix Section A.7, we display results for the case that the intercept was
adjusted to make the disease rate in the source population ≈ 10%.

We have also done simulations when the dimension of X is 6, 8 and 10
with an approximate 4.5% disease rate, and found results similar to the ones
previously described. Of course the computation takes longer as the dimension
of X increases. Please see the Appendix Section A.8 for numerical results.

Remark 2. While a number of methods on secondary analysis exist in the lit-
erature, none of them is applicable in our setting. For example, Jiang et al.
(2006) and Li et al. (2010) focused on binary Y , for which a logistic regression
model for Y and X or Y and (X, D) was considered. Ma and Carroll (2016)
adopted kernel density regression in their estimation procedure, and thus it is
not applicable to the cases with multivariate X due to the curse of dimensional-
ity. Wei et al. (2013) requires the known or rare disease assumption as well as
homoscedastic regression errors, and hence is also not applicable in our model
setting. Likewise, Lin and Zeng (2009) requires the known or rare disease as-
sumption and is applicable only when the secondary model is parametric. Thus,
we have compared our approach to only two methods, the control only method for
its simplicity and sometimes surprisingly good result when the disease is truly
rare, and Lin and Zeng’s method for its gold standard status in practice, for
parametric models.

6. Analysis of Mammographic Density Data

Here we apply our methodology in a case-control study of breast cancer, where
the data were collected from women in the breast cancer detection demonstra-
tion project (BCDDP), see Chen et al. (2006) and Chen et al. (2008). The study
recruited a total of 284,780 women, starting from January 1, 1973 and ended
December 31, 1995. Then in the following five years, follow-up annual screening
was performed for each subject. Here the period from 1973-1980 is referred to as
the “screening phase” of the study. At the end of the screening phase, the study
selected all cases, i.e. women who developed breast cancer, and sampled from the
controls. All the selected women were included in a further extended follow-up
study from 1980 to 1995. Standard risk factors, including age at menarche, age
at first live birth and body mass index, were available in this study. However,
we were only able to retrieve mammographic density measurements at baseline
in 1973-1975 for N1 = 2092 cases and N0 = 3295 controls.

Mammographic density is a measure of the average of dense tissue percentage
in both breasts. Women’s breasts consist of fat, breast tissue, nerves, veins,
arteries and connective tissue that holds everything in place. Both breast tissue
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and connective tissue are denser than fat. Previous studies showed that higher
mammographic density is a strong risk factor for breast cancer. In addition, age
at menarche and age at first live birth are both known to be associated with
breast cancer. Women who have their first menstruation before age 12 have a
slightly higher chance of developing breast cancer compared with those who
have their first period after 14; women who give birth to their first child at a
young age tend to have a relatively lower risk of developing breast cancer. Body
mass index is another risk factor for breast cancer. Before menopause, being
slightly overweight can reduce breast cancer risk. However, there is little existing
work discussing the interrelationship between mammographic density, age at
menarche, age at first live birth and body mass index. The goal of our analysis
is to investigate this interrelationship. Before implementing our method, we used
an inverse logistic transformation on mammographic density and rescaled the
other three risk factors to [0,1] by subtracting their minimums and dividing by
the ranges.

Preliminary analysis based on only the controls data showed that mammo-
graphic density is reasonably linear in age at menarche, age at first live birth
and body mass index. To check this, we fit both a linear regression model and
a quadratic regression model using controls and compared these two models
via analysis of variance. The p-value is about .78, which indicates the linear
model is preferred over the quadratic model. Hence, we adopted a linear m(·)
in the secondary analysis. The diagnostic plots of linear regression are given
in Figure 1. The left plot is the kernel density estimate of the residuals from
a linear fit on the controls, with an overlaid normal density. It shows that the
regression error almost follows a normal distribution but with slightly negative
skewness. The right plot is the LOWESS smoother of fitted values versus the
square roots of absolute values of residuals, which indicates the regression error
is homoscedastic.

Fig 1. Mammographic density data in Section 6. The left plot is the kernel density esti-
mate (solid black line) of the residuals from a linear fit on the controls, with an overlaid
normal density (dashed blue line). The right plot is the LOWESS smoother of fitted values
versus the square roots of absolute values of residuals: the fact that it is flat indicates little
heteroscedasticity.

The results of secondary analysis using only controls, Lin and Zeng’s paramet-
ric method and our semiparametric approach based on 1000 bootstrap samples



1796 L. Liang et al.

MENARCHE 1STLB BMI

Ctrl

mean -0.047 0.428 -0.105
boot. sd 0.164 0.139 0.172
est. sd 0.165 0.144 0.176
Lower -0.371 0.146 -0.449
Upper 0.277 0.710 0.240

Param

mean -0.054 0.356 -0.121
boot. sd 0.131 0.106 0.138
est. sd 0.127 0.107 0.135
Lower -0.302 0.147 -0.385
Upper 0.195 0.565 0.144
Eff 1.550 1.710 1.547

Semi

mean -0.061 0.363 -0.135
boot. sd 0.129 0.107 0.137
est. sd 0.130 0.113 0.140
Lower -0.315 0.142 -0.410
Upper 0.194 0.584 0.140
Eff 1.606 1.698 1.575

Table 3

Analyses of the mammographic density data from the breast cancer detection demonstration
project (BCDDP) in Section 6, which has N1 = 2092 cases and N0 = 3295 controls, using
only controls (“Ctrl”), Lin and Zeng’s method (“Param”) and our approach (“Semi”).

Displayed are the mean estimates of the coefficients for age at menarche (MENARCHE),
age at first live birth (1STLB) and body mass index (BMI), their bootstrap standard

deviation (“boot. sd”), the mean estimated bootstrap standard deviation (“est. sd”) and the
lower and upper end values of the 95% confidence intervals (“Lower” and “Upper”). Also
displayed is the efficiency (“Eff”), which is the square of the ratio of bootstrap standard

deviation to that using only controls.

are given in Table 3. All three methods have fairly consistent results as expected,
due to the fact that the regression error is homoscedastic and close to normal.
For all three methods, age at first live birth is highly statistically significant
with a positive effect on mammographic density. That is women who gave birth
to their first children earlier tend to have a lower mammographic density, and
hence obtain some protective effect from developing breast cancer. Both age
at menarche and body mass index have negative coefficients, which indicates
that having a relatively late first period or being moderately overweight can
slightly reduce mammographic density. However, neither of them is statistically
significant.

As expected, Lin and Zeng’s parametric method has a much smaller boot-
strap standard deviation compared with the ordinary least squares using only
controls, with an average efficiency of 1.60. Here the efficiency is defined as the
square of the ratio of bootstrap standard deviation compared with using only
controls. Our semiparametric approach, which assumes neither homoscedastic-
ity nor normality, has almost the same bootstrap standard deviation as Lin and
Zeng’s method. The bootstrap standard errors of Lin and Zeng’s parametric
approach for age at menarche, age at first live birth and body mass index are
0.131, 0.106, 0.138, respectively, while that of our semiparametric approach are
0.129, 0.107 and 0.137 respectively. The average efficiency of our approach is
1.63, which is even slightly larger than that of Lin and Zeng’s method.
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7. Discussion

We have extended the work of Ma and Carroll (2016) and have overcome the
potential dimensionality issue involved in their nonparametric kernel regression.
Multivariate kernel regression is avoided by using dimension reduction modeling
ideas. We repeat that our work is not about fitting dimension reduction models
per se, but to use them in the secondary analysis of case-control studies. Our
method makes no assumptions about the regression errors, and we do not need
to make a rare disease assumption or require known disease rate.

The dimension reduction assumptions stated in (3.1)-(3.3) are mild in general,
see Proposition 1, and are applicable in many practical situations. An interesting
topic for future work would be to consider using regularization to further reduce
the dimension of Zβ so as to obtain an even more parsimonious model.

Alternative dimension reduction modeling approaches could exist, although
it is not easy to identify them based on our preliminary analysis along this line.
For example, generalized additive models do not appear to be suitable in the
common regression error structures described in Section 3.2. For example, in
(3.1),

E{ε2κ(X, Y,α) | X} = E(ε2G[{XT,m(X,β)}(αT
1 , α2)

T + εα2] | X).

where G is a function of the logistic distribution function, i.e., a function of
several exponential functions. It is not clear that this can be written as a gener-
alized additive model. Even if it can be done, using such a dimension reduction
approach will still require careful exploration and new methodology develop-
ment because off-the-shelf results on generalized additive models may not apply
due to the case-control sampling nature.

