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Abstract: In the field of genetics, the concept of heritability refers to the
proportion of variations of a biological trait or disease that can be explained
by genetic factors. Quantifying the heritability of a disease is a fundamental
challenge in human genetics, especially when the causes are plural and not
clearly identified. Although the literature regarding heritability estimation
for binary traits is less rich than for quantitative traits, several methods
have been proposed to estimate the heritability of complex diseases. How-
ever, to the best of our knowledge, the existing methods are not supported
by theoretical grounds. Moreover, most of the methodologies do not take
into account a major specificity of the data coming from medical studies,
which is the oversampling of the number of patients compared to controls.
We propose in this paper to investigate the theoretical properties of the
Phenotype Correlation Genotype Correlation (PCGC) regression developed
by Golan, Lander and Rosset (2014), which is one of the major techniques
used in statistical genetics and which is very efficient in practice, despite
the oversampling of patients. Our main result is the proof of the consistency
of this estimator, under several assumptions that we will state and discuss.
We also provide a numerical study to compare two approximations leading
to two heritability estimators.
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1. Introduction

In the field of genetics, the concept of heritability refers to the proportion of
variations of a biological trait or disease that can be explained by genetic factors.
Quantifying the heritability is a major challenge for diseases that are suspected
to have a strong genetic component but whose causes are often vague and mul-
tiple. Indeed, determining a high value of heritability is a powerful argument in
favor of further research for genetic causes, but it also opens the possibility of
predicting a risk of illness based on the genetic background.

There exist several methods to estimate the heritability of quantitative traits,
which we will describe hereafter, with interesting theoretical and practical prop-
erties. Regarding binary traits, such as the presence or absence of a disease, a
few methodologies have been proposed, but as far as we know, none of them
has been validated theoretically. Golan, Lander and Rosset (2014) developed
a method, called phenotype correlation genotype correlation (PCGC) regres-
sion, that they compared to recent methodologies and which was shown to be
very efficient in practice. The aim of this paper is to investigate the theoretical
properties of the PCGC method.
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Let us first recall the main existing methods to estimate the heritability of
quantitative traits, which will be strongly linked to the methods used for binary
traits. Linear Mixed Models (LMMs) have been widely used for estimating the
heritability of quantitative traits. Indeed, Yang et al. (2010) proposed for in-
stance to estimate the heritability of human height by using a classical LMM
defined by

Y = Xβ + Zu+ e, (1.1)

where Y = (Y1, . . . ,Ym)′ is the vector of observations of a phenotype of in-
terest, X is a m × p matrix of predictors (or fixed effects), β is a p × 1 vector
containing the unknown linear effects of the predictors, and u and e correspond
respectively to the genetic and the environmental random effects. We assume
that u and e are Gaussian random effects with variances σ�2

u IdRN and σ�2
e IdRm

respectively. Moreover, Z is a m × N matrix which contains the genetic infor-
mation. They proposed to estimate the parameter

η� =
Nσ�2

u

Nσ�2
u + σ�2

e

, (1.2)

commonly considered as the mathematical definition for heritability since it
determines how the variance is shared between u and e.

Several methods were developed to estimate the parameter η�, see Patterson
and Thompson (1971), Searle, Casella and McCulloch (1992), Yang et al. (2011),
Pirinen, Donnelly and Spencer (2013), Zhou and Stephens (2012).

From a theoretical point of view, Bonnet, Gassiat and Levy-Leduc (2015)
showed the asymptotic normality of the maximum likelihood estimator of η� as
well as a central limit theorem leading to confidence intervals for η�.

The previous model and the corresponding methods obviously do not apply
when considering non continuous traits. However, the quantitative and the bi-
nary cases can be related by assuming the existence of an underlying Gaussian
variable linked to the binary phenotype. More precisely, it consists of assum-
ing that the observations Y1, . . . ,Yn are distributed according to the following
Generalized Linear Mixed Model (GLMM):

Yi ∼ B(pi) (1.3)

with pi = g−1(Gi) where g is a link function and Gi a Gaussian variable.
A particular case, which is very often used to define heritability of binary

traits, is when g is a probit link function.
This model was proposed by Falconer (1965), who assumed that the binary

observations could be seen as an indicator function of a Gaussian variable ex-
ceeding a given threshold t:

Yi = 1{li>t}, (1.4)

with li defined by
l = Zu+ e (1.5)
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and l = (l1, . . . , ln), u ∼ N (0, σ�2
u IdRN ) and e ∼ N (0, σ�2

e IdRn), like in classical
LMM defined in Equation (1.1). The heritability is then intuitively defined “at
the liability scale”, which means that it is the heritability of the unobserved
continuous trait l, and it is given by the same expression (1.2) as for quantitative
traits.

Observe that the threshold t is directly linked to the prevalence of the disease
in the population, that is the proportion K of the population which is affected
by the disease. Indeed,

K = P(Yi = 1) = P(li > t). (1.6)

The unobserved Gaussian variable l = (l1, . . . , ln) is called the liability in this
model, which is usually called the “liability threshold model” (Falconer (1965),
Lee et al. (2011), Tenesa and Haley (2013)) and has been shown to be a reason-
able modeling for complex diseases, for instance by Purcell et al. (2009).

Several methods were established to estimate heritability in Model (1.3):
among them we can quote the MCMC method of Hadfield (2010) and the penal-
ized quasi-likelihood approach of Breslow and Clayton (1993). The theoretical
properties of these estimators have not been demonstrated and their numerical
performances can be found in the comparative study of de Villemereuil, Gimenez
and Doligez (2013). Lee et al. (2011) proposed to use a maximum likelihood ap-
proach as if the binary traits were Gaussian, and then to apply a multiplicative
factor to correct this approximation. Golan, Lander and Rosset (2014) showed
that this heritability estimator was strongly biased in several realistic scenar-
ios, in particular it was very sensitive to the prevalence of the disease (when
the disease is rarer, the bias increases). The estimator also underestimates the
heritability when the true heritability is high.

However, all the aforementioned methods raise two main concerns: first, they
have no theoretical validation. Second, they do not take into account an essential
element of case-control studies: in a medical study, the number of patients is
similar to the number of controls even though the studied disease might be
rare, which means that the proportion of cases in the study does not reflect the
proportion of cases in the population. This oversampling of the cases, which
had been noticed for instance by Lee et al. (2011) but had never been properly
addressed, is handled by the PCGC approach of Golan, Lander and Rosset
(2014), who proposed a moment based method to estimate the heritability. The
ground of their methodology was to compute an approximate quantity of the
expectation E of WiWj , for two individuals i and j, Wi being a centered and
normalized version of the binary data Yi, and conditionally to the fact that
individuals i and j are in the study. This approach will be further described in
Section 3.1.

Since the PCGC method presented very good numerical results but was not
supported by theoretical grounds, we propose in this paper to investigate the
theoretical properties of their method. Our main result is to show that the least
squares estimator obtained with the first order approximation of E provides
a consistent estimator of η�. We also propose a simulation study to compare
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the numerical performances of the estimators obtained with first and second
order approximations of E. We show in particular that the computational times
associated to the second order estimator are substantially larger with no obvious
improvement from the statistical point of view.

The model we study and the main definitions are given in Section 2. Section
3 contains the first order approximation of the expectation E with the corre-
sponding estimator of η� and Section 4 presents our consistency result for this
estimator. The second order approximation of E is given in Section 5 and the
numerical comparison of the two estimators can be found in Section 6. In Sec-
tion 7, we discuss the results and potential perspectives. Finally, the proofs are
given in Section 8.

2. Model and definitions

2.1. Liability model

Let us denote K the prevalence of a disease in a population, that is the propor-
tion of the population affected by the disease. Let Yi be the random variable
such that Yi = 1 if the individual i is affected (then, individual i is called a
case) and Yi = 0 if the individual i is unaffected (then individual i is called
a control). We assume that the Yi’s are linked to unobserved variables li as
follows

Yi = 1{li>t}, (2.1)

where t is a given threshold, related to the prevalence K by (1.6), and the li’s
are defined as

l = Zu+ e, (2.2)

where l = (l1, . . . , ln), u and e are random effects such that u ∼ N (0, σ�2
u IdRN )

and e ∼ N (0, σ�2
e IdRm). The vector u corresponds to the genetic effects and

e to the environmental effects. Moreover, Z is a m × N random matrix which
contains the genetic information, and which is such that the Zi,k are normalized
random variables in the following sense: they are defined from a matrix A =
(Ai,k)1≤i≤m, 1≤k≤N by

Zi,k =
Ai,k −Ak

sk
, i = 1, . . . ,m, k = 1, . . . , N , (2.3)

where

Ak =
1

m

m∑
i=1

Ai,k, s
2
k =

1

m

m∑
i=1

(Ai,k −Ak)
2, k = 1, . . . , N . (2.4)

In (2.3) and (2.4) theAi,k’s are such that for each k in {1, . . . , N} the (Ai,k)1≤i≤m

are independent and identically distributed random variables and such that the
columns of A are independent.

In practice, the matrix A contains, for all the individuals in the study, the
genetic information described by the Single Nucleotide Polymorphisms (SNPs).
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More precisely, at each SNP, the genotype can be either qq, qQ or QQ, q being
the less frequent (or minor) allele.

Then for each k, Ai,k = 0 (resp. 1, resp. 2) if the genotype of the ith indi-
vidual at locus k is qq (resp. Qq, resp. QQ). In this paper, we consider a more
general case with mild assumptions on the distribution of the random variables
Ai,k, which are described in Section 4. However, note that the assumption of in-
dependence between the columns of A is quite strong, since in particular it does
not take into account the linkage disequilibrium, that is precisely the correlation
betweens genetic variants. To the best of our knowledge, the other theoretical
works regarding estimation of heritability (Jiang et al. (2016) and Bonnet, Gas-
siat and Levy-Leduc (2015)) also neglect these correlations, even in the Gaussian
scenario, which shows the difficulty of getting rid of this assumption.

With the definition (2.3), the columns of Z are empirically centered and
normalized, and one can observe that

Var(l|Z) = Nσ�
u
2R+ σ�

e
2IdRn , where R =

ZZ′

N
.

The heritability at the liability scale, which is the parameter we want to esti-
mate, is defined as the ratio of variances:

η� =
Nσ�2

u

Nσ�2
u + σ�2

e

. (2.5)

The variance of l conditionally to Z can then be rewritten with respect to η�

and σ�2 = Nσ�2
u + σ�2

e as:

Var(l|Z) = η�σ�2R+ (1− η�)σ�2IdRn .

We will assume in the sequel without loss of generality that σ�2 = 1. Indeed, if
σ�2 �= 1, we can consider the variable l′i =

li
σ� and then, instead of estimating t

from the prevalence K with the relationship (1.6), we estimate directly t/σ�.
Note that in Model (2.2), we consider a particular case of linear mixed model

where there is no fixed effects. In the PCGC method, Golan, Lander and Rosset
(2014) propose a solution to handle covariates that we did not study here, but
it would be interesting to investigate as well the theoretical properties of such
an approach. This point is further discussed in Section 7.

2.2. Case control study

Since the prevalence P in the study can be very different from the prevalence
K in the general population (the cases are substantially oversampled in a case-
control study), it is essential to consider that the observations that we have
access to depend on the probabilities for both cases and controls to be selected
in the study. We recall that m corresponds to the total size of the population
and we define n the number of individuals in the study. Each individual of
the population will either be selected or not for the study with a probability
depending on their status (case or control).
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More precisely, if pcontrol denotes the probability for a control to be selected
in the study, we can define the corresponding variable Ui ∼ B(pcontrol) which is
equal to 1 if individual i is part of the study. Similarly we define the probability
pcase for a case to be selected for the study and the corresponding variable
Vi ∼ B(pcase). We will increase the size population until we obtain n individuals
in the study. Then for any individual i, we define the variable εi by

εi = ViYi + Ui(1−Yi),

which is equal to 1 if individual i belongs to the study and 0 if not. We assume
that the variables U1, . . . , Um, V1, . . . , Vm are independent and independent of
Y1, . . . ,Ym and Z.

Since we do not observe Yi for the whole population but only for the indi-
viduals who belong to the study, we will work with the variables Wi defined
by

Wi =
Yi − P√
P (1− P )

εi,

which are centered versions ofYi in the study and are non-zero only if individual
i belongs to the study.

The probabilities pcase and pcontrol are chosen such that the prevalence in
the study is equal to P . Indeed, if we assume that

pcase = 1, (2.6)

it implies that

pcontrol =
K(1− P )

P (1−K)
. (2.7)

The proof of (2.7) is given in Appendix A.1. Equation (2.6) means that all
cases are accepted in the study and it is usually called a “full ascertainment”
assumption (see for instance Golan, Lander and Rosset (2014)).

3. Heritability estimator

3.1. Description of the PCGC regression

Golan, Lander and Rosset (2014) considered a version of Model (2.2), where the
liability is given by

l = g + e,

where g is a genetic random effect, which can be correlated across individuals,
and e is the environmental random effect, which is assumed to be independent
of the genetic effect. Both effects are assumed to be Gaussian: e has a variance
equal to (1−η�)IdRn and g has a covariance matrix Vg defined for all 1 ≤ i, j ≤ n,
as:

(Vg)i,j =

{
η�Gi,j if i �= j
η� if i = j.
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The covariance matrix of (li, lj) is given by

Σ =

(
1 η�Gi,j

η�Gi,j 1

)
.

The heritability estimator of the PCGC regression is a least squares estimator
obtained by minimizing∑

i �=j

(WiWj − E[WiWj |εi = εj = 1])
2
. (3.1)

Since the expression of E[WiWj |εi = εj = 1] has no explicit formula as we shall
see hereafter, Golan, Lander and Rosset (2014) proposed to take advantage of
the fact that the correlations Gi,j are typically small for i �= j.