Finally, in some cases, it might be possible to posit a parametric form for
var(ε | X). We believe that our approach can be extended to this case, and
would further improve efficiency in estimating β. This will be pursued in future
work.

Appendix A: Sketch of Technical Arguments and Additional
Numerical Results

A.1. Dimension Reduction Model (3.2)

The dimension reduction assumption (3.2) on εμs is more complicated than
(3.1) or (3.3), and requires careful attention.

In the usual case, we have that

S∗ =

[
∂ log{H(d,X, Y,α))}/∂α

∂ log{η∗2(ε,X))}/∂β

]
=

[
{d−H(1,X, Y,α)} (1,XT, Y )T

−{η∗2(ε,X)−1∂η∗2(ε,X)/∂ε} × {∂m(X,β)/∂β}

]
,
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where y = m(x,β) + ε. Here η∗2 is the posited conditional density of ε given X,
not necessarily the true model. Let w(d,x, y;α) = d−H(1,X, Y,α), so that

μs = E(S∗ | ε,X) =

[
r(x, y;α)(1,XT, Y )T

−{η∗2(ε,X)−1∂η∗2(ε,X)/∂ε} × {∂m(X,β)/∂β}

]
,

where

r(x, y;α) = E{w(D,X, Y ) | X, Y }

=

1∑
d=0

NdH(d,X, Y )w(d,X, Y )κ(X, Y )/(Nπd),

= N−1 (N1/π1 −N0/π0)H(0,X, Y )H(1,X, Y )κ(X, Y );

κ(X, Y ) =

{
1∑

d=0

NdH(d,X, Y )/(Nπd)

}−1

.

Hence,

Etrue{εμs(X, Y ) | X}

=

⎡⎣ Etrue{εr(X, Y ;α) | X}(1,XT)T

Etrue{εr(X, Y ;α)m(X,β) + ε2r(X, Y ;α) | X}
−Etrue

{
εη∗2(ε,X)−1∂η∗2(ε,X)/∂ε | X

}
{∂m(X,β)/∂β}

⎤⎦ .

We assume the following models hold.

Etrue{εr(X, Y ;α) | X} = ζ21(Z
T
βγ21); (A.1)

Etrue{ε2r(X, Y ;α) | X} = ζ22(Z
T
βγ22); (A.2)

Etrue

{
εη∗2(ε,X)−1∂η∗2(ε,X)/∂ε | X

}
= ζ23(Z

T
βγ23), (A.3)

where Z = {XT,m(X,β)}T when m is nonlinear while Z = X when m is linear.
For identifiability, the lower square blocks of γ2j , j = 1, 2, 3 are fixed to be
identity.

In models (A.1)-(A.3), ζ21, ζ22, ζ23 can be estimated by

ζ̂21(Z
Tγ21)

=

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}εir(Xi, Yi;α)Kh(Z
T
i γ21 − ZTγ21)

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}Kh(ZT
i γ21 − ZTγ21)

; (A.4)

ζ̂22(Z
Tγ22)

=

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}ε2i r(Xi, Yi;α)Kh(Z
T
i γ22 − ZTγ22)

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}Kh(ZT
i γ22 − ZTγ22)

; (A.5)
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ζ̂23(Z
Tγ23)

=

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}εi ∂η
∗
2 (εi,Xi)/∂εi
η∗
2 (εi,Xi)

Kh(Z
T
i γ23 − ZTγ23)

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}Kh(ZT
i γ23 − ZTγ23)

. (A.6)

To get a consistent estimate of γ21,−1, we solve

0 =

1∑
d=0

π̂d

Nd

N∑
j=1

I(Dj = d)× {εj(Xj , Yj ,β)r(Xj , Yj ,α)

−ζ̂21(Z
T
j γ21)

}{
Z∗

β,j − Êπ̂
true(Z

∗
β,j | Z∗

β,jγ)
}
.

Similar results work for γ22,−1 and γ23,−1. Denote the resulting estimators by
γ̂2j,−1 and let γ̂2j = (γ̂T

2j,−1, 1)
T for j = 1, 2, 3. Then Etrue{εμs(X, Y ) | X} can

be estimated by

Êtrue{εμ̂s(X, Y ) | X} =

⎡⎢⎣ ζ̂21(Z
Tγ̂21)(1,X

T)T

ζ̂21(Z
Tγ̂21)m(X,β) + ζ̂22(Z

Tγ̂22)

−ζ̂23(Z
Tγ̂23){∂m(X,β)/∂β}

⎤⎥⎦ .

In all of our simulations, m(X,β) = β0 + XTβ1. In addition, the posited
model is standard normal, and simplifications result. Thus, ∂{log η∗2(ε,X)}/∂ε
is simply −ε. In our simulations, we further take γ21 = γ22 = γ23 = γ2 for
computational and programming simplicity. As a result, we have that

S∗ =
[
{d−H(1,X, Y,α)} (1,XT, Y ), ε(1,XT)

]T
;

μs = E{S∗ | ε,X} = {r(X, Y ;α)(1,XT, Y ), ε(1,XT)}T.

Then

Etrue{εμs(X, Y ) | X}

=

⎡⎣ Etrue{εr(X, Y ;α) | X}(1,XT)T

Etrue{εr(X, Y ;α) | X}m(X,β) + Etrue{ε2r(X, Y ;α) | X}
Etrue{ε2 | X}(1,XT)T

⎤⎦ .

Under the assumption γ21 = γ22 = γ23 = γ2 in (A.4) -(A.6), ζ21, ζ22, ζ23 can be
estimated by

ζ̂21(Z
Tγ2) =

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}εir(Xi, Yi;α)Kh(Z
T
i γ2 − ZTγ2)

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}Kh(ZT
i γ2 − ZTγ2)

;

ζ̂22(Z
Tγ2) =

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}ε2i r(Xi, Yi;α)Kh(Z
T
i γ2 − ZTγ2)

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}Kh(ZT
i γ2 − ZTγ2)

;
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ζ̂23(Z
Tγ2) =

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}ε2iKh(Z
T
i γ2 − ZTγ2)

1∑
d=0

π̂d/Nd

N∑
i=1

I{Di = d}Kh(ZT
i γ2 − ZTγ2)

,

where again the lower square block of γ2 is fixed to be identity. The consistent
estimator of γ2,−1 can be obtained through solving

0 =

1∑
d=0

π̂d

Nd

N∑
j=1

I(Dj = d)
[
{εj(Xj , Yj ,β)r(Xj , Yj ,α)− ζ̂21(Z

T
j γ2)}

+{ε2i r(Xi, Yi;α)− ζ̂22(Z
T
j γ2)}+ {ε2i − ζ̂23(Z

T
j γ2)}

]
×
{
Z∗

β,j − Êπ̂
true(Z

∗
β,j | Z∗

β,jγ)
}
.

Denote the resulting estimators γ̂2,−1 and let γ̂2 = (γ̂T
2,−1, 1)

T. Etrue{εμs(X,
Y ) | X} can be estimated by

Êtrue{εμ̂s(X, Y ) | X} =

⎡⎢⎣ ζ̂21(Z
Tγ̂2)(1,X

T)T

ζ̂21(Z
Tγ̂2)m(X,β) + ζ̂22(Z

Tγ̂2)

−ζ̂23(Z
Tγ̂2){∂m(X,β)/∂β}

⎤⎥⎦ .

A.2. Details for the Algorithm in Section 3.4

A.2.1. Algorithm Using Different Indices

1. Posit a model for η2(ε,x) which has mean zero. Under this posited model,
calculate S∗ from (2.6).

2. Solve π̂0(α) =
N∑
i=1

H(0,Xi, Yi,α)[N0H(0,Xi, Yi,α)/π̂0(α) + N1H(1,Xi,

Yi,α)/{1− π̂0(α)}]−1, and set π̂1(α) = 1− π̂0(α).
3. Obtain

κ̂i = κ̂(Xi, Yi,α) =

[∑
d

NdH(d,Xi, Yi,α)/{Nπ̂d(α)}
]−1

f̂0i = f̂D|X,Y (0,Xi, Yi,α) = N0H(0,Xi, Yi,α)κ̂i/{Nπ̂0(α)}
f̂1i = f̂D|X,Y (1,Xi, Yi,α) = N1H(1,Xi, Yi,α)κ̂i/{Nπ̂1(α)}
μ̂si = Ê(S∗

i | εi,Xi,α)

=
∑
d

NdH(d,Xi, Yi,α)S∗(d,Xi, Yi,α)κ̂i/{Nπ̂d(α)}

b̂0 =
N∑
i=1

f̂1if̂0i/
N∑
i=1

f̂0i
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b̂1 =

N∑
i=1

f̂0if̂1i/

N∑
i=1

f̂1i

ĉ0 =

N∑
i=1

{S∗(0,Xi, Yi,α)− μ̂si} f̂0i/
N∑
i=1

f̂0i

ĉ1 =

N∑
i=1

{S∗(1,Xi, Yi,α)− μ̂si} f̂1i/
N∑
i=1

f̂1i.

4. Estimate Etrue{ε2κ̂(X, Y ) | X} using nonparametric regression under the
dimension reduction model assumption (3.1).

(a) Let

Êπ̂
1 (Xj ,γ1,θ)

≡

1∑
d=0

π̂d(α)
Nd

∑
i �=j

I(Di = d)ε2i (Xi, Yi,β)κ̂(Xi, Yi,α)

×Kh(Z
T
β,iγ1 − ZT

β,jγ1)

1∑
d=0

π̂d(α)
Nd

∑
i �=j

I(Di = d)Kh(ZT
β,iγ1 − ZT

β,jγ1)

,

for j = 1, · · · , N . Here εi(Xi, Yi,β) = Yi − m(Xi,β). Zβ,i = X if
m(·) is linear in X; Z = {XT

i ,m(Xi,β)}T, otherwise.
(b) Estimate γ1,−1 through solving

0 =

1∑
d=0

π̂d(α)/Nd

N∑
j=1

I(Dj = d){ε2j (Xj , Yj ,β)κ̂(Xj , Yj ,α)

−Êπ̂
1 (Xj ,γ1,θ)}{Z∗

β,j − Êπ̂
true(Z

∗
β,j | ZT

β,jγ1)},

where Z∗
β,j is the subvector or submatrix of Zβ,j without the lower

square block and

Êπ̂
true(Z

∗
β,j | ZT

β,jγ1)

=

1∑
d=0

π̂d(α)
Nd

∑
i �=j I(Di = d)Z∗

β,iKh(Z
T
β,iγ1 − ZT

β,jγ1)

1∑
d=0

π̂d(α)
Nd

∑
i �=j I(Di = d)Kh(ZT

β,iγ1 − ZT
β,jγ1)

.

Let the solution be γ̂1,−1. Denote γ̂1 = (γ̂T
1,−1, 1)

T.

(c) Form

Êtrue

{
ε2(X, Y,β)κ̂(X, Y,α) | X

}
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=

1∑
d=0

π̂d(α)
Nd

N∑
i=1

I(Di = d)ε2i (Xi, Yi,β)κ̂(Xi, Yi,α)

×Kh(Z
T
β,iγ̂1 − ZT

β γ̂1)

1∑
d=0

π̂d(α)
Nd

N∑
i=1

I(Di = d)Kh(ZT
β,iγ̂1 − ZT

β γ̂1)

.

5. Estimate Etrue{εμ̂s(X, Y ) | X} using nonparametric regression under the
dimension reduction model assumption (3.2). Because Etrue{εμ̂s(X, Y ) |
X} actually consists of three separate dimension reduction models, its esti-
mation is slightly complex. We give the estimation details in Appendix A.1
and denote the resulting estimator by Êtrue {ε(X, Y,β)μ̂s(X, Y,α) | X}.

6. Estimate Etrue{εf̂0(X, Y ) | X} using nonparametric regression under the
dimension reduction model assumption (3.3).

(a) Let

Êπ̂
3 (Xj ,γ3,θ)

≡

1∑
d=0

π̂d(α)
Nd

∑
i �=j I(Di = d)εi(Xi, Yi,β)f̂0(Xi, Yi,α)

×Kh(Z
T
β,iγ3 − ZT

β,jγ3)

1∑
d=0

π̂d(α)
Nd

∑
i �=j I(Di = d)Kh(ZT

β,iγ3 − ZT
β,jγ3)

,

for j = 1, · · · , N .

(b) Estimate γ3,−1 by solving

0 =

1∑
d=0

π̂d(α)/Nd

N∑
j=1

I(Dj = d){εj(Xj , Yj ,β)f̂0(Xj , Yj ,α)

−Êπ̂
3 (Xj ,γ3,θ)}{Z∗

β,j − Êπ̂
true(Z

∗
β,j | ZT

β,jγ3)},

where

Êπ̂
true(Z

∗
β,j | ZT

β,jγ3)

=

1∑
d=0

π̂d(α)
Nd

∑
i �=j I(Di = d)Z∗

β,iKh(Z
T
β,iγ3 − ZT

β,jγ3)

1∑
d=0

π̂d(α)
Nd

∑
i �=j I(Di = d)Kh(ZT

β,iγ3 − ZT
β,jγ3)

.

Let the minimizer be γ̂3,−1. Denote γ̂3 = (γ̂T
3,−1, 1)

T.

(c) Form

Êtrue

{
ε(X, Y,β)f̂0(X, Y,α) | X

}
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=

1∑
d=0

π̂d(α)
Nd

N∑
i=1

I(Di = d)εi(Xi, Yi,β)f̂0(Xi, Yi,α)

×Kh(Z
T
β,iγ̂3 − ZT

β γ̂3)

1∑
d=0

π̂d(α)
Nd

N∑
i=1

I(Di = d)Kh(ZT
β,iγ̂3 − ZT

β γ̂3)

.

7. (a) Form t̂1(X) = {Êtrue(ε
2κ̂(X, Y )|X)}−1, t̂2(X) = Êtrue(εμ̂s | X) −

(ĉ0/b̂0)Êtrue(εf̂0 | X) and t̂3(x) = −b̂−1
0 Êtrue(εf̂0 | x).

(b) Form Ê{εt1(X)t3(X)κ(X, Y ) | D = 0} =
N∑
i=1

εit̂1(Xi)t̂3(Xi)κ̂(Xi,

Yi)f̂0i/
N∑
i=1

f̂0i, Ê{εt1(X)t2(X)κ(X, Y ) | D = 0} =
N∑
i=1

εit̂1(Xi)t̂2(Xi)

×κ̂(Xi, Yi)f̂0i/
N∑
i=1

f̂0i and û0 = (1−Ê[εt1(x)t3(x)κ(x, y) | D = 0])−1

×Ê [εt1(x)t2(x)κ(x, y) | D = 0].

(c) Form û1 = −(N0/N1)û0, v̂0 = (π̂1/b̂0)(û0 + ĉ0) and v̂1 = −(π̂0/b̂0)
×(û0 + ĉ0).

(d) Form â(x) = t̂1(x){t̂2(x) + t̂3(x)û0).

(e) Form ĝi = μ̂si − εiâ(Xi)κ̂i − v̂0f̂0i − v̂1f̂1i.

(f) Form v̂Di = (1−Di)v̂0 +Div1.

(g) Form Ŝ∗
eff(Di,Xi, Yi) = S∗

i − ĝi − v̂Di and solve the corresponding
estimating equation.

A.2.2. Algorithm Using A Common Index

Specifically, we replace the steps 4-6 of Appendix A.2.1 with the following three
steps.