The ground of the method is to write

E[WiWj |εi = εj = 1]

=

1−P
P P(Yi = Yj = 1)− K(1−P )

P (1−K)P(Yi �= Yj) +
K2(1−P )
P (1−K)2P(Yi = Yj = 0)

P(Yi = Yj = 1) +
(

K(1−P )
P (1−K)

)2
P(Yi = Yj = 0) + K(1−P )

P (1−K)P(Yi �= Yj)

(3.2)

and to propose approximations of P(Yi �= Yj), P(Yi = Yj = 0) and P(Yi �=
Yj) thanks to Taylor developments around the quantityGi,j . The computations
leading to (3.2) can be found in Appendix A.2.

This approximation, plugged in the least squares criterion (3.1), led to the
heritability estimator given by

η̂ =

[∑
i �=j WiWjGi,j

c
∑

i �=j G
2
i,j

∧ 1

]
∨ 0, (3.3)

where

c = φ(t)2
P (1− P )

K2(1−K)2
, (3.4)

φ being the density of the standard Gaussian distribution. The proof of (3.3)
and (3.4) can be found in the supplementary material from Golan, Lander and
Rosset (2014).

3.2. Our method

In Model defined in (2.1) and (2.2), the variance matrix Σ(N) of (li, lj) condi-
tionally to Z can be written as

Σ(N) =

(
1 + η�(GN (i, i)− 1) η�GN (i, j)

η�GN (i, j) 1 + η�(GN (j, j)− 1)

)
,
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where for all 1 ≤ i, j ≤ n,

GN (i, j) =
1

N

N∑
k=1

Zi,kZj,k. (3.5)

Note that in the model we consider, GN (i, j) is a random variable, which is not
the case of the quantity Gi,j in the model studied by Golan, Lander and Rosset
(2014). A key element is to notice that Σ(N) is close to the n×n identity matrix,
more precisely

Σ(N) =

(
1 + η� AN (i)√

N
η� BN (i,j)√

N

η� BN (i,j)√
N

1 + η� AN (j)√
N

)
(3.6)

where AN (i) = Op(1), AN (j) = Op(1) and BN (i, j) = Op(1). The proof of (3.6)
can be found in Appendix A.3.

Then, following the idea of Golan, Lander and Rosset (2014), we propose to
approximate

E[WiWj |Z, εi = εj = 1]

defined in Equation (3.2) thanks to Taylor developments around AN (i)√
N

, AN (j)√
N

and BN (i,j)√
N

. The detailed computations are devised in Section 8.2.

A first order approximation of E[WiWj |Z, εi = εj = 1], plugged in (3.1),
leads to the same estimator η̂(1) as the one obtained with the PCGC regression.
Indeed, we obtain

η̂(1) =

[∑
i �=j WiWjGN (i, j)

c
∑

i �=j GN (i, j)2
∧ 1

]
∨ 0, (3.7)

where c = φ(t)2 P (1−P )
K2(1−K)2 .

In Section 5, we consider the second order approximation, which is different
from the one devised by Golan, Lander and Rosset (2014).

Remark 1. Note that in practice, we cannot access directly GN (i, j) defined
in (3.5), since the matrix Z should be centered and normalized in the whole
population. This is obviously a limitation, but we propose to show with a nu-
merical study that replacing Z by Z̃ which has been centered and normalized
in the study has a small influence on the heritability estimates. The results are
displayed in Section 6.3.

Remark 2. The main difficulty to study the theoretical properties of η̂(1) is due
to the approximation

E[WiWj |Z, εi = εj = 1] � cη�GN (i, j),

neglecting a remainder term which depends on AN (i), AN (j) and BN (i, j) de-
fined in (3.6), which means that it varies for each pair of individuals i and
j.
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4. Consistency of the heritability estimator η̂(1)

In this section, we consider the heritability estimator η̂(1) defined in Equation
(3.7).

Assumption 1. There exist d > 0, C > 0 and a neighborhood V0 of 0 such that
for all λ in V0

1.1 E[exp
(
λ(Ai,k − E[Ai,k])

2 − σ2
k

)
] ≤ C exp(dλ2)

1.2 E[exp (λ(Ai,k − E[Ai,k]))] ≤ C exp(dλ2)
1.3 E[exp (λ(Ai,k − E[Ai,k])(Aj,k − E[Ai,k]))] ≤ C exp(dλ2)

for all i �= j and for all k, where the Ai,k’s are defined in (2.3) and σ2
k is the

variance of Ai,k.

Assumption 2. 2.1 inf
k=1..N

σ2
k = δmin > 0

2.2 sup
k=1..N

σ2
k = δmax < +∞

Theorem 1. Let Y = (Y1, . . .,Yn) satisfy Model (1.4) with A satisfying As-
sumptions 1 and 2, and η̂(1) the estimator of η� defined in Equation (3.7). Then,
as n,N → ∞ such that n/N → a ∈ (0,+∞),

η̂(1) = η� + op(1).

Note that we focus on the case where both the number n of individuals and
the number N of genetic variants tend to infinity, which is the same framework
chosen for instance by Jiang et al. (2016) and Bonnet, Gassiat and Levy-Leduc
(2015). In practice, these values are obviously finite upper bounded, for instance
by the length of the human genome for N .

The proof of Theorem 1 relies on the following lemmas.

Lemma 1. When n and N tend to infinity and n/N tends to a,

1

n

∑
i �=j

GN (i, j)2converges in probability to a.

We will then have to focus on

1

n

∑
i �=j

WiWjGN (i, j) =

⎡
⎣ 1
n

∑
i �=j

(WiWj − E[WiWj |Z, εi = εj = 1])GN (i, j)

+
1

n

∑
i �=j

E[WiWj |Z, εi = εj = 1]GN (i, j)

⎤
⎦ . (4.1)

Let EN be the following event

EN =

{
sup
i

|GN (i, i)− 1| ≤ εN and sup
i �=j

|GN (i, j)| ≤ εN

}
,
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where

εN =
1

N
1
2−γ

(4.2)

with γ a positive number such that γ < 1/10.

The choice of εN is crucial, since it has to be large enough so that on the one
hand, the probability not to be in event EN is very small (Lemma 2). On the
other hand, εN must be small enough to verify Lemmas 3 and 4, which ensure
respectively that if EN holds, the first term converges to 0 and the second term
of (4.1) will converge to η� (up to a constant).

Let us denote Ec
N the complement of the event EN . We consider the following

decomposition

η̂(1) = η̂(1)1EN
+ η̂(1)1Ec

N
.

Lemma 2. For all values of q, the probability of Ec
N satisfies P(Ec

N ) = O( 1
Nq )

when N → +∞.

Using the result of Lemma 2, η̂(1)1Ec
N

converges in probability to 0 since

E[|η̂(1)1Ec
N
|] ≤ P(Ec

N ) = O

(
1

Nq

)
.

Lemma 3. When n and N tend to infinity and n/N tends to a ∈ (0,+∞),

1

n

∑
i �=j

E[WiWj |Z, εi = εj = 1]GN (i, j)1EN

converges in probability to acη�, where c is defined in Equation (3.4).

Lemma 4. When n and N tend to infinity and n/N tends to a ∈ (0,+∞),

1

n

∑
i �=j

(WiWj − E[WiWj |Z, εi = εj = 1])GN (i, j)1EN

converges in probability to 0.

The results of Lemmas 3 and 4 achieve the proof of Theorem 1.

Section 8.1 contains a short version of the proofs, while the detailed proofs
of Lemmas 1, 2, 3 and 4 are given in Section 8.3.

5. Second order approximation of E[WiWj|Z, εi = εj = 1]

The purpose of this section is to study the behaviour of the heritability estimator
obtained thanks to a second order approximation of E[WiWj |Z, εi = εj = 1].
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Instead of computing the approximation till order 1/
√
N , we compute the

approximation till order 1/N and we obtain:

E[WiWj |Z, εi = εj = 1]

=
η�√
N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)

+
t2

4

η�2

N
AN (i)AN (j)

P (1− P )

K2(1−K)2

+
η�2

N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)2

[
t2

2
− (P −K)2

K2(1−K)2

]

+
η�2

2N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)(AN (i) +AN (j))

×
[
t2 − 1− P −K

K(1−K)
tφ(t)

]
+Op

(
1

N
3
2

)

The proof of this computation is detailed in Section 8.4.
The minimizer in η of the quantity

g(η) =
∑
i �=j

(
WiWj −

η√
N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)

− t2

4

η2

N
AN (i)AN (j)

P (1− P )

K2(1−K)2

− η2

N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)2

[
t2

2
− (P −K)2

K2(1−K)2

]

− η2

2N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)(AN (i) +AN (j))

×
[
t2 − 1− P −K

K(1−K)
tφ(t)

])2

is the root of a third order polynomial and could be found thanks to a closed-
form formula. Since the expressions are quite complex, we propose here, for the
sake of simplicity, to use a Newton-Raphson approach to obtain the correspond-
ing heritability estimator η̂(2) of the second order approximation.

Note that the second order approximation, which depends on BN (i, j) but
also on AN (i) and AN (j), is different from the one found by Golan, Lander and
Rosset (2014).

6. Numerical study

In this section, we propose to study the numerical performance of the estimators
η̂(1) and η̂(2) devised respectively in Sections 3 and 5. Since Golan, Lander and
Rosset (2014) already compared the estimator η̂(1) to the one proposed by Lee
et al. (2011) and stated several arguments in favor of their estimator, we will
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focus on comparing our two estimators in terms of statistical and computational
efficiency.

6.1. Simulation process

In this simulation study, we generated data sets with n = 200, N = 10000
that is smaller than the size of typical data sets (n � 5000, N � 500000 for
instance). The reason is purely computational, since we have to generate data
for m � n/K individuals in the population in order to have n individuals in the
study. However, we choose the values of n and N such that the classical scenario
where N >> n is respected. The value of the prevalence in the population varies
from 0.005 to 0.1. The observations were generated as follows.

• We set the parameters η�, K, P = 1/2 and the size of the general popu-
lation, chosen very large. Notice that the size of the population can vary
from one sample to another. In practice, we generate new individuals in
the population until we have n individuals in the study.

• We generate the SNPs matrix A, the columns of which are independent
binomial variables with parameters 2 and pj , pj being uniformly generated
between 0.1 and 0.5 (it represents the probability of appearance of the less
frequent SNP). The matrix Z is then obtained by centering and normaliz-
ing A in the whole population. Notice that we use Z to generate the data,
but since we would not access to the whole matrix in practice, we will use
for the estimations the matrix that we denote Z̃, which is centered and
normalized in the study. This point is further discussed in Section 6.3

• We generate the Gaussian random effects u and e with respective variances
σ�2
u = η�/N and σ�2

e = 1− η�.
• We generate liabilities, from which we generate binary observations in

order to have a prevalence equal to K in the general population.
• For each individual, we determine those who stayed in the study: the

cases are automatically selected (full ascertainment assumption) but each
control is selected with probability pcontrol computed in Equation (2.7).

6.2. Results

Figure 1 displays the estimations of η� obtained with both estimators η̂(1) and
η̂(2). First, we can notice that both estimators seem empirically unbiased. Sec-
ond, we observe no obvious improvement of the performance of η̂(2) compared
to η̂(1) in terms of empirical variance.

Table 1 and Figure 2 show the computational performance of both estima-
tors. The computation of the estimator η̂(2) obtained with the more refined
approximation is obviously slower, but for small values of n (namely, n = 100),
the time required to compute an estimation of η� remains quite small (86 sec-
onds, against 40 seconds for the other estimator). However, when n is larger, the
computational time increases substantially and the “slower” estimator needs up
to 13500 seconds, that is almost 4 hours, to compute an estimation of η�.
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Fig 1. Boxplots for η̂(1) (“first approx”) and η̂(2) (“second approx”) for different values of
η�: 0.5 (left), 0.7 (right) and different values of the prevalence K: 0.005 (top), 0.01 (middle),
0.1 (bottom). The sample size is n = 200 and N = 10000. Each boxplot is generated from 100
replications.

In conclusion, both estimators are empirically unbiased and since the com-
putation of the estimator η̂(2) is slower and does not improve the estimations
of η�, we are satisfied with the first order approximation and the corresponding
estimator η̂(1).

6.3. Normalization of Z in the study

We propose to study the impact of performing normalization described in Equa-
tions (2.3) and (2.4) in the study and not in the whole population. Since for
synthetic data we have access to the complete matrix Z, we propose to compare
our results to those we would obtain when considering the reduction of Z to
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Table 1

Times in seconds to compute an estimation of η� obtained with η̂(1) and η̂(2) for different
values of n (100 and 1000) and N (from 1000 to 105).

n N 1000 10000 50000 105

100 η̂(1) 0.478 2.390 28.595 40.528

η̂(2) 3.148 7.127 56.761 86.156

1000 η̂(1) 69.047 327.240 2887.518 7845.281

η̂(2) 376.363 936.845 6624.186 13500.510

Fig 2. Time in seconds to compute an estimation of η� obtained with η̂(1) and η̂(2) for
n = 100 (left) and n = 1000 (right) and for different values of N (from 1000 to 105).

Fig 3. Comparison of heritability estimates obtained when centering Z in the study or in the
whole population, for two values of η�: 0.5 (left) and 0.7 (left) and for K = 0.1.

the individuals of the study. The results are displayed in Figure 3, and we can
see the minor changes obtained between the manners of centering the genetic
information matrix.

7. Discussion

In this paper, we propose theoretical grounds to support the heritability estima-
tor in case-control studies developed by Golan, Lander and Rosset (2014). We
prove indeed its consistency in the framework where both the number n of indi-
viduals and the number N of SNPs tend to infinity, when the ratio n/N tends to
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a constant a. This consistency result was obtained under several assumptions,
the necessity of which it would be interesting to question. For instance, removing
the Gaussianity assumption on the distribution of the random effects could allow
to take into account possible sparsity and remains a very challenging issue.

The independence of the columns of the SNP matrix is also a very strong as-
sumption, which neglects the linkage disequilibrium (LD) between alleles. Going
beyond this assumption seems challenging from the theoretical point of view,
even for quantitative traits (Jiang et al., 2016; Bonnet, Gassiat and Levy-Leduc,
2015). Indeed, independence is required to prove consistency, to determine the
order of magnitude of different quantities but also to be able to apply large
deviation results that are essential to prove Lemma 2. For quantitative traits,
LD has been shown to result in an overestimated contribution of variants in
strong LD (Speed et al., 2012). Despite theoretical limitations, several efficient
filtering procedures (Patterson, Price and Reich, 2006; Speed et al., 2012) were
proposed to modify the kinship matrix G before estimating heritability.

Another sensible question is the closeness to the asymptotic results on finite
samples. One key ingredient could be a careful calibration of εN defined in
(4.2) of Theorem 1. This quantity is indeed constrained by a lower bound to
ensure that Lemma 2 holds and an upper bound coming from Lemmas 3 and
4. Determining the optimal balance for εN should lead to a lower bound of the
convergence rate of the estimation procedure. The numerical results also confirm
the good performance of the PCGC method on finite samples, and in particular
the similar results obtained with first and second order approximations suggest
that the remainder term is indeed negligible compared to the main term.

We would also like to extend our theoretical grounds to a more general model
that includes fixed effects, and for instance investigate the properties of the
PCGC regression in this scenario. Finally, it would also be interesting to com-
plete this work with theoretical results which could allow the user to compute
accurate confidence intervals, similarly to existing results for quantitative traits.

8. Proofs

8.1. Summary of the proofs

Since the proof of Theorem 1 is quite long and requires heavy computations, we
propose in this section a short version of the main arguments that we used to
prove Lemmas 1, 2, 3 and 4.

8.1.1. Short proof of Lemma 1

Let us write

GN (i, j)2 =
1

N2

N∑
k=1

Z2
i,kZ

2
j,k +

1

N2

∑
k �=l

Zi,kZj,kZi,lZj,l
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Then let us show that

1

n

1

N2

∑
i �=j

N∑
k=1

Z2
i,kZ

2
j,k

P→ a

and

1

n

1

N2

∑
i �=j

∑
k �=l

Zi,kZj,kZi,lZj,l
P→ 0.

We will prove these two results by computing the expectation and variance and
both terms, the order of magnitude of which we will evaluate thanks to the
properties on Z that are given in Proposition 1 of Section 8.

8.1.2. Short proof of Lemma 2

We will show that P(Ec
N ) can be upperbounded by a sum of two terms of theform

Cnα exp(−βN ),

with C and α being positive constants and βN going to infinity when N tends
to infinity.

These two terms come from the first upper bound

P(Ec
N ) ≤ n sup

i
P

(
|

N∑
k=1

(Z2
i,k − 1)| ≥ NεN

)

+ n(n− 1) sup
i �=j

P

(
|

N∑
k=1

Zi,kZj,k| ≥ NεN

)

= nP

(
|

N∑
k=1

(Z2
1,k − 1)| ≥ NεN

)
+ n(n− 1)P

(
|

N∑
k=1

Z1,kZ2,k| ≥ NεN

)
.

We will rewrite each term with the Ai,k instead of Zi,k so that we can use
Assumption 1. We need for instance to upper bound the probability that the
difference between empirical mean and theoretical mean exceeds a certain value,
that is:

P(Āk −mk ≥
√
δ).

By Chernoff inequality, for all λ ≥ 0,

P(n(Āk −mk) ≥ n
√
δ) ≤ exp

{
−n

√
δλ+ log

(
E[exp(n(Āk −mk))]

)}
= exp

{
−n

√
δλ+ n log (E[exp(Ai,k −mk)])

}
Then, we use Assumption 1.2 to upper bound the right term and we obtain
that, for all positive values of λ,

P(n(Āk −mk) ≥ n
√
δ) ≤ C exp

{
−n

√
δλ+ ndλ2

}
. (8.1)
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The right term of (8.1) is minimum when

λ =

√
δ

2d
,

which implies in particular that

P(Āk −mk ≥
√
δ) ≤ C exp

{
−nδ

4d

}
.

Similarly we will upper bound all terms using on the one hand Chernoff inequal-
ity and on the other hand, one or several assumptions from Assumptions 1 and
2. The detailed computations are given in Section 8.3.3.

8.1.3. Short proof of Lemma 3

According to the results of Section 8.3.2, we have

1

n

∑
i �=j

E[WiWj |Z, εi = εj = 1]GN (i, j)1EN

=
1

n

∑
i �=j

(cη�GN (i, j) +RN (i, j))GN (i, j)1EN

= acη� +
1

n

∑
i �=j

RN (i, j)GN (i, j)1EN
+ op(1)

Thus, we just need to prove that
∑
i �=j

GN (i, j)RN (i, j)1EN
= op(1).

We shall compute an explicit form of the remainder term RN (i, j) and then
we shall see that RN (i, j)1EN

may be upper bounded by a finite sum of terms
of the form

|GN (i, j)|k1 |GN (i, i)− 1|k2 |GN (j, j)− 1|k3 ,

with k in �2, 22� and k1 + k2 + k3 = k.
Thus, 1

n

∑
i �=j

RN (i, j)GN (i, j)1EN
is upper bounded by a finite sum of terms

of the form

1

n

∑
i �=j

|GN (i, j)|k1+1|GN (i, i)− 1|k2 |GN (j, j)− 1|k3 .

But

1

n

∑
i �=j

|GN (i, j)|k1+1|GN (i, i)− 1|k2 |GN (j, j)− 1|k31EN
≤ εk1+k2+k3+1

N

n(n− 1)

n

= O

(
1

N
1
2−3γ

)
= o(1),

since k1 + k2 + k3 + 1 ≥ 3 and γ < 1/10.
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8.1.4. Short proof of Lemma 4

Let us show that

Var(
1

n

∑
i �=j

(WiWj − E[WiWj |Z])GN (i, j)1EN
) → 0,

that is

1

n2

∑
i1 �=i2
i3 �=i4

E[(E[Wi1Wi2Wi3Wi4 |Z]− E[Wi1Wi2 |Z]E[Wi3Wi4 |Z])GN (i1, i2)

×GN (i3, i4)1EN
] → 0 (8.2)

For this purpose, we will separate three cases depending on the cardinal of the
set {i1, i2, i3, i4} in the sum of Equation (8.21).

-If card({i1, i2, i3, i4})=2, since the sum in Equation (8.2) has only n(n− 1)
terms, the upper bound of GN (i1, i2)GN (i3, i4) on the event EN will be enough
to obtain the convergence to 0.

-If card({i1, i2, i3, i4})=3, we will first prove that E[W2
i1
Wi2Wi3 |Z] has no

term of order less than 1/
√
N , that is no constant term.

Then the other terms can be upper bounded on EN by terms of the form εkN ,
with k large enough to compensate the n(n− 1)(n− 2) terms of the sum.

-If card({i1, i2, i3, i4})=4, each term can be handled using one of the following
arguments:

• The order of the term is high enough so that it can be upper bounded
on EN by terms of the form εkN , with k large enough to compensate the
n(n− 1)(n− 2)(n− 2) terms of the sum.

• The term is equal to 0 (we will propose a detailed computation to verify
this).

• The terms are equal in E[Wi1Wi2Wi3Wi4 |Z] and
E[Wi1Wi2 |Z]E[Wi3Wi4 |Z].

This achieves the proof of Equation (8.2).

8.2. Taylor development of E[WiWj|Z, εi = εj = 1] in Model (2.1)

According to Equation (3.2), we only need to compute approximations of P(Yi =
Yj = 1|Z), P(Yi = Yj = 0|Z) and P(Yi �= Yj |Z) to obtain an approximation
of E[WiWj |Z, εi = εj = 1].

P(Yi = Yj = 1|Z) =
∫ ∞

t

∫ ∞

t

f(x, y)dxdy,
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P(Yi = Yj = 0|Z) =
∫ t

−∞

∫ t

−∞
f(x, y)dxdy

and

P(Yi �= Yj |Z) = 2

∫ t

−∞

∫ ∞

t

f(x, y)dxdy,

with

f(x, y) =
1

2π
|Σ(N)|− 1

2 exp

{
− (x, y)Σ(N)−1(x, y)t

2

}
.

where the matrix Σ(N) is the covariance matrix of (li, lj).
We will use the result of Equation (3.6), which will be demonstrated in Ap-

pendix A.3, that is

Σ(N) =

(
1 + η� AN (i)√

N
η� BN (i,j)√

N

η� BN (i,j)√
N

1 + η� AN (j)√
N

)
, (8.3)

where AN (i) = Op(1), AN (j) = Op(1) and BN (i, j) = Op(1).
We have

f(x, y) =
|Σ(N)|− 1

2

2π
exp

{
− 1

2|Σ(N)|

[
x2(1 +

η�√
N

AN (j)) + y2(1 +
η�√
N

AN (i))

− 2xy
η�√
N

BN (i, j)

]}

=
|Σ(N)|− 1

2

2π
exp(−x2

2
) exp(−y2

2
) exp

{
− x2

2

(
1

|Σ(N)|

[
1 +

η�√
N

AN (j)

]

− 1

)
− y2

2

(
1

|Σ(N)|

[
1 +

η�√
N

AN (i)

]
− 1

)
+

1

|Σ(N)|xy
η�√
N

BN (i, j)

}
.

Using a first order Taylor development around AN (i)√
N

, AN (j)√
N

and BN (i,j)√
N

,

|Σ(N)|−1 = 1− (AN (i) +AN (j))
η�√
N

+ αN

and

|Σ(N)|− 1
2 = 1− 1

2
(AN (i) +AN (j))

η�√
N

+ βN ,

where αN = Op(
1
N ) and βN = Op(

1
N ).

More precisely,

αN = −(AN (i)AN (j)−BN (i, j)2)
η�2

N
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+
1

2

(
−(AN (i) +AN (j))

η�√
N

− (AN (i)AN (j)−BN (i, j)2)
η�2

N

)2
1

(1 + α̃)3
,

with |α̃| ≤ |(AN (i) +AN (j)) η�

√
N

+ (AN (i)AN (j)−BN (i, j)2)η
�2

N |.
Similarly,

βN = −1

2
(AN (i)AN (j)−BN (i, j)2)

η�2

N

+
1

2

(
−1

2
(AN (i) +AN (j))

η�√
N

− 1

2
(AN (i)AN (j)−BN (i, j)2)

η�2

N

)2
3

4

× 1

(1 + β̃)
5
2

,

with |β̃| ≤ | 12 (AN (i) +AN (j)) η�

√
N

+ 1
2 (AN (i)AN (j)−BN (i, j)2)η

�2

N |. Then,

f(x, y) =

(
1− 1

2
(AN (i) +AN (j))

η�√
N

+ βN

)
φ(x)φ(y)

× exp

{
− x2

2
(−AN (i)

η�√
N

+ γN )− y2

2
(−AN (j)

η�√
N

+ γ̃N )

+ xy

(
η�√
N

BN (i, j) + ˜̃γN

)}

where γN = −AN (j)(AN (i) + AN (j))η
�2

N + αN (1 + AN (j) η�

√
N
) = Op

(
1
N

)
,

γ̃N = −AN (i)(AN (i) + AN (j))η
�2

N + αN (1 + AN (i) η�

√
N
) = Op

(
1
N

)
and ˜̃γN =

η�

√
N
BN (i, j)

(
−(AN (i) +AN (j)) η�

√
N

+ αN

)
= Op

(
1
N

)
A Taylor development of the exponential function leads to

f(x, y) =

(
1− 1

2
(AN (i) +AN (j))

η�√
N

+ βN

)
φ(x)φ(y)

×
[
1 +

x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j) + νN (x)

]

with

νN (x) = −x2

2
γN − y2

2
γ̃N + xy˜̃γN

+
1

2

(
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j)− x2

2
γN − y2

2
γ̃N

+ xy˜̃γN

)2

exp ũ

where |ũ| ≤ |x2

2
η�

√
N
AN (i)+ y2

2
η�

√
N
AN (j)+xy η�

√
N
BN (i, j)− x2

2 γN− y2

2 γ̃N+xy ˜̃γN |.
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Then,∫ ∞

t

∫ ∞

t

f(x, y)dxdy

=

(
1− 1

2
(AN (i) +AN (j))

η�√
N

+ βN

)
[
K2 +

1

2

η�√
N

(AN (j) +AN (i))K(K + tφ(t)) +BN (i, j)
η�√
N

φ(t)2
]
+ μN

= K2 +
1

2
(AN (i) +AN (j))

η�√
N

Ktφ(t) +BN (i, j)
η�√
N

φ(t)2 + μ′
N

where μN =
(
1− 1

2 (AN (i) +AN (j) + βN ) η�

√
N

) ∫∞
t

∫∞
t

φ(x)φ(y)νN (x)dxdy

and μ′
N = μN + βN

(
K2 +

1

2

η�√
N

(AN (j) +AN (i))K(K + tφ(t))

+BN (i, j)
η�√
N

φ(t)2
)
− 1

2
(AN (i) +AN (j))

η�2

N
BN (i, j)φ(t)2.