(a) Define

Êπ̂
1 (Xj ,γ,θ)

=

1∑
d=0

π̂d(α)
Nd

∑
i �=j I{Di = d}ε2i (Xi, Yi,β)κ̂(Xi, Yi,α)

×Kh(Z
T
β,iγ − ZT

β,jγ)

1∑
d=0

π̂d(α)
Nd

∑
i �=j I{Di = d}Kh(ZT

β,iγ − ZT
β,jγ)

;

Êπ̂
3 (Xj ,γ,θ)

=

1∑
d=0

π̂d(α)
Nd

∑
i �=j I{Di = d}εi(Xi, Yi,β)f̂0(Xi, Yi,α)

×Kh(Z
T
β,iγ − ZT

β,jγ)

1∑
d=0

π̂d(α)
Nd

∑
i �=j I{Di = d}Kh(ZT

β,iγ − ZT
β,jγ)

.
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Construct Êπ̂
2 (Xj ,γ2,θ) = Êtrue{εjμ̂s(Xj , Yj) | Xj} for j = 1, · · · , N , with

the method given in Appendix A.1.
(b) Estimate γ−1 by solving

0 =
1∑

d=0

π̂d(α)

Nd

N∑
j=1

I(Dj = d)

×
[
ε2j (Xj , Yj ,β)κ̂(Xj , Yj ,α)− Êπ̂

1 (Xj ,γ,θ)

+1T
dim(θ)

{
εj(Xj , Yj ,β)μ̂s(Xj , Yj ,α)− Êπ̂

2 (Xj ,γ,θ)
}

+εj(Xj , Yj ,β)f̂0(Xj , Yj ,α)− Êπ̂
3 (Xj ,γ,θ)

]
×
{
Z∗

β,j − Êπ̂
true(Z

∗
β,j | Z∗

β,jγ)
}
,

where

Êπ̂
true(Z

∗
β,j | Z∗

β,jγ)

=

1∑
d=0

π̂d(α)
Nd

∑
i �=j,1≤i≤N I(Di = d)Z∗

β,iKh(Z
T
β,iγ − ZT

β,jγ)

1∑
d=0

π̂d(α)
Nd

∑
i �=j,1≤i≤N I(Di = d)Kh(ZT

β,iγ − ZT
β,jγ)

.

Denote the solution by γ̂−1 and let γ̂ = (γ̂T
−1, 1)

T.
(c) Form

Êtrue

{
ε2(X, Y,β)κ̂(X, Y,α) | X

}
=

1∑
d=0

π̂d

Nd

N∑
i=1

I{Di = d}ε2i (Xi, Yi,β)κ̂(Xi, Yi,α)Kh(Z
T
β,iγ̂ − ZT

β γ̂)

1∑
d=0

π̂d

Nd

N∑
i=1

I{Di = d}Kh(ZT
β,iγ̂ − ZT

β γ̂)

;

Êtrue {ε(X, Y,β)μ̂s(X, Y,α) | X}

=

1∑
d=0

π̂d

Nd

N∑
i=1

I{Di = d}εi(Xi, Yi,β)μ̂s(Xi, Yi,α)Kh(Z
T
β,iγ̂ − ZT

β γ̂)

1∑
d=0

π̂d

Nd

N∑
i=1

I{Di = d}Kh(ZT
β,iγ̂ − ZT

β γ̂)

;

Êtrue

{
ε(X, Y,β)f̂0(X, Y,α) | X

}

=

1∑
d=0

π̂d

Nd

N∑
i=1

I{Di = d}εi(Xi, Yi,β)f̂0(Xi, Yi,α)Kh(Z
T
β,iγ̂ − ZT

β γ̂)

1∑
d=0

π̂d

Nd

N∑
i=1

I{Di = d}Kh(ZT
β,iγ̂ − ZT

β γ̂)

.
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A.3. Regularity Conditions

Let 	 be the dimensionality of the kernel regressions in our method after di-
mension reduction. In our simulations and example, we took 	 = 1. The set of
regularity conditions required by Theorem 1 is listed below.

C1. The univariate kernel function is a function that integrates to 1 and has
support (−1, 1) and order r, i.e.,

∫
K(u)utdu = 0 if 1 ≤ t < r and∫

K(u)urdu �= 0. The 	-dimensional kernel function, still represented
with K, is a product of 	 univariate kernel functions, that is, K(u) =∏�

i=1 K(ui) for a 	-dimensional u.

C2. Let ξtrue
i,β̃

be the true population density of ZT
β̃
γi for i = 1, 2, 3 and β̃ in

a local neighborhood of β. Assume that ξtrue
i,β̃

’s are bounded away from 0

and they all have third order bounded and continuous derivatives.
C3. At any fixed α̃ in a local neighborhood of α, ζ1(·, α̃), ζ2(·, α̃) and ζ3(·, α̃)

are functions of · with second order bounded and continuous derivatives.
C4. Etrue{ε4(X, Y, β̃)κ2(X, Y, α̃)|X}, Etrue{ε2(X, Y, β̃)μs(X, Y, α̃)

⊗
2|X} and

Etrue{ε2(X, Y, β̃)f2
0 (X, Y, α̃)|X} are bounded for any θ̃ in a local neigh-

borhood of θ.

C5. Etrue

{
πD(α̃)
πD(α)Z

∗
β̃
| ZT

β̃
γ1

}
, Etrue

{
πD(α̃)
πD(α)Z

∗
β̃
| ZT

β̃
γ2

}
,

Etrue

{
πD(α̃)
πD(α)Z

∗
β̃
| ZT

β̃
γ3

}
, Etrue

{
πD(α̃)
πD(α) | ZT

β̃
γ1

}
, Etrue

{
πD(α̃)
πD(α) | ZT

β̃
γ2

}
,

Etrue

{
πD(α̃)
πD(α) | ZT

β̃
γ3

}
, Etrue

{
πD(α̃)
πD(α)ε

2κ(X, Y, α̃) | ZT
β̃
γ1

}
,

Etrue

{
πD(α̃)
πD(α)εμs(X, Y, α̃) | ZT

β̃
γ2

}
and Etrue

{
πD(α̃)
πD(α)εf0(X, Y, α̃) | ZT

β̃
γ3

}
have (r + 1)th order bounded and continuous derivatives for any θ̃ in a
local neighborhood of θ.

C6. Etrue

{
πD(α̃)
πD(α)Zβ̃ | ZT

β̃
γ1

}
, Etrue

{
πD(α̃)
πD(α)Zβ̃ | ZT

β̃
γ2

}
,

Etrue

{
πD(α̃)
πD(α)Zβ̃ | ZT

β̃
γ3

}
, Etrue

{
πD(α̃)
πD(α)ε

2κ(X, Y, α̃)Zβ̃ | ZT
β̃
γ1

}
,

Etrue

{
πD(α̃)
πD(α)εμs(X, Y, α̃)ZT

β̃
| ZT

β̃
γ2

}
, and Etrue

{
πD(α̃)
πD(α)εf0(X, Y, α̃)Zβ̃ |

ZT
β̃
γ3

}
have (r + 1)th order bounded and continuous derivatives for any

θ̃ in a local neighborhood of θ.

C7. Etrue

[
ε4(X, Y, β̃)κ2(X, Y, α̃){Zβ̃ − Z′

β̃
}{Zβ̃ − Z′

β̃
}T | ZT

β̃
γ1,X

]
,

Etrue

[
ε2(X, Y, β̃)μs(X, Y, α̃){Zβ̃ − Z′

β̃
}T{Zβ̃ − Z′

β̃
}μs(X, Y, α̃)T |

ZT
β̃
γ2,X

]
, Etrue

[
ε2f2

0 (X, Y, α̃){Zβ̃ − Z′
β̃
}{Zβ̃ − Z′

β̃
}T | ZT

β̃
γ3,X

]
, and

Etrue

[
{Zβ̃ − Z′

β̃
}{Zβ̃ − Z′

β̃
}T | ZT

β̃
γi,X

]
, for i = 1, 2, 3, all have bounded

entries for any θ̃ in a local neighborhood of θ, where Z′
β̃
is an independent

and identically distributed copy of Zβ̃.

C8. πd(α̃)/(Nd/N) are bounded for d = 0, 1.
C9. πd(α̃)/πd(α) are bounded for d = 0, 1.
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C10. The bandwidth h = N−τ where 1/(2	) > τ > 1/(4r). This includes the
optimal bandwidth h = O(N−1/(2r+�)) as long as we choose a kernel of
order 2r > 	.

C11. There exists a positive constant C such that limN→∞ N0/N1 = C < ∞.

Conditions C1 and C10 are standard requirements on an rth order kernel func-
tion and on the bandwidth in the kernel smoothing literature (Ma and Zhu,
2013c).

A.4. Proof of Proposition 1

We provide a detailed proof that the first dimension reduction model (3.1)
satisfies Proposition 1. Proving that the other two dimension reduction models
(3.2) and (3.3) also satisfy Proposition 1 is similar.