This remainder and its order will be carefully studied in Section 8.3.4.
Similarly, we can compute P(Yi = Yj = 0|Z) and P(Yi �= Yj |Z):∫ t

−∞

∫ t

−∞
f(x, y)dxdy

= (1−K)2 − 1

2
(AN (i) +AN (j))

η�√
N

(1−K)tφ(t) +BN (i, j)
η�√
N

φ(t)2 + μ̃N

∫ t

−∞

∫ ∞

t

f(x, y)dxdy +

∫ ∞

t

∫ t

−∞
f(x, y)dxdy

= 2K(1−K) + (AN (i) +AN (j))
η�√
N

(1− 2K)tφ(t)− 2BN (i, j)
η�√
N

φ(t)2

+ ˜̃μN .

Replacing these terms in the expression of the numerator of E[WiWj |Z, εi =
εj = 1] given in equation (3.2) leads to:

η�√
N

BN (i, j)φ(t)2
(1− P )

P (1−K)2
+ rN , (8.4)

where rN is a linear combination of μ′
N , μ̃N and ˜̃μN .

Since there is no constant term in this numerator, we only need the devel-
opment of order 0 of the denominator of E[WiWj |Z, εi = εj = 1] to obtain the
first order approximation of E[WiWj |Z, εi = εj = 1].

We obtain that the denominator can be written as

K2

P 2
+ r̃N ,



1684 A. Bonnet

where r̃N is the sum of a term of order 1√
N

and a linear combination of μ′
N , μ̃N

and ˜̃μN . Thus, we obtain that

E[WiWj |Z, εi = εj = 1] =

η�

√
N
BN (i, j)φ(t)2 (1−P )

P (1−K)2 + rN
K2

P 2 + r̃N
(8.5)

= η�GN (i, j)φ(t)2
P (1− P )

K2(1−K)2
+RN (i, j) (8.6)

where

RN (i, j) =

(
η�√
N

BN (i, j)φ(t)2
(1− P )

P (1−K)2
+ rN

)
r̃N +

K2

P 2
rN . (8.7)

8.3. Proof of Theorem 1

8.3.1. Properties of Z

In the following proofs, we will use several properties of the matrix Z, which are
stated in Proposition 1.

Proposition 1. Uniformly in k,

(1) E[Z1,kZ2,k] = − 1
n−1 .

(2) E[Zp
1,k] = O(1), for all p.

(3) E[Z2
1,kZ

2
2,k] = 1 + o(1).

(4) E[Z3
1,kZ2,k] = O

(
1
n

)
.

(5) E[Z2
1,kZ2,kZ3,k] = O

(
1
n

)
.

(6) E[Z1,kZ2,kZ3,kZ4,k] = O
(

1
n2

)
.

(7) E[Z5
1,kZ2,k] = O

(
1
n

)
.

(8) E[Z3
1,kZ

3
2,k] = O(1).

(9) E[Z4
1,kZ

2
2,k] = O(1).

(10) E[Z4
1,kZ2,kZ3,k] = O( 1n ).

(11) E[Z3
1,kZ

2
2,kZ3,k] = O( 1n ).

(12) E[Z3
1,kZ2,kZ3,kZ4,k] = O( 1

n2 ).

The proof of Proposition 1 is given in Appendix A.4.

8.3.2. Proof of Lemma 1

Let us prove that, when n and N tend to infinity and n/N tends to a,

1

n

∑
i �=j

GN (i, j)2
P→ a,
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where
P→ denotes the convergence in probability.

GN (i, j)2 =
1

N2

N∑
k=1

Z2
i,kZ

2
j,k +

1

N2

∑
k �=l

Zi,kZj,kZi,lZj,l

Since Zi,k and Zj,l are independent for any i and j when k �= l, we will always
consider separately the cases where k = l from the cases where k �= l.

Indeed, let us show that

1

n

1

N2

∑
i �=j

N∑
k=1

Z2
i,kZ

2
j,k

P→ a (8.8)

and
1

n

1

N2

∑
i �=j

∑
k �=l

Zi,kZj,kZi,lZj,l
P→ 0. (8.9)

Note that

E[
1

n

1

N2

∑
i �=j

N∑
k=1

Z2
i,kZ

2
j,k] =

1

n

1

N2

∑
i �=j

N∑
k=1

E[Z2
i,kZ

2
j,k]

=
n− 1

N
(1 + o(1)) by (3) of Proposition 1

= a+ o(1)

Moreover,

Var(
1

n

1

N2

∑
i �=j

N∑
k=1

Z2
i,kZ

2
j,k) =

1

n2

1

N4

N∑
k=1

∑
i1 �=j1

∑
i2 �=j2

E[Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k]

− 1

n2

1

N4

N∑
k=1

⎛
⎝∑

i �=j

E[Z2
i,kZ

2
j,k]

⎞
⎠

2

(8.10)

The second term of (8.10) can be rewritten as:

1

n2

1

N4

N∑
k=1

⎛
⎝∑

i �=j

E[Z2
i,kZ

2
j,k]

⎞
⎠

2

=
Nn2(n− 1)2

n2N4
(1 + o(1)) by (3) of Proposition 1

= O

(
1

n

)

∑
i1 �=j1

∑
i2 �=j2

E[Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k]

≤ E[
∑

i1,j1,i2,j2

Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k] = E

[
n∑

i=1

Z2
i,k

]4
= n4
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This last equality comes from the definition of Z as a centered and normalized
variable given in Equation (2.3), which implies that for all k,

n∑
i=1

Z2
i,k = n.

Then,

1

n2

1

N4

N∑
k=1

∑
i1 �=j1

∑
i2 �=j2

E[Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k] ≤

n4N

n2N4
= O

(
1

n

)
.

This proves (8.8).

E[
1

n

1

N2

∑
i �=j

∑
k �=l

Zi,kZj,kZi,lZj,l] =
1

n

1

N2

∑
i �=j

∑
k �=l

E[Zi,kZj,k]E[Zi,lZj,l]

=
n(n− 1)N(N − 1)

nN2(n− 1)2
by (1) of Proposition 1

= O

(
1

n

)

Var(
1

n

1

N2

∑
i �=j

∑
k �=l

Zi,kZj,kZi,lZj,l)

=
1

n2

1

N4

∑
k �=l

∑
i1 �=j1

∑
i2 �=j2

E[Zi1,kZi2,kZj1,kZj2,k]E[Zi1,lZi2,lZj1,lZj2,l]

− 1

n2

1

N4

∑
k �=l

⎛
⎝∑

i �=j

E[Zi,kZj,k]E[Zi,lZj,l]

⎞
⎠

2

1

n2

1

N4

∑
k �=l

⎛
⎝∑

i �=j

E[Zi,kZj,k]E[Zi,lZj,l]

⎞
⎠

2

=
N(N − 1)n2(n− 1)2

n2N4(n− 1)4
by (1) of Proposition 1

= O

(
1

n4

)

In the first term, {i1, i2, j1, j2} can be of cardinal 2, 3 or 4 and counting the
number of combinations gives the expression:∑

i1 �=j1

∑
i2 �=j2

E[Zi1,kZi2,kZj1,kZj2,k]E[Zi1,lZi2,lZj1,lZj2,l]

= 2
∑
i �=j

E[Z2
i,kZ

2
j,k]E[Z

2
i,lZ

2
j,l]
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+ 4
∑

i �=j1 �=j2

E[Z2
i,kZj1,kZj2,k]E[Z

2
i,lZj1,lZj2,l]

+
∑

i1 �=i2 �=j1 �=j2

E[Zi1,kZi2,kZj1,kZj2,k]E[Zi1,lZi2,lZj1,lZj2,l]

= 2n(n− 1)(1 + o(1)) + 4
n(n− 1)(n− 2)

n
o(1)

+
n(n− 1)(n− 2)(n− 3)

n2
o(1) = O(n2)

This was obtained by using (3),(5) and (6) of Proposition 1.
Finally,

V ar

⎛
⎝ 1

n

1

N2

∑
i �=j

∑
k �=l

Zi,kZj,kZi,lZj,l

⎞
⎠ = O

(
1

n2

)
.

This completes the proof of (8.9).

8.3.3. Proof of Lemma 2

Note that

P(Ec
N ) ≤ n sup

i
P

(
|

N∑
k=1

(Z2
i,k − 1)| ≥ NεN

)

+ n(n− 1) sup
i �=j

P

(
|

N∑
k=1

Zi,kZj,k| ≥ NεN

)

= nP

(
|

N∑
k=1

(Z2
1,k − 1)| ≥ NεN

)
+ n(n− 1)P

(
|

N∑
k=1

Z1,kZ2,k| ≥ NεN

)
.

Let δ be a positive real number such that
√
δ/2c ∈ V0 and δ < δmin

4 , where V0

and δmin are defined in Assumptions 1 and 2.1 respectively.

P

(
|

N∑
k=1

(Z2
i,k − 1)| ≥ NεN

)
≤ P

(
∃k, s2k ≤ δ

)

+ P

(
|

N∑
k=1

(Ai,k − Āk)
2 − s2k)| ≥ NδεN

)

Note also that

{
∃k, s2k ≤ δ

}
=

N⋃
k=1

{
n∑

i=1

(Ai,k − Āk)
2 ≤ nδ

}

=

N⋃
k=1

{
N∑
i=1

(Ai,k −mk +mk − Āk)
2 ≤ nδ

}
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where mk = E[Ai,k].
Observe that{

n∑
i=1

(Ai,k −mk +mk − Āk)
2 ≤ nδ

}

⊂
{
|Āk −mk| ≥

√
δ
}
∪
{

n∑
i=1

(Ai,k −mk)
2 ≤ 4nδ

}
. (8.11)

Let us show that

P(|Āk −mk| ≥
√
δ) ≤ 2C exp

{
−nδ

4d

}
. (8.12)

P(|Āk −mk| ≥
√
δ) = P(Āk −mk ≥

√
δ) + P(Āk −mk ≤ −

√
δ)

By Chernoff inequality, for all λ ≥ 0,

P(n(Āk −mk) ≥ n
√
δ) ≤ exp

{
−n

√
δλ+ log

(
E[exp(n(Āk −mk))]

)}
= exp

{
−n

√
δλ+ n log (E[exp(Ai,k −mk)])

}
Then, by Assumption 1.2, for all positive values of λ in V0,

P(n(Āk −mk) ≥ n
√
δ) ≤ C exp

{
−n

√
δλ+ ndλ2

}
. (8.13)

The right term of (8.13) is minimum when

λ =

√
δ

2d
,

which implies in particular that

P(Āk −mk ≥
√
δ) ≤ C exp

{
−nδ

4d

}
.

Similarly, for all negative values of λ in V0,

P(n(Āk −mk) ≤ −n
√
δ) ≤ C exp

{
n
√
δλ+ ndλ2

}
. (8.14)

The right term of (8.14) is minimum when

λ = −
√
δ

2d
,

which implies that

P(Āk −mk ≤ −
√
δ) ≤ C exp

{
−nδ

4d

}
,
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which proves (8.12).

P(

n∑
i=1

(Ai,k −mk)
2 ≤ 4nδ) ≤ P(

n∑
i=1

[(Ai,k −mk)
2 − σ2

k] ≤ n(4δ − δmin))

Since 4δ− δmin < 0 by assumption on δ, we apply again Chernoff inequality,
which gives us that:

P(

n∑
i=1

[(Ai,k −mk)
2 − σ2

k] ≤ n(4δ − δmin)) ≤ C exp

{
−n

(4δ − δmin)
2

2d

}

This result, combined with (8.12), proves that

P
(
∃k, s2k ≤ δ

)
≤ 2NC exp

{
−nδ

4d

}
+NC exp

{
−n

(4δ − δmin)
2

2d

}
(8.15)

Notice that{∣∣∣∣∣
N∑

k=1

(Ai,k − Āk)
2 − s2k

∣∣∣∣∣ ≥ NδεN

}

=

{
1

n

∣∣∣∣∣
N∑

k=1

n∑
l=1

(Ai,k − Āk)
2 − (Al,k − Āk)

2

∣∣∣∣∣ ≥ NδεN

}

⊂
{∣∣∣∣∣

N∑
k=1

(Ai,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ NδεN
4

}

∪
{∣∣∣∣∣

N∑
k=1

n∑
l=1

(Al,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ nNδεN
4

}

∪
{∣∣∣∣∣

N∑
k=1

(Ai,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ NδεN
8

}

∪
{∣∣∣∣∣

N∑
k=1

n∑
l=1

(Al,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ nNδεN
8

}

Using Chernoff inequality and Assumption 1.1, we can prove that

P

(∣∣∣∣∣
N∑

k=1

(Ai,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ NδεN
4

)
≤ 2C exp

{
−Nδ2ε2N

64d

}

and

P

(∣∣∣∣∣
N∑

k=1

n∑
l=1

(Al,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ nNδεN
4

)
≤ 2C exp

{
−Nnδ2ε2N

64d

}
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Moreover,

P

(∣∣∣∣∣
n∑

k=1

(Ai,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ NδεN
4

)

≤ P

(
n∑

k=1

(Ai,k −mk)
2 ≥ Nn

δεN
8

)

+ P

⎛
⎝
∣∣∣∣∣∣

n∑
k=1

∑
l �=i

(Ai,k −mk)(mk −Al,k)

∣∣∣∣∣∣ ≥ nN
δεN
8

⎞
⎠

Using Chernoff inequality and Assumption 1.3, we obtain that

P

⎛
⎝
∣∣∣∣∣∣

n∑
k=1

∑
l �=i

(Ai,k −mk)(mk −Al,k)

∣∣∣∣∣∣ ≥ nN
δεN
8

⎞
⎠ ≤ 2C exp

{
−nNδ2ε2N

256d

}

and with Assumption 1.1 we have

P

(
n∑

k=1

(Ai,k −mk)
2 ≥ Nn

δεN
8

)

≤ C exp

{
−n2Nδ2ε2N

256d
+

nNδδmaxεN
16d

− Nδmax

4d

}
, (8.16)

with n2Nε2N = a2N2+2γ and nNεN = aN
3
2+γ where γ > 0, which implies that

the main term in the exponential is −n2Nδ2ε2N
256d .