In (3.1), κ(x, y,α) is a function of the weighted sum of H(d,x, y) with d =
0, 1. As a result,

κ(x, y,α) = h{xTα1 +m(x,β)α2 + εα2}
= h[{xT,m(x,β)}(αT

1 , α2)
T + εα2],

where h(·) is a differentiable function.
For ε = Q(XTω, ε∗), where Q(·) is an arbitrary function,

E{ε2κ(X, Y,α) | X}
= E(ε2h[{XT,m(X,β)}(αT

1 , α2)
T + εα2] | X)

= E{Q(XTω, ε∗)2h[{XT,m(X,β)}(αT
1 , α2)

T +Q(XTω, ε∗)α2] | X}
= ζ1(X

Tω, {XT,m(X,β)}(αT
1 , α2)

T)

= ζ1(Z
T
βγ1),

where ζ1(·) is a smooth function, Zβ = X and γ1 = (ω,α1 + α2β) is a p ×
2 matrix if m(·) is linear in X; otherwise, Zβ = {XT,m(X,β)}T and γ1 =
{(ωT, 0)T, (αT

1 , α2)
T} is a (p+ 1)× 2 matrix.

A.5. Background and Technical Results

A.5.1. Introduction

Following Ma and Carroll (2016), we divide the N observations randomly into
three sets, where the first set contains n1 = N − N1−δ − N1−2δ observations,
the second set contains n2 = N1−δ observations and the third set contains
n3 = N1−2δ observations, where δ is a small positive number. For convenience
of proof, we require the disease proportion in the third data set to be the same
as the whole data set. That is, n30/n31 = N0/N1, where n30 and n31 are the
numbers of controls and cases in the third set of data, respectively. We form and
solve the estimating equation (2.5) using data in the first set while calculating
all the estimated quantities described in Appendix A.2 steps 1-3 using data in
the second set and the other estimated quantities defined in Appendix A.2 steps
4-6 using the data in the third set.
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A.5.2. Lemmas

Before proving Theorem 1, we first state several lemmas, which ensure the quan-
tities defined in Appendix A.2 steps 4-6 have the desired orders of bias and mean
square error, i.e., the same as that of the usual nonparametric estimators.

From (3.5), we can easily show that

Lemma 1. For some σ2
πd(α̃) < ∞,

√
n2{π̂d(α̃) − πd(α̃)} d→ N(0, σ2

πd(α̃)),as
N → ∞.

We now analyze the property of our estimators defined in Appendix A.2
steps 4-6. For notational brevity, we only focus on the first conditional expecta-
tion Etrue{ε2κ(X, Y )|X}. The other two conditional expectations have similar
properties. We split the analysis into three parts: i) analyze the properties of

Êπ̂
1 (Xj ,γ1, θ̃); ii) analyze the properties of γ̂1(θ̃) for θ̃ near θ; iii) show that

Êtrue{ε2(X, Y, β̃)κ̂(X, Y, α̃) | X} has desired bias order and standard deviation
order.

For the first part of the analysis, we establish the following lemma.

Lemma 2. Under the regularity conditions C1-C10,

Êπ̂
1 (Xj ,γ1, θ̃) = Ê1(Xj ,γ1, θ̃) +Op(n

−1/2
2 )

= E1(Xj ,γ1, θ̃) +Op(h
r) +Op

(
n
−1/2
3 h−�/2

)
,

where

Ê1(Xj ,γ1, θ̃)

=

1∑
d=0

πd(α̃)
n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)κ(Xi, Yi, α̃)

×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

1∑
d=0

πd(α̃)
n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)Kh(ZT
β̃,i

γ1 − ZT
β̃,j

γ1)

;

E1(Xj ,γ1, θ̃)

=
Etrue

{
πDj

(α̃)

πDj
(α)ε

2
j (Xj , Yj , β̃)κ(Xj , Yj , α̃)|ZT

β̃,j
γ1

}
Etrue

{
πDj

(α̃)

πDj
(α) | ZT

β̃,j
γ1

} .

Proof. Denote the numerator and denominator of Êπ̂
1 (Xj ,γ1, θ̃) by qnum and

qden respectively. We can replace π̂d(α̃) in qnum and qden with πd(α̃) without
changing the error order due to the data partition scheme we use. That is,

qnum

= (n3 − 1)−1
1∑

d=0

π̂d(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)κ̂(Xi, Yi, α̃)
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×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

= (n3 − 1)−1
1∑

d=0

π̂d(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃){κ̂(Xi, Yi, α̃)

−κ(Xi, Yi, α̃)} ×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

+(n3 − 1)−1
1∑

d=0

π̂d(α̃)− πd(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)

×κ(Xi, Yi, α̃)Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

+(n3 − 1)−1
1∑

d=0

πd(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)κ(Xi, Yi, α̃)

×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1).

With further calculations, this means that

qnum

= Op(n
−1/2
2 )(n3 − 1)−1

1∑
d=0

π̂d(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)

×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

+Op(n
−1/2
2 )(n3 − 1)−1

1∑
d=0

1

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)

×κ(Xi, Yi, α̃)Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

+(n3 − 1)−1
1∑

d=0

πd(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)κ(Xi, Yi, α̃)

×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

= (n3 − 1)−1
1∑

d=0

πd(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)ε2i (Xi, Yi, β̃)κ(Xi, Yi, α̃)

×Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1) +Op(n
−1/2
2 ).

Similarly, we have

qden = (n3 − 1)−1
1∑

d=0

πd(α̃)

n3d/n3

∑
i �=j,1≤i≤n3

I(Di = d)Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

+Op(n
−1/2
2 ).

We now analyze the conditional expectations of qnum and qden given Xj one
by one. First,
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E(qnum|Xj)

=

1∑
d=0

πd(α̃)E
{
ε2(X, Y, β̃)κ(X, Y, α̃)Kh(Z

T
β̃
γ1 − ZT

β̃,j
γ1) | D = d,Xj

}
+Op(n

−1/2
2 )

= Etrue

{
πD(α̃)

πD(α)
ε2(X, Y, β̃)κ(X, Y, α̃)Kh(Z

T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

}
+Op(n

−1/2
2 )

= Etrue

[
Etrue

{
πD(α̃)

πD(α)
ε2(X, Y, β̃)κ(X, Y, α̃) | ZT

β̃
γ1,Xj

}
×Kh(Z

T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

]
+Op(n

−1/2
2 )

= Etrue

[
Etrue

{
πD(α̃)

πD(α)
ε2(X, Y, β̃)κ(X, Y, α̃) | ZT

β̃
γ1

}
×Kh(Z

T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

]
+Op(n

−1/2
2 )

= Etrue

{
πDj (α̃)

πDj (α)
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃) | ZT

β̃,j
γ1

}
ξtrue1 (ZT

β̃,j
γ1)

+Op(h
r) +Op(n

−1/2
2 ).

Here we used the regularity conditions C1-C2, C5, C8-C10.
In addition, with the regularity conditions C1-C4 and C8-C10, we have

var (qnum | Xj)

= (n3 − 1)−1var

{
1∑

d=0

πd(α̃)

n3d/n3
I(D = d)ε2(X, Y, β̃)κ(X, Y, α̃)

×Kh(Z
T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

}
+Op(n

−1
2 )

= (n3 − 1)−1

(
E

[{
1∑

d=0

πd(α̃)

n3d/n3
I(D = d)ε2(X, Y, β̃)κ(X, Y, α̃)

×Kh(Z
T
β̃
γ1 − ZT

β̃,j
γ1)

}2

| Xj

]
−E

{
1∑

d=0

πd(α̃)

n3d/n3
I(D = d)ε2(X, Y, β̃)κ(X, Y, α̃)

×Kh(Z
T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

}2
)
+Op(n

−1
2 )

= (n3 − 1)−1

(
E

[{
1∑

d=0

πd(α̃)

n3d/n3
I(D = d)ε2(X, Y, β̃)κ(X, Y, α̃)

×Kh(Z
T
β̃
γ1 − ZT

β̃,j
γ1)

}2

| Xj

]
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−Etrue

{
πDj (α̃)

πDj (α)
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃) | ZT

j γ1

}2

×ξtrue1 (ZT
j γ1)

2
)

+Op{(n3 − 1)−1hr}+Op(n
−1
2 )

= Op

(
n−1
3 h−�

)
.

The last equality is because

E

⎡⎣{ 1∑
d=0

πd(α̃)

n3d/n3
I(D = d)ε2(X, Y, β̃)κ(X, Y, α̃)Kh(Z

T
β̃
γ1 − ZT

β̃,j
γ1)

}2

| Xj

⎤⎦
≤ 2E

[
1∑

d=0

π2
d(α̃)

n2
3d/n

2
3

I(D = d)ε4(X, Y, β̃)κ2(X, Y, α̃)K2
h(Z

T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

]

= 2Etrue

[
πD(α̃)

n3D/n3

πD(α̃)

πD(α)
ε4(X, Y, β̃)κ2(X, Y, α̃)K2

h(Z
T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

]
≤ CEtrue

{
ε4(X, Y, β̃)κ2(X, Y, α̃)K2

h(Z
T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

}
= CEtrue

[
Etrue

{
ε4(X, Y, β̃)κ2(X, Y, α̃) | ZT

β̃
γ1

}
K2

h(Z
T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

]
≤ C ′Etrue

{
K2

h(Z
T
β̃
γ1 − ZT

β̃,j
γ1) | Xj

}
= Op(h

−�),

where C,C ′ are constants.

Similarly, we have that

E(qden|Xj) = Etrue

{
πDj (α̃)

πDj (α)
| ZT

β̃,j
γ1

}
ξtrue1 (ZT

β̃,j
γ1) +Op(h

r)

+Op(n
−1/2
2 );

var(qden|Xj) = Op

(
n−1
3 h−�

)
.

Hence,

Êπ̂
1 (Xj ,γ1, θ̃) =

Etrue

{
πDj

(α̃)

πDj
(α)ε

2
j (Xj , Yj , β̃)κ(Xj , Yj , α̃)|ZT

β̃,j
γ1

}
Etrue

{
πDj

(α̃)

πDj
(α) | ZT

β̃,j
γ1

}
+Op(h

r) +Op

(
n
−1/2
3 h−�/2

)
.

When θ̃ = θ, we have Êπ̂
1 (Xj ,γ1,θ) = Etrue{ε2jκ(Xj , Yj)|Xj} + Op(h

r) +

Op

(
n
−1/2
3 h−�/2

)
.
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Lemma 3. Under the regularity conditions C1-C10,

Êπ̂
true(Z

∗
β̃,j

| ZT
β̃,j

γ1) = Êtrue(Z
∗
β̃,j

| ZT
β̃,j

γ1) +Op(n
−1/2
2 )

= EZ∗
β̃
(Xj ,γ1, θ̃) +Op(h

r) +Op

(
n
−1/2
3 h−�/2

)
,

where

Êtrue

(
Z∗

β̃,j
| ZT

β̃,j
γ1

)

=
n−1
3

∑1
r=0

πr(α̃)
n3r/n3

∑
i �=j,1≤i≤n3

I(Di = r)Z∗
β̃,i

Kh(Z
T
β̃,i

γ1 − ZT
β̃,j

γ1)

n−1
3

∑1
r=0

πr(α̃)
n3r/n3

∑
i �=j,1≤i≤n3

I(Di = r)Kh(ZT
β̃,i

γ1 − ZT
β̃,j

γ1)
;

EZ∗
β̃
(Xj ,γ1, θ̃)

=
Etrue

{
πDj

(α̃)

πDj
(α)Z

∗
β̃,j

|ZT
β̃,j

γ1

}
Etrue

{
πDj

(α̃)

πDj
(α) | ZT

β̃,j
γ1

} .

We skip the proof of the Lemma 3 here since it is similar to the proof of
Lemma 2. Next, we establish the root-n3 consistency of γ̂j,−1 for j = 1, · · · , 3.
Lemma 4. Under the regularity conditions C1-C10,

√
n3{γ̂1,−1(θ̂)− γ1,−1} → Normal(0,Σγ1,−1),

√
n3{γ̂2,−1(θ̂)− γ2,−1} → Normal(0,Σγ2,−1),

√
n3{γ̂3,−1(θ̂)− γ3,−1} → Normal(0,Σγ3,−1),

when N → ∞. Here Σγ1,−1 , Σγ2,−1 and Σγ3,−1 are positive definite matrices.

Proof. Here we only provide the proof of the root-n3 consistency of γ̂1,−1 below.
Similar derivations can be used to prove the results regarding γ2,−1 and γ3,−1.
The estimator γ̂1,−1 solves

0 = n
−1/2
3

1∑
d=0

π̂d(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
ε2j (Xj , Yj , β̃)κ̂(Xj , Yj , α̃)

−Êπ̂
1 (Xj ,γ1, θ̃)

}{
Z∗

β̃,j
− Êπ̂

true(Z
∗
β̃,j

| ZT
β̃,j

γ1)
}

= n
−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃)

−Ê1(Xj ,γ1, θ̃)
}{

Z∗
β̃,j

− Êtrue(Z
∗
β̃,j

| ZT
β̃,j

γ1)
}

+Op{(n3/n2)
1/2},
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where we used Lemma 2 and 3. Simple calculation shows that the above equation
can be further expanded as

0 = n
−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃)

−E1(Xj ,γ1, θ̃) + E1(Xj ,γ1, θ̃)− Ê1(Xj ,γ1, θ̃)
}{

Z∗
β̃,j

−EZ∗
β̃
(Xj ,γ1, θ̃) + EZ∗

β̃
(Xj ,γ1, θ̃)− Êtrue(Z

∗
β̃,j

| ZT
β̃,j

γ1)
}

+op(1)

= n
−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃)

−E1(Xj ,γ1, θ̃)
}{

Z∗
β̃,j

− EZ∗
β̃
(Xj ,γ1, θ̃)

}
+n

−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)

×
{
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃)− E1(Xj ,γ1, θ̃)

}
×
{
EZ∗

β̃
(Xj ,γ1, θ̃)− Êtrue(Z

∗
β̃,j

| ZT
β̃,j

γ1)
}

+n
−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d) (A.7)

×
{
E1(Xj ,γ1, θ̃)− Ê1(Xj ,γ1, θ̃)

}{
Z∗

β̃,j
− EZ∗

β̃
(Xj ,γ1, θ̃)

}
+n

−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
E1(Xj ,γ1, θ̃)

−Ê1(Xj ,γ1, θ̃)
}{

EZ∗
β̃
(Xj ,γ1, θ̃)− Êtrue(Z

∗
β̃,j

| ZT
β̃,j

γ1)
}

+op(1).

Using Lemmas 2 and 3 and the regularity condition C10, we have that the fourth
term in (A.7)∥∥∥∥∥∥n−1/2

3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
E1(Xj ,γ1, θ̃)

−Ê1(Xj ,γ1, θ̃)
}{

EZ∗
β̃
(Xj ,γ1, θ̃)− Êtrue(Z

∗
β̃,j

| ZT
β̃,j

γ1)
}∥∥∥

=

∣∣∣∣n1/2
3

{
Op(h

r) +Op

(
n
−1/2
3 h−�/2

)}2
∣∣∣∣ = op(1).

By applying Lemma A1 in Ma and Zhu (2012a), we obtain that the second

and third terms in (A.7) are of order Op(h
r+n

1/2
3 h2r+log2 n3/

√
n3h2�) = op(1).
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Hence, the estimating equation can be written as

0 = n
−1/2
3

1∑
d=0

πd(α̃)

n3d/n3

n3∑
j=1

I(Dj = d)
{
ε2j (Xj , Yj , β̃)κ(Xj , Yj , α̃)

−E1(Xj ,γ1, θ̃)
}{

Z∗
β̃,j

− EZ∗
β̃
(Xj ,γ1, θ̃)

}
+op(1). (A.8)

We now show that the influence function given in (A.8) has mean 0 at θ̃ = θ.