Similarly, we can show that

P

(∣∣∣∣∣
N∑

k=1

n∑
l=1

(Al,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ nNδεN
8

)

≤ 2C exp

{
−n2Nδ2ε2N

256d

}

+ C exp

{
−n3Nδ2ε2N

256d
+

n2NδδmaxεN
16d

− Nnδmax

4d

}
.

This concludes the proof that for all values of q,

P

(
|

n∑
k=1

(Z2
i,k − 1)| ≥ NεN

)
= O

(
1

Nq

)
.

We use similar techniques to otain an upper bound for

P

(∣∣∣∣ n∑
k=1

Zi,kZj,k

∣∣∣∣ ≥ NεN

)
.

P

(∣∣∣∣∣
n∑

k=1

Zi,kZj,k

∣∣∣∣∣ ≥ NεN

)
= P

(∣∣∣∣∣
n∑

k=1

(Ai,k − Āk)(Aj,k − Āk)

s2k

∣∣∣∣∣ ≥ NεN

)
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≤ P(∃k, s2k ≤ δ)

+ P

(∣∣∣∣∣
n∑

k=1

(Ai,k − Āk)(Aj,k − Āk)

∣∣∣∣∣ ≥ NδεN

)

Since we have already proved (8.15) and (8.16), we will conclude the proof
by showing that

P

(∣∣∣∣∣
n∑

k=1

(Ai,k −mk)(Aj,k −mk)

∣∣∣∣∣ ≥ N
δεN
4

)
≤ 2C exp

{
−NδεN

64d

}
, (8.17)

and

P

(
n∑

k=1

(Āk −mk)
2 ≥ N

δεN
4

)
≤ N2C exp

{
−NδεN

16d

}
. (8.18)

(8.17) is obtained using Assumption 1.3 and Chernoff inequality.

P

(
n∑

k=1

(Āk −mk)
2 ≥ N

δεN
4

)
≤ P

(
sup
k

(mk − Āk)
2 ≥ δεN

4

)

≤ N sup
k

P

(
(mk − Āk)

2 ≥ δεN
4

)

≤ N2C exp

{
−NδεN

16d

}
,

which proves (8.18) and achieves the proof of Lemma 2.

8.3.4. Proof of Lemma 3

According to the results of Section 8.3.2, we have

1

n

∑
i �=j

E[WiWj |Z, εi = εj = 1]GN (i, j)1EN

=
1

n

∑
i �=j

(cη�GN (i, j) +RN (i, j))GN (i, j)1EN

= acη� +
1

n

∑
i �=j

RN (i, j)GN (i, j)1EN
+ op(1)

Thus, we just need to prove that
∑
i �=j

GN (i, j)RN (i, j)1EN
= op(1).

We shall see that RN (i, j)1EN
may be upper bounded by a finite sum of

terms of the form

|GN (i, j)|k1 |GN (i, i)− 1|k2 |GN (j, j)− 1|k3 , (8.19)
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with k in �2, 22� and k1 + k2 + k3 = k.
Thus, 1

n

∑
i �=j

RN (i, j)GN (i, j)1EN
is upper bounded by a finite sum of terms

of the form

1

n

∑
i �=j

|GN (i, j)|k1+1|GN (i, i)− 1|k2 |GN (j, j)− 1|k3 .

But

1

n

∑
i �=j

|GN (i, j)|k1+1|GN (i, i)− 1|k2 |GN (j, j)− 1|k31EN
≤ εk1+k2+k3+1

N

n(n− 1)

n

= O

(
1

N
1
2−3γ

)
= o(1),

since k1 + k2 + k3 + 1 ≥ 3 and γ < 1/10.
This achieves the proof of Lemma 3.
Let us explain why Equation (8.19) holds.
We need to evaluate |RN (i, j)1EN

|. Then, let us look at the previous re-
mainders which compose RN (i, j), and we will provide upper bounds when EN

holds.

|αN | = |AN (i)AN (j)−BN (i, j)2|η
�2

N
+

1

2
|(AN (i) +AN (j))

η�√
N

+ (AN (i)AN (j)−BN (i, j)2)
η�2

N
|2 1

|1 + α̃|3 ,

with |α̃| ≤ |(AN (i) + AN (j)) η�

√
N

+ (AN (i)AN (j) − BN (i, j)2)η
�2

N | ≤ 2εNη� +

2ε2Nη�2.
Similarly,

|βN | = 1

2
|AN (i)AN (j)−BN (i, j)2|η

�2

N
+

1

2
|1
2
(AN (i) +AN (j))

η�√
N

+
1

2
(AN (i)AN (j)−BN (i, j)2)

η�2

N
|2 3
4

1

|1 + β̃| 52
,

with |β̃| ≤ | 12 (AN (i) + AN (j)) η�

√
N

+ 1
2 (AN (i)AN (j) − BN (i, j)2)η

�2

N | ≤ εNη� +

ε2Nη�2.
The remainders γN ,γ̃N and ˜̃γN are only products of αN , AN (i), AN (j) and

BN (i, j).

|γN | ≤ |AN (j)(AN (i) +AN (j))
η�2

N
|+ |αN (1 +AN (j)

η�√
N

)|,

|γ̃N | ≤ |AN (i)(AN (i) +AN (j))
η�2

N
|+ |αN (1 +AN (i)

η�√
N

)| and
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| ˜̃γN | ≤ | η�√
N

BN (i, j)|
(
|(AN (i) +AN (j))

η�√
N

|+ |αN |
)

μN =

(
1− 1

2
(AN (i) +AN (j))

η�√
N

)∫ ∞

t

∫ ∞

t

φ(x)φ(y)νN (x, y)dxdy,

with

νN (x, y) = −x2

2
γN − y2

2
γ̃N + xy ˜̃γN

+
1

2

(
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j)− x2

2
γN

− y2

2
γ̃N + xy ˜̃γN

)2

exp ũ

The integral of the first terms of νN (x, y) is∫ ∞

t

∫ ∞

t

φ(x)φ(y)

(
−x2

2
γN − y2

2
γ̃N + xy ˜̃γN

)
dxdy

= −1

2
K(tφ(t) +K)(γN + γ̃N ) + φ(t)2 ˜̃γN .

Moreover, exp ũ ≤ max(exp
{

x2

2
η�

√
N
AN (i) + y2

2
η�

√
N
AN (j) + xy η�

√
N
BN (i, j) +

x2

2 γN − y2

2 γ̃N − xy ˜̃γN
}
, 1).

There are two possibilities, either

max(exp

{
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j)− x2

2
γN − y2

2
γ̃N

+ xy ˜̃γN

}
, 1) = 1,

or max(exp

{
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j)− x2

2
γN

− y2

2
γ̃N + xy ˜̃γN

}
, 1)

= exp

{
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j)

− x2

2
γN − y2

2
γ̃N + xy ˜̃γN

}
.

If max(exp
{

x2

2
η�

√
N
AN (i) + y2

2
η�

√
N
AN (j) + xy η�

√
N
BN (i, j)− x2

2 γN − y2

2 γ̃N +

xy ˜̃γN

}
, 1) = 1,

∫ ∞

t

∫ ∞

t

φ(x)φ(y)

(
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j)− x2

2
γN



1694 A. Bonnet

− y2

2
γ̃N + xy ˜̃γN

)2

dxdy =
1

N
J, (8.20)

where J =
∫∞
t

∫∞
t

φ(x)φ(y)
(

x2

2 η�AN (i)+ y2

2 η�AN (j)+xyη�BN (i, j)− x2

2
γN√
N
−

y2

2
γ̃N√
N

+ xy
˜̃γN√
N

)2
dxdy is finite.

Otherwise,

exp(ũ) ≤ exp

{
x2

2
(εNη� + P1(εN )) +

y2

2
(εNη� + P2(εN )) + xy(εNη� + P3(εN ))

}

where P1, P2, P3 are polynomial functions. This expression comes from upper
bounding the terms AN (i)/N , AN (j)/N and BN (i, j)/N by εN in γN , γ̃N and
˜̃γN .

There exists N0, such that for all N ≥ N0, εNη� + P1(εN ) ≤ 1
4 , εNη� +

P2(εN ) ≤ 1
4 and εNη� + P3(εN ) ≤ 1

4 .

Then exp(ũ) ≤ exp
{

x2

4 + y2

4 + xy
4

}
≤ exp

{
3x2

8 + 3y2

8

}
Then similarly to the expression 8.20,∫ ∞

t

∫ ∞

t

φ(x)φ(y)

(
x2

2

η�√
N

AN (i) +
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j) +
x2

2
γN

− y2

2
γ̃N − xy ˜̃γN

)2

exp(ũ)dxdy

≤ 1

2π

∫ ∞

t

∫ ∞

t

exp(−x2

8
) exp(−y2

8
)

(
x2

2

η�√
N

AN (i)

+
y2

2

η�√
N

AN (j) + xy
η�√
N

BN (i, j) +
x2

2
γN

− y2

2
γ̃N − xy ˜̃γN

)2

dxdy ≤ 1

N
J ′

where J ′ is finite.
Similarly to the computations made for αN , βN , γN , νN , all the remain-

der terms can be upper bounded by products of AN (i)/
√
N , AN (j)/

√
N and

BN (i, j)/
√
N , which proves (8.19).

8.3.5. Proof of Lemma 4

In this section, all the expectations that we consider are conditionally to the
presence of the observed individuals in the study, for instance {εi = εj = 1} or
{εi1 = εi2 = εi3 = 1}. However, for the sake of simplicity, we will not always
make explicit such conditioning.

Let us show that

Var(
1

n

∑
i �=j

(WiWj − E[WiWj |Z])GN (i, j)1EN
) → 0,
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that is

1

n2

∑
i1 �=i2
i3 �=i4

E[(E[Wi1Wi2Wi3Wi4 |Z]

− E[Wi1Wi2 |Z]E[Wi3Wi4 |Z])GN (i1, i2)GN (i3, i4)1EN
] → 0 (8.21)

For this purpose, we will separate three cases depending on the cardinal of the
set {i1, i2, i3, i4} in the sum of Equation (8.21).

-If card({i1, i2, i3, i4})=2, the corresponding terms in (8.21) are equal to

1

n2

∑
i �=j

E
[
E[(W2

iW
2
j |Z]− E[WiWj |Z]2)GN (i, j)21EN

]

≤ 1

n2

∑
i �=j

E[(α+ ρN (i, j))GN (i, j)21EN
]

where α is a positive constant and ρN (i, j) can be upper bounded by a finite
product of GN (i, j), GN (i, i)−1 and GN (j, j)−1, according to proof of Lemma
3. This result is obtained by using a similar decomposition of E[W2

iW
2
j |Z] than

the one that we explicited for E[WiWj |Z].
Since E[GN (i, j)21EN

] ≤ ε2N and all terms of ρN (i, j) are upper bounded by
a finite sum of εkN , with k greater than 1, which all tend to 0, it is clear that

1

n2

∑
i �=j

E
[
E[(W2

iW
2
j |Z]− E[WiWj |Z]2)GN (i, j)21EN

]
→ 0.

- If card({i1, i2, i3, i4})=3, the corresponding terms in (8.21) are equal to

1

n2

∑
i1 �=i2 �=i3

E[(E[W2
i1Wi2Wi3 |Z]

− E[Wi1Wi2 |Z]E[Wi1Wi3 |Z])GN (i1, i2)GN (i1, i3)1EN
]. (8.22)

Since the sum of Equation (8.22) has n(n− 1)(n− 2) terms, we have the refine
the upper bound that we used in the case where the cardinal of {i1, i2, i3, i4}
was equal to 2. Indeed, we will use the following proposition:

Proposition 2. E[W2
i1
Wi2Wi3 |Z] has no term of order less than 1/

√
N , that

is no constant term.

Let us explain why Proposition 2 is enough to prove

1

n2

∑
i1 �=i2 �=i3

E[(E[W2
i1Wi2Wi3 |Z]

− E[Wi1Wi2 |Z]E[Wi1Wi3 |Z])GN (i1, i2)GN (i1, i3)1EN
] → 0. (8.23)
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Let us first recall that, according to Lemma 3,

E[Wi1Wi2 |Z]E[Wi1Wi3 |Z]
= c2η�2GN (i1, i2)GN (i1, i3) + cη�GN (i1, i3)RN (i1, i2)

+ cη�GN (i1, i2)RN (i1, i3) +RN (i1, i2)RN (i1, i3),

where, if EN holds, all these terms are upper bounded by a finite sum of terms
of the form εkN , with k ≥ 2.

Then,

E [E[Wi1Wi2 |Z]E[Wi1Wi3 |Z]GN (i1, i2)GN (i1, i3)1EN
]

can be upper bounded by a finite sum of terms of the form εkN , with k ≥ 4.
Since

N(N − 1)(N − 2)ε4N
n2

→ 0,

it shows that

1

n2

∑
i1 �=i2 �=i3

E [E[Wi1Wi2 |Z]E[Wi1Wi3 |Z])1EN
] → 0.

Similarly, according to Proposition 2, each term of

E
[
E[W2

i1Wi2Wi3 |Z]GN (i1, i2)GN (i1, i3)1EN

]
can be upper bounded by a finite sum of εkN , with k ≥ 3.