E

[
1∑

d=0

πd(α)

n3d/n3
I(Dj = d)

{
ε2j (Xj , Yj ,β)κ(Xj , Yj ,α)

−E1(Xj ,γ1,θ)}
{
Z∗

j − EZ∗(Xj ,γ1,θ)
}]

= Etrue

[{
ε2j (Xj , Yj ,β)κ(Xj , Yj ,α)− E1(Xj ,γ1,θ)

}{
Z∗

j

−EZ∗(Xj ,γ1,θ)}]
= Etrue

(
Etrue

[{
ε2j (Xj , Yj ,β)κ(Xj , Yj ,α)− E1(Xj ,γ1,θ)

}
| Xj

]
×
{
Z∗

j − EZ∗(Xj ,γ1,θ)
})

= 0.

The last equality is because of the single index model assumption (3.1). In

practical operation, we will replace θ̃ by θ̂, the solution of the estimating equa-
tion defined in (4.1). As long as θ̂ → θ in probability, the above expectation
approaches 0.

Hence, we have that

√
n3{γ̂1,−1(θ̂)− γ1,−1} → Normal(0,Σγ1,−1)

when N → ∞, where Σγ1,−1 is a positive definite matrix.

We now analyze Êtrue{ε2(X, Y, β̂)κ̂(X, Y, α̂) | X}. We will show that it has

bias order Op(h
r) and standard deviation Op

(
n
−1/2
3 h−�/2

)
as given in the fol-

lowing lemma.

Lemma 5. Under the regularity conditions C1-C10,

Êtrue{ε2(X, Y, β̂)κ̂(X, Y, α̂) | X}

=
Etrue

{
πD(α̂)
πD(α)ε

2(X, Y, β̂)κ(X, Y, α̂) | ZT
β̂
γ1

}
Etrue

{
πD(α̂)
πD(α) | ZT

β̂
γ1

} +Op(h
r)

+Op

(
n
−1/2
3 h−l/2

)
+Op

(
n−1
3 h−�/2−1

)
.

Proof. Similar to the proof of Lemma 2, we have that

Êtrue{ε2(X, Y, β̂)κ̂(X, Y, α̂) | X}
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=

1∑
d=0

π̂d(α̂)
n3d

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)κ̂(Xi, Yi, α̂)

×Kh{ZT
β̂,i

γ̂1(θ̂)− ZT
β̂
γ̂1(θ̂)}

1∑
d=0

π̂d(α̂)
n3d

n3∑
i=1

I(Di = d)Kh{ZT
β̂,i

γ̂1(θ̂)− ZT
β̂
γ̂1(θ̂)}

=

1∑
d=0

πd(α̂)
n3d

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)κ(Xi, Yi, α̂)

×Kh{ZT
β̂,i

γ̂1(θ̂)− ZT
β̂
γ̂1(θ̂)}

1∑
d=0

πd(α̂)
n3d

n3∑
i=1

I(Di = d)Kh{ZT
β̂,i

γ̂1(θ̂)− ZT
β̂
γ̂1(θ̂)}

+Op(n
−1/2
2 ).

We first inspect the numerator.

n−1
3

1∑
d=0

πd(α̂)

n3d

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)κ(Xi, Yi, α̂)

×Kh

{
ZT

β̂,i
γ̂1(θ̂)− ZT

β̂
γ̂1(θ̂)

}
= n−1

3 h−(�+1)
1∑

d=0

πd(α̂)

n3d/n3

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)κ(Xi, Yi, α̂)

×K ′
{
ZT

β̂,i
γ∗
1/h− ZT

β̂
γ∗
1/h

}
(Zβ̂,i − Zβ̂)

T{γ̂1(θ̂)− γ1}

+n−1
3

1∑
d=0

πd(α̂)

n3d/n3

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)κ(Xi, Yi, α̂)

×Kh

(
ZT

β̂,i
γ1 − ZT

β̂
γ1

)
= n−1

3

1∑
d=0

πd(α̂)

n3d/n3

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)κ(Xi, Yi, α̂)

×Kh

(
ZT

β̂,i
γ1 − ZT

β̂
γ1

)
+Op(n

−1/2
3 ) +Op(n

−1
3 h−�/2−1)

= Etrue

{
πD(α̂)

πD(α)
ε2(X, Y, β̂)κ(X, Y, α̂) | ZT

β̂
γ1

}
ξtrue1 (ZT

β̂
γ1) +Op(h

r)

+Op

(
n
−1/2
3 h−l/2

)
+Op(n

−1
3 h−�/2−1).

Here γ∗
1 is on the interval connecting γ̂1(θ̂) and γ1. In the second equality

above, we used condition C10, the root-n3 consistency of γ̂1(θ̂), the regularity
conditions C5-C7 and the fact that
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n−1
3 h−(�+1)

1∑
d=0

πd(α̂)

n3d/n3

n3∑
i=1

I(Di = d)ε2i (Xi, Yi, β̂)

×κ(Xi, Yi, α̂)K ′{h−1(ZT
β̂,i

γ1 − ZT
β̂
γ1)}(Zβ̂,i − Zβ̂)

= − ∂

∂ZT
β̂
γ1

[
Etrue

{
πD(α̂)

πD(α)
ε2(X, Y, β̂)κ(X, Y, α̂)Zβ̂ | ZT

β̂
γ1

}
ξtrue1 (ZT

β̂
γ1)

]

+
∂

∂ZT
β̂
γ1

[
Etrue

{
πD(α̂)

πD(α)
ε2(X, Y, β̂)κ(X, Y, α̂) | ZT

β̂
γ1

}
ξtrue1 (ZT

β̂
γ1)

]
Zβ̂

+Op(h
2) +Op{(n3h

�+2)−1/2}.

Similarly, for the denominator, we have that

1∑
d=0

πd(α̂)

n3d

n3∑
i=1

I(Di = d)Kh{ZT
β̂,i

γ̂1(θ̂)− ZT
β̂
γ̂1(θ̂)}

= Etrue

{
πD(α̂)

πD(α)
| ZT

β̂
γ1

}
ξtrue1 (ZT

β̂
γ1) +Op(h

r) +Op

(
n
−1/2
3 h−l/2

)
+Op

(
n−1
3 h−�/2−1

)
.

Hence,

Êtrue(ε
2(X, Y, β̂)κ̂(X, Y, α̂) | X)

=
Etrue

{
πD(α̂)
πD(α)ε

2(X, Y, β̂)κ(X, Y, α̂) | ZT
β̂
γ1

}
Etrue

{
πD(α̂)
πD(α) | ZT

β̂
γ1

} +Op(h
r)

+Op

(
n
−1/2
3 h−l/2

)
+Op

(
n−1
3 h−�/2−1

)
.

A.6. Proof of Theorem 1

Through the analyses in the lemmas, we proved that all the estimated quanti-
ties defined in Appendix A.2.1 have desired bias order and standard deviation
orders. Specifically, the difference between the quantities with hat and without

hat either have mean zero, standard deviation Op(n
−1/2
2 ) = Op(n

−1/2
3 ) or have

bias Op(h
r) and standard deviation Op

(
n
−1/2
3 h−�/2

)
or Op

(
n
−1/2
3 h−�/2

)
+

Op

(
n−1
3 h−(�+2)/2

)
. Now we are ready to prove our main theorem.

0 = n
−1/2
1

n1∑
i=1

Ŝ∗
eff

(
Di,Xi, Yi, θ̂

)

= n
−1/2
1

n1∑
i=1

S∗
eff

[
Di,Xi, Yi, θ̂, π̂d(α̂), Ê{π̂d(α̂), γ̂(θ̂)}

]
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= n
−1/2
1

n1∑
i=1

S∗
eff

[
Di,Xi, Yi,θ, π̂d(α), Ê{π̂d(α̂), γ̂(θ)}

]

+n−1
1

n1∑
i=1

∂

∂θ
S∗
eff

[
Di,Xi, Yi,θ

∗, π̂d(α
∗), Ê{π̂d(α

∗), γ̂(θ∗)}
]√

n1(θ̂ − θ)

= n
−1/2
1

n1∑
i=1

S∗
eff(Di,Xi, Yi,θ) + n

−1/2
1

n1∑
i=1

{
Ŝ∗
eff(Di,Xi, Yi,θ)

−S∗
eff(Di,Xi, Yi,θ)}

+E

{
∂

∂θ
S∗
eff(Di,Xi, Yi,θ) + op(1)

}√
n1(θ̂ − θ)

= n
−1/2
1

n1∑
i=1

S∗
eff(Di,Xi, Yi,θ) + E

{
∂

∂θ
S∗
eff(Di,Xi, Yi,θ)

+op(1)}
√
n1(θ̂ − θ) + op(1),

where α∗ is a point on the line connecting α and α̂. Simple calculation lead to
the proof of Theorem 1.

A.7. Simulations with 10% Disease Rate

Homoscedastic Gaussian error Heteroscedastic Gaussian error
β1 0.5 1.0 0.3 0.5 0.5 1.0 0.3 0.5Ctrl

mean 0.534 0.958 0.263 0.458 0.591 0.890 0.225 0.386
s.d. 0.115 0.116 0.117 0.115 0.098 0.091 0.106 0.098

Param
mean 0.543 0.945 0.251 0.432 0.353 1.167 0.423 0.679
s.d. 0.086 0.082 0.084 0.091 0.086 0.084 0.083 0.089
MSE Eff 1.557 1.557 1.565 1.157 1.937 2.019 1.798 1.794

Semi
mean 0.504 0.992 0.297 0.496 0.517 0.983 0.285 0.482
s.d 0.098 0.082 0.078 0.087 0.096 0.101 0.092 0.105
MSE Eff 1.497 2.247 2.457 2.001 1.877 1.931 1.956 1.997

Table 4

500 simulations, 1000 cases/1000 controls,10% disease rate, correlated covariates X with
dimension 4, Gaussian error. See Table 1 for definitions.

Homoscedastic Gamma error Heteroscedastic Gamma error
β1 0.5 1.0 0.3 0.5 0.5 1.0 0.3 0.5Ctrl

mean 0.535 0.960 0.267 0.456 0.607 0.866 0.201 0.354
s.d. 0.087 0.095 0.096 0.093 0.082 0.079 0.078 0.080

Param
mean 0.633 0.833 0.170 0.299 0.343 1.205 0.436 0.706
s.d. 0.122 0.122 0.114 0.124 0.114 0.105 0.112 0.109
MSE Eff 0.272 0.249 0.341 0.188 0.481 0.460 0.524 0.516

Semi
mean 0.511 0.991 0.287 0.491 0.526 0.977 0.281 0.458
s.d 0.063 0.066 0.064 0.062 0.081 0.085 0.075 0.085
MSE Eff 2.173 2.377 2.386 2.665 2.491 3.106 2.661 3.080

Table 5

500 simulations, 1000 cases/1000 controls,10% disease rate, correlated covariates X with
dimension 4, Gamma error. See Table 1 for definitions.
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A.8. Simulation with Higher Dimensional Covariates

Homoscedastic Gaussian error
β1 0 0 0.5 1.0 0.3 0.5Ctrl

mean -0.001 0.006 0.518 0.974 0.285 0.467

s.d. 0.115 0.117 0.118 0.121 0.115 0.107
Param

mean -0.007 0.000 0.523 0.968 0.273 0.460

s.d. 0.087 0.089 0.087 0.087 0.088 0.092

MSE Eff 1.735 1.728 1.776 1.778 1.575 1.252
Semi

mean -0.010 0.005 0.506 0.992 0.299 0.497

s.d 0.080 0.086 0.102 0.099 0.095 0.083

MSE Eff 2.020 1.846 1.372 1.564 1.477 1.827
Heteroscedastic Gaussian error

β1 0 0 0.5 1.0 0.3 0.5Ctrl

mean -0.006 0.006 0.553 0.937 0.248 0.444

s.d. 0.107 0.108 0.104 0.104 0.104 0.100
Param

mean -0.001 -0.002 0.262 1.258 0.500 0.777

s.d. 0.088 0.092 0.089 0.084 0.086 0.086

MSE Eff 1.482 1.373 0.211 0.201 0.282 0.156
Semi

mean 0.003 0.005 0.503 0.982 0.295 0.497

s.d. 0.086 0.087 0.109 0.106 0.097 0.097

MSE Eff 1.555 1.538 1.158 1.282 1.417 1.397

Table 6

500 simulations, 1000 cases/1000 controls, 4.5% disease rate, correlated covariates X with
dimension 6, Gaussian error. See Table 1 for definitions.

Homoscedastic Gaussian error
β1 0 0 0 0 0.5 1.0 0.3 0.5Ctrl

mean -0.011 -0.005 0.004 0.003 0.517 0.978 0.288 0.479

s.d. 0.117 0.114 0.114 0.116 0.117 0.120 0.114 0.116
Param

mean -0.001 0.004 -0.005 0.003 0.519 0.967 0.274 0.460

s.d. 0.087 0.086 0.091 0.091 0.085 0.089 0.091 0.087

MSE Eff 1.844 1.760 1.570 1.620 1.836 1.629 1.445 1.519
Semi

mean -0.010 0.005 -0.002 -0.002 0.512 0.994 0.308 0.507

s.d 0.086 0.085 0.087 0.082 0.094 0.104 0.104 0.092

MSE Eff 1.854 1.800 1.724 1.980 1.538 1.360 1.210 1.656
Heteroscedastic Gaussian error

β1 0 0 0 0 0.5 1.0 0.3 0.5Ctrl

mean -0.002 -0.005 0.003 0.005 0.545 0.941 0.259 0.444

s.d. 0.106 0.106 0.103 0.105 0.105 0.102 0.109 0.113
Param

mean -0.008 -0.009 0.001 0.001 0.266 1.249 0.496 0.776

s.d. 0.093 0.086 0.092 0.093 0.094 0.086 0.088 0.086

MSE Eff 1.295 1.535 1.254 1.265 0.207 0.200 0.294 0.189
Semi

mean -0.005 -0.002 0.009 0.005 0.498 1.001 0.304 0.494

s.d. 0.084 0.091 0.079 0.084 0.099 0.105 0.108 0.102

MSE Eff 1.594 1.367 1.660 1.541 1.337 1.261 1.159 1.529

Table 7

500 simulations, 1000 cases/1000 controls, 4.5% disease rate, correlated covariates X with
dimension 8, Gaussian error. See Table 1 for definitions.
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Homoscedastic Gaussian error
β1 0 0 0 0 0 0 0.5 1.0 0.3 0.5Ctrl

mean -0.003 -0.000 -0.002 0.005 -0.001 -0.005 0.517 0.984 0.282 0.472
s.d. 0.112 0.107 0.117 0.121 0.116 0.120 0.120 0.120 0.126 0.117Param

mean 0.006 -0.000 -0.003 0.000 -0.002 -0.004 0.521 0.967 0.277 0.459
s.d. 0.088 0.086 0.085 0.087 0.089 0.086 0.091 0.088 0.091 0.088
MSE Eff 1.607 1.558 1.911 1.954 1.681 1.971 1.663 1.655 1.849 1.513Semi

mean -0.003 -0.001 -0.003 0.002 0.003 -0.002 0.497 0.997 0.299 0.502
s.d. 0.083 0.080 0.085 0.083 0.087 0.089 0.090 0.094 0.089 0.091
MSE Eff 1.803 1.778 1.921 2.113 1.759 1.806 1.812 1.640 2.046 1.742

Heteroscedastic Gaussian error
β1 0 0 0 0 0 0 0.5 1.0 0.3 0.5Ctrl

mean 0.003 -0.015 -0.001 -0.001 0.001 -0.001 0.552 0.947 0.247 0.444
s,d. 0.111 0.108 0.105 0.104 0.103 0.105 0.115 0.105 0.106 0.109Param

mean -0.004 -0.001 -0.013 -0.009 0.001 -0.003 0.267 1.252 0.495 0.780
s.d. 0.092 0.096 0.091 0.092 0.091 0.089 0.098 0.088 0.093 0.088
MSE Eff 1.439 1.294 1.314 1.266 1.288 1.415 0.252 0.196 0.298 0.174Semi

mean -0.001 -0.001 -0.008 0.003 0.011 -0.002 0.509 1.000 0.292 0.496
s.d. 0.088 0.085 0.081 0.078 0.079 0.087 0.104 0.100 0.101 0.108
MSE Eff 1.572 1.631 1.681 1.766 1.699 1.457 1.480 1.384 1.364 1.281

Table 8. 500 simulations, 1000 cases/1000 controls, 4.5% disease rate, correlated covariates X with dimension 10, Gaussian error. See Table 1
for definitions.
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