Since
n(n− 1)(n− 2)ε3N

n2
= O

(
1

N1/2−3γ

)
→ 0,

it achieves the proof of (8.22).
- If card({i1, i2, i3, i4})=4, let us first observe that

N(N − 1)(N − 2)(N − 3)ε5N
n2

→ 0,

which means that we shall only focus on the approximation of

E[Wi1Wi2Wi3Wi4 |Z]− E[Wi1Wi2 |Z]E[Wi3Wi4 |Z]

of order 1/N .
Let us recall that

E [Wi1Wi2 |Z]E[Wi3Wi4 |Z] = c2η�2GN (i1, i2)GN (i3, i4) +RN (i1, i2, i3, i4),

where

RN (i1, i2, i3, i4) = cη�GN (i1, i2)RN (i3, i4) + cη�GN (i3, i4)RN (i1, i2)

+RN (i1, i2)RN (i3, i4)
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is a remainder, each term of which is upper bounded by a finite sum of terms
of the form εkN , with k ≥ 2. In particular, it implies that

E[
N(N − 1)(N − 2)(N − 3)

n2
RN (i1, i2, i3, i4)GN (i1, i2)GN (i3, i4)] → 0.

Thus, we need to prove that

1

n2

∑
i1 �=i2 �=i3

E[(E[Wi1Wi2Wi3Wi4 |Z]

− c2η�2GN (i1, i2)GN (i3, i4))GN (i1, i2)GN (i3, i4)1EN
] → 0, (8.24)

To do so, we shall prove first the following proposition:

Proposition 3. The terms of order less than or equal to 1/
√
N in

E[Wi1Wi2Wi3Wi4 |Z]

are null.

The term of order exactly 1/N in E[Wi1Wi2Wi3Wi4 |Z] contains all com-
binations of products of two terms between GN (i1, i2), GN (i1, i3), GN (i1, i4),
GN (i2, i3), GN (i2, i4), GN (i3, i4), GN (i1, i1)− 1, GN (i2, i2)− 1, GN (i3, i3)− 1
and GN (i4, i4)− 1.

We will demonstrate the propositions:

Proposition 4. The term in GN (i1, i2)GN (i3, i4) of E[Wi1Wi2Wi3Wi4 |Z] is
equal to c2η�2GN (i1, i2)GN (i3, i4).

Proposition 5. For all terms TN (i1, i2, i3, i4) of order 1/N in

E[Wi1Wi2Wi3Wi4 |Z],
1

n2
E[TN (i1, i2, i3, i4)GN (i1, i2)GN (i3, i4)] → 0,

except for the term in GN (i1, i2)GN (i3, i4).

Propositions 3, 4 and 5 prove (8.24).
Let us prove now Propositions 2, 3, 5 and 4.
If card({i1, i2, i3, i4})=3, conditionally to {εi1 = εi2 = εi3 = 1}, W2

i1
Wi2Wi3

can take several values:
• (1−P )2

P 2 if Yi1 = Yi2 = Yi3 = 1.

• −(1−P )
P if Yi1 = 1 and Yi2 �= Yi3 .

• 1 if Yi1 = 1 and Yi2 = Yi3 = 0 or Yi1 = 0 and Yi2 = Yi3 = 1.
• −P

1−P if Yi1 = 0 and Yi2 �= Yi3 .

• P 2

(1−P )2 if Yi1 = Yi2 = Yi3 = 0.

Since each case has a probability 1 and each control a probability K(1 −
P )/P (1−K) to be in the study (these probabilities are given in Equation (2.6)
and (2.7)),

E[W2
i1Wi2Wi3 |Z, εi1 = εi2 = εi3 = 1] =

1

P(εi1 = εi2 = εi3 = 1)
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×
{
(1− P )2

P 2
P(Yi1 = Yi2 = Yi3 = 1|Z)− 1− P

P

(
K(1− P )

P (1−K)

)
× P(Yi1 = 1,Yi2 �= Yi3 |Z)

+

(
K(1− P )

P (1−K)

)
P(Yi1 = 0,Yi2 = Yi3 = 1|Z) +

(
K(1− P )

P (1−K)

)2

× P(Yi1 = 1,Yi2 = Yi3 = 0|Z)

− P

1− P

(
K(1− P )

P (1−K)

)2

P(Yi1 = 0,Yi2 �= Yi3 |Z) +
(1− P )2

P 2

(
K(1− P )

P (1−K)

)3

× P(Yi1 = Yi2 = Yi3 = 0|Z)
}

The development of order 0 of P(Yi1 = Yi2 = Yi3 = 1|Z) is

1

(2π)
3
2

∫ +∞

t

∫ +∞

t

∫ +∞

t

φ(x)φ(y)φ(z)dxdydz = K3 +Op

(
1√
N

)
.

Similarly,

P(Yi1 = 1,Yi2 �= Yi3 |Z) = 2K2(1−K) +Op

(
1√
N

)

P(Yi1 = 0,Yi2 = Yi3 = 1|Z) = K2(1−K) +Op

(
1√
N

)

P(Yi1 = 1,Yi2 = Yi3 = 0|Z) = K(1−K)2 +Op

(
1√
N

)

P(Yi1 = 0,Yi2 �= Yi3 |Z) = 2K(1−K)2 +Op

(
1√
N

)

P(Yi1 = Yi2 = Yi3 = 0|Z) = (1−K)3 +Op

(
1√
N

)

Replacing all these expressions in E[W2
i1
Wi2Wi3 |Z, εi1 = εi2 = εi3 = 1] gives us

that the approximation of order 0 is null, which achieves the proof of Proposition
2.

Let us prove now Proposition 3.

If card({i1, i2, i3, i4})=4, let us compute the approximation of order 1/
√
N

of E[Wi1Wi2Wi3Wi4 |Z].
Conditionally to {εi1 = εi2 = εi3 = εi4 = 1}, Wi1Wi2Wi3Wi4 can take val-

ues:

• (1−P )2

P 2 if all individuals are cases, that is Yi1 = Yi2 = Yi3 = Yi4 = 1.

• −(1−P )
P if one individual is a control and the three others are cases.

• 1 if two individuals are controls and two are cases.

• −P
1−P if one individual is a case and the three others are controls.

• P 2

(1−P )2 if all individuals are controls.
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The matrix of variance covariance of (li1 , li2 , li3 , li4) is

Σ =

⎛
⎜⎜⎝

1 + η�(GN (i1, i1)− 1) GN (i1, i2) GN (i1, i3)
GN (i1, i2) 1 + η�(GN (i2, i2)− 1) GN (i2, i3)
GN (i1, i3) GN (i2, i3) 1 + η�(GN (i3, i3)− 1)
GN (i1, i4) GN (i2, i4) GN (i3, i4)

GN (i1, i4)
GN (i2, i4)
GN (i3, i4)

1 + η�(GN (i4, i4)− 1)

⎞
⎟⎟⎠ .

For the sake of clarity, let us denote A1 = 1√
N

N∑
k=1

(Z2
i1,k

−1) =
√
N(GN (i1, i1)−

1), and similarly we define A2, A3 and A4.
Let us also denote C1,2 =

√
NGN (i1, i2) and similarly, C1,3, . . . , C3,4.

Then, let us rewrite Σ as:

Σ =

⎛
⎜⎜⎜⎜⎜⎝

1 + η�

√
N
A1

C1,2√
n

C1,3√
N

C1,4√
N

C1,2√
N

1 + η�

√
N
A2

C2,3√
N

C2,4√
N

C1,3√
N

C2,3√
N

1 + η�

√
N
A3

C3,4√
N

C1,4√
N

C2,4√
N

C3,4√
N

1 + η�

√
N
A4

⎞
⎟⎟⎟⎟⎟⎠ .

The approximation of order 1/
√
n of its inverse matrix is given by

Σ−1 � |Σ|−1

×

⎛
⎜⎜⎜⎜⎜⎝

1 + η�

√
N
(A2 +A3 +A4) −C1,2√

N

−C1,2√
N

1 + η�

√
N
(A1 +A3 +A4)

−C1,3√
N

−C2,3√
N

−C1,4√
N

−C2,4√
N

−C1,3√
N

−C1,4√
N

−C2,3√
N

−C2,4√
N

1 + η�

√
N
(A1 +A2 +A4) −C3,4√

N

−C3,4√
N

1 + η�

√
n
(A1 +A2 +A3)

⎞
⎟⎟⎟⎟⎟⎠

where |Σ|−1 = 1− η�

√
N
(A1 +A2 +A3 +A4) +Op

(
1
N

)
.

Let us compute

P(Yi1 = Yi2 = Yi3 = Yi4 = 1|Z)

=
1

|Σ| 12

∫ +∞

t

∫ +∞

t

∫ +∞

t

∫ +∞

t

f(w, x, y, z)dwdxdydz,
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where

f(w, x, y, z) =
1

(2π)2
exp

{
− x2

2|Σ| (1 +
η�√
n
(A2 +A3 +A4))− ...

− z2

2|Σ| (1 +
η�√
N

(A1 +A2 +A3))

+
wx

|Σ|
η�√
n
C1,2 +

wy

|Σ|
η�√
n
C1,3 + ...+

yz

|Σ|
η�√
N

C3,4 +Op

(
1

N

)}

=
1

(2π)2
exp

{
− x2

2
(1− η�√

N
(A1 +A2 +A3 +A4))

× (1 +
η�√
N

(A2 +A3 +A4))− ...

− z2

2
(1− η�√

N
(A1 +A2 +A3 +A4))(1 +

η�√
n
(A1 +A2 +A3))

+ wx
η�√
N

(1− η�√
N

(A1 +A2 +A3 +A4))C1,2 + ...

+ yz(1− η�√
N

(A1 +A2 +A3 +A4))
η�√
N

C3,4

}

= φ(w)φ(x)φ(y)φ(z) exp

{
x2

2

η�√
N

A1 + ...+
z2

2

η�√
N

A4

− wx
η�√
N

C1,2 − ...− yz
η�√
N

C3,4 +Op

(
1

N

)}

= φ(w)φ(x)φ(y)φ(z)

[
1 +

x2

2

η�√
N

A1 + ...+
z2

2

η�√
N

A4

− wx
η�√
N

C1,2 − ...− yz
η�√
N

C3,4 +Op

(
1

N

)]

Finally,

• P(Yi1 = Yi2 = Yi3 = Yi4 = 1|Z)

=
1

|Σ| 12

[
K4 +

K3

2
(tφ(t) +K)

η�√
n
(A1 +A2 +A3 +A4)

+K2φ(t)2
η�√
n
(C1,2 + ...+ C3,4)

]

Similarly, we compute

• P(“1 control, 3 cases”|Z)

=
1

|Σ| 12
[
4K3(1−K)

+
K2

2
((3− 4K)tφ(t) + 4K(1−K))

η�√
N

(A1 +A2 +A3 +A4)

+2φ(t)2K(1− 2K)
η�√
N

(C1,2 + ...+ C3,4)

]
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• P(“2 controls, 2 cases”|Z)

=
1

|Σ| 12
[
6K2(1−K)2

+
3K(1−K)

2
((1− 2K)tφ(t) + 2K(1−K))

η�√
N

(A1 +A2 +A3 +A4)

+φ(t)2(6K2 − 6K + 1)
η�√
N

(C1,2 + ...+ C3,4)

]

• P(“3 controls, 1 case”|Z)

=
1

|Σ| 12
[
4K(1−K)3

+
(1−K)2

2
((1− 4K)tφ(t) + 4K(1−K))

η�√
n
(A1 +A2 +A3 +A4)

−2φ(t)2(1−K)(1− 2K)
η�√
N

(C1,2 + ...+ C3,4)

]

• P(Yi1 = Yi2 = Yi3 = Yi4 = 0|Z)

=
1

|Σ| 12
[
(1−K)4 +

(1−K)3

2
(−tφ(t) + 1−K)

η�√
n
(A1 +A2 +A3 +A4)

+(1−K)2φ(t)2
η�√
N

(C1,2 + ...+ C3,4)

]

Regrouping all the first terms in the expression of E[Wi1Wi2Wi3Wi4 |Z] gives

1

|Σ| 12

[
(1− P )2

P 2
K4 − (1− P )

P

(
K(1− P )

P (1−K)

)
4K3(1−K)

+

(
K(1− P )

P (1−K)

)2

6K2(1−K)2

− P

1− P

(
K(1− P )

P (1−K)

)3

4K(1−K)3 +
P 2

(1− P )2

(
K(1− P )

P (1−K)

)4

(1−K)4

]

=
1

|Σ| 12

(
(1− P )2K4

P 2

)
[1− 4 + 6− 4 + 1] = 0

Similarly we regroup the terms in η�

√
N
(A1 +A2 +A3 +A4):

1

|Σ| 12
η�√
N

(A1 +A2 +A3 +A4)

[
(1− P )2

P 2

K3

2
(tφ(t) +K)

− (1− P )

P

(
K(1− P )

P (1−K)

)
K2

2
((3− 4K)tφ(t) + 4K(1−K))
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+

(
K(1− P )

P (1−K)

)2
3K(1−K)

2
((1− 2K)tφ(t) + 2K(1−K))

− P

1− P

(
K(1− P )

P (1−K)

)3
(1−K)2

2
((1− 4K)tφ(t) + 4K(1−K))

+
P 2

(1− P )2

(
K(1− P )

P (1−K)

)4
(1−K)3

2
(−tφ(t) + 1−K)

]

=
1

|Σ| 12

(
(1− P )2K4

2P 2

)
[1− 4 + 6− 4 + 1]

+
1

|Σ| 12

(
(1− P )2K3

2P 2(1−K)

)
[1−K − 3 + 4K + 3(1− 2K)− 1 + 4K −K] = 0

Finally, we regroup all the terms in η�

√
n
(C1,2 + ...+ C3,4):

1

|Σ| 12

(
(1− P )2K2

P 2(1−K)2

)
φ(t)2

×
[
(1−K)2 − 2(1−K)(1− 2K) + 6K2 − 6K + 1 + 2K(1− 2K) +K2

]
= 0.

This proves Proposition 3.

Let us prove Proposition 5.

The main term of the second order approximation of f(w, x, y, z) can be
written as:

f2(w, x, y, z) = φ(w)φ(x)φ(y)φ(z)

[
1 +

w2

2
(
η�√
N

A1 −
η�2

N
(A2

1 + C2
1,2 + C2

1,3

+ C2
1,4) + · · ·+ z2

2
(
η�√
N

A4 −
η�2

N
(A2

4 + C2
1,4 + C2

2,4 + C2
3,4)

+ wx(C1,2
η�√
N

− η�2

N
[(A1 +A2)C1,2 + C1,3C2,3 + C1,4C2,4]) + . . .

+ yz(C3,4
η�√
N

− η�2

N
[(A3 +A4)C3,4 + C1,3C1,4 + C2,3C2,4])

+
w4

8

η�2

N
A2

1 + · · ·+ z4

8

η�2

N
A2

4 +
w2x2

2

η�2

N
(C2

1,2 +
A1A2

2
) + . . .

+
y2z2

2

η�2

N
(C2

3,4 +
A3A4

2
) +

w3x

2

η�2

N
A1C1,2 + . . .

+
z3y

2

η�2

N
A4C3,4 + w2xy

η�2

N
[
A1C2,3

2
+ C1,2C1,3] + . . .

+ z2xy
η�2

N
[
A4C2,3

2
+ C2,4C3,4] + wxyz

η�2

N
(C1,2C3,4 + C2,3C1,4

+ C1,3C2,4)

]
. (8.25)
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In order to prove Proposition 5, we will show that:

1

n2

∑
i1 �=i2 �=i3 �=i4

E[A2
1C1,2C3,4] → 0 (8.26)

1

n2

∑
i1 �=i2 �=i3 �=i4

E[A1A2C1,2C3,4] → 0 (8.27)

1

n2

∑
i1 �=i2 �=i3 �=i4

E[A1C
2
1,2C3,4] → 0 (8.28)

1

n2

∑
i1 �=i2 �=i3 �=i4

E[A1C1,2C13C3,4] → 0 (8.29)

1

n2

∑
i1 �=i2 �=i3 �=i4

E[C2
1,2C2,3C3,4] → 0 (8.30)

1

n2

∑
i1 �=i2 �=i3 �=i4

E[C1,2C1,3C2,4C3,4] → 0 (8.31)

1

n2

∑
i1 �=i2 �=i3 �=i4

E[C3
1,2C3,4] → 0 (8.32)

We will develop the proof of Equation (8.27).
By exchangeability of the (Zi,k)1≤i≤n, we can write

E[A1A2C1,2C3,4] =
∑

k,l,m,r

E[(Z2
1,k − 1)(Z2

2,l − 1)Z1,mZ2,mZ3,rZ4,r] (8.33)

=
∑

k,l,m,r

E[Z2
1,kZ

2
2,lZ1,mZ2,mZ3,rZ4,r]

− 2N
∑
k,m,r

E[Z2
1,kZ1,mZ2,mZ3,rZ4,r] (8.34)

+N2
∑
m,r

E[Z1,mZ2,mZ3,rZ4,r]. (8.35)

We recall that since Zi,k and Zj,l are independent for any i and j when k �= l,
we will always consider separately the cases where k = l from the cases k �= l.
Let us first focus on the last term of (8.35).

∑
m,r

E[Z1,mZ2,mZ3,rZ4,r] =

N∑
m=1

E[Z1,mZ2,mZ3,mZ4,m]

+
∑
m �=r

E[Z1,mZ2,m]E[Z3,rZ4,r]

= N × o

(
1

n

)
+N(N − 1)× 1

(n− 1)2
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Then, 1
n2

1
N4

∑
i1 �=i2 �=i3 �=i4

(N2
∑
m,r

E[Z1,mZ2,mZ3,rZ4,r]) =
(N−1)2(N−2)(N−3)

n2(n−1)2 +o(1)

Now let us decompose the second term of (8.35) as:

∑
k,m,r

E[Z2
1,kZ1,mZ2,mZ3,rZ4,r] =

N∑
k=1

E[Z3
1,kZ2,kZ3,kZ4,k]

+
∑
k �=l

E[Z3
1,kZ2,k]E[Z3,lZ4,l] +

∑
k �=l

E[Z2
1,k]E[Z1,lZ2,lZ3,lZ4,l]

+
∑
k �=l

E[Z2
1,kZ3,kZ3,k]E[Z1,lZ2,l] +

∑
k �=l �=m

E[Z2
1,k]E[Z1,lZ2,l]E[Z3,mZ4,m].

Using the results given by Proposition 1, we obtain that

1

n2

1

N4

⎛
⎝−2N

∑
k,m,r

E[Z2
1,kZ1,mZ2,mZ3,rZ4,r]

⎞
⎠

= −2(N − 1)2(N − 2)(N − 3)

n2(n− 1)2
+ o(1).

Similarly, we can prove that

1

n2

1

N4

⎛
⎝ ∑

k,l,m,r

E[Z2
1,kZ

2
2,lZ1,mZ2,mZ3,rZ4,r]

⎞
⎠

=
(N − 1)2(N − 2)(N − 3)

n2(n− 1)2
+ o(1),

by using the properties of Proposition 1 or similar relationships coming from
other properties of Z that we have not detailed here.

Hence we have shown (8.27). The proofs of (8.26), (8.28), (8.29), (8.30),
(8.31), (8.32) are very similar to this proof.

It remains to prove Proposition 4.
According to the expression of f2(w, x, y, z) given in (8.25) and since

|Σ|− 1
2 = 1− η�

2
√
N

(A1 +A2 +A3 +A4) +
η�2

4N
(A1A2 + . . .+A3A4)

+
3η�2

8N
(A2

1 +A2
2 +A2

3 +A2
4) +

η�2

2N
(C2

1,2 + . . .+ C2
3,4) +Op

(
1

N
3
2

)
,

the only term in C1,2C3,4 of P(Yi1 = Yi2 = Yi3 = Yi4 = 1|Z) is

1

(2π)2
η�2

N

∫ +∞

t

∫ +∞

t

∫ +∞

t

∫ +∞

t

wxyzC1,2C3,4dwdxdydz = φ(t)4C1,2C3,4
η�2

N
.

The term in C1,2C3,4 of P(“3 cases, 1 control”|Z) is

−4φ(t)4C1,2C3,4
η�2

N
.
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The term in C1,2C3,4 of P(“2 cases, 2 controls”|Z) is

6φ(t)4C1,2C3,4
η�2

N
.

The term in C1,2C3,4 of P(“1 case, 3 controls”|Z) is

−4φ(t)4C1,2C3,4
η�2

N
.

The term in C1,2C3,4 of P(Yi1 = Yi2 = Yi3 = Yi4 = 0|Z) is

φ(t)4C1,2C3,4
η�2

N
.

It remains to compute the approximation of the denominator of

E[Wi1Wi2Wi3Wi4 |Z]

of order 0, that is

K4 + 4K3(1−K)

(
K(1− P )

P (1−K)

)
+ 6K2(1−K)2

(
K(1− P )

P (1−K)

)2

+ 4K(1−K)3
(
K(1− P )

P (1−K)

)3

+ (1−K)4
(
K(1− P )

P (1−K)

)4

=
K4

P 4

[
P 4 + 4P 3(1− P ) + 6P 2(1− P )2 + 4P (1− P )3 + (1− P )4

]
=

K4

P 4
.

Finally, the term C1,2C3,4 in E[Wi1Wi2Wi3Wi4 |Z] is

φ(t)4
η�2

N
C1,2C3,4

[
(1− P )2

P 2
+ 2

1− P

P

(
K(1− P )

P (1−K)

)
+ 6

(
K(1− P )

P (1−K)

)2

+2
P

1− P

(
K(1− P )

P (1−K)

)3

+

(
K(1− P )

P (1−K)

)4
]
× P 4

K4

=
P 2(1− P )2

K4(1−K)4
φ(t)4

η�2

N
C1,2C3,4,

which is exactly the term in C1,2C3,4 of E[Wi1Wi2 |Z]E[Wi3Wi4 |Z].
This proves Proposition 4.

8.4. Second order approximation of E[WiWj|Z, εi = εj = 1]

The density function f can still be written as

f(x, y) =
1

2π|Σ(N)|− 1
2

exp

{
− 1

2|Σ(N)|

[
x2(1 +

η�√
N

AN (j))
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+ y2(1 +
η�√
N

AN (i))− 2xy
BN (i, j)√

N

]}
,

but with the explicit term of order 1/N in the expressions of |Σ(N)|−1 and

|Σ(N)|− 1
2 :

|Σ(N)|−1 = 1− η�√
N

(AN (i) +AN (j))

+
η�2

N

(
−AN (i)AN (j) +BN (i, j)2 + (AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)

= 1− η�√
N

(AN (i) +AN (j))

+
η�2

N

(
AN (i)AN (j) +AN (i)2 +AN (j)2 +BN (i, j)2

)
+Op

(
1

N
3
2

)

and

|Σ(N)|− 1
2 = 1− η�

2
√
N

(AN (i) +AN (j))

+
η�2

2N

(
−AN (i)AN (j) +BN (i, j)2 +

3

8
(AN (i) +AN (j))2

)

+Op

(
1

N
3
2

)
.

Thus,

exp

{
− 1

2|Σ(N)|

[
x2(1 +

η�√
N

AN (j)) + y2(1 +
η�√
N

AN (i))− 2xy
BN (i, j)√

N

]}

= φ(x)φ(y) exp

{
−x2

2
(−AN (i)

η�√
N

+
η�2

N
(AN (i)2 +BN (i, j)2)

− y2

2
(−AN (j)

η�√
N

+
η�2

N
(AN (j)2 +BN (i, j)2)) + xy(

η�√
N

BN (i, j)

− η�2

N
BN (i, j)(AN (i) +AN (j)))

}
+Op

(
1

N
3
2

)

= φ(x)φ(y)

[
1 +

x2

2
(AN (i)

η�√
N

− η�2

N
(AN (i)2 +BN (i, j)2)

+
y2

2
(AN (j)

η�√
N

− η�2

N
(AN (j)2 +BN (i, j)2)) +

x4

8

η�2

N
AN (i)2

+
y4

8

η�2

N
AN (j)2 + xy(

η�√
N

BN (i, j)− η�2

N
BN (i, j)(AN (i) +AN (j)))

+
x2y2

2

η�2

N
BN (i, j)2 +Op

(
1

N
3
2

)]

with the last term obtained by developing the exponential function.
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Since ∫ ∞

t

∫ ∞

t

x4dxdy = t3φ(t) + 3tφ(t) + 3K

and ∫ ∞

t

∫ ∞

t

x2y2dxdy = (tφ(t) +K)2,

we have:∫ ∞

t

∫ ∞

t

exp

{
− 1

2|Σ(N)|

[
x2(1 +

η�√
N

AN (j)) + y2(1 +
η�√
N

AN (i))

− 2xy
BN (i, j)√

N

]}
dxdy = K2 +

K

2
(tφ(t) +K)

[
η�√
N

(AN (i) +AN (j))

− η�2

N
(AN (i)2 +AN (j)2 + 2BN (i, j)2)

]

+
K

8

η�2

N
(t3φ(t) + 3tφ(t) + 3K)(AN (i)2 +AN (j)2)

+ φ(t)2
[

η�√
N

BN (i, j)− η�2

N
BN (i, j)(AN (i) +AN (j))

]

+
1

2
(tφ(t) +K)2

η�2

N
(BN (i, j)2 +

AN (i)AN (j)

2

+
φ(t)2

2

η�2

N
(t2 + 2)BN (i, j)(AN (i) +AN (j)) +Op

(
1

N
3
2

)

Multiplying by

|Σ(N)|− 1
2 = 1− η�

2
√
N

(AN (i) +AN (j)) +
η�2

2N

(
−AN (i)AN (j) +BN (i, j)2

+
3

4
(AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)
,

we obtain∫ ∞

t

∫ ∞

t

f(x, y)dxdy = K2 +
K

2
tφ(t)

η�√
N

(AN (i) +AN (j))

+ φ(t)2
η�√
N

BN (i, j) +
K

8

η�2

N
(t3φ(t)− 3tφ(t)) +

η�2

N

t2φ(t)2

4
AN (i)AN (j)

+
η�2

N
BN (i, j)2

t2

2
φ(t)2 +

η�2

N

φ(t)2

2
(t2 − 1)BN (i, j)(AN (i) +AN (j))φ(t)2

+Op

(
1

N
3
2

)
.

Similarly, ∫ t

−∞

∫ t

−∞
x4dxdy = −t3φ(t)− 3tφ(t) + 3(1−K)
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and∫ t

−∞

∫ t

−∞
x2y2dxdy = (−tφ(t) + 1−K)2.

∫ t

−∞

∫ t

−∞
exp

{
− 1

2|Σ(N)|

[
x2(1 +

η�√
N

AN (j)) + y2(1 +
η�√
N

AN (i))

− 2xy
BN (i, j)√

N

]}
dxdy = (1−K)2 +

1−K

2
(−tφ(t) + 1−K)

[
η�√
N

(AN (i)

+AN (j))− η�2

N
(AN (i)2 +AN (j)2 + 2BN (i, j)2)

]

+
1−K

8

η�2

N

(
− t3φ(t)− 3tφ(t) + 3(1−K)

)
(AN (i)2 +AN (j)2)

+
φ(t)2

2

η�2

N
(t2 + 2)BN (i, j)(AN (i) +AN (j))

Multiplying by

|Σ(N)|− 1
2 = 1− η�√

N
(AN (i) +AN (j)) +

η�2

2N

(
−AN (i)AN (j) +BN (i, j)2

+
3

4
(AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)
,

∫ t

−∞

∫ t

−∞
f(x, y)dxdy = (1−K)2 − 1−K

2
tφ(t)

η�√
N

(AN (i) +AN (j))

+ φ(t)2
η�√
N

BN (i, j) +
1−K

8

η�2

N
(AN (i)2 +AN (j)2)(−t3φ(t) + 3tφ(t))

+
η�2

N

t2φ(t)2

4
AN (i)AN (j) +

η�2

N
BN (i, j)2

t2

2
φ(t)2

− η�2

N
BN (i, j)(AN (i) +AN (j))

φ(t)2

2
(t2 − 1) +Op

(
1

N
3
2

)
.

Finally, we compute similarly P(Yi �= Yj |Z) =
∫ t

−∞
∫ +∞
t

f(x, y)dxdy +∫ +∞
t

∫ t

−∞ f(x, y)dxdy.
We obtain

P(Yi �= Yj |Z) = 2K(1−K)− 1− 2K

2
tφ(t)

η�√
N

(AN (i) +AN (j))

− 2φ(t)2
η�√
N

BN (i, j) +
1− 2K

8

η�2

N
(AN (i)2 +AN (j)2)(t3φ(t)

− 3tφ(t))− η�2

N

t2φ(t)2

2
AN (i)AN (j)− η�2

N
BN (i, j)2t2φ(t)2

+
η�2

N
BN (i, j)(AN (i) +AN (j))φ(t)2(−t2 + 1) +Op

(
1

N
3
2

)
.
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We replace the expressions of P(Yi = Yj = 1|Z), P(Yi = Yj = 0|Z) and
P(Yi �= Yj |Z) in the expression of E[WiWj |Z, εi = εj = 1]. Since we already
computed the terms of order 1√

N
for the numerator, it only remains the terms

of order 1
N .

Eventually, we find that the numerator can be writen as:

η�√
N

1− P

P (1−K)2
φ(t)2BN (i, j)

+
η�2

N

t2φ(t)2

4
AN (i)AN (j)

1− P

P (1−K)2
+

η�2

2N
BN (i, j)2

1− P

P (1−K)2
t2φ(t)2

+
η�2

N

φ(t)2

2

1− P

P (1−K)2
(t2 − 1)BN (i, j)(AN (i) +AN (j)) +Op

(
1

N
3
2

)
.

Similarly, we compute the expression of the denominator (at order 1√
N

since

the main term of the numerator is of order 1√
N
). We obtain the following ex-

pression:

K2

P 2
+

η�√
N

t

2
φ(t)(AN (i) +AN (j))

K(P −K)

P 2(1−K)
+

η�√
N

φ(t)2BN (i, j)
(P −K)2

P 2(1−K)2

+Op

(
1

N

)
.

E[WiWj |Z, εi = εj = 1] =
P 2

K2

[
1− η�√

N

t

2
φ(t)(AN (i) +AN (j))

(P −K)

K(1−K)

− η�√
N

φ(t)2BN (i, j)
(P −K)2

K2(1−K)2

]

×
[

η�√
N

1− P

P (1−K)2
φ(t)2BN (i, j) +

η�2

N

t2φ(t)2

4
AN (i)AN (j)

1− P

P (1−K)2

+
η�2

2N
BN (i, j)2

1− P

P (1−K)2
t2φ(t)2 − η�2

N

φ(t)2

2

1− P

P (1−K)2
(t2 − 1)

×BN (i, j)(AN (i) +AN (j))

]
+Op

(
1

N
3
2

)

=
η�√
N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j) +

t2

4

η�2

N
AN (i)AN (j)

P (1− P )

K2(1−K)2

+
η�2

N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)2

[
t2

2
− (P −K)2

K2(1−K)2

]

+
η�2

2N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)(AN (i) +AN (j))

[
t2 − 1− P −K

K(1−K)
tφ(t)

]
.

Appendix A: Appendix

A.1. Proof of Equation (2.7)

By definition, the probabilities pcase and pcontrol are linked to the variables εi
as follows:

pcase = P(εi = 1|Z,Yi = 1)
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and
pcontrol = P(εi = 1|Z,Yi = 0).

The ratio of the two following equations:

P = P(Yi = 1|εi = 1) =
P(Yi = 1, εi = 1)

P(εi = 1)
=

P(Yi = 1, Vi = 1)

P(εi = 1)
=

Kpcase
P(εi = 1)

and

1− P = P(Yi = 0|εi = 1) =
P(Yi = 0, εi = 1)

P(εi = 1)
=

P(Yi = 0, Ui = 1)

P(εi = 1)

=
(1−K)pcontrol

P(εi = 1)
,

with the full ascertainment assumption given by (2.6) prove equation (2.7).

A.2. Proof of Equation (3.2)

This equation was proved in Golan, Lander and Rosset (2014), we recall the
proof here for the sake of completeness.

Conditionally to the event {εi = εj = 1}, the variable WiWj can take the
following values:

• 1−p
p if Yi = Yj = 1.

• p
1−p if Yi = Yj = 0.

• −1 if Yi �= Yj .

Let us write the expectaction of WiWj conditionally to Z and conditionally
to {εi = εj = 1}:

E[WiWj |Z, εi = εj = 1] =
1− P

P
P(Yi = Yj = 1|Z, εi = εj = 1)

− P(Yi �= Yj |Z, εi = εj = 1)

+
P

1− P
P(Yi = Yj = 0|Z, εi = εj = 1). (A.1)

P(Yi = Yj = 1|Z, εi = εj = 1)

=
P(εi = εj = 1|Yi = Yj = 1,Z)P(Yi = Yj = 1|Z)

P(εi = εj = 1|Z)

=
P(Yi = Yj = 1|Z)
P(εi = εj = 1|Z)

under the full ascertainment assumption given by Equation (2.6).
Similarly, since we have seen in Equation (2.7) that a control has a probability

K(1−P )
P (1−K) to be selected in the study and since εi and εj are assumed to be



Heritability estimation in case-control studies 1711

independent conditionally to Z, Yi and Yj :

P(Yi = Yj = 0|Z, εi = εj = 1)

=
P(εi = εj = 1|Yi = Yj = 0,Z)P(Yi = Yj = 0|Z)

P(εi = εj = 1|Z)

=

(
K(1− P )

P (1−K)

)2
P(Yi = Yj = 1|Z)
P(εi = εj = 1|Z)

and

P(Yi �= Yj |Z, εi = εj = 1) =
P(εi = εj = 1|Yi �= Yj ,Z)P(Yi �= Yj |Z)

P(εi = εj = 1|Z)

=

(
K(1− P )

P (1−K)

)
P(Yi �= Yj |Z)
P(εi = εj = 1|Z) .

The probability that both individuals i and j are included in the study is
equal to

P(εi = εj = 1|Z) = P(εi = εj = 1|Z,Yi = Yj = 1)P(Yi = Yj = 1|Z)
+ P(εi = εj = 1|Z,Yi = Yj = 0)P(Yi = Yj = 0|Z)
+ P(εi = εj = 1|Z,Yi �= Yj)P(Yi �= Yj |Z)

= P(Yi = Yj = 1|Z) +
(
K(1− P )

P (1−K)

)2

P(Yi = Yj = 0|Z)

+

(
K(1− P )

P (1−K)

)
P(Yi �= Yj |Z).

If we combine all these computations and we plug them in the expression
(A.1), we obtain (3.2).

A.3. Proof of Equation (3.6)

Notice first that

GN (i, i)− 1 =
1√
N

(
1√
N

N∑
k=1

(Z2
i,k − 1)

)

with

Var

(
1√
N

N∑
k=1

(Z2
i,k − 1)

)
=

1

N

N∑
k=1

E[Z4
i,k]− (E[Z2

i,k])
2.

Moreover, since the variables (Zi,k)1≤i≤n are normalized according to Equa-
tion (2.3),

N∑
i=1

Z2
i,k = n.
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By taking the expectation and since the variables (Zi,k)1≤i≤n are exchange-
able, we obtain that

E[Z2
i,k] = 1. (A.2)

Using (2) of Proposition 1 and Equation (A.2), we obtain that

Var

(
1√
N

N∑
k=1

(Z2
i,k − 1)

)

is bounded and

GN (i, i)− 1 =
1

N

N∑
k=1

(Z2
i,k − 1) = Op

(
1√
N

)
.

Similarly,

Var

(
1√
N

N∑
k=1

Zi,kZj,k

)
=

1

N

N∑
k=1

E(Z2
i,kZ

2
j,k)− E(Zi,kZj,k)

2

=
1

N

N∑
k=1

(
1 + o(1)− 1

(n− 1)2

)

using (3) and (1) of Proposition 1

= 1 + o(1).

Then, 1
N

N∑
k=1

Zi,kZj,k = Op

(
1√
N

)
.

Thus, we can write

Σ(N) =

(
1 + AN (i)√

N
η� BN (i,j)√

N
η�

BN (i,j)√
N

η� 1 + AN (j)√
N

η�

)
,

where AN (i) = 1√
N

N∑
k=1

(Z2
i,k − 1) = Op(1) for all i, and BN (i, j) =

1√
N

N∑
k=1

Zi,kZj,k = Op(1) for all i �= j.

A.4. Proof of Proposition 1

Observe that for all k = 1, . . . , N ,

n∑
i=1

Zi,k = 0 (A.3)

and
n∑

i=1

Z2
i,k = n. (A.4)
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Moreover, for each k, the random variables (Zi,k)1≤i≤n are exchangeable. Thus,
we deduce from (A.4) that for all i = 1, . . . , n and k = 1, . . . , N , E(Z2

i,k) = 1.
Hence, by (A.3), we get that

0 =

(
n∑

i=1

Zi,k

)2

=

n∑
i=1

Z2
i,k +

∑
1≤i �=j≤n

Zi,kZj,k ,

which, by (A.4), implies that for all k = 1, . . . , N and i �= j = 1, . . . , n,

E(Zi,kZj,k) = − n

n(n− 1)
= − 1

n− 1
, (A.5)

that is (1).
The proof of (2) comes from the decomposition:

|Z1,k|p = |Z1,k|p1{s2k>
δmin

2 } + |Z1,k|p1{s2k≤
δmin

2 }

≤ |A1,k − Āk|p(
δmin

2

)p + np1{s2k≤
δmin

2 }

Assumption 1.2 implies that sup
k

E
[
|A1,k − Āk|p

]
< +∞ and the upper bound

for P(s2k ≤ δ) of Equation (8.15) prove (2).
By (A.4), for all k = 1, . . . , N ,

n2 =

(
n∑

i=1

Z2
i,k

)2

=

n∑
i=1

Z4
i,k +

∑
1≤i �=j≤n

Z2
i,kZ

2
j,k

Since the (Zi,k)1≤i≤n are exchangeable for each k = 1, . . . , N , we get that for
all k = 1, . . . , N ,

n = E[Z4
1,k] + (n− 1)E[Z2

1,kZ
2
2,k] ,

which gives us (3) by using (2).
If we take the expectation of

Z3
1,k

n∑
i=1

Zi,k = 0,

we obtain
E[Z4

1,k] + (n− 1)E[Z3
1,kZ2,k] = 0.

Then, (2) implies (4).
Similarly, since

Z1,kZ2,k

n∑
i=1

Z2
i,k = nZ1,kZ2,k,

we obtain that

2E[Z3
1,kZ2,k] + (n− 2)E[Z2

1,kZ2,kZ3,k] = nE[Z1,kZ2,k].
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Then (1) and (4) imply (5).
Since

Z1,kZ2,kZ3,k

n∑
i=1

Zi,k = 0,

we obtain that

3E[Z2
1,kZ2,kZ3,k] + (n− 3)E[Z1,kZ2,kZ3,kZ4,k] = 0.

Then, (5) implies (6).
Since

Z5
1,k

n∑
i=1

Zi,k = 0,

we obtain that
E[Z6

1,k] + (n− 1)E[Z5
1,kZ2,k] = 0.

Then, (2) implies (7).
The proof of (8) is very similar to the proof of (2) but we use Assumption

1.3 which gives us that sup
k

E
[
|(A1,k − Āk)(A2,k − Āk)|p

]
< +∞.

Since

Z4
1,k

n∑
i=1

Z2
i,k = nZ4

1,k,

E[Z6
1,k] + (n− 1)E[Z4

1,kZ
2
2,k] = nE[Z4

1,k].

Then (2) implies (9).
Similarly, since

Z4
1,kZ2,k

n∑
i=1

Zi,k = 0,

we obtain that

E[Z5
1,kZ2,k] + E[Z4

1,kZ
2
2,k] + (n− 2)E[Z4

1,kZ2,kZ3,k] = 0.

Then, (7) and (9) imply (10).
Since

Z3
1,kZ2,k

n∑
i=1

Z2
i,k = nZ3

1,kZ2,k,

we obtain that

E[Z5
1,kZ2,k] + E[Z3

1,kZ
3
2,k] + (n− 2)E[Z3

1,kZ
2
2,kZ3,k] = nE[Z3

1,kZ2,k].

Then, (7), (8) and (4) imply (11).

Finally, since Z3
1,kZ2,k(

n∑
i=1

Zi,k)
2 = 0,

E[Z5
1,kZ2,k] + E[Z3

1,kZ
3
2,k] + 2E[Z4

1,kZ
2
2,k] + 2(n− 2)E[Z4

1,kZ2,kZ3,k]

+ 2(n− 2)E[Z3
1,kZ

2
2,kZ3,k] + (n− 2)2E[Z3

1,kZ2,kZ3,kZ4,k] = 0

Then, (7), (8), (9), (10) and (11) imply (12).
